WO2011144007A1 - 锂离子动力电池无损充电机 - Google Patents

锂离子动力电池无损充电机 Download PDF

Info

Publication number
WO2011144007A1
WO2011144007A1 PCT/CN2011/073875 CN2011073875W WO2011144007A1 WO 2011144007 A1 WO2011144007 A1 WO 2011144007A1 CN 2011073875 W CN2011073875 W CN 2011073875W WO 2011144007 A1 WO2011144007 A1 WO 2011144007A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
voltage
circuit
switch
Prior art date
Application number
PCT/CN2011/073875
Other languages
English (en)
French (fr)
Inventor
郁百超
Original Assignee
Yu Baichao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yu Baichao filed Critical Yu Baichao
Priority to US13/636,107 priority Critical patent/US9219373B2/en
Publication of WO2011144007A1 publication Critical patent/WO2011144007A1/zh
Priority to US14/978,543 priority patent/US20160226289A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention belongs to a lithium ion power battery lossless charger.
  • Lithium-ion batteries are an ideal power source due to their high voltage, small size, light weight, no memory effect, no pollution, low self-discharge and long cycle life. In actual use, in order to obtain a higher discharge voltage, at least two single cells are generally connected in series to form a battery pack. At present, lithium-ion battery packs have been widely used in various fields such as notebook computers, electric bicycles and backup power supplies, and are the best power source for electric vehicles that are in the ascendant.
  • lithium ion batteries Due to the lithium ion battery group application technology, system integration key technology and key components and products research, it is seriously lagging behind the development of lithium ion batteries. Overcharge, overdischarge, over temperature and overcurrent problems occur after battery grouping, resulting in grouping. Lithium-ion battery life has been greatly shortened, safety has dropped drastically, and even serious accidents such as burning and explosion have become the main problem restricting the development of lithium-ion battery industry. It is also the technical bottleneck of the current energy-saving and new-energy automobile industry development.
  • the lithium ion battery system mainly includes a battery system, a charging system, a discharge system, and a maintenance management system. It is a high-tech integrated system that covers multiple technical fields and industries.
  • the battery management system and the charger cooperate with the series charging method:
  • the battery management system is the most comprehensive device for understanding the performance and status of the battery, so the connection between the battery management system and the charger can make the charger in real time. Understand the battery information, so as to more effectively solve some problems when charging the battery, but it is still in series charging, thus inheriting all the shortcomings of series charging.
  • Parallel charging method In order to solve the problem of overcharging and filling of some single cells in the battery pack, a parallel charging method is generated, but the parallel charging method requires multiple low-voltage, high-current charging power sources for each The single battery is charged, and the charging power source has high cost, low reliability, and low charging efficiency.
  • the power car adopts a three-phase AC motor, and its inverter input DC voltage is 288V. It should be powered by 80 single-voltage 3.7V lithium-powered battery packs.
  • the parallel charger must have 80 completely isolated and output current 200A constant current. The output voltage of 3. 7V constant voltage DC power supply, these fully isolated constant current and constant voltage DC power supply must be connected and disconnected in time, the complexity is almost impossible to achieve in practice.
  • the lithium-ion power battery non-destructive charger adopts the charging method of integral series constant current and single-parallel constant voltage, which realizes non-destructive charging of the battery.
  • the meaning of losslessness has two layers. First, the charging efficiency is close to 100%, and the charging power is basically lossless. The charging and discharging are completely based on the characteristic curve of the battery shown in Fig. 2, and the battery itself is completely harmless during charging and discharging.
  • the lossless charger eliminates the battery management system and implements all functions of the battery system, charging system, discharge system and maintenance management system by simple circuit, without overcharging, overheating, overdischarging, overcurrent, short circuit, all at the end of charging
  • the terminal voltage of the single battery is completely equal, no need to carry out equalization charging, and there is no complicated control chip and software which is susceptible to interference. It is safe, reliable, simple and practical. Its cost, size, weight and power consumption are the tenths of traditional chargers. One.
  • the meaning of the overall series constant current charging is: For the whole battery, the series charging is performed, and the charging power source adopts a constant current constant voltage DC power source.
  • the meaning of the unit parallel voltage constant control is: For the battery unit, parallel voltage regulation control, each unit battery is directly connected in parallel with a parallel voltage regulator circuit, all the parallel voltage regulator circuits are directly connected in series, which can be understood as While the battery is connected in series with constant current charging, serial constant current charging is also performed on all series connected parallel power supplies. Whether the combined charging current flows through the battery or through the shunt regulator circuit depends on the terminal voltage at which the battery is charged. The output voltage of the shunt regulator circuit is adjusted to the battery charge termination voltage value of 3.75V.
  • Figure 8 Simulation waveform of voltage at each point of the voltage cutting circuit.
  • FIG. 1 Lithium-ion power battery lossless charger, without PWM control technology and high-frequency power conversion, the whole machine is made up of charging circuit 1, discharge circuit 2 and battery control level 3.
  • the charging circuit 1 is composed of a MOS tube Q5, etc., the gate of the MOS tube Q5 is connected to the anode of the driving voltage V3, the source thereof is connected to the negative electrode of the driving voltage V3, and the drain thereof is connected to the charging power source VI through the resistor R1, and the cathode of the charging power source VI. Ground.
