WO2011142040A1 - 硫黄成分検出装置 - Google Patents

硫黄成分検出装置 Download PDF

Info

Publication number
WO2011142040A1
WO2011142040A1 PCT/JP2010/058397 JP2010058397W WO2011142040A1 WO 2011142040 A1 WO2011142040 A1 WO 2011142040A1 JP 2010058397 W JP2010058397 W JP 2010058397W WO 2011142040 A1 WO2011142040 A1 WO 2011142040A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
temperature
holding unit
exhaust gas
holding
Prior art date
Application number
PCT/JP2010/058397
Other languages
English (en)
French (fr)
Inventor
寛 大月
寛真 西岡
克彦 押川
佳久 塚本
潤一 松尾
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201080036613.0A priority Critical patent/CN102869985B/zh
Priority to US13/318,430 priority patent/US8555699B2/en
Priority to EP10851422.5A priority patent/EP2570801B1/en
Priority to PCT/JP2010/058397 priority patent/WO2011142040A1/ja
Priority to JP2011516592A priority patent/JP5196016B2/ja
Publication of WO2011142040A1 publication Critical patent/WO2011142040A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0042SO2 or SO3
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • G01N25/4873Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a flowing, e.g. gas sample
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a sulfur component detection apparatus.
  • An SO X concentration sensor for detecting the SO X concentration in exhaust gas is known.
  • a general SO X concentration sensor measures an electromotive force generated when SO X changes to sulfate ions in a solid electrolyte, and detects the SO X concentration in the exhaust gas.
  • the SO X concentration sensor for detecting the SO X concentration in such instant when the low SO X concentration in the exhaust gas, it is difficult to detect an accurate SO X concentration.
  • a sulfur component detection device that cannot detect the instantaneous SO X concentration in the exhaust gas but can detect the integrated amount of SO X that has passed through the exhaust gas passage during a certain period. (See Patent Document 1).
  • the sulfur component detecting device has a stored SO X material for holding the SO X contained in the exhaust gas, electricity stored SO X material which changes with increasing SO X amount held in the stored SO X material the characteristics of the resistance or volume and the like is measured, and to detect the cumulative amount of sO X passing through the exhaust gas passage during a period of time from the measured properties.
  • the above-described sulfur component detection device can accurately detect the integrated amount of SO X that has passed through the exhaust gas passage during a certain period. There are things that cannot be done. Further, the SO X holding unit holds SO X and NO X in the exhaust gas, and as the SO X holding amount increases, the NO X holdable amount decreases, and the air-fuel ratio of the exhaust gas is reduced to the stoichiometric air-fuel ratio or rich air-fuel ratio.
  • a holding portion for reducing to release only the NO X held with a ratio to calculate the heating value of the reduction reaction of the released NO X based on the temperature rise value of the holding portion when the reduction reaction of the released NO X by calculating the release amount of NO X which corresponds to the NO X holdable amount, it is possible to estimate the current stored sO X amount, consequently, the integration of sO X passing through the exhaust gas passage during a period of time The amount can be detected.
  • an object of the present invention is to provide a sulfur component detection device capable of detecting a cumulative amount of SO X that has passed through an exhaust gas passage during a certain period or a value based on this cumulative amount relatively accurately. That is.
  • Sulfur component detecting device retains the SO X and NO X in the exhaust gas passing through the exhaust gas passage, the more the NO X holding amount capable stored SO X amount increases is reduced
  • a heater for heating the holding unit is provided, and the
  • Sulfur component detecting device as claimed in claim 2 retains the SO X and NO X in the exhaust gas passing through the exhaust gas passage, the more the NO X holding amount capable stored SO X amount increases is reduced
  • a holding unit that releases and reduces only the held NO x when the air-fuel ratio of the exhaust gas is the stoichiometric or rich air-fuel ratio, and a first temperature sensor that measures the temperature of the holding unit,
  • the second temperature sensor for measuring the temperature in the vicinity of the holding unit is provided, and from the first time to the second time while the temperature of the holding unit is lowered due to heat dissipation.
  • the amount of heat released from the holding part is the first of the temperature difference between the temperature of the holding part measured by the first temperature sensor and the temperature in the vicinity of the holding part measured by the second temperature sensor.
  • the current relationship between the heat capacity of the holding unit and the heat transfer coefficient is determined, and based on the determined relationship To determine the current heat capacity of the holding part Features.
  • the sulfur component detecting device it holds the SO X and NO X in the exhaust gas passing through the exhaust gas passage, the higher the NO X holding amount capable stored SO X amount increases
  • the exhaust gas air-fuel ratio is reduced to the stoichiometric air-fuel ratio or rich air-fuel ratio, it has a holding unit that releases and reduces only the held NO x and a temperature sensor that measures the temperature of the holding unit, and releases it by the temperature sensor measuring the temperature rise value of the holding portion when the reduction reaction of NO X, NO by calculating the amount of heat generated during the reduction reaction of the released NO X based on the heat capacity of the support section and the measured temperature rise value X Sulfur that calculates the released NO X amount corresponding to the holdable amount, estimates the current SO X hold amount, and detects the accumulated amount of SO X that has passed through the exhaust gas passage for a certain period or a value based on the accumulated amount
  • the heater has a heater for heating
  • the current heat capacity can be determined relatively accurately, and as a result, the exhaust gas passage can be determined during a certain period.
  • the accumulated amount of SO X that has passed through can be detected relatively accurately.
  • the sulfur component detecting device it holds the SO X and NO X in the exhaust gas passing through the exhaust gas passage, the higher the NO X holding amount capable stored SO X amount increases
  • a holding unit that releases and reduces only the held NO x and a first temperature sensor that measures the temperature of the holding unit are provided,
  • the temperature rise value of the holding part during the reduction reaction of the released NO X is measured by the temperature sensor, and the heat generation amount during the reduction reaction of the released NO X is calculated based on the measured temperature rise value and the heat capacity of the holding part.
  • the sulfur component detection device that detects The second temperature sensor for measuring the temperature in the vicinity of the holding unit, and the amount of heat released from the holding unit from the first time to the second time while the temperature of the holding unit is decreasing due to heat dissipation is On the other hand, the integrated value from the first time to the second time of the temperature difference between the temperature of the holding unit measured by the first temperature sensor and the temperature in the vicinity of the holding unit measured by the second temperature sensor and the holding unit And the product of the temperature drop value of the holding part from the first time to the second time measured by the first temperature sensor and the heat capacity of the holding part.
  • the holding unit is based on the determined relationship. To determine the current heat capacity of the exhaust, thereby Even if the ash or the like in the gas adheres to the holding portion and the heat capacity changes, the current heat capacity can be determined relatively accurately. As a result, SO X that has passed through the exhaust gas passage for a certain period of time can be determined. Can be detected relatively accurately.
  • the sulfur component detecting device is a first flow chart for detecting a value based on the integrated amount or integrated amount of SO X. It is a 2nd flowchart for updating the heat capacity of the holding
  • FIG. 1 is a schematic view showing an engine exhaust system in which a sulfur component detection device according to the present invention is arranged.
  • 1 is an exhaust gas passage of an internal combustion engine.
  • the internal combustion engine is an internal combustion engine that performs lean combustion, such as a diesel engine or a direct injection spark ignition internal combustion engine.
  • the exhaust gas of such an internal combustion engine in order to contain a relatively large amount of NO X, in the exhaust gas passage 1, NO X catalyst device 2 for purifying NO X is arranged.
  • the NO X catalyst device 2 carries a NO X holding material and a noble metal catalyst such as platinum Pt.
  • the NO X holding material is at least selected from an alkali metal such as potassium K, sodium Na, lithium Li, and cesium Cs, an alkaline earth metal such as barium Ba and calcium Ca, and a rare earth such as lanthanum La and yttrium Y.
  • an alkali metal such as potassium K, sodium Na, lithium Li, and cesium Cs
  • an alkaline earth metal such as barium Ba and calcium Ca
  • a rare earth such as lanthanum La and yttrium Y.
  • NO X cannot be held indefinitely, and as a regeneration process, the air-fuel ratio of the exhaust gas is reduced before the NO X hold amount reaches the NO X holdable amount and can no longer hold NO X.
  • the stoichiometric air-fuel ratio or rich air-fuel ratio is set, that is, the oxygen concentration in the exhaust gas is reduced.
  • the retained NO X is desorbed, that is, the absorbed NO X is released, and the adsorbed NO 2 is desorbed, and the desorbed NO X is reduced and purified to N 2 by the reducing substance in the exhaust gas.
  • an S trap device 3 for storing SO X in the exhaust gas is disposed upstream of the NO X catalyst device 2 in the exhaust gas passage 1 to suppress S poisoning of the NO X catalyst device 2.
  • the sulfur component detection device 4 according to the present invention is disposed, for example, between the S trap device 3 and the NO X catalyst device 2 to detect the integrated amount of SO X passing through the S trap device 3, and this integrated amount is set.
  • FIG. 2 is a schematic longitudinal sectional view showing an embodiment of the sulfur component detection device 4 according to the present invention.
  • reference numeral 10 denotes an outer wall of the exhaust gas passage 1.
  • 41 is a substrate of the sulfur component detection device 4.
  • a temperature sensor 42 such as a thermocouple is disposed on one side of the substrate 1 (preferably on the exhaust upstream side).
