WO2011141340A1 - Procédé de fabrication d'une plaque bipolaire métallique, plaque bipolaire, ainsi qu'empilement de piles à combustible et procédé de fabrication dudit empilement de piles à combustible - Google Patents

Procédé de fabrication d'une plaque bipolaire métallique, plaque bipolaire, ainsi qu'empilement de piles à combustible et procédé de fabrication dudit empilement de piles à combustible Download PDF

Info

Publication number
WO2011141340A1
WO2011141340A1 PCT/EP2011/057175 EP2011057175W WO2011141340A1 WO 2011141340 A1 WO2011141340 A1 WO 2011141340A1 EP 2011057175 W EP2011057175 W EP 2011057175W WO 2011141340 A1 WO2011141340 A1 WO 2011141340A1
Authority
WO
WIPO (PCT)
Prior art keywords
bipolar plate
fuel cell
bipolar
plates
gas distributor
Prior art date
Application number
PCT/EP2011/057175
Other languages
German (de)
English (en)
Inventor
Stefan Reissberger
Frank Meyer-Pittroff
Manfred Götz
Christian Brommer
Original Assignee
Schaeffler Technologies Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies Gmbh & Co. Kg filed Critical Schaeffler Technologies Gmbh & Co. Kg
Publication of WO2011141340A1 publication Critical patent/WO2011141340A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for producing a metallic bipolar plate for a fuel cell stack, in particular for a high-temperature solid oxide fuel cell stack.
  • the invention relates to a metallic bipolar plate, which is preferably produced by this method.
  • the invention relates to a fuel cell stack with bipolar plates and a method for its production.
  • the present invention will be explained below with reference to a planar solid oxide fuel cell (SOFC - Solid Oxide Fuel Cell), but may well be applied to other fuel cells.
  • the solid oxide fuel cell is a high temperature fuel cell operated at an operating temperature of 650 to 1000 ° C.
  • the electrolyte of this cell type consists of a solid ceramic material capable of conducting oxygen ions but insulating them for electrons.
  • the cathode is also made of a ceramic material that is conductive to ions and electrons.
  • the anode is also ion and electrode conductive. Due to the high operating temperature of the solid fuel cells, it is possible to use less noble, ie less expensive materials for the fuel cell, as in PEM fuel cells (polymer electrolyte membrane fuel cell).
  • An innovation of a SOFC fuel cell is in the ceramic material.
  • Cathode and anode must be gas permeable and conduct the current well.
  • the layer thickness of the oxygen-conducting membrane must be as thin as possible in order to be able to transport the oxygen ions through the membrane with low energy. There must be no imperfections (holes) through which other gas molecules can pass. The high operating temperature makes the development of these systems very expensive.
  • bipolar plates also referred to as interconnectors become.
  • the tasks of the bipolar plates are, as with all fuel cells, the electrical contacting of the fuel cell and the supply of fuel gases.
  • An important requirement in contacting is the lowest possible contact resistance to the electrodes of the SOFC fuel cell.
  • gas distributor structures are arranged in the bipolar plates, via which the anode is supplied with fuel gases and the cathode with air.
  • Important here is the reliable separation of the two gas chambers by an effective sealing concept.
  • Highly alloyed ferritic steels can be used as materials for the bipolar plates, provided that the operating temperature of the SOFC is not above 800 ° C. This requirement is met in the anode-supported substrate concept.
  • the use of steel as a material for bipolar plates offers the significant advantage that its production is suitable for mass production and thus a cost minimization compared to ceramic interconnector materials is possible.
  • a gas distributor plate for a high-temperature fuel cell is known.
  • the gas distribution plate described is easy to produce as an insert, mechanically stable and has a wall thickness that makes them sufficiently corrosion resistant for use in a high-temperature fuel cell.
  • the gas distribution plate can be advantageously made of a planar sheet with a wall thickness up to 2 mm, By a channel structure of any web or channel width, for example, by punching, laser or water jet cutting is realized. Suitable materials are the usual interconnector materials such as ferritic chrome steels. The minimum wall thickness is 0.5 mm to ensure stability and corrosion resistance. The production of the channel structure is complicated and expensive.
  • the interconnector has at least two gas inlets into a gas distributor space and a gas outlet into a gas collection room. In between, parallel channels are arranged.
  • the interconnector has gas distributor structures on its top side and on its bottom side.
  • the recesses are arranged on the plate such that a recess for forming a gas distributor space on one side of the interconnector of a recess for forming a Gassammeiraumes on the other side corresponds.
  • identical interconnectors can be used to construct a fuel cell stack.
  • these must be mechanically processed on both sides, for example by milling. The milling is very time consuming, the material utilization is reduced by the removal.
  • the interconnector plate is relatively thick.
  • DE 101 26 723 A1 also shows a two-line fuel cell stack for a parallel flow guide.
  • a frame-shaped plate On a lower end plate, a frame-shaped plate is arranged, in which there is a Elekt- rodenelektrolytvenez. Above this the interconnector is arranged.
  • the conclusion is again a frame-shaped plate with another electrode electrolyte unit and an upper end plate.
  • the manufacturer ment is relatively expensive.
  • WO 2009/007729 A1 discloses a metallic bipolar plate which is produced by forming and joining operations of coated metal sheets.
  • the bipolar plates have ribs and channels formed on both sides with a trapezoidal cross-section.
  • the channels are formed alternately from one side to the other.
  • a high-temperature fuel cell stack which results from the stacking of a series of cassettes.
  • a fuel cell is arranged in a frame with a spacer.
  • the composite of this cassette is made by welding.
  • the interconnector or bipolar plates are wave-shaped in order to form channels for the transport of the process gases at their top and bottom sides.
  • the resulting channels have a substantially triangular cross-section.
  • the individual cassettes are each joined together by glass solder, so that in each case the interconnector comes into electrical contact with the cathode of an adjacently arranged cassette and the cathode space is sealed.
  • three joining processes are needed. This is extremely time consuming and costly. In addition, many different parts and spacers are still needed.
  • the object of the invention is seen in achieving a reduction in the cost of producing fuel cell stacks, in particular high-temperature solid oxide fuel cells. It should be the high demands on the wear and the life and good flow properties of the bipolar plates can be achieved.
  • a metallic bipolar plate for a high-temperature fuel cell has a rib-shaped gas distribution structure formed on both sides of the bipolar plate.
  • the gas distributor structure is produced by partial shear cutting, wherein at the same time complementary shaped grooves and webs are formed on both sides of the bipolar plate.
  • the partial shear cutting leads to a material offset in the cross section of the bipolar plate, without causing a cross-sectional complete separation of the material.
  • the advantages of the invention can be seen in the fact that initially the processing or production of the bipolar plates is enormously simplified. There is no material removal, so the material can be almost completely utilized.
  • the cost-effective production of sufficiently thin, yet high-temperature, corrosion-resistant bipolar plates greatly