  • the discharge circuit 2 is composed of a MOS tube Q6, etc., the gate of the MOS tube Q6 is connected to the negative pole of the driving voltage V2 through the switch S1, the source thereof is connected to the anode of the driving voltage V2, and the drain thereof is grounded through the resistor R4; the positive side of the switch S1 is controlled by the switch S1
  • the anode of the driving voltage V2 is connected through the resistor R6, and the cathode thereof is connected in series with the corresponding switch in the battery control stage through the switch S2;
  • the anode of the control side of the switch S2 is connected to the anode of the Zener diode D4, and the cathode thereof is grounded through the resistor R7, the Zener diode D4
  • the negative pole is connected to the source of the MOS transistor Q6.
  • the battery control stage ST1 is composed of a lithium ion power battery and a parallel voltage stabilizing circuit Va and a switch circuit SW connected in parallel, and the collector of the transistors Q1 and Q2 and the Zener diode D1 of the parallel voltage stabilizing circuit Va.
  • the positive pole is connected to the positive pole of the battery E1
  • one end of the resistor R2 and the emitter of the transistor Q2 are connected to the cathode of the battery E1
  • the other end of the resistor R2 is connected to the cathode of the Zener diode D1 and the base of the transistor Q1
  • the emitter of the transistor Q1 is connected to the transistor of the transistor Q1.
  • the switch S3 in the switch circuit SW is connected in series with the corresponding switch in the upper and lower battery control stages, the positive side of the switch S3 is connected to the positive pole of the Zener diode D3, and the negative pole is connected to the current battery through the resistor R6.
  • the negative pole of the Zener diode D3 is connected to the anode of the secondary battery.
  • the battery control stage can be cascaded in turn, the positive electrode of the first stage is connected to the source of the M0S tube Q5 in the charging circuit, the negative electrode is connected to the positive electrode of the battery in the first level battery control stage, and the positive electrode of the battery in the second level battery control stage. Connected to the negative pole of the primary battery control stage, the negative pole is connected to the positive pole of the primary battery control stage, and the negative pole of the battery in the last stage is grounded.
  • the battery control level can be formed by cascading 1-N.
  • Figure 2 shows the charging characteristics of a lithium-ion battery.
  • the battery terminal voltage can be charged to 3.75V.
  • the parallel and parallel voltage stabilizing circuit Va is started, the series charging current flows through the transistor Q2, the El is no longer charged, and the terminal voltage of the E1 is no longer rising; at the same time, the series charging current continues to charge the E2 until the E2 is charged to the rated value.
  • the charging power supply VI is disconnected and the series charging is stopped.
  • the right side of Figure 3 is the simulation waveform of the charging voltage of the Li-ion battery El and E2.
  • the E1 starts to charge from 2. 5V.
  • the charging curve is in a straight line, the terminal voltage no longer rises, and the first step is to enter the full state.
  • VI continues to charge E2;
  • E2 starts charging at 2.0V, and when the terminal voltage is charged to the rated value, the charging curve is also in line, coincides with the charging curve of E1, because E2 starts charging voltage is low, The constant current charging time is longer, and later enters the full and parallel regulated state.
  • FIG 4 is the principle circuit of the lossless charger discharge (including charging), Q1 controls the access and disconnection of the charging power supply VI, and Q2 controls the entire discharge process of the battery pack.
  • the terminal voltages of El and E2 are always greater than those of D3 and D5. Breakdown voltage, switches S3, S4 are closed; the same reason, the control side (D4, R7) of switch S2 is connected in parallel with the entire battery pack.
  • the terminal voltage of the entire battery pack is always greater than the breakdown voltage of D4, the switch S2 is closed.
  • the control side of the switch S1 is connected in parallel via the resistor R5 and the switches S2, S3, S4 and the entire battery pack, and thus The off SI is also closed, the driving voltage V2 is applied to the gate source of Q2, Q2 is turned on, and the battery pack is discharged to the load R4.
  • the S3 control side is de-energized, and S3 is disconnected.
  • the S1 control side also loses power, S1 is turned off, the driving voltage V2 is not added to the gate of Q2, Q2 is turned off, and the battery pack discharge is terminated.
  • the battery pack When the battery pack is over-discharged, over-current or externally short-circuited, the battery terminal voltage is less than the breakdown voltage of D1, the S2 control side is de-energized, and S2 is disconnected, so the S1 control side also loses power, S1 is disconnected, and the driving voltage V2 is added. Less than Q2's gate, Q2 is turned off, the battery pack stops discharging.
  • the overcurrent or external short circuit fault is removed, the battery pack terminal voltage returns to normal, higher than the breakdown voltage of D4, the S2 control side is energized, and S2 is closed. At the same time, if there is no over-discharge of the single cell, then S3 and S4 are closed, then S1 is also closed, V2 is applied to the gate source of Q2, Q2 is turned on, and the battery continues to discharge to the load.
  • the parallel voltage stabilizing circuit Va and the switching circuit SW1 connected in parallel with the single cell E1 constitute a basic unit, and the basic unit can be arbitrarily cascaded to charge and discharge a battery pack composed of any one of lithium ion power cells.
  • the charging power supply VI in Fig. 3 is a constant current constant voltage power supply
  • Fig. 5 is the actual circuit of the constant current constant voltage power supply.
  • the input voltage is the rectified head wave
  • the left side of Fig. 6 is the simulation waveform of the output current of the load resistor R8, and the right side is Load voltage R8 output voltage simulation waveform
  • load resistance R8 changes from 8 ohms to 30 ohms
  • the current flowing through the load resistor R8 is basically unchanged, the voltage on it changes from 50V to 200V, the larger the load resistance, the higher the output voltage