  • An electric heater 43 is arranged on the other side of the substrate 1.
  • Reference numeral 44 denotes a NO X and SO X holding portion arranged so as to cover the temperature sensitive portion of the temperature sensor 42.
  • Reference numeral 45 denotes a cylindrical case that surrounds the sulfur component detection device 4 thus configured and penetrates the outer wall 10 of the exhaust gas passage 1.
  • a plurality of opening holes 45 a are formed in the case 45, and exhaust gas passing through the exhaust gas passage 1 flows into the case 45 through the opening holes 45 a.
  • Reference numeral 46 denotes an oxygen pump for supplying oxygen (for example, oxygen in the atmosphere) to the vicinity of the holding portion 44 in the case 45.
  • the oxygen pump 46 is positioned around the integrated temperature sensor 42, the substrate 41, and the electric heater 43. The space around the holding portion 44 in 45 is separated from the atmospheric chamber.
  • the oxygen pump 46 is formed of zirconia or the like, and is capable of moving oxygen in the atmosphere to the vicinity of the holding portion 44 in the case 45 by applying a voltage in reverse to the zirconia oxygen concentration sensor.
  • the holding unit 44 holds NO X and SO X in the exhaust gas.
  • the holding unit 44 applies the above-described NO X holding material and a noble metal catalyst such as platinum Pt to the temperature sensing unit of the temperature sensor 42. Can be formed.
  • the holding portion 44 formed in this manner stores NO X in the exhaust gas as nitrate, and stores SO X in the exhaust gas as sulfate instead of NO X.
  • the holding unit 44 has an amount of NO X that can be held when SO X is not held according to the amount of the NO X holding material. Since sulfate is a stable substance compared to nitrate, SO With reference to the NO X holdable amount when X is not held, the current NO X holdable amount decreases as the SO X hold amount increases. Based on this relationship, the accumulated amount of SO X that has passed through the exhaust gas passage 1 at the position of the sulfur component detection device 4 during a certain period, or a value based on the accumulated amount of SO X during the certain period.
  • FIG. 3 is a flowchart for detecting the integrated amount of SO X or a value based on the integrated amount by the sulfur component detecting device 4, and is implemented in an electronic control device (not shown).
  • step 101 whether the detection timing of the integrated amount of SO X is determined. Although it ends when this determination is negative, if needed to detect the cumulative amount of regularly or irregularly SO X, the determination in step 101, the process proceeds it is affirmative to step 102.
  • step 102 it is determined whether or not an elapsed time t, which will be described later in detail, has reached a set time t ', and this determination is repeated until affirmative. If the determination in step 102 is affirmed, the air-fuel ratio of the exhaust gas in the vicinity of the holding unit 44 is made rich to reduce the oxygen concentration in the vicinity of the holding unit 44. Thereby, NO X is released from the holding portion 44 and reduced as follows.
  • the air-fuel ratio of the exhaust gas is returned to lean during normal operation.
  • step 104 When the NO X holding amount from the NO X holding amount capable of holding portion 44 when the SO X is not held is small, becomes the SO X is held in the holding unit 44, in step 104, the holding portion based on the difference between the NO X holding possible amount and the NO X holding amount of 44 to estimate the current stored SO X amount. Based on the fact that a fixed ratio of the SO X amount passing through the exhaust gas passage 1 at the position of the sulfur component detection device 4 is held in the holding unit 44 of the sulfur component detection device 4, in step 105, the current SO X hold amount is set. Based on this, the integrated amount of SO X that has passed through the exhaust gas passage 1 at the position of the sulfur component detection device 4 during a certain period is detected.
  • step 106 the elapsed time t is reset to 0, and the process ends.
  • NO X holding amount of the holding portion 44 which is calculated in step 103
  • SO X current NO was reduced by retention of X must be equal to the holdable amount, that is, when the SO X hold amount of the holding unit 44 is estimated in step 104, the current NO X holdable amount of NO X is held in the hold unit 44. It is necessary.
  • step 102 when the elapsed time t has not reached the set time t ′, the determination in step 102 is negative because there is a possibility that the current NO X holdable amount of NO X may not be held in the holding unit 44. is, the processes in and after step 103, including an estimate of stored sO X amount for detecting the integrated amount of sO X is configured not performed.
  • the elapsed time t is set to 0 when the internal combustion engine is started for the first time, and is reset to 0 in step 106 of this flowchart. In other cases, the elapsed time t is reset to 0 when all NO X is released from the holding unit 44.
  • the air-fuel ratio of the exhaust gas is rich, since all of the NO X is released from the holding portion 44, to zero the elapsed time t at the end of the reproduction process Reset. Further, in order to reset the integrated amount of SO X, it is possible to release all of the SO X held from the holding portion 44.
  • the elapsed time t is reset to zero.
  • the current NO X holdable amount of the holding unit 44 varies depending on the temperature of the holding unit 44.
  • the amount of NO X that can be held when SO X is not held is large when the temperature of the holding unit 44 is, for example, 350 ° C. or higher. Become.
  • the temperature of the holding portion 44 when detecting the current of the NO X holdable amount of the holding portion 44 It is preferable to match the set temperature of the holding unit 44 that brings about the NO X holdable amount when the SO X defined as the reference is not held. At least, the temperature of the holding portion 44, when a set temperature range including the set temperature, it is preferable to prohibit the stored SO X amount estimation to detect the cumulative amount of SO X. For example, it is estimated that the SO X retention amount is estimated based on the NO X retention amount when the temperature of the retention unit 44 is outside the set temperature range and the NO X retention amount decreases due to the temperature change of the retention unit 44.
  • the SO X retention amount becomes larger than the actual amount.
  • the calorific value of the reduction reaction of NO X released from the holding unit 44 is calculated.
  • the heat capacity C of the holding part used for calculation must be relatively accurate. Since the heat capacity C of the holding part changes when ash such as calcium carbonate or calcium sulfate in the exhaust gas adheres to the holding part, if the heat capacity C of the holding part is not updated according to the current situation, the heat capacity C of the holding part is relatively It cannot be accurate.
  • step 201 the temperature T of the holding unit 44 is measured by the temperature sensor 42.
  • step 204 the electric heater 43 is operated.
  • step 205 the heating value QH of the electric heater 43 is integrated.
  • step 206 the temperature T of the holding unit 44 is measured by the temperature sensor 42, and in step 207, it is determined whether or not the temperature T of the holding unit 44 has reached the set temperature T2. When this determination is negative, the processing from step 204 to 206 is repeated. When the temperature T of the holding unit 44 reaches the set temperature T2, the determination in step 207 is affirmed, the electric heater 43 is stopped in step 208, and the current heat capacity C of the holding unit 44 is integrated in step 205 in step 209.
  • the heating value QH obtained by raising the temperature of the holding unit 44 from T1 to the set temperature T2 by the electric heater 42 is calculated by dividing by the temperature rise value (T2-T1), and is used in step 103 of the first flowchart.
  • the heat capacity C of the unit 44 is updated.
  • the holding unit 44 is actually heated by the electric heater 43, and the holding unit at this time Since the heat capacity C of the holding part 44 is calculated and updated by the temperature rise value (T2-T1) of 44 and the calorific value QH of the electric heater, the heat capacity C of the holding part 44 is relatively accurate. Can be.
  • FIG. 5 is a schematic cross-sectional view showing another embodiment of the sulfur component detection apparatus according to the present invention.
  • the same reference numerals are assigned to the same members as those in the embodiment shown in FIG.
  • the difference between this embodiment and the embodiment shown in FIG. 2 is that in this embodiment, another temperature sensor 47 for measuring the temperature in the vicinity of the holding portion 44 is provided.
  • the temperature TH of the holding unit 44 is measured by the temperature sensor, and the temperature TS in the vicinity of the holding unit 44 is measured by the other temperature sensor 47.
  • the temperature of the holding unit 44 at any first time t1 measured by the temperature sensor 42 is THt1
  • Is THt2 the heat radiation amount QR of the holding portion 44 between the first time t1 and the second time t2 is expressed by the following equation (1) using the heat transfer coefficient K from the holding portion 44 to the surroundings.
  • the heat capacity C that gives this ratio C / K and the heat transfer coefficient K are uniquely determined.
  • a combination of the heat capacity C and the heat transfer coefficient K satisfying each value can be mapped in advance to the value.
  • the update of the heat capacity C is performed every time the NO X is released and reduced from the holding unit 44 and used for calculation of the calorific value of the next NO X reduction reaction. Further, even if the exhaust gas is made rich and NO X is not released, even if the temperature of the holding unit 44 is lowered after the temperature of the holding unit 44 is raised by the electric heater 43, Can be determined.
  • the holding part 44 of the sulfur component detection device 4 holds NO X in the exhaust gas as nitrate
  • oxygen is supplied in the vicinity of the holding part 44
  • NO in the exhaust gas is supplied to the supplied oxygen. Thus, it is oxidized to NO 2 and then easily held in the holding unit 44 as nitrate.
  • the oxygen pump 46 is operated to supply oxygen to the vicinity of the holding portion 44 and NO in the exhaust gas is held in the holding portion 44. It is preferable that the air-fuel ratio of the exhaust gas in the vicinity of the holding portion 44 is about 40 or more.
  • the elapsed time t during which the holding unit 44 holds NO X may be a travel distance.
  • the combustion air-fuel ratio of the internal combustion engine is made rich, the exhaust stroke or the expansion stroke
  • additional fuel may be supplied into the cylinder, or fuel may be supplied into the exhaust gas in the exhaust gas passage 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

