CN104617621A - 一种改进的动力电池组维护方法 - Google Patents

一种改进的动力电池组维护方法 Download PDF

Info

Publication number
CN104617621A
CN104617621A CN201510042071.2A CN201510042071A CN104617621A CN 104617621 A CN104617621 A CN 104617621A CN 201510042071 A CN201510042071 A CN 201510042071A CN 104617621 A CN104617621 A CN 104617621A
Authority
CN
China
Prior art keywords
cur
dis
batteries
cha
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510042071.2A
Other languages
English (en)
Other versions
CN104617621B (zh
Inventor
王浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANGZHOU GAOTE ELECTRONIC EQUIPMENT CO Ltd
Original Assignee
HANGZHOU GAOTE ELECTRONIC EQUIPMENT CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANGZHOU GAOTE ELECTRONIC EQUIPMENT CO Ltd filed Critical HANGZHOU GAOTE ELECTRONIC EQUIPMENT CO Ltd
Priority to CN201510042071.2A priority Critical patent/CN104617621B/zh
Publication of CN104617621A publication Critical patent/CN104617621A/zh
Priority to US15/324,673 priority patent/US10230248B2/en
Priority to DE112016000065.0T priority patent/DE112016000065B4/de
Priority to PCT/CN2016/071355 priority patent/WO2016119609A1/zh
Application granted granted Critical
Publication of CN104617621B publication Critical patent/CN104617621B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提出了一种改进的动力电池组维护方法,能够在电池组运行过程中,可以实时的对电池各种特征数据进行分析,挑选出电池组中需要进行维护充电及维护放电的单体电池,同时控制需要充电维护电池数与放电维护电池数的配比,达到总线平衡,通过融合维护方法的维护系统对需要进行维护的单体电池进行维护,该方法有效的保证电池组的一致性,进一步延长电池组的使用寿命,同时通过内部充放电的维护控制有效地减少外部电源的消耗,弱化对外部电源的依赖性,在一定条件下不需要开启外部电源对电池维护系统供电。