  • the output current has a constant current characteristic, but the voltage on the resistor R8 has a limit value defined by the gate voltage of the MOSFET Q1, that is, the breakdown voltage of the four Zener diodes D4, D5, D6, and D9.
  • the maximum voltage of the lithium-ion battery pack will never exceed this defined value, so the charging is safe and reliable.
  • the field effect transistor Q1 in Fig. 3 controls the access and disconnection of the charging power source VI, performs constant current series charging on the battery pack, and performs constant voltage parallel control on the single cells, in the series series constant current charging and the unit parallel connection.
  • the output voltage of the constant current power supply VI varies, depending on the terminal voltage at the time of charging each unit battery. This change is reflected in the resistor R1.
  • the resistor R1 When the battery pack voltage is low, the resistor R1 is applied. The voltage is high, and on the contrary, the voltage on the resistor R1 is low, and the voltage drop across the resistor R1 is lost due to heat generation. In order to improve the charging efficiency, this part of the power is converted by power conversion.
  • the voltage-cutting circuit of Figure 7 has this function: Transformer TX1 is connected to the drain of MOSFET Q2, and a square-wave drive signal is applied to the gate of Q2, that is, the voltage-cut signal, and a stable DC output voltage is obtained at its source. Voa, the feedback voltage Vob is obtained at the transformer side.
  • Figure 8 is the simulated waveform of the output voltage of the voltage-cutting circuit: From top to bottom, the input is: the input head wave voltage Vd, the square wave drive signal Vc with the envelope is sine wave, the gate output voltage Voa, the transformer edge envelope is sinusoidal The double-sided band voltage Vs of the wave and the transformer output voltage Vob.
  • the constant current constant voltage power supply and the voltage cutting circuit belong to the prior art (the ultra-high power converter, application number: 201010130192X, and the specific embodiment 10, 19), and the detailed discussion is omitted. detailed description
  • Figure 9 is the actual circuit for charging the electric car 96V lithium-ion battery pack. It is made up of 26 identical circuits.
  • Figure 10 is the charging curve. The simulation waveform, 26 cells, terminal voltage 3. 7V, when charging, 26 cell terminal voltage from 2V to 3. 3V, the phase difference is 0. 05V, at the end of charging, each cell terminal voltage They are completely equal, which is equal to the set value of the output voltage of the parallel regulator circuit in parallel with each single cell. 3.75V, the voltage at the end of the charging terminal of the single cell is equal to the set value of the output voltage of the shunt regulator circuit connected in parallel with it. This setting can be artificially adjusted, so the voltage at the end of the battery charge termination can be artificially controlled.
  • Figure 11 and Figure 12 are enlarged circuit diagrams of the two parts of the circuit (A) and (B) of Figure 10.
  • the electric car is driven by a three-phase motor.
  • the voltage of the lithium-ion battery pack is 288V, and the 78V single-cell battery is connected in series.
  • the charging circuit is cascaded by 78 identical circuits, and there is no high current and high. The on/off operation of the voltage switch is very easy to implement.
  • the simulation waveform of the specific circuit and charging curve is the same as that of the 96V charger.
  • the charging circuit is the same as that of the specific embodiment 1, and the difference is:
  • the breakdown voltage of the Zener diode in the shunt regulator circuit should correspond to the terminal voltage of the lead-acid battery 12V;
  • the series constant voltage charging voltage should correspond to the terminal circuit of the lead-acid battery pack.
  • Figure 13 is a simulation waveform of the charging curve of the lead-acid battery non-destructive charger. It can be seen that when the battery terminal voltage starts from charging from 8V to 10.6, the single-cell battery with high terminal voltage reaches the end-of-charge value first, then In a straight line and held to the end, the single-cell battery with low terminal voltage finally reaches the end of charging value, no matter the lowest voltage or the highest terminal voltage, and regardless of the voltage at any end, they finally reach the end of charging value and remain until At last.
  • Parallel charging is almost impossible to achieve in practical applications, and its effect is unattainable.
  • Balanced charging must have special circuits to increase the power loss and cost, accompanied by a decrease in battery charging capacity.
  • the series charging not only achieves the effect of parallel charging, but also achieves the effect of balanced charging. Not only does it have no loss of charging capability, but also greatly improves the charging capacity of the battery.
  • the lossless charger adopts the charging method of integral series constant current and single-parallel constant voltage to realize the non-destructive charging of the lithium ion power battery. Actually, the series charging is performed, but the parallel charging effect is generated, and the charging process is complete. Overcharge, overheating, and make balanced charging redundant;
  • the lossless charger also includes a discharge circuit, which uses a weak current switch to replace the high current and high voltage.
  • the off and on of the switch makes the discharge circuit safe and reliable. When overdischarge, overcurrent or external short circuit occurs, the lithium ion power battery is cut off without delay;
  • the lossless charger circuit is simple, eliminating the battery management system and various complicated control chips and software, and the charge and discharge performance is greatly improved;
  • the lossless charger adopts a constant current constant voltage power supply and a voltage cutting circuit in a hundred super power converter for series charging, so that the charging efficiency is close to 100%;
  • the terminal voltage at the end of the charging of the single battery is equal to the set value of the output voltage of the parallel regulated power supply connected in parallel with it. This setting value can be artificially adjusted. Therefore, the lossless charger is suitable for charging various types of batteries at any terminal voltage. Discharge.
  • circuit diagrams in this paper are all from the power electronic simulation software SIMetrix/SIMPLIS 5. 60, which can be directly simulated without modification to obtain the same output waveform.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