 本硫黄成分検出装置は、排気ガス通路を通過する排気ガス中のSOX及びNOXを保持し、SOX保持量が増加するほどNOX保持可能量が減少し、排気ガスの空燃比を理論空燃比又はリッチ空燃比とすると保持したNOXだけを放出して還元する保持部と保持部の温度を測定する温度センサとを具備し、温度センサにより放出NOXの還元反応の際の保持部の温度上昇値を測定し、測定された温度上昇値と保持部の熱容量とに基づき放出NOXの還元反応の際の発熱量を算出することによりNOX保持可能量に対応する放出NOX量を算出して現在のSOX保持量を推定し、一定期間の間に前記排気ガス通路を通過したSOXの積算量又は前記積算量に基づく値を検出する硫黄成分検出装置において、保持部を加熱するヒータを具備し、ヒータにより保持部を加熱した時に(ステップ204)温度センサにより測定される保持部の温度上昇値(T2-T1)とヒータの発熱量(QH)とにより保持部の現在の熱容量(C)を決定する(ステップ209)。

Description

硫黄成分検出装置
 本発明は、硫黄成分検出装置に関する。
 排気ガス中のSO濃度を検出するためのSO濃度センサが公知である。一般的なSO濃度センサは、固体電解質においてSOが硫酸イオンに変化することにより生じる起電力を測定し、排気ガス中のSO濃度を検出するようにしている。しかしながら、このような瞬時のSO濃度を検出するSO濃度センサでは、排気ガス中のSO濃度が低いと、正確なSO濃度を検出することが難しくなる。
 このような瞬時の排気ガス中のSO濃度を検出することはできないが、一定期間の間に排気ガス通路を通過したSOの積算量を検出することができる硫黄成分検出装置が提案されている(特許文献1参照)。
 この硫黄成分検出装置は、排気ガス中に含まれるSOを保持するSO保持材を有し、SO保持材に保持されたSO量の増大に伴って変化するSO保持材の電気抵抗又は体積等の特性を計測し、計測された特性から一定期間の間に排気ガス通路を通過したSOの積算量を検出するようにしている。
特開2008−175623
 電気抵抗又は体積等の特性変化を正確に計測することは困難であり、前述の硫黄成分検出装置では、一定期間の間に排気ガス通路を通過したSOの積算量を正確に検出することができないことがある。
 また、SO保持部を、排気ガス中のSO及びNOを保持してSO保持量が増加するほどNO保持可能量が減少し、排気ガスの空燃比を理論空燃比又はリッチ空燃比とすると保持したNOだけを放出して還元する保持部とすれば、放出NOの還元反応の際の保持部の温度上昇値に基づき放出NOの還元反応の発熱量を算出してNO保持可能量に対応する放出NO量を算出することにより、現在のSO保持量を推定することができ、結果的に、一定期間の間に排気ガス通路を通過したSOの積算量を検出することができる。
 このように一定期間の間に排気ガス通路を通過したSOの積算量を検出する場合において、放出NOの還元反応の際の保持部の温度上昇値に基づき放出NOの還元反応の発熱量を正確に算出することが必要となるが、そのためには、保持部の熱容量が比較的正確に定められていなければならない。しかしながら、保持部の熱容量は、排気ガス中の炭酸カルシウム又は硫酸カルシウムのようなアッシュ、パティキュレート、及び高沸点炭化水素が保持部に付着することによって変化するために、定められている保持部の熱容量が現在の熱容量に対してかなり異なっていることがあり、その結果、一定期間の間に排気ガス通路を通過したSOの積算量を比較的正確に検出することができないことがある。
 従って、本発明の目的は、一定期間の間に排気ガス通路を通過したSOの積算量又はこの積算量に基づく値を比較的正確に検出することを可能とする硫黄成分検出装置を提供することである。
 本発明による請求項1に記載の硫黄成分検出装置は、排気ガス通路を通過する排気ガス中のSO及びNOを保持し、SO保持量が増加するほどNO保持可能量が減少し、排気ガスの空燃比を理論空燃比又はリッチ空燃比とすると保持したNOだけを放出して還元する保持部と前記保持部の温度を測定する温度センサとを具備し、前記温度センサにより放出NOの還元反応の際の前記保持部の温度上昇値を測定し、測定された温度上昇値と前記保持部の熱容量とに基づき前記放出NOの還元反応の際の発熱量を算出することにより前記NO保持可能量に対応する放出NO量を算出して現在のSO保持量を推定し、一定期間の間に前記排気ガス通路を通過したSOの積算量又は前記積算量に基づく値を検出する硫黄成分検出装置において、前記保持部を加熱するヒータを具備し、前記ヒータにより前記保持部を加熱した時に前記温度センサにより測定される前記保持部の温度上昇値と前記ヒータの発熱量とにより前記保持部の現在の熱容量を決定することを特徴とする。
 本発明による請求項2に記載の硫黄成分検出装置は、排気ガス通路を通過する排気ガス中のSO及びNOを保持し、SO保持量が増加するほどNO保持可能量が減少し、排気ガスの空燃比を理論空燃比又はリッチ空燃比とすると保持したNOだけを放出して還元する保持部と前記保持部の温度を測定する第一温度センサとを具備し、前記第一温度センサにより放出NOの還元反応の際の前記保持部の温度上昇値を測定し、測定された温度上昇値と前記保持部の熱容量とに基づき前記放出NOの還元反応の際の発熱量を算出することにより前記NO保持可能量に対応する放出NO量を算出して現在のSO保持量を推定し、一定期間の間に前記排気ガス通路を通過したSOの積算量又は前記積算量に基づく値を検出する硫黄成分検出装置において、前記保持部の近傍の温度を測定するための第二温度センサを具備し、放熱により前記保持部の温度が下降している間の第一時刻から第二時刻までの前記保持部からの放熱量は、一方で、前記第一温度センサにより測定される前記保持部の温度と前記第二温度センサにより測定される前記保持部の近傍の温度との温度差の前記第一時刻から前記第二時刻までの積分値と前記保持部から周囲への熱伝達係数との積で表され、他方で、前記第一温度センサにより測定される前記第一時刻から前記第二時刻までの前記保持部の温度下降値と前記保持部の熱容量との積で表されるために、前記保持部の熱容量と熱伝達係数との現在の関係が決定され、決定された関係に基づき前記保持部の現在の熱容量を決定することを特徴とする。