Description

一种改进的动力电池组维护方法
技术领域
本发明涉及动力电池组维护领域,尤其涉及一种改进的动力电池组维护方法。
背景技术
目前,储能电站、电动汽车等应用场合都需要使用串联单体电池成电池组进行应用,单体电池由于生产工艺等原因导致各电池容量与性能的差异,在对电池组进行充放电的过程中,必然会扩大这种差异,进而增加电池过充过放的风险,同时电池组容量利用率降低,长此以往,这种恶性循环过程将加速电池的损坏。因此,为了进一步改善电池组一致性,提高电池组容量利用率,延长电池组使用寿命,需要对电池组进行必要的维护,对电池组中剩余容量偏低的电池进行维护充电,对电池组中剩余容量偏高的电池进行维护放电。
目前维护方法很多,总结起来一般可分为两种,一种是基于电压的维护方法,另一种是基于容量的维护方法。
基于电压的维护方法是指通过采集得到的单体电池的电压差异来维护电池组的不一致现象,并通过各种充电维护及放电维护的方式对电压高的电池进行维护放电、对电压低的电池进行维护充电。这种方法控制简单,应用广泛。一般有电流分流法与能量转移法两种。电流分流法一般通过电阻等器件调整单体电池上的电流,通过开关等控制维护电流对电压过高的单体电池进行放电维护。能量转移法一般是指通过不同介质将能量从高电压电池转移至低电压电池中,进而改善电池组的电压一致性,能量转移的介质可以选取电容、电感、变压器等。
维护的最根本目的是平衡电池间剩余电量的差异,前面阐述的基于电压的维护方式能反应容量的特性,但无法准确描述电池的剩余容量状态,可能因此而出现过均衡现象,加剧电池组的一致性变差。锂电池内部的化学材料是造成该现象的原因。锂电池的极化效应导致当电流流过电池时,电池电压偏离其平衡值;由于锂电池生产过程中无法做到完全一致,即在相同的电压下,锂电池的剩余容量值可能不同。所以基于容量的均衡方法弥补了上述不足,在锂电池使用全周期中依然可以提供安全有效的均衡,延长其使用寿命。直接利用维护模块对剩余容量过大的电池进行维护放电,对剩余容量过低的电池进行维护充电。但是基于容量的维护方法需要准确预估单体电池的SOC,若SOC的准确性得不到保证,维护的可靠性会大大降低。
发明内容
为了克服现有技术的不足,本发明提供了一种改进的动力电池组维护方法,能够在电池组运行过程中,可以实时的对电池各种特征数据进行分析,挑选出电池组中需要进行维护充电及维护放电的单体电池,同时控制需要充电维护电池数与放电维护电池数的配比,达到总线平衡,通过融合维护方法的维护系统对需要进行维护的单体电池进行维护,该方法有效的保证电池组的一致性,进一步延长电池组的使用寿命,同时通过内部充放电的维护控制有效地减少外部电源的消耗,弱化对外部电源的依赖性,在一定条件下不需要开启外部电源对电池维护系统供电。
为实现上述发明目的,本发明一种改进的动力电池组维护方法的技术方案是:
一种改进的动力电池组维护方法,所述电池组由若干单体电池串联组成,包括下述步骤:
(1)对电池组Bat={Bat1,Bat2...Batn}进行分析,n为电池组单体电池个数,n≥3,且n为整数;
(2)数据预处理;测量并选取单体电池的连续m个采集电压vol、采集电流cur、采集温度temp,m为大于等于3的整数,得到原始数据矩阵Z;
Z = vol 11 . . . vol 1 m . . . . . . . . . vol n 1 . . . vol nm cur 1 . . . cur m temp 1 . . . temp m
对电压、电流、温度数据进行去峰值取平均操作,最后得到所需的电压、电流、温度数据,为volavgi、curavg、tempavg,0≤i≤n。
volavg i = 1 n - 2 ( Σ j = 1 m vol ij - min 1 ≤ j ≤ m { vol ij } - max 1 ≤ j ≤ m { vol ij } )
curavg = 1 n - 2 ( Σ j = 1 m cur j - min 1 ≤ j ≤ m { cur j } - max 1 ≤ j ≤ m { cur j } )
tempavg = 1 n - 2 ( Σ j = 1 m temp j - min 1 ≤ j ≤ m { temp j } - max 1 ≤ j ≤ m { temp j } )
(3)对(2)中得到的电压数据volavgi以及计算得到的电池单体荷电状态SOCi、健康状态SOHi等数据分别进行归一化处理,处理如下:
volavg ‾ i = volavg i - min 1 ≤ i ≤ n { volavg i } max 1 ≤ i ≤ n { volavg i } - min 1 ≤ i ≤ n { volavg i }
SOCSOH ‾ i = SOC i × SOH i - min 1 ≤ i ≤ n { SOC i × SOH i } max 1 ≤ i ≤ n { SOC i × SOH i } - min 1 ≤ i ≤ n { SOC i × SOH i }
为第i个单体电池归一化后对应的电压数值,为第i个单体电池归一化后对应的SOC、SOH的乘积,0≤i≤n,,0≤i≤n,i为整数;
(4)单体电池需要进行维护的充电程度与放电程度计算,并确定需要维护充电的电池集合及需要维护放电的电池集合;