锂离子动力电池无损充电机 技术领域
本发明属于一种锂离子动力电池无损充电机。
背景技术
锂离子电池由于单体电压高、 体积小、 重量轻、 无记忆效应、 无污染、 自放电小、 循环寿命长, 是一种理想电源。 在实际使用中, 为了获得更高的放电电压, 一般将至少 两只单体电池串联组成电池组使用。 目前, 锂离子电池组已广泛应用于笔记本电脑、 电 动自行车和备用电源等多种领域, 同时是方兴未艾的电动汽车的最佳动力源。
锂离子蓄电池对充放电的要求, 与铅酸等可逆电化学反应类蓄电池完全不同。 由于 锂离子蓄电池成组应用技术、 系统集成关键技术和关键零部件及产品研究, 严重滞后于 锂离子蓄电池的发展, 电池成组后发生过充电、 过放电、 超温和过流问题, 致使成组锂 离子蓄电池使用寿命大幅縮短, 安全性大幅下降, 甚至发生燃烧、 爆炸等恶性事故, 已 经成为制约锂离子蓄电池产业发展的主要问题, 也是当前节能与新能源汽车产业发展的 技术瓶颈。
我国电动汽车技术发展到今天, 在车用动力电池、 电机、 电传动等领域, 已经取得 了一批不错的成果。 车用动力电池技术虽然还不是很成熟, 但发展的速度与发达国家相 比并不算慢。 对电池单体进行测量时, 显示出的各项指标基本达到设计要求。 但是, 真 正集成为一个动力总成, 或者集成到整车上的时候, 却发现与单体测量时的情况有很大 出入。 车用动力电池总成并非将一个个单体电池串联或并联在一起就行了那么简单。 将 数十个甚至上百个电池集成在一起, 并将它们集成到车上, 在世界范围内都是一项高新 技术, 绝不是看起来那么容易的事情, 有能力解决这一难题的单位或个人也不是太多。 锂离子蓄电池系统主要包括电池系统、 充电系统、 放电系统和维护管理系统。 是一个函 括多个技术领域和行业的高技术集成系统。
传统充电方法
1) 串联充电法: 目前锂离子电池组的充电一般都采用串联充电, 这主要是因为串 联充电结构简单、成本较低、 容易实现。但由于单体锂离子电池在容量、 内阻、 衰减、 自放电等性能存在差异, 将 100只放电容量都为 lOOAh的锂离子电池串 联起来组成电池组,但如果成组前其中 99只单体锂离子电池荷电 80Ah,另外 1 只单体锂离子电池荷电 100Ah, 将此电池组进行串联充电时, 其中荷电 lOOAh 的那只单体锂离子电池会先充满电, 从而达到过充保护电压, 为了防止这只单 体锂离子电池被过充电, 电池管理系统会将整个串联充电电路切断, 也就使得 其他 99只电池无法充满, 从而整个电池组放电容量也就只有 80Ah。 串联充电 的缺点是: 要么电池组充不满, 浪费电池组的容量, 要么产生过充, 发生电池 爆炸的危险。
2) 电池管理系统和充电机协调配合串联充电法: 电池管理系统是对电池的性能和 状态了解最为全面的设备, 所以将电池管理系统和充电机之间建立联系, 就能 使充电机实时地了解电池的信息, 从而更有效地解决电池的充电时产生一些的 问题, 但其仍属串联充电, 因而继承了串联充电的一切缺点。
3) 并联充电法: 为了解决电池组中某些单体电池过充和充不满的问题, 产生了并 联充电法, 但是并联充电法需要采用多个低电压、 大电流的充电电源为每一只 单体电池充电, 存在充电电源成本高、 可靠性低、 充电效率低。 设动力汽车采 用三相交流电机, 其逆变器输入直流电压 288V, 应由 80个单体电压 3. 7V的锂 动力电池组提供动力, 并联充电机必须 80个完全隔离、 输出电流 200A恒流、 输出电压 3. 7V恒压的直流电源,这些完全隔离的恒流恒压直流电源必须适时接 入和断开, 其复杂程度在实践中几乎是不可能实现的。
4) 串联大电流加并联小电流充电法: 由于上述三种充电方法都存在问题, 另发展 出一种最适合高电压电池组, 特别是电动汽车电池组的充电方法, 即采用电池 管理系统和充电机协调配合、 串联大电流、 恒压限流的并联小电流充电方法, 这种充电法虽然综合了上述三种充电法的优点,却完全继承了三者的所有缺点。 发明内容
锂离子动力电池无损充电机采用整体串联恒流、 单体并联恒压的充电方法, 对电池 实现无损充电, 无损的含意有两层, 一是充电效率接近 100%, 充电功率基本无损耗, 二 是充、放电完全依据图 2所示电池的特性曲线, 电池本身在充、放电过程中完全无损害。 该无损充电机免除电池管理系统, 仅由简单的电路实现电池系统、 充电系统、 放电系统 和维护管理系统的所有功能, 无过充、 过热、 过放、 过流、 短路现象, 充电终了时所有 单体电池的端电压完全相等, 无须进行均衡充电, 同时无易受干扰的复杂控制芯片和软 件, 安全可靠, 简单实用, 其成本、 体积、 重量、 功耗都是传统充电机的十分之一。
整体串联恒流充电的含义是: 对于电池整体, 进行串联充电, 充电电源采用恒流恒 压直流电源。 单体并联恒压控制的含义是: 对于电池单体, 进行并联稳压控制, 每个单 体电池都直接并联一个并联稳压电路, 所有并联稳压电路直接串联, 可以理解为, 在对 整体电池进行串联恒流充电的同时, 也在对所有串联的并联电源进行串联恒流充电, 串 联充电电流是流经电池, 还是流经并联稳压电路, 取决于电池充电的端电压。 并联稳压 电路的输出电压调整为电池充电终止电压值 3. 75V, 当某个与之并联的单体电池端电压 充到此电压值时, 并联电路启动, 串联恒流充电电压流经并联稳压电路, 而不再流经电 池, 该单体电池充电停止, 其他单体电池继续进行串联恒流充电, 仿佛串联恒流充电对 直接串联的整体电池和直接串联的并联稳压电路这两个支路同时进行充电一样, 只不过 充电的时机由并联稳压电路控制, 因而得名单体并联恒压控制。上述整体串联恒流充电、 单体并联恒压控制的充电方法, 具备串联、 并联充电的所有优点, 完全免除了串联、 并 联充电的所有缺点。 当充电终了时, 所有单体电池的端电压都等于与之并联的并联稳压 电路的没定值 3. 75V, 当然不会发生过充、 过热现象。