 本発明による請求項1に記載の硫黄成分検出装置によれば、排気ガス通路を通過する排気ガス中のSO及びNOを保持し、SO保持量が増加するほどNO保持可能量が減少し、排気ガスの空燃比を理論空燃比又はリッチ空燃比とすると保持したNOだけを放出して還元する保持部と保持部の温度を測定する温度センサとを具備し、温度センサにより放出NOの還元反応の際の保持部の温度上昇値を測定し、測定された温度上昇値と保持部の熱容量とに基づき放出NOの還元反応の際の発熱量を算出することによりNO保持可能量に対応する放出NO量を算出して現在のSO保持量を推定し、一定期間の間に排気ガス通路を通過したSOの積算量又は積算量に基づく値を検出する硫黄成分検出装置において、保持部を加熱するヒータを具備し、ヒータにより保持部を加熱した時に温度センサにより測定される保持部の温度上昇値とヒータの発熱量とにより保持部の現在の熱容量を決定するようになっており、それにより、排気ガス中のアッシュ等が保持部に付着して熱容量が変化しても、現在の熱容量を比較的正確に決定することができ、結果的に、一定期間の間に排気ガス通路を通過したSOの積算量を比較的正確に検出することができる。
 本発明による請求項2に記載の硫黄成分検出装置によれば、排気ガス通路を通過する排気ガス中のSO及びNOを保持し、SO保持量が増加するほどNO保持可能量が減少し、排気ガスの空燃比を理論空燃比又はリッチ空燃比とすると保持したNOだけを放出して還元する保持部と保持部の温度を測定する第一温度センサとを具備し、第一温度センサにより放出NOの還元反応の際の保持部の温度上昇値を測定し、測定された温度上昇値と保持部の熱容量とに基づき放出NOの還元反応の際の発熱量を算出することによりNO保持可能量に対応する放出NO量を算出して現在のSO保持量を推定し、一定期間の間に排気ガス通路を通過したSOの積算量又は積算量に基づく値を検出する硫黄成分検出装置において、保持部の近傍の温度を測定するための第二温度センサを具備し、放熱により保持部の温度が下降している間の第一時刻から第二時刻までの保持部からの放熱量は、一方で、第一温度センサにより測定される保持部の温度と第二温度センサにより測定される保持部の近傍の温度との温度差の第一時刻から第二時刻までの積分値と保持部から周囲への熱伝達係数との積で表され、他方で、第一温度センサにより測定される第一時刻から第二時刻までの保持部の温度下降値と保持部の熱容量との積で表されるために、保持部の熱容量と熱伝達係数との現在の関係が決定され、決定された関係を満たす熱容量と熱伝達係数とは一義的に定まるために、決定された関係に基づき保持部の現在の熱容量を決定するようになっており、それにより、排気ガス中のアッシュ等が保持部に付着して熱容量が変化しても、現在の熱容量を比較的正確に決定することができ、結果的に、一定期間の間に排気ガス通路を通過したSOの積算量を比較的正確に検出することができる。
本発明による硫黄成分検出装置が配置された機関排気系を示す概略図である。 本発明による硫黄成分検出装置の実施形態を示す概略縦断面図である。 本発明による硫黄成分検出装置によりSOの積算量又は積算量に基づく値を検出するための第一フローチャートである。 第一フローチャートで使用する保持部の熱容量を更新するための第二フローチャートである。 本発明による硫黄成分検出装置のもう一つの実施形態を示す概略横断面図である。 SO積算量を検出するためのNO放出還元時における保持部の温度変化と保持部近傍の温度変化とを示すタイムチャートである。
 図1は本発明による硫黄成分検出装置が配置された機関排気系を示す概略図であり、同図において、1は内燃機関の排気ガス通路である。内燃機関は、ディーゼルエンジン又は筒内噴射式火花点火内燃機関のような希薄燃焼を実施する内燃機関である。このような内燃機関の排気ガス中には、比較的多くのNOが含まれるために、排気ガス通路1には、NOを浄化するためのNO触媒装置2が配置されている。
 NO触媒装置2には、NO保持材と白金Ptのような貴金属触媒とが担持されている。NO保持材は、カリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つである。
 NO触媒装置2は、排気ガスがリーン空燃比である時、すなわち、排気ガス中の酸素濃度が高い時に、排気ガス中のNOを良好に保持し、すなわち、硝酸塩として良好に吸収したり、NOとして良好に吸着したりする。しかしながら、無制限にNOを保持することはできず、NO保持量がNO保持可能量に達してさらにNOを保持することができなくなる前に、再生処理として、排気ガスの空燃比を理論空燃比又はリッチ空燃比とし、すなわち、排気ガス中の酸素濃度を低下させる。それにより、保持NOは離脱され、すなわち、吸収NOは放出され、また、吸着NOは脱離され、これら離脱NOは排気ガス中の還元物質によりNへ還元浄化される。
 このようなNO触媒装置2が排気ガス中のSOを硫酸塩として吸蔵してしまうと、硫酸塩は硝酸塩に比較して安定な物質であるために再生処理では放出させることができず、NO吸蔵可能量が低下してしまう(S被毒)。それにより、排気ガス通路1のNO触媒装置2の上流側には、排気ガス中のSOを吸蔵するSトラップ装置3が配置され、NO触媒装置2のS被毒を抑制している。
 本発明による硫黄成分検出装置4は、例えば、Sトラップ装置3とNO触媒装置2との間に配置されて、Sトラップ装置3をすり抜けるSOの積算量を検出し、この積算量が設定値に達した時にはSトラップ装置3の交換時期と判断することができる。
 図2は、本発明による硫黄成分検出装置4の実施形態を示す概略縦断面図である。同図において、10は排気ガス通路1の外壁である。41は硫黄成分検出装置4の基板である。基板1の一方側(好ましくは排気上流側)には熱電対等の温度センサ42が配置されている。また、基板1の他方側には電気ヒータ43が配置されている。44は温度センサ42の感温部を覆うように配置されたNO及びSOの保持部である。45は、このように構成された硫黄成分検出装置4を取り囲んで排気ガス通路1の外壁10を貫通する円筒状のケースである。
 ケース45には複数の開口穴45aが形成され、開口穴45aを介して排気ガス通路1を通過する排気ガスがケース45内へ流入するようになっている。46はケース45内の保持部44近傍へ酸素(例えば大気中の酸素)を供給するための酸素ポンプであり、一体的な温度センサ42、基板41、及び電気ヒータ43の回りに位置してケース45内の保持部44回りの空間と大気室とを分離する。酸素ポンプ46は、ジルコニア等から形成され、ジルコニア式酸素濃度センサとは逆に電圧が印加されることにより、大気中の酸素をケース45内の保持部44近傍へ移動させることができる。
 保持部44は、排気ガス中のNO及びSOを保持するものであり、例えば、前述したNO保持材と白金Ptのような貴金属触媒とを温度センサ42の感温部に塗布することにより形成することができる。
 このように形成された保持部44は、前述したように、排気ガス中のNOを硝酸塩として吸蔵し、また、排気ガス中のSOをNOの代わりに硫酸塩として吸蔵する。保持部44は、NO保持材の量に応じて、SOが保持されていない時のNO保持可能量を有し、硝酸塩に比較して硫酸塩は安定な物質であるために、SOが保持されていない時のNO保持可能量を基準として、SO保持量が増加するほど、現在のNO保持可能量は減少することとなる。