下面计算每节电池的需要进行维护充电的程度,计算方式如下:
d Cha i = w 1 × 10 × ( 1 n Σ j = 0 n volavg ‾ j - volavg ‾ i ) + w 2 ( 1 n Σ j = 0 n SOCSOH ‾ j - SOCSOH ‾ j )
d Cis i = w 1 × 10 × ( volavg ‾ i - 1 n Σ j = 0 n volavg ‾ j ) + w 2 ( SOCSOH ‾ j - 1 n Σ j = 0 n SOCSOH ‾ j )
其中w1、w2分别为电压因素、剩余电量因素的权重值,且w1+w2=1;
遍历所有单体电池,当dChai>dcha时,认为第i个单体电池需要进行充电维护,dcha为设定的充电维护阈值;当dDisi>ddis时,认为第i个单体电池需要进行放电维护,ddis为设定的放电维护阈值;
进而得到需要进行充电维护的电池集合为Bat1={Bat11,Bat12...Bat1x},需要进行放电维护的电池集合为Bat2={Bat21,Bat22...Bat2y},且x<n,y<n;
(5)设定充电维护电流为定值Curcha,放电维护电流为定值Curdis,为了维护的平衡,得到需要进行维护充电的电池数与进行维护放电的电池数的比值为对该比值进行处理,得到对应的最简分数为当Curdis'≥Curcha',且Curdis'>d时,d为最大维护充电节数,n/4≤d≤n/2,则即为d与向上取整的比值;当Curdis'≥Curcha',且Curdis'≤d时,则当Curdis'<Curcha',且Curcha'>d时,则即为向下取整与d的比值;当Curdis'<Curcha',且Curcha'≤d时,则 h cha h dis = Cur dis &prime; Cur cha &prime; ;
时,则可以得到需要维护放电的电池数量为向下取整后与hdis的乘积,需要维护充电的电池数量为向下取整后与hcha的乘积;当时,则可以得到需要维护放电的电池数量为向下取整后与hdis的乘积,需要维护充电的电池数量为向下取整后与hcha的乘积;当时,则可以得到需要维护充电的电池数量为Numcha=x,需要维护放电的电池数量为Numdis=y;
(6)根据各电池的需要进行维护充电与维护放电的程度对电池集合Bat1、Bat2进行降序排序;得到需要维护充电的有序集合Bat3={Bat31,Bat32...Bat3x},且Bat31≥Bat32≥...≥Bat3x,得到需要维护放电的有序集合Bat4={Bat41,Bat42...Bat4y},且Bat41≥Bat42≥...≥Bat4y
(7)根据(5)得到的需要维护充电及需要维护放电的电池数,从(6)得到的Bat3、Bat4中选取;进而得到最终需要进行维护充电的电池集合与进行维护放电的电池集合。需要进行维护充电的电池集合为需要进行维护放电的电池集合为 BatDis = { Bat 4 1 , Bat 4 2 . . . Bat 4 Num dis } ;
(8)电池维护系统对电池集合BatCha中的单体电池进行充电维护,对电池集合BatDis中的单体电池进行放电维护。
优选地,所述的步骤(4)中,充电维护阈值dcha=0.2。
优选地,放电维护阈值ddis=0.2。最简分数又称既约分数,分子和分母是互质数的
分数。
优选地,所述的步骤(5)中,d为最接近(n/3)的整数。
荷电状态SOC(state of charge)是指蓄电池使用一段时间或长期搁置不用后的剩余容量与其完全充电状态的容量的比值,常用百分数表示。其取值范围为0~1,当SOC=0时表示电池放电完全,当SOC=1时表示电池完全充满。
电池的健康状态SOH(State of Health)用来描述动力电池的健康状态,特别用于电动汽车领域各种动力电池,比如铅酸电池、镍氢电池、锂电池等的健康状况,剩余寿命等。SOH的计算或估算可参照现有技术中公开的方法,如中国专利102508164A、101208847、102866361A、102520361A等公开的方法。
本发明提供了一种改进的动力电池组维护方法,能够在电池组运行过程中,可以实时的对电池各种特征数据进行分析,挑选出电池组中需要进行维护充电及维护放电的单体电池,同时控制需要充电维护电池节数与放电维护电池节数的配比,达到总线平衡,该方法有效的保证电池组的一致性,进一步延长电池组的使用寿命,同时通过内部充放电的维护控制有效地减少外部电源的消耗,弱化对外部电源的依赖性。
附图说明
图1为本发明所述的动力电池组维护系统的原理框图;
图2是本发明所述的维护电路的电路图;
图3是本发明所述的若干个维护电路的连接电路图;
具体实施方式
下面结合实施例和附图对本发明作进一步说明,但本发明的保护范围并不限于此。
一种改进的动力电池组维护方法,所述电池组由若干单体电池串联组成,包括下述步骤:
(1)对电池组Bat={Bat1,Bat2...Batn}进行分析,n为电池组单体电池个数,n≥3,且n为整数;
(2)数据预处理;测量并选取单体电池的连续m个采集电压vol、采集电流cur、采集温度temp,m为大于等于3的整数,得到原始数据矩阵Z;
Z = vol 11 . . . vol 1 m . . . . . . . . . vol n 1 . . . vol nm cur 1 . . . cur m temp 1 . . . temp m