附图说明
图 1, 主电路图;
图 2, 锂离子动力电池充电特性曲线;
图 3, 锂离子动力电池充电电路及其充电曲线仿真波形;
图 4, 锂离子动力电池放电电路
图 5, 恒流恒压电源;
图 6, 恒流恒压电源输出电压和电流的仿真波形;
图 7, 电压切割电路
图 8, 电压切割电路各点电压的仿真波形。
图 9, 锂离子单体电池 26节充放电的实际电路;
图 10, 锂离子单体电池 26节充电曲线仿真波形;
图 11, 锂离子单体电池 26节充放电电路 A部份;
图 12, 锂离子单体电池 26节充放电电路 B部份
图 13, 铅酸蓄电池 26节充电曲线仿真波形;
图 1锂离子动力电池无损充电机, 不采用 PWM控制技术和高频功率变换, 整机由充 电电路 1、 放电电路 2和电池控制级 3级联而成。
充电电路 1由 M0S管 Q5等组成, M0S管 Q5的栅极接驱动电压 V3的正极,其源极接 驱动电压 V3的负极, 其漏极通过电阻 R1接充电电源 VI, 充电电源 VI的的负极接地。
放电电路 2由 M0S管 Q6等组成, M0S管 Q6的栅极通过开关 S1接驱动电压 V2的负 极, 其源极接驱动电压 V2的正极, 其漏极通过电阻 R4接地; 开关 S1控制边的正极通过 电阻 R6接驱动电压 V2的正极,其负极通过开关 S2与电池控制级中的对应开关串联; 开 关 S2控制边的正极接齐纳二极管 D4的正极, 其负极通过电阻 R7接地, 齐纳二极管 D4 的负极接 MOS管 Q6的源极。
电池控制级 ST1 由一节锂离子动力电池及与之并联的一个并联稳压电路 Va和一个 开关电路 SW组成, 并联稳压电路 Va中的、 三极管 Ql、 Q2的集电极和齐纳二极管 D1的 正极接蓄电池 E1的正极, 电阻 R2的一端和三极管 Q2的发射极接蓄电池 E1的负极, 电 阻 R2另一端接齐纳二极管 D1的负极和三极管 Q1的基极, 三极管 Q1的发射极接三极管 Q 的基极; 开关电路 SW中的开关 S3与上一级和下一级电池控制级中的对应开关串联, 开关 S3控制边的正极接齐纳二极管 D3的正极,其负极通过电阻 R6接本级蓄电池的负极, 齐纳二极管 D3的负极接本级蓄电池的正极。
电池控制级可以依次级联,第一级级的蓄电池正极接充电电路中 M0S管 Q5的源极, 其负极接下一级电池控制级中电池的正极, 第二级电池控制级中蓄电池的正极接上一级 电池控制级的负极, 其负极接下一级电池控制级的正极, 最后一级中电池的负极接地, 按此级联方法, 蓄电池控制级可由 1-N级级联而成。
图 2是锂离子电池充电特性曲线, 电池端电压可充到 3. 75V。
图 3左边是无损充电机充电的原理电路, 其中 El=2. 5V, E2=2. 0V是单体锂离子电 池, VI是直流恒流恒压电源, 由 Ql、 Q2、 Dl、 R2和 Q3、 Q4、 D2、 R3组成 2个并联稳 压电路 Va和 Vb, 分别和电池 El、 E2并联。 VI通过电阻 R1直接对锂离子电池 El、 E2 串联充电, 当有一个电池, 例如 E1的端电压充到额定值, 即到达并联稳压电路 Va设定 的稳压值时,齐纳二极管 D1击穿,并联稳压电路 Va启动, 串联充电电流流经三极管 Q2, 不再对 El充电, E1的端电压也不再上升; 与此同时串联充电电流继续对 E2充电, 直到 E2充到额定值时, 充电电源 VI才断开, 串联充电停止。
图 3右边是锂离子电池 El、 E2充电电压的仿真波形, E1从 2. 5V开始充电, 当其端 电压充到 3. 75V后, 充电曲线成直线, 端电压不再上升, 率先进入充满和并联稳压状态, VI继续对 E2充电; E2从 2. 0V开始充电,其端电压充到额定值时,充电曲线也成一直线, 和 E1的充电曲线重合, 因为 E2起始充电电压较低, 恒流充电时间较长, 较后进入充满 和并联稳压状态。
图 4是无损充电机放电 (包括充电) 的原理电路, Q1控制充电电源 VI的接入和断 开, Q2控制电池组的放电全过程。 开关 S3和 S4连同控制边的 D3、 R6和 D5、 R8组成两 个开关电路 SW1和 SW2, 分别和电池 El、 E2并联, 在放电过程中, El、 E2的端电压总是 大于 D3、 D5的击穿电压, 开关 S3、 S4闭合; 同样道理, 开关 S2的控制边(D4、 R7)和 整个电池组并联, 在放电过程中, 整个电池组的端电压总是大于 D4 的击穿电压, 开关 S2闭合。 开关 S1的控制边通过电阻 R5和开关 S2、 S3、 S4和整个电池组并联, 于是开 关 SI也闭合, 驱动电压 V2加在 Q2的栅源极, Q2导通, 电池组向负载 R4放电。
在放电过程中, 当电池组中有一个单体电池, 例如 E1的端电压低于额定放电电压, 即低于齐纳二极管 D3的击穿电压时, S3控制边失电, S3断开, 于是 S1控制边也失电, S1断开, 驱动电压 V2加不到 Q2的栅极, Q2关断, 电池组放电终止。 当电池组过放、 过 流或外部短路时, 电池组端电压小于 D1的击穿电压, S2控制边失电, S2断开, 于是 S1 控制边也失电, S1断开, 驱动电压 V2加不到 Q2的栅极, Q2关断, 电池组停止放电, 当 过流或外部短路故障解除后, 蓄电池组端电压恢复正常, 高于 D4的击穿电压, S2控制 边得电, S2闭合, 同时单体电池若无过放电, 则 S3、 S4闭合, 于是 S1也闭合, V2加到 Q2的栅源极, Q2开通, 蓄电池继续对负载放电。