 このような関係に基づき、一定期間の間に硫黄成分検出装置4の位置において排気ガス通路1を通過したSOの積算量、又は、SOの積算量に基づく値として、一定期間の間に硫黄成分検出装置4の位置において排気ガス通路1を通過した排気ガス中のSO濃度の平均値又は一定期間の間に硫黄成分検出装置4の位置において排気ガス通路1を通過した排気ガス中の平均SO量を検出することができる。
 図3は、硫黄成分検出装置4によりSOの積算量又は積算量に基づく値を検出するためのフローチャートであり、電子制御装置(図示せず)において実施される。先ず、ステップ101において、SOの積算量の検出時期であるか否かが判断される。この判断が否定される時にはそのまま終了するが、定期的又は不定期的にSOの積算量の検出が必要となれば、ステップ101の判断は肯定されてステップ102へ進む。
 ステップ102において、詳しくは後述される経過時間tが設定時間t’に達したか否かが判断され、この判断は肯定されるまで繰り返される。ステップ102の判断が肯定されると、保持部44近傍の排気ガスの空燃比をリッチにして保持部44近傍の酸素濃度を低下させる。それにより、以下のように保持部44からNOが放出されて還元される。
 1/2Ba(NO→1/2BaO+NO+3/4O−309.6kJ/mol
 CO+NO→1/2N+2CO+373.2kJ/mol
 3/2CO+3/4O→3/2CO+424.5kJ/mol
 こうして、1molのNOに対して約490kJの発熱が発生する。それにより、保持部44近傍の排気ガスの空燃比がリッチにされる前の保持部44の温度Tbと保持部44近傍の排気ガスの空燃比がリッチにされた後の最高温度Taとの間の温度上昇値ΔT(Ta−Tb)を温度センサ42により測定し、ステップ103において、この温度上昇値ΔTと保持部44の熱容量Cとを乗算して放出NOの還元反応による発熱量Qを算出し、算出された発熱量Qに基づき保持部44に保持されていたNO保持量(mol)(=Q/490kJ)を算出する。温度上昇値ΔTの測定が完了すれば、排気ガスの空燃比は通常運転時のリーンに戻される。
 SOが保持されていない時の保持部44のNO保持可能量よりNO保持量が少ない場合には、保持部44にはSOが保持されていることとなり、ステップ104において、保持部44のNO保持可能量とNO保持量との差に基づき現在のSO保持量を推定する。
 硫黄成分検出装置4の位置において排気ガス通路1の通過するSO量の一定割合が硫黄成分検出装置4の保持部44に保持されることに基づき、ステップ105において、現在のSO保持量に基づき、一定期間の間に硫黄成分検出装置4の位置において排気ガス通路1を通過したSOの積算量を検出する。次いで、ステップ106において経過時間tを0にリセットして終了する。
 本フローチャートにおいて、ステップ104の保持部44のSO保持量を正確に推定するためには、ステップ103において算出される保持部44のNO保持量が、SOの保持により減少した現在のNO保持可能量と等しくなければならず、すなわち、ステップ104において保持部44のSO保持量を推定する際には、保持部44に現在のNO保持可能量のNOが保持されていることが必要である。もし、保持部に現在のNO保持可能量のNOが保持されていない時のNO保持量に基づきSO保持量が推定されると、推定されたSO保持量は実際より多くなってしまう。
 本フローチャートにおいては、経過時間tが設定時間t’に達していない時には、保持部44に現在のNO保持可能量のNOが保持されていない可能性があるとして、ステップ102の判断が否定され、SOの積算量を検出するためのSO保持量の推定を含むステップ103以降の処理は、実施されないようになっている。
 経過時間tは、初めて内燃機関を始動する時には0にセットされており、本フローチャートのステップ106において0にリセットされる。それ以外においても、経過時間tは、保持部44から全てのNOが放出された時に0にリセットされる。例えば、NO触媒装置2の再生処理においても、排気ガスの空燃比はリッチにされて、保持部44から全てのNOが放出されるために、再生処理の終了時には経過時間tは0にリセットされる。また、SOの積算量をリセットするために、保持部44から保持された全てのSOを放出させることがある。この時には、保持部44から全てのNOも放出されるために、経過時間tは0にリセットされる。
 ところで、保持部44の現在のNO保持可能量は保持部44の温度により変化する。例えばNO保持材(Ba)から形成された保持部44の場合では、SOが保持されていない時のNO保持可能量は、保持部44の温度が例えば350°C以上の時において多くなる。
 こうして、SOの積算量を検出するためのSO保持量の推定を正確なものにするためには、保持部44の現在のNO保持可能量を検出する際の保持部44の温度を、基準として定められたSOが保持されていない時のNO保持可能量をもたらす保持部44の設定温度に一致させることが好ましい。また、少なくとも、保持部44の温度が、この設定温度を含む設定温度範囲外である時には、SOの積算量を検出するためのSO保持量の推定を禁止することが好ましい。例えば、保持部44の温度が設定温度範囲外となって保持部44の温度変化によりNO保持可能量が減少した時にNO保持量に基づきSO保持量が推定されると、推定されたSO保持量は実際より多くなってしまう。
 ところで、第一フローチャートにおいて、一定期間の間に排気ガス通路を通過したSOの積算量を比較的正確に検出するためには、保持部44から放出されたNOの還元反応の発熱量を正確に算出することが必要となるが、そのためには、算出に使用される保持部の熱容量Cが比較的正確なものでなければならない。
 保持部の熱容量Cは、排気ガス中の炭酸カルシウム又は硫酸カルシウムのようなアッシュ等が保持部に付着することによって変化するために、現状に合わせて更新しないと、保持部の熱容量Cを比較的正確なものにすることはできない。
 図4は、保持部44の温度Tを設定温度範囲(>=T2)内に維持すると共に、保持部の熱容量を更新するための第二フローチャートである。先ず、ステップ201において、温度センサ42により保持部44の温度Tが測定される。次いで、ステップ202において、保持部44の温度Tが設定温度T2(例えば350°C)以上であるか否かが判断される。この判断が肯定される時には、保持部44の温度Tは設定温度範囲内(>=T2)であり、電気ヒータ43の作動は必要なく、そのまま終了する。