对电压、电流、温度数据进行去峰值取平均操作,最后得到所需的电压、电流、温度数据,为volavgi、curavg、tempavg,0≤i≤n。
volavg i = 1 n - 2 ( &Sigma; j = 1 m vol ij - min 1 &le; j &le; m { vol ij } - max 1 &le; j &le; m { vol ij } )
curavg = 1 n - 2 ( &Sigma; j = 1 m cur j - min 1 &le; j &le; m { cur j } - max 1 &le; j &le; m { cur j } )
tempavg = 1 n - 2 ( &Sigma; j = 1 m temp j - min 1 &le; j &le; m { temp j } - max 1 &le; j &le; m { temp j } )
(3)对(2)中得到的电压数据volavgi以及计算得到的电池单体荷电状态SOCi、健康状态SOHi等数据分别进行归一化处理,处理如下:
volavg &OverBar; i = volavg i - min 1 &le; i &le; n { volavg i } max 1 &le; i &le; n { volavg i } - min 1 &le; i &le; n { volavg i }
SOCSOH &OverBar; i = SOC i &times; SOH i - min 1 &le; i &le; n { SOC i &times; SOH i } max 1 &le; i &le; n { SOC i &times; SOH i } - min 1 &le; i &le; n { SOC i &times; SOH i }
为第i个单体电池归一化后对应的电压数值,为第i个单体电池归一化后对应的SOC、SOH的乘积,0≤i≤n,,0≤i≤n,i为整数;
(4)单体电池需要进行维护的充电程度与放电程度计算,并确定需要维护充电的电池集合及需要维护放电的电池集合;
下面计算每节电池的需要进行维护充电的程度,计算方式如下:
d Cha i = w 1 &times; 10 &times; ( 1 n &Sigma; j = 0 n volavg &OverBar; j - volavg &OverBar; i ) + w 2 ( 1 n &Sigma; j = 0 n SOCSOH &OverBar; j - SOCSOH &OverBar; j )
d Cis i = w 1 &times; 10 &times; ( volavg &OverBar; i - 1 n &Sigma; j = 0 n volavg &OverBar; j ) + w 2 ( SOCSOH &OverBar; j - 1 n &Sigma; j = 0 n SOCSOH &OverBar; j )
其中w1、w2分别为电压因素、剩余电量因素的权重值,且w1+w2=1;
遍历所有单体电池,当dChai>dcha时,认为第i个单体电池需要进行充电维护,dcha为设定的充电维护阈值,0<dcha<1;当dDisi>ddis时,认为第i个单体电池需要进行放电维护,ddis为设定的放电维护阈值,0<ddis<1;
进而得到需要进行充电维护的电池集合为Bat1={Bat11,Bat12...Bat1x},需要进行放电维护的电池集合为Bat2={Bat21,Bat22...Bat2y},且x<n,y<n;
(5)设定充电维护电流为定值Curcha,放电维护电流为定值Curdis,为了维护的平衡,得到需要进行维护充电的电池数与进行维护放电的电池数的比值为对该比值进行处理,得到对应的最简分数为当Curdis'≥Curcha',且Curdis'>d时,d为最大维护充电节数,n/4≤d≤n/2,则即为d与向上取整的比值;当Curdis'≥Curcha',且Curdis'≤d时,则当Curdis'<Curcha',且Curcha'>d时,则即为向下取整与d的比值;当Curdis'<Curcha',且Curcha'≤d时,则 h cha h dis = Cur dis &prime; Cur cha &prime; ;
时,则可以得到需要维护放电的电池数量为向下取整后与hdis的乘积,需要维护充电的电池数量为向下取整后与hcha的乘积;当时,则可以得到需要维护放电的电池数量为向下取整后与hdis的乘积,需要维护充电的电池数量为向下取整后与hcha的乘积;当时,则可以得到需要维护充电的电池数量为Numcha=x,需要维护放电的电池数量为Numdis=y;
(6)根据各电池的需要进行维护充电与维护放电的程度对电池集合Bat1、Bat2进行降序排序;得到需要维护充电的有序集合Bat3={Bat31,Bat32...Bat3x},且Bat31≥Bat32≥...≥Bat3x,得到需要维护放电的有序集合Bat4={Bat41,Bat42...Bat4y},且Bat41≥Bat42≥...≥Bat4y