与单体电池 E1并联的并联稳压电路 Va和开关电路 SW1 , 构成一个基本单元, 此基 本单元可以任意级联, 对任意个锂离子动力单体电池组成的电池组进行充放电。
图 3中的充电电源 VI是恒流恒压电源, 图 5是恒流恒压电源的实际电路, 输入电 压是整流后的馒头波, 图 6左边是负载电阻 R8输出电流的仿真波形, 右边是负载电阻 R8输出电压的仿真波形, 负载电阻 R8从 8欧变化到 30欧, 流经负载电阻 R8的电流基 本不变, 其上电压从 50V变化到 200V, 负载电阻越大, 输出电压越高, 说明输出电流具 备恒流特性, 但电阻 R8上电压有一个极限值, 此值由 M0S管 Q1的栅极电压, 即由四个 齐纳二极管 D4、 D5、 D6、 D9的击穿电压界定。 锂离子电池组在整个充电过程中, 最高电 压绝对不会超过此界定值, 因此充电安全可靠。
图 3中的场效应管 Q1控制充电电源 VI的接入和断开,对电池组进行恒流串联充电, 同时, 对单体电池进行恒压并联控制, 在整体串联恒流充电和单体并联恒压控制的过程 中, 恒流电源 VI的输出电压是变化的, 视各单体电池充电时的端电压而定, 这种变化反 映在电阻 R1上, 当电池组电压低时, 电阻 R1上的电压高, 反之电阻 R1上的电压低, 电 阻 R1上的电压降因发热而损失掉。为了提高充电效率, 把这部份功率通过功率变换, 进 行回授。 图 7的电压切割电路就具备这种功能: 变压器 TX1接在 M0S管 Q2的漏极, 在 Q2的栅极加方波驱动信号, 即电压切割信号,在其源极可得到稳定的直流输出电压 Voa, 在变压器付边得到回授电压 Vob。 图 8是电压切割电路输出电压的仿真波形: 从上到下 依次是: 输入馒头波电压 Vd、 包络为正弦波的方波驱动信号 Vc、 栅极输出电压 Voa、 变 压器付边包络为正弦波的双边带电压 Vs、 变压器输出电压 Vob。 恒流恒压电源和电压切 割电路属现有技术(百超功率变换器, 申请号: 201010130192X, 具体实施方式 10、 19), 详细论述从略。 具体实施方式
具体实施方式 1 : 电动汽车锂离子动力电池无损充电机。
电动轿车采用直流电机驱动时, 所需电池组端电压为 96V, 图 9是电动轿车 96V锂 离子动力电池组充电的实际电路, 由 26个完全相同的电路级联而成, 图 10是充电曲线 的仿真波形,单体电池 26个,端电压 3. 7V,充电时, 26个单体电池端电压从 2V到 3. 3V, 依次相差 0. 05V, 充电终了时, 每个单体电池端电压完全相等, 都等于与每个单体电池 并联的并联稳压电路输出电压的设定值 3. 75V, 单体电池充电终止端电压, 等于与其并 联的并联稳压电路输出电压的设定值, 此设定值可以人为调整, 所以单体电池充电终止 端电压可以人为控制。
图 11、 图 12是图 10电路 (A)、 ( B ) 两部份的放大电路图。
电动轿车采用三相电机驱动, 则锂离子动力电池组端电压为 288V, 需 3. 7V单体电 池 78个串联, 充电电路由 78个完全相同的电路级联而成, 且无大电流、 高电压开关的 通断操作, 实现起来非常容易, 具体电路和充电曲线的仿真波形与 96V充电机同。
具体实施方式 2 : 铅酸蓄电池无损充电机。
充电电路与具体实施方式 1相同, 不同之处是:
1) 并联稳压电路中的齐纳二极管的击穿电压要与铅酸蓄电池端电压 12V相对应;
2) 串联恒流充电电流要与铅酸蓄电池的充电特性曲线相对应;
3) 串联恒压充电电压要与铅酸蓄电池组的端电路相对应。
图 13是铅酸蓄电池无损充电机充电曲线的仿真波形, 可以看到, 当蓄电池端电压 从 8V到 10. 6不等时开始充电后, 端电压高的单体电池先行到达充电终了值, 然后成直 线并保持到最后, 端电压低的单体电池最后到达充电终了值, 无论是最低端电压还是最 高端电压, 也无论是其间的任意端电压, 它们最后均到达充电终了值, 并保持到最后。
并联充电在实际应用中几乎是无法实现的, 其效果可望不可及, 而均衡充电必须有 专门电路, 在增加功率损耗和成本的同时, 伴有电池荷电能力的下降; 无损充电机采用 简单的串联充电, 不但达到了并联充电的效果, 而且还达到了均衡充电的效果, 不但没 有荷电能力的下降, 而且大大提升了电池的荷电能力。
几点说明
1) 无损充电机采用整体串联恒流、 单体并联恒压的充电方法, 实现了对锂离子动 力电池的无损充电, 实际进行的是串联充电, 却产生了并联充电的效果, 充电 全过程无过充、 过热, 同时使均衡充电成为多余;
2) 无损充电机同时包括了放电电路, 用弱电小开关, 取代强电大电流、 高电压开 关的通断, 使得放电电路安全可靠, 当过放、 过流或外部短路发生时, 无延时 地切断锂离子动力电池;
) 无损充电机电路简单, 免除电池管理系统和各种复杂的控制芯片及软件, 而充 放电性能却大幅提升;
) 无损充电机采用百超功率变换器中的恒流恒压电源和电压切割电路进行串联充 电, 使得充电效率接近 100%;
) 单体电池充电终了时的端电压, 等于与其并联的并联稳压电源输出电压的设定 值, 此设定值可以人为调整, 因此, 无损充电机适合对任意端电压的各类电池 进行充放电。
) 本文电路图均出自电力电子仿真软件 SIMetrix/SIMPLIS 5. 60, 可不加修改直 接仿真, 获得相同的输出波形。