 一方、ステップ202の判断が否定される時には、ステップ203において、保持部44の現在の温度TがT1として記憶される。次いで、ステップ204において電気ヒータ43を作動させる。ステップ205では、電気ヒータ43の発熱量QHが積算される。次いで、ステップ206において、温度センサ42により保持部44の温度Tが測定され、ステップ207において、保持部44の温度Tが設定温度T2となったか否かが判断される。この判断が否定される時には、ステップ204から206の処理が繰り返される。
 保持部44の温度Tが設定温度T2となると、ステップ207の判断が肯定され、ステップ208において電気ヒータ43を停止し、ステップ209において、保持部44の現在の熱容量Cを、ステップ205において積算された電気ヒータ42により保持部44の温度をT1から設定温度T2へ上昇させた発熱量QHを温度上昇値(T2−T1)で除算することにより算出し、第一フローチャートのステップ103において使用する保持部44の熱容量Cを更新する。
 こうして、保持部44に排気ガス中の炭酸カルシウム又は硫酸カルシウムのようなアッシュ等が付着して熱容量を変化させても、電気ヒータ43により実際に保持部44を加熱して、この時の保持部44の温度上昇値(T2−T1)と電気ヒータの発熱量QHとにより保持部44の熱容量Cを算出して更新するようになっているために、保持部44の熱容量Cを比較的正確なものとすることができる。
 第二フローチャートによる熱容量Cの更新は、保持部44の温度Tが設定温度T2より低くなっている時に、電気ヒータ43の作動と共に必ず実施されるようにしたが、これは発明を限定するものではなく、更新頻度を低くする(例えば内燃機関の始動毎)ようにしても良い。
 図5は本発明による硫黄成分検出装置のもう一つの実施形態を示す概略横断面図である。同図において、図2に示す実施形態と同じ部材には同じ参照番号が付されている。本実施形態と図2に示す実施形態との違いは、本実施形態においては、保持部44の近傍の温度を測定するためのもう一つの温度センサ47が設けられていることである。
 SO積算量を検出するために、排気ガスの空燃比をリッチにして時刻t0において保持部44からNOを放出させて還元するようにすると、時刻t0においてTaであった保持部44の温度は図6に実線で示すように変化し、時刻t0においてTaであった保持部近傍の温度は図6に点線で示すように変化する。
 ここで、第一フローチャートのステップ103に関して説明したように、NOの放出還元により保持部44の温度は、最高温度Tbとなると、その後は、放熱により保持部44の温度は徐々に下降することとなる。
 このように保持部44の温度が下降している間において、温度センサにより保持部44の温度THが測定され、もう一つの温度センサ47により保持部44の近傍の温度TSが測定される。温度センサ42により測定された任意の第一時刻t1の保持部44の温度がTHt1であり、温度センサ42により測定された第一時刻t1より後の任意の第二時刻t2の保持部44の温度がTHt2である場合には、第一時刻t1から第二時刻t2の間の保持部44の放熱量QRは、保持部44から周囲への熱伝達係数Kを使用して、次式(1)に示すように、保持部44の温度THと保持部44の近傍の温度TSとの温度差の第一時刻t1から第二時刻t2までの積分値と保持部回りの熱伝達係数Kとの積で表すことができる。
 QR=K・∫(TH−TS)dt     ・・・(1)
 一方、第一時刻t1から第二時刻t2の間の保持部44の放熱量QRは、保持部44の熱容量Cを使用して、次式(2)に示すように、第一時刻t1から第二時刻t2までの保持部44の温度下降値(THt1−THt2)と保持部44の熱容量Cとの積で表すことができる。
 QR=(THt1−THt2)・C     ・・・(2)
 ここで、式(1)の右辺と式(2)の右辺とが等しくなるために、保持部44の現在の熱容量Cと保持部44から周囲への現在の熱伝達係数Kとの関係として、例えば、C/Kは、次式(3)により表すことができ、既知の値となる。
 C/K=(∫(TH−TS)dt)/(THt1−THt2)
                      ・・・(3)
 アッシュ等が保持部44へ付着するほど、熱容量Cは大きくなると共に熱伝達係数Kは小さくなり、熱容量Cと熱伝達係数Kとは相関関係を有して変化するために、熱容量Cと熱伝達係数Kとの比C/Kが定まれば、この比C/Kを与える熱容量Cと熱伝達係数Kとが一義的に定まり、例えば、アッシュ等の堆積量により変化する比C/Kの各値に対して、各値を満たす熱容量Cと熱伝達係数Kとの組み合わせを予めマップ化しておくことができる。
 こうして、保持部44に排気ガス中の炭酸カルシウム又は硫酸カルシウムのようなアッシュ等が付着して熱容量を変化させても、保持部44の温度が下降している間において、保持部44の温度と保持部の近傍を温度とを測定することにより、保持部44の現在の熱容量Cを決定して更新することができ、保持部44の熱容量Cを比較的正確なものとすることができる。このような熱容量Cの更新は、保持部44からのNOの放出還元毎に実施して、次回のNOの還元反応の発熱量の算出に使用するようにすることが好ましい。また、排気ガスをリッチにしてNOを放出させなくても、電気ヒータ43により保持部44を昇温させた後に保持部44の温度が下降している間においても、前述のようにして現在の熱容量Cを決定することができる。
 ところで、硫黄成分検出装置4の保持部44が排気ガス中のNOを硝酸塩として保持する場合には、保持部44近傍に酸素が供給されると、排気ガス中のNOは、供給された酸素によりNOに酸化され、次いで、硝酸塩として保持部44に保持され易くなる。
 機関運転状態によっては、ケース45内へ流入する排気ガスの酸素濃度が比較的低くなることがあるために、NO触媒装置2の再生処理及び前述の保持部44からのNOの放出処理等のように意図的に排気ガスの空燃比がリッチにされる間を除いて、酸素ポンプ46を作動させて、保持部44近傍へ酸素を供給して排気ガス中のNOが保持部44に保持され易くすることが好ましく、特に、保持部44近傍の排気ガスの空燃比を約40以上とすることが好ましい。
 図3の第一フローチャートにおいて、保持部44にNOを保持させる経過時間tは、走行距離としても良い。NO触媒装置2の再生処理及び保持部44のNO保持量の検出に際して、排気ガスの空燃比をリッチにする場合には、内燃機関の燃焼空燃比をリッチにしたり、排気行程又は膨張行程において気筒内へ追加燃料を供給したり、又は、排気ガス通路1において排気ガス中に燃料を供給したりすれば良い。
 1  排気ガス通路
 2  NO触媒装置
 3  Sトラップ装置
 4  硫黄成分検出装置
 42  温度センサ
 43  電気ヒータ
 44  保持部
 47  もう一つの温度センサ