(7)根据(5)得到的需要维护充电及需要维护放电的电池数,从(6)得到的Bat3、Bat4中选取;进而得到最终需要进行维护充电的电池集合与进行维护放电的电池集合。需要进行维护充电的电池集合为需要进行维护放电的电池集合为 BatDis = { Bat 4 1 , Bat 4 2 . . . Bat 4 Num dis } ;
(8)电池维护系统对电池集合BatCha中的单体电池进行充电维护,对电池集合BatDis中的单体电池进行放电维护。
所述的步骤(4)中,充电维护阈值dcha=0.2,放电维护阈值ddis=0.2。所述的步骤(5)中,d为最接近(n/3)的整数。
本发明还提供了一种与改进的动力电池组维护方法适配的基于共用设备供电电源的隔离双向恒流维护系统,如图1所示,用于维护由单体电池组成的电池组,其包括供电电源、电子开关K1、电流传感器、电池管理系统主控制器、若干个电池管理系统从控制器,所述供电电源连接电流传感器,电流传感器分别连接电子开关K1和电池管理系统主控制器,电子开关分别连接电池管理系统主控制器和电池管理系统从控制器,所述电池管理系统主控制器分别与若干个电池管理系统从控制器通讯连接,所述每个电池管理系统从控制器分别连接一个电池组。
所述的电池管理系统从控制器包括维护电路、单体电池采集电路及从控MCU;所述的电池管理系统主控制器包括电池组采集电路及主控MCU。所述从控MCU分别与维护电路和单体电池采集电路相连接,所述单体电池采集电路连接单体电池两端,用于采集单体电池的电压、电流、温度等数据。所述主控MCU与电池组采集电路相连接,所述电池组采集电路连接电池组的两端,用于采集电池组整体的电压、电流、温度等数据。
如图2和3所示,所述的维护电路,包括PWM控制器、滤波电容LL1、场效应管Q1、变压器T、场效应管Q2、滤波电容LL2、选通开关K、信号切换电路1、驱动电路2、电压电流采样反馈电路3,所述变压器T的主线圈的a、b两端分别连接滤波电容LL1的一端和场效应管Q1的漏极,所述场效应管Q1的源极连接滤波电容LL1的另一端和接地,所述变压器T的副线圈的c、d两端分别连接滤波电容LL2的一端和场效应管Q2的漏极,所述场效应管Q2的源极连接滤波电容LL2的另一端和电压电流采集反馈电路3,所述场效应管Q1和场效应管Q2的栅极分别连接驱动电路2,所述变压器T的主线圈的a端和副线圈的c端分别连接电压电流采集反馈电路3,所述滤波电容LL1的两端分别与供电电源的正负极相连,所述PWM控制器分别与电压电流采样反馈电路3、信号切换电路1和供电电源相连接,所述信号切换电路1与驱动电路2相连接,所述电压电流采集反馈电路3与选通开关相连接,所述选通开关与被测电池组相连接;
所述选通开关包括若干对正极开关和负极开关,所述选通开关中所有正极开关相互串联并连接到电压电流采集反馈电路,所述选通开关中所有负极开关相互串联并连接到电压电流采集反馈电路,所述每对正极开关和负极开关的一端分别与电池组中的单体电池的正负端。
所述每个维护电路中的PWM控制器分别通过电池管理系统主控制器通讯连接相连。所述供电电源为开关电源或蓄电池等储能器件。
所述信号切换电路包括两个单刀双向开关K2、K3,所述单刀双向开关K2、K3的一端分别连接PWM控制器的PWMA端口和PWMB端口,单刀双向开关K2、K3的另一端连接驱动电路。所述驱动电路控制场效应管Q1、Q2的启动。所诉的电压电流采集反馈电路采用现有成熟技术实现。
本系统的工作原理:PWM控制器产生PWMA和PWMB两路PWM信号,其中PWMA为主激励信号,PWMB为同步整流信号,通过信号切换电路1把PWMA和PWMB分配到场效应管Q1和场效应管Q2上,充电时PWMA信号控制场效应管Q1,PWMB信号控制场效应管Q2,放电时PWMA信号控制场效应管Q2,PWMB信号控制场效应管Q1。选通开关K控制被测电池组中的其中一节单体电池被选中,可对被选中的单体电池进行充电或者放电。电压电流采样反馈电路13采集充电或放电电流大小并反馈给PWM控制器,实现恒流充电或放电,同时采集两边的电压,实现过压保护。充电过程中场效应管Q1和场效应管Q2的开关时序:一、场效应管Q1开通,场效应管Q2关断,供电电源中的能量通过场效应管Q1转移到变压器T中;二、场效应管Q1关断,场效应管Q2关断,变压器T中的能量通过场效应管Q2的体二极管转移到滤波电容LL2和单体电池中,该过程很短暂,为死区时间;三、场效应管Q1关断,场效应管Q2开通,变压器T中的能量通过场效应管Q2转移到滤波电容LL2和单体电池中,由于场效应管Q2的开通压降要比其体二极管导通压降低得多,所以利用场效应管Q2的开通进行同步整流可以大大提高该均衡电源的效率;四、场效应管Q1关断,场效应管Q2关断,该过程很短暂,为死区时间,至此一个循环结束,充电过程即为这四个过程的不断循环。同理,放电过程场效应管Q1和场效应管Q2的时序与充电过程对调。
本发明提出的动力电池组维护系统不需要持续或者长期的供电电源,当系统正常运行后,可控制断开供电电源,同时通过电流传感器、维护电路充放电维护通道数的控制达到总线供电平衡,避免了其他系统方案需要独立稳定的长期供电电源及需要独立的均衡供电电源的缺陷,该系统能快速提高电池利用率,有效地延长电池组的使用寿命。
本文中所描述的具体实施例仅仅是对本发明结构作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (4)