Claims

权 利 要 求 书
1. 一种锂离子动力电池无损充电机, 不采用 PWM控制技术和高频功率变换, 其特 征是: 整机由充电电路 (1 )、 放电电路 (2) 和电池控制级 (3) 级联而成。
2. 根据权利要求 1所述的锂离子动力电池无损充电机, 其特征是: 充电电路 (1 ) 由第五 MOS管 (Q5) 等组成, 第五 MOS管 (Q5) 的栅极接第三驱动电压 (V3) 的正 极,其源极接第三驱动电压(V3)的负极,其漏极通过第一电阻(R1 )接充电电源(VI ), 充电电源 (VI ) 的的负极接地。
3. 根据权利要求 1所述的锂离子动力电池无损充电机, 其特征是: 放电电路 (2) 由第六 MOS管 (Q6) 等组成, 第六 MOS管 (Q6) 的栅极通过第一开关 (S1 ) 接第二 驱动电压(V2)的负极,其源极接第二驱动电压(V2)的正极,其漏极通过第四电阻(R4) 接地; 第一开关(S1 )控制边的正极通过第六电阻(R6)接第二驱动电压(V2)的正极, 其负极通过第二开关 (S2) 与电池控制级中的对应开关串联; 第二开关 (S2) 控制边的 正极接第四齐纳二极管 (D4) 的正极, 其负极通过第七电阻(R7)接地, 第四齐纳二极 管 (D4) 的负极接第六 MOS管 (Q6) 的源极。
4. 根据权利要求 1所述的锂离子动力电池无损充电机, 其特征是: 电池控制级 ST1 由一节锂离子动力电池及与之并联的一个并联稳压电路 Va和一个开关电路 SW组成, 并联稳压电路 Va中的第一、 第二三极管 (Ql、 Q2) 的集电极和第二齐纳二极管 (D1 ) 的正极接蓄电池 E1的正极, 第二电阻 (R2) 的一端和第二三极管 (Q2) 的发射极接蓄 电池 E1的负极, 第二电阻 (R2) 另一端接第二齐纳二极管 (D1 ) 的负极和第一三极管
(Q1 ) 的基极, 第一三极管 (Q1 ) 的发射极接第二三极管 (Q2) 的基极; 开关电路 SW 中的第三开关 (S3) 与上一级和下一级电池控制级中的对应开关串联, 第三开关 (S3) 控制边的正极接第三齐纳二极管(D3) 的正极, 其负极通过第六电阻(R6)接本级蓄电 池的负极, 第三齐纳二极管 (D3) 的负极接本级蓄电池的正极。
5. 根据权利要求 4所述的锂离子动力电池无损充电机, 其特征是: 电池控制级可以 依次级联, 第一级的蓄电池正极接充电电路中第五 MOS管 (Q5) 的源极, 其负极接下 一级电池控制级中电池的正极, 第二级电池控制级中蓄电池的正极接上一级电池控制级 的负极, 其负极接下一级电池控制级的正极, 最后一级中电池的负极接地, 按此级联方 法, 蓄电池控制级可由 1-N级级联而成。
PCT/CN2011/073875 2010-05-18 2011-05-10 锂离子动力电池无损充电机 WO2011144007A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/636,107 US9219373B2 (en) 2010-05-18 2011-05-10 Lossless charger
US14/978,543 US20160226289A1 (en) 2010-05-18 2015-12-22 Lossless charger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010174195.3 2010-05-18
CN201010174195.3A CN101826745B (zh) 2010-05-18 2010-05-18 锂离子动力电池无损充电机

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/636,107 A-371-Of-International US9219373B2 (en) 2010-05-18 2011-05-10 Lossless charger
US14/978,543 Continuation US20160226289A1 (en) 2010-05-18 2015-12-22 Lossless charger

Publications (1)

Publication Number Publication Date
WO2011144007A1 true WO2011144007A1 (zh) 2011-11-24

Family

ID=42690515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073875 WO2011144007A1 (zh) 2010-05-18 2011-05-10 锂离子动力电池无损充电机

Country Status (3)

Country Link
US (2) US9219373B2 (zh)
CN (1) CN101826745B (zh)
WO (1) WO2011144007A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102823100A (zh) * 2010-03-29 2012-12-12 三洋电机株式会社 充电系统
CN101826745B (zh) * 2010-05-18 2014-06-04 郁百超 锂离子动力电池无损充电机
CN104102147A (zh) * 2014-07-11 2014-10-15 国家电网公司 模拟电动汽车充电机不同输出状态的控制装置及实现方法
CN106364362B (zh) * 2016-11-22 2019-01-22 中车株洲电力机车有限公司 一种电车充电方法及其系统
CN107069886B (zh) * 2017-05-17 2024-02-06 广州鑫虹兴电子有限公司 一种基于mos管蓄电池并联自适应充放电装置及方法
CN107069901A (zh) * 2017-06-22 2017-08-18 安徽锐能科技有限公司 用于电池管理系统的供电电路
CN107706988A (zh) * 2017-11-03 2018-02-16 江苏德力化纤有限公司 一种用于动力ups串联蓄电池组充放电保护的控制仪
CN111092460B (zh) * 2018-10-23 2024-03-01 Oppo广东移动通信有限公司 一种充电控制方法、装置以及计算机存储介质
CN110323801A (zh) * 2019-05-29 2019-10-11 南京理工大学 一种储能系统电池模块均衡结构及控制方法
CN114144602A (zh) 2019-07-09 2022-03-04 浩夫尔动力总成有限公司 双变速器
WO2021005186A1 (de) 2019-07-09 2021-01-14 Hofer Powertrain Innovation Gmbh Getriebe, insbesondere twin-getriebe, und lagerbrille mit einer vorteilhaften ölschmierung durch ein mehrkammernsystem sowie geeignetes verfahren zum schmieren eines solchen getriebes
US11715963B1 (en) 2020-04-29 2023-08-01 The United States Of America, As Represented By The Secretary Of The Navy Battery storage container and wellness system
CN112271777B (zh) * 2020-10-27 2022-07-01 东莞光亚智能科技有限公司 一种串联电池单体恒压电路及其控制方法
CN113162245B (zh) * 2021-03-23 2023-11-10 Oppo广东移动通信有限公司 充电电路、芯片和设备
CN115622105B (zh) * 2022-11-09 2023-07-25 国网河南省电力公司济源供电公司 储能式电动汽车充电桩的充放电系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2824409Y (zh) * 2005-09-28 2006-10-04 新乡市中科科技有限公司 锂离子动力电池组保护电路
CN201290020Y (zh) * 2008-11-17 2009-08-12 南京特能电子有限公司 锂电池组电压均衡充电电路
CN101826745A (zh) * 2010-05-18 2010-09-08 郁百超 锂离子动力电池无损充电机