Claims (2)

  1.  排気ガス通路を通過する排気ガス中のSO及びNOを保持し、SO保持量が増加するほどNO保持可能量が減少し、排気ガスの空燃比を理論空燃比又はリッチ空燃比とすると保持したNOだけを放出して還元する保持部と前記保持部の温度を測定する温度センサとを具備し、前記温度センサにより放出NOの還元反応の際の前記保持部の温度上昇値を測定し、測定された温度上昇値と前記保持部の熱容量とに基づき前記放出NOの還元反応の際の発熱量を算出することにより前記NO保持可能量に対応する放出NO量を算出して現在のSO保持量を推定し、一定期間の間に前記排気ガス通路を通過したSOの積算量又は前記積算量に基づく値を検出する硫黄成分検出装置において、前記保持部を加熱するヒータを具備し、前記ヒータにより前記保持部を加熱した時に前記温度センサにより測定される前記保持部の温度上昇値と前記ヒータの発熱量とにより前記保持部の現在の熱容量を決定することを特徴とする硫黄成分検出装置。
  2.  排気ガス通路を通過する排気ガス中のSO及びNOを保持し、SO保持量が増加するほどNO保持可能量が減少し、排気ガスの空燃比を理論空燃比又はリッチ空燃比とすると保持したNOだけを放出して還元する保持部と前記保持部の温度を測定する第一温度センサとを具備し、前記第一温度センサにより放出NOの還元反応の際の前記保持部の温度上昇値を測定し、測定された温度上昇値と前記保持部の熱容量とに基づき前記放出NOの還元反応の際の発熱量を算出することにより前記NO保持可能量に対応する放出NO量を算出して現在のSO保持量を推定し、一定期間の間に前記排気ガス通路を通過したSOの積算量又は前記積算量に基づく値を検出する硫黄成分検出装置において、前記保持部の近傍の温度を測定するための第二温度センサを具備し、放熱により前記保持部の温度が下降している間の第一時刻から第二時刻までの前記保持部からの放熱量は、一方で、前記第一温度センサにより測定される前記保持部の温度と前記第二温度センサにより測定される前記保持部の近傍の温度との温度差の前記第一時刻から前記第二時刻までの積分値と前記保持部から周囲への熱伝達係数との積で表され、他方で、前記第一温度センサにより測定される前記第一時刻から前記第二時刻までの前記保持部の温度下降値と前記保持部の熱容量との積で表されるために、前記保持部の熱容量と熱伝達係数との現在の関係が決定され、決定された関係に基づき前記保持部の現在の熱容量を決定することを特徴とする硫黄成分検出装置。
PCT/JP2010/058397 2010-05-12 2010-05-12 硫黄成分検出装置 WO2011142040A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080036613.0A CN102869985B (zh) 2010-05-12 2010-05-12 硫成分检测装置
US13/318,430 US8555699B2 (en) 2010-05-12 2010-05-12 Detector for detecting sulfur components
EP10851422.5A EP2570801B1 (en) 2010-05-12 2010-05-12 Device for detecting sulfur component
PCT/JP2010/058397 WO2011142040A1 (ja) 2010-05-12 2010-05-12 硫黄成分検出装置
JP2011516592A JP5196016B2 (ja) 2010-05-12 2010-05-12 硫黄成分検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058397 WO2011142040A1 (ja) 2010-05-12 2010-05-12 硫黄成分検出装置