1.一种改进的动力电池组维护方法,所述电池组由若干单体电池串联组成,其特征在于:包括下述步骤:
(1)对电池组Bat={Bat1,Bat2...Batn}进行分析,n为电池组单体电池个数,n≥3,且n为整数;
(2)数据预处理;测量并选取单体电池的连续m个采集电压vol、采集电流cur、采集温度temp,m为大于等于3的整数,得到原始数据矩阵Z;
Z = vol 11 . . . vol 1 m . . . . . . . . . vol n 1 . . . vol nm cur 1 . . . cur m temp 1 . . . temp m
对电压、电流、温度数据进行去峰值取平均操作,最后得到所需的电压、电流、温度数据,为volavgi、curavg、tempavg,0≤i≤n。
volavg i = 1 n - 2 ( &Sigma; j = 1 m vol ij - min 1 &le; j &le; m { vol ij } - max 1 &le; j &le; m { vol ij } )
curavg = 1 n - 2 ( &Sigma; j = 1 m cur j - min 1 &le; j &le; m { cur j } - max 1 &le; j &le; m { cur j } )
tempavg = 1 n - 2 ( &Sigma; j = 1 m temp j - min 1 &le; j &le; m { temp j } - max 1 &le; j &le; m { temp j } )
(3)对(2)中得到的电压数据volavgi以及计算得到的电池单体荷电状态SOCi、健康状态SOHi等数据分别进行归一化处理,处理如下:
volavg &OverBar; i = volavg i - min l &le; i &le; n { volavg i } max 1 &le; i &le; n { volavg i } - min 1 &le; i &le; n { volavg i }
SOCSOH &OverBar; i = SOC i &times; SOH i - min 1 &le; i &le; n { SOC i &times; SOH i } max 1 &le; i &le; n { SOC i &times; SOH i } - min 1 &le; i &le; n { SOC i &times; SOH i }
为第i个单体电池归一化后对应的电压数值,为第i个单体电池归一化后对应的SOC、SOH的乘积,0≤i≤n,,0≤i≤n,i为整数;
(4)单体电池需要进行维护的充电程度与放电程度计算,并确定需要维护充电的电池集合及需要维护放电的电池集合;
下面计算每节电池的需要进行维护充电的程度,计算方式如下:
dCha i = w 1 &times; 10 &times; ( 1 n &Sigma; j = 0 n volavg &OverBar; j - volavg &OverBar; i ) + w 2 ( 1 n &Sigma; j = 0 n SOCSOH &OverBar; j - SOCSOH &OverBar; j )
dDis i = w 1 &times; 10 &times; ( volavg &OverBar; i - 1 n &Sigma; j = 0 n volavg &OverBar; j ) + w 2 ( SOCSOH &OverBar; j - 1 n &Sigma; j = 0 n SOCSOH &OverBar; j )
其中w1、w2分别为电压因素、剩余电量因素的权重值,且w1+w2=1;
遍历所有单体电池,当dChai>dcha时,认为第i个单体电池需要进行充电维护,dcha为设定的充电维护阈值,0<dcha<1;当dDisi>ddis时,认为第i个单体电池需要进行放电维护,ddis为设定的放电维护阈值,0<ddis<1;
进而得到需要进行充电维护的电池集合为Bat1={Bat11,Bat12...Bat1x},需要进行放电维护的电池集合为Bat2={Bat21,Bat22...Bat2y},且x<n,y<n;
(5)设定充电维护电流为定值Curcha,放电维护电流为定值Curdis,为了维护的平衡,得到需要进行维护充电的电池数与进行维护放电的电池数的比值为对该比值进行处理,得到对应的最简分数为当Curdis'≥Curcha',且Curdis'>d时,d为最大维护充电节数,n/4≤d≤n/2,则即为d与向上取整的比值;当Curdis'≥Curcha',且Curdis'≤d时,则当Curdis'<Curcha',且Curcha'>d时,则即为向下取整与d的比值;当Curdis'<Curcha',且Curcha'≤d时,则
时,则可以得到需要维护放电的电池数量为向下取整后与hdis的乘积,需要维护充电的电池数量为向下取整后与hcha的乘积;当时,则可以得到需要维护放电的电池数量为向下取整后与hdis的乘积,需要维护充电的电池数量为向下取整后与hcha的乘积;当时,则可以得到需要维护充电的电池数量为Numcha=x,需要维护放电的电池数量为Numdis=y;
(6)根据各电池的需要进行维护充电与维护放电的程度对电池集合Bat1、Bat2进行降序排序;得到需要维护充电的有序集合Bat3={Bat31,Bat32...Bat3x},且Bat31≥Bat32≥...≥Bat3x,得到需要维护放电的有序集合Bat4={Bat41,Bat42...Bat4y},且Bat41≥Bat42≥...≥Bat4y
(7)根据(5)得到的需要维护充电及需要维护放电的电池数,从(6)得到的Bat3、Bat4中选取;进而得到最终需要进行维护充电的电池集合与进行维护放电的电池集合。需要进行维护充电的电池集合为需要进行维护放电的电池集合为 BatDis = { Bat 4 1 , Bat 4 2 . . . Bat 4 Num dis } ;
(8)电池维护系统对电池集合BatCha中的单体电池进行充电维护,对电池集合BatDis中的单体电池进行放电维护。
2.根据权利要求1所述的改进的动力电池组维护方法,其特征在于:所述的步骤(4)中,充电维护阈值dcha=0.2。
3.根据权利要求1所述的改进的动力电池组维护方法,其特征在于:所述的步骤(4)中,放电维护阈值ddis=0.2。
4.根据权利要求1所述的改进的动力电池组维护方法,其特征在于:所述的步骤(5)中,d为最接近(n/3)的整数。
CN201510042071.2A 2015-01-28 2015-01-28 一种改进的动力电池组维护方法 Active CN104617621B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201510042071.2A CN104617621B (zh) 2015-01-28 2015-01-28 一种改进的动力电池组维护方法
US15/324,673 US10230248B2 (en) 2015-01-28 2016-01-19 Maintenance method of power battery pack
DE112016000065.0T DE112016000065B4 (de) 2015-01-28 2016-01-19 Verbessertes wartungsverfahren für powerakku-packs
PCT/CN2016/071355 WO2016119609A1 (zh) 2015-01-28 2016-01-19 一种改进的动力电池组维护方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510042071.2A CN104617621B (zh) 2015-01-28 2015-01-28 一种改进的动力电池组维护方法

Publications (2)

Publication Number Publication Date
CN104617621A true CN104617621A (zh) 2015-05-13
CN104617621B CN104617621B (zh) 2017-01-18

Family

ID=53151958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510042071.2A Active CN104617621B (zh) 2015-01-28 2015-01-28 一种改进的动力电池组维护方法

Country Status (4)

Country Link
US (1) US10230248B2 (zh)
CN (1) CN104617621B (zh)
DE (1) DE112016000065B4 (zh)
WO (1) WO2016119609A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119608A1 (zh) * 2015-01-28 2016-08-04 杭州高特电子设备有限公司 一种基于共用设备供电电源的隔离双向恒流维护系统
WO2016119609A1 (zh) * 2015-01-28 2016-08-04 杭州高特电子设备有限公司 一种改进的动力电池组维护方法
WO2017113944A1 (zh) * 2015-12-30 2017-07-06 北京新能源汽车股份有限公司 电池组温度获取方法及装置
CN107656211A (zh) * 2017-09-15 2018-02-02 武汉中航传感技术有限责任公司 蓄电池组监测系统
CN108254689A (zh) * 2016-12-29 2018-07-06 中国电信股份有限公司 电池组反极单体电池检测方法和系统
CN109017381A (zh) * 2018-07-31 2018-12-18 电子科技大学 一种动力电池组复合均衡控制方法
CN111403761A (zh) * 2020-03-27 2020-07-10 上海派能能源科技股份有限公司 电压均衡方法、装置、计算机设备以及可读存储介质
CN112234674A (zh) * 2020-10-09 2021-01-15 上海电气集团股份有限公司 一种簇内均衡电路及均衡控制方法
CN115189450A (zh) * 2022-09-09 2022-10-14 杭州华塑科技股份有限公司 一种应用于储能系统的电池组均衡装置及均衡方法
CN115395605A (zh) * 2022-08-25 2022-11-25 上海交通大学 高压直挂电池储能系统容量利用率提升方法
CN116908720A (zh) * 2023-09-07 2023-10-20 中国华能集团清洁能源技术研究院有限公司 一种电池组一致性状态诊断方法、装置及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10809307B2 (en) * 2017-09-26 2020-10-20 E-Xteq Europe Differential battery testers
CN112130078B (zh) * 2020-09-22 2022-04-15 清华四川能源互联网研究院 充放电数据处理方法、充放电数据处理装置和终端设备
CN113176505B (zh) * 2021-04-30 2022-10-04 重庆长安新能源汽车科技有限公司 车载动力电池荷电状态与健康状态在线估算方法、装置及存储介质
CN113759252B (zh) * 2021-10-09 2024-05-17 长沙理工大学 基于直流内阻ir压降的储能电站电池簇不一致性在线评估方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627134B1 (en) * 1992-07-08 1999-10-06 Benchmarq Microelectronics, Inc. Method and apparatus for monitoring battery capacity with charge control
CN102148519A (zh) * 2011-03-31 2011-08-10 杭州高特电子设备有限公司 电池组自动均衡方法及电路
CN102148408A (zh) * 2011-03-04 2011-08-10 杭州高特电子设备有限公司 电池组串联补偿均衡方法及电路
CN102221675A (zh) * 2011-03-31 2011-10-19 杭州高特电子设备有限公司 基于模式识别技术的蓄电池容量判断方法
CN102455410A (zh) * 2010-10-18 2012-05-16 深圳中兴力维技术有限公司 蓄电池组远程放电控制系统、监控单元装置及检测方法
CN103176138A (zh) * 2013-02-15 2013-06-26 中国南方电网有限责任公司调峰调频发电公司 一种电池组维护检测方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774606B1 (en) * 2003-01-24 2004-08-10 The Boeing Company Charge control circuit and method for charging multiple battery cells
JP4473823B2 (ja) 2003-01-30 2010-06-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 電気エネルギー蓄積器のための複数の部分モデルを用いた状態量およびパラメータの推定装置
KR100756837B1 (ko) 2005-06-30 2007-09-07 주식회사 엘지화학 배터리 상태 추정 방법 및 장치
US7723957B2 (en) 2005-11-30 2010-05-25 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery parameter vector
US8078324B2 (en) * 2007-07-13 2011-12-13 Cummins Inc. Method for controlling fixed and removable vehicle HVAC devices
DE102010039913A1 (de) 2010-08-30 2012-03-01 Sb Limotive Company Ltd. Verfahren zum Ausbalancieren von Ladezuständen einer Batterie mit mehreren Batteriezellen sowie ein entsprechendes Batteriemanagementsystem und eine Batterie
CN103222147B (zh) * 2010-11-25 2017-04-19 诺基亚技术有限公司 情境感知电池充电
CN102508164A (zh) 2011-10-10 2012-06-20 杭州高特电子设备有限公司 蓄电池健康状态预警方法
CN102520361B (zh) 2011-12-05 2015-03-04 惠州市亿能电子有限公司 一种电池组soh值评估方法
CN102866361B (zh) 2012-08-31 2016-04-06 惠州市亿能电子有限公司 一种电池组soh在线估算方法
CN103269096B (zh) * 2013-05-14 2015-03-18 国家电网公司 一种基于聚类分析的电池组均衡方法
CN103633695B (zh) * 2013-11-22 2015-11-18 国家电网公司 一种改进的锂电池组均衡方法及其均衡电路
CN104617621B (zh) * 2015-01-28 2017-01-18 杭州高特电子设备股份有限公司 一种改进的动力电池组维护方法
CN109017381B (zh) 2018-07-31 2021-09-24 电子科技大学 一种动力电池组复合均衡控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627134B1 (en) * 1992-07-08 1999-10-06 Benchmarq Microelectronics, Inc. Method and apparatus for monitoring battery capacity with charge control
CN102455410A (zh) * 2010-10-18 2012-05-16 深圳中兴力维技术有限公司 蓄电池组远程放电控制系统、监控单元装置及检测方法
CN102148408A (zh) * 2011-03-04 2011-08-10 杭州高特电子设备有限公司 电池组串联补偿均衡方法及电路
CN102148519A (zh) * 2011-03-31 2011-08-10 杭州高特电子设备有限公司 电池组自动均衡方法及电路
CN102221675A (zh) * 2011-03-31 2011-10-19 杭州高特电子设备有限公司 基于模式识别技术的蓄电池容量判断方法
CN103176138A (zh) * 2013-02-15 2013-06-26 中国南方电网有限责任公司调峰调频发电公司 一种电池组维护检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
伍元发等: "锂离子电池组均衡电路及其均衡策略研究", 《电气安全》 *
许守平等: "储能用锂离子电池管理系统研究", 《电网与清洁能源》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119609A1 (zh) * 2015-01-28 2016-08-04 杭州高特电子设备有限公司 一种改进的动力电池组维护方法
WO2016119608A1 (zh) * 2015-01-28 2016-08-04 杭州高特电子设备有限公司 一种基于共用设备供电电源的隔离双向恒流维护系统
WO2017113944A1 (zh) * 2015-12-30 2017-07-06 北京新能源汽车股份有限公司 电池组温度获取方法及装置
CN108254689A (zh) * 2016-12-29 2018-07-06 中国电信股份有限公司 电池组反极单体电池检测方法和系统
CN108254689B (zh) * 2016-12-29 2020-04-28 中国电信股份有限公司 电池组反极单体电池检测方法和系统
CN107656211A (zh) * 2017-09-15 2018-02-02 武汉中航传感技术有限责任公司 蓄电池组监测系统
CN109017381A (zh) * 2018-07-31 2018-12-18 电子科技大学 一种动力电池组复合均衡控制方法
CN109017381B (zh) * 2018-07-31 2021-09-24 电子科技大学 一种动力电池组复合均衡控制方法
CN111403761B (zh) * 2020-03-27 2023-03-28 上海派能能源科技股份有限公司 电压均衡方法、装置、计算机设备以及可读存储介质
CN111403761A (zh) * 2020-03-27 2020-07-10 上海派能能源科技股份有限公司 电压均衡方法、装置、计算机设备以及可读存储介质
CN112234674A (zh) * 2020-10-09 2021-01-15 上海电气集团股份有限公司 一种簇内均衡电路及均衡控制方法
CN112234674B (zh) * 2020-10-09 2022-08-19 上海电气集团股份有限公司 一种簇内均衡电路及均衡控制方法
CN115395605A (zh) * 2022-08-25 2022-11-25 上海交通大学 高压直挂电池储能系统容量利用率提升方法
CN115395605B (zh) * 2022-08-25 2023-07-07 上海交通大学 高压直挂电池储能系统容量利用率提升方法
CN115189450A (zh) * 2022-09-09 2022-10-14 杭州华塑科技股份有限公司 一种应用于储能系统的电池组均衡装置及均衡方法
CN115189450B (zh) * 2022-09-09 2022-12-30 杭州华塑科技股份有限公司 一种应用于储能系统的电池组均衡方法
CN116908720A (zh) * 2023-09-07 2023-10-20 中国华能集团清洁能源技术研究院有限公司 一种电池组一致性状态诊断方法、装置及存储介质
CN116908720B (zh) * 2023-09-07 2023-12-26 中国华能集团清洁能源技术研究院有限公司 一种电池组一致性状态诊断方法、装置及存储介质

Also Published As

Publication number Publication date
DE112016000065B4 (de) 2022-07-07
CN104617621B (zh) 2017-01-18
DE112016000065T5 (de) 2017-03-16
WO2016119609A1 (zh) 2016-08-04
US20180183245A1 (en) 2018-06-28
US10230248B2 (en) 2019-03-12

Similar Documents

Publication Publication Date Title
CN104617621B (zh) 一种改进的动力电池组维护方法
CN103633695B (zh) 一种改进的锂电池组均衡方法及其均衡电路
CN104600799B (zh) 一种串联电池组均衡电路及均衡方法
CN201360156Y (zh) 一种提高串联电池组安全性和寿命的充放电管理装置
CN106712191B (zh) 基于外部储能单元与lc准谐振的电池组均衡电路及方法
CN105226744A (zh) 一种基于soc的动力电池组均衡充放电控制方法及系统
CN110518667B (zh) 一种梯次利用电池并联系统及其控制方法
CN103915877A (zh) 锂离子动力电池组均衡控制管理系统及其均衡控制方法
US20130033225A1 (en) Lossless Charger
CN102709981A (zh) 一种串联锂离子电池组能量无损均衡充电装置
CN105226733A (zh) 一种电池组主动-被动混合均衡架构及其方法
CN111029666B (zh) 一种模块化主动均衡电池管理系统及其管理方法
CN105656142A (zh) 一种锂离子动力电池组充放电主动均衡电路
CN102082312B (zh) 一种大容量储能设备
CN203967811U (zh) 电动汽车直流充电系统
CN102437603A (zh) 一种锂电池管理系统均衡控制方法
CN107147162A (zh) 一种基于电感电容准谐振的均衡电路及其控制方法
CN108011425B (zh) 一种电池组主动均衡电路及方法
CN107733007A (zh) 一种电池组双目标直接均衡电路及均衡方法
CN109866655A (zh) 一种分布式电池组均衡控制系统及其控制方法
CN109193863A (zh) 电池组电压均衡控制方法及电路
CN204144993U (zh) 一种电动汽车锂电池充电均衡控制电路
CN204947672U (zh) 基于电感储能的串联电池组双向无损均衡电路
CN208209602U (zh) 一种新能源智能充电系统
CN103956531B (zh) 铅酸蓄电池超大电流尖峰脉冲充电控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Xihu District Yi Lok Road Hangzhou city Zhejiang province 310000 No. 223 Yinjiang Technology Industrial Park B building 6 floor

Applicant after: Hangzhou high special electronic equipment Limited by Share Ltd

Address before: Xihu District Yi Lok Road Hangzhou city Zhejiang province 310000 No. 223 Yinjiang Technology Industrial Park B building 6 floor

Applicant before: Hangzhou Gaote Electronic Equipment Co., Ltd.

COR Change of bibliographic data
C14 Grant of patent or utility model
GR01 Patent grant