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151898A (ja) * 1984-01-18 1985-08-09 Nec Corp 不揮発性ランダムアクセスメモリセル
US5448154A (en) * 1992-07-03 1995-09-05 Hitachi, Ltd. Control device for battery charging AC generator used in motor vehicle
AU691507B2 (en) * 1993-09-17 1998-05-21 Nec Corporation Charging and discharging circuit for preventing overcharge and overdischarge of rechargable battery pack consisting of a plurality of rechargable batteries
US5789900A (en) * 1994-12-05 1998-08-04 Fuji Photo Film Co., Ltd. Device for protecting a secondary battery from overcharge and overdischarge
JP3421519B2 (ja) * 1996-02-13 2003-06-30 三洋電機株式会社 過充電防止回路、過放電防止回路及び充放電制御回路
US5774315A (en) * 1996-08-19 1998-06-30 Core Engineering, Inc. Power surge suppression circuit for hot plug environments
JP3327790B2 (ja) * 1996-10-29 2002-09-24 エヌイーシートーキン栃木株式会社 二次電池の保護装置
US5909103A (en) * 1997-07-24 1999-06-01 Siliconix Incorporated Safety switch for lithium ion battery
JP3681624B2 (ja) * 2000-08-31 2005-08-10 富士通株式会社 充電回路、充放電回路、及び電池パック
US6501248B2 (en) * 2000-09-28 2002-12-31 Ricoh Company, Ltd. Charge/discharge protection apparatus having a charge-state overcurrent detector, and battery pack including the same
US6674247B1 (en) * 2001-12-20 2004-01-06 Foveon, Inc. Efficient photographic flash
TWI289369B (en) * 2004-09-03 2007-11-01 Mobiletron Electronics Co Ltd Battery charging and/or DC power supply circuitry
CN2909661Y (zh) * 2006-05-22 2007-06-06 周海 电池充电平衡电路
CN200959522Y (zh) * 2006-10-10 2007-10-10 伍占禧 有自动均衡充电装置的电动自行车铅酸蓄电池组
JP4503636B2 (ja) * 2007-08-28 2010-07-14 レノボ・シンガポール・プライベート・リミテッド 電池パックおよび充電方法
CN101330225B (zh) * 2008-07-08 2010-07-07 奇瑞汽车股份有限公司 一种动力电池高压输出监控装置
US8942018B2 (en) * 2008-08-20 2015-01-27 ConvenientPower HK Ltd. Single-phase self-driven full-bridge synchronous rectification
CN102150319B (zh) * 2008-09-30 2013-12-04 日本碍子株式会社 钠硫电池的控制方法
CN101425694A (zh) * 2008-12-10 2009-05-06 吕成学 用于串联电池组的均衡充电装置
KR101526646B1 (ko) * 2009-03-31 2015-06-08 이와사키 덴끼 가부시키가이샤 충전 장치
JP2011155820A (ja) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd 太陽電池電源装置及び太陽電池を用いた二次電池の充電方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2824409Y (zh) * 2005-09-28 2006-10-04 新乡市中科科技有限公司 锂离子动力电池组保护电路
CN201290020Y (zh) * 2008-11-17 2009-08-12 南京特能电子有限公司 锂电池组电压均衡充电电路
CN101826745A (zh) * 2010-05-18 2010-09-08 郁百超 锂离子动力电池无损充电机

Also Published As

Publication number Publication date
US9219373B2 (en) 2015-12-22
US20160226289A1 (en) 2016-08-04
US20130033225A1 (en) 2013-02-07
CN101826745A (zh) 2010-09-08
CN101826745B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
WO2011144007A1 (zh) 锂离子动力电池无损充电机
CN101262140B (zh) 锂动力电池组串并联切换充电方法与充电装置
WO2012142931A1 (zh) 基本单元锂电池组模块、多级锂电池组及充放电均衡方法
CN101976876A (zh) 实现在充电过程中对电池均衡的装置及方法
CN103701171A (zh) 一种混合动力汽车电池组均衡充电控制系统
CN104617621A (zh) 一种改进的动力电池组维护方法
CN104300606A (zh) 一种多串电池保护系统
CN201307776Y (zh) 智能四段式充电器
CN102376979B (zh) 充放电自动均衡的锂离子动力电池串联电池组
CN101599560A (zh) 锂二次电池组的充电装置及充电方法
CN108321465A (zh) 基于电容器的电池内部交流加热电路、系统及方法
CN105539179B (zh) 一种田字型电动汽车混合电源装置
CN204144993U (zh) 一种电动汽车锂电池充电均衡控制电路
CN206742917U (zh) 储能系统
CN202183615U (zh) 串联锂电池组的外置均衡装置
TWI635691B (zh) Battery pack active balancing system
CN102709614B (zh) 锂二次电池的充电和放电方法
CN205945101U (zh) 组合式超级电池
CN104242395A (zh) 单变压器串联电池主动均衡电路及其均衡方法
CN104129314B (zh) 一种采用开关磁阻电机作为功率变压器的动力系统
CN102074983A (zh) 锂动力电动助力车电气部分的设计
CN205986287U (zh) 一种高压直流储能系统
Zhang et al. Research on Series-Parallel Connection Switching Charging Method for Lithium Battery of Autonomous Underwater Vehicles
CN214900281U (zh) 一种应用于并联式多电池模组的高效充放电系统
CN104578261B (zh) 一种低功耗电池管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11782924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13636107

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11782924

Country of ref document: EP

Kind code of ref document: A1