Publications (1)

Publication Number Publication Date
WO2011142040A1 true WO2011142040A1 (ja) 2011-11-17

Family

ID=44914106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058397 WO2011142040A1 (ja) 2010-05-12 2010-05-12 硫黄成分検出装置

Country Status (5)

Country Link
US (1) US8555699B2 (ja)
EP (1) EP2570801B1 (ja)
JP (1) JP5196016B2 (ja)
CN (1) CN102869985B (ja)
WO (1) WO2011142040A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004846A1 (en) * 2013-07-12 2015-01-15 Toyota Jidosha Kabushiki Kaisha SOx CONCENTRATION DETECTION DEVICE OF INTERNAL COMBUSTION ENGINE
JP6235270B2 (ja) * 2013-08-23 2017-11-22 株式会社Soken 内燃機関の制御装置および制御方法
CN106198528A (zh) * 2016-08-14 2016-12-07 河北工业大学 一种量热仪氧弹燃烧废气成分的检测方法
JP7009314B2 (ja) * 2018-06-08 2022-01-25 日本特殊陶業株式会社 NOxセンサ制御装置及びNOxセンサ制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175623A (ja) 2007-01-17 2008-07-31 Toyota Motor Corp 硫黄成分検出装置
JP2008286061A (ja) * 2007-05-16 2008-11-27 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009030459A (ja) * 2007-07-25 2009-02-12 Denso Corp 内燃機関の排気浄化制御装置
JP2009138525A (ja) * 2007-12-03 2009-06-25 Toyota Motor Corp 排気浄化装置の硫黄堆積度合推定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045753A (ja) * 1998-07-31 2000-02-15 Honda Motor Co Ltd 内燃機関の排気浄化装置
US6629453B1 (en) * 2000-03-17 2003-10-07 Ford Global Technologies, Llc Method and apparatus for measuring the performance of an emissions control device
JP2005048678A (ja) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP4001129B2 (ja) * 2004-06-10 2007-10-31 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2006059470A1 (ja) * 2004-11-30 2006-06-08 Isuzu Motors Limited 排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システム
US8112988B2 (en) * 2006-03-16 2012-02-14 Ford Global Technologies, Llc System and method for desulfating a NOx trap
US7533523B2 (en) * 2006-11-07 2009-05-19 Cummins, Inc. Optimized desulfation trigger control for an adsorber
JP4840274B2 (ja) * 2007-07-11 2011-12-21 トヨタ自動車株式会社 燃料やオイル中の硫黄濃度検出方法
EP2511697A4 (en) * 2009-12-09 2016-11-02 Toyota Motor Co Ltd DEVICE FOR DETECTING A SWEEPING COMPONENT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175623A (ja) 2007-01-17 2008-07-31 Toyota Motor Corp 硫黄成分検出装置
JP2008286061A (ja) * 2007-05-16 2008-11-27 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009030459A (ja) * 2007-07-25 2009-02-12 Denso Corp 内燃機関の排気浄化制御装置
JP2009138525A (ja) * 2007-12-03 2009-06-25 Toyota Motor Corp 排気浄化装置の硫黄堆積度合推定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2570801A4

Also Published As

Publication number Publication date
JP5196016B2 (ja) 2013-05-15
JPWO2011142040A1 (ja) 2013-07-22
EP2570801B1 (en) 2014-09-03
EP2570801A1 (en) 2013-03-20
US20130042667A1 (en) 2013-02-21
CN102869985A (zh) 2013-01-09
EP2570801A4 (en) 2013-10-23
US8555699B2 (en) 2013-10-15
CN102869985B (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
US10605763B2 (en) Method of reducing output degradation of gas sensor
WO2014112315A1 (ja) SOx濃度検出装置
JP5196016B2 (ja) 硫黄成分検出装置
JP4840274B2 (ja) 燃料やオイル中の硫黄濃度検出方法
JP4710871B2 (ja) 内燃機関の排気浄化装置
US8161794B2 (en) Sulfur component detecting device
JP5477381B2 (ja) 硫黄成分検出装置
US8104266B2 (en) Exhaust purification device of internal combustion engine
JP5196015B2 (ja) 硫黄成分検出装置
US8163161B2 (en) Gas sensor and method for detecting particles in a gas flow
JP2011158297A (ja) 硫黄成分検出装置
JP2011127547A (ja) 触媒劣化検出装置
JP2011149769A (ja) 硫黄成分検出装置
JP2011127535A (ja) Nox検出装置
JP2019020240A (ja) 被毒抑制制御装置
JP2011242236A (ja) 硫黄成分検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036613.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011516592

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13318430

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010851422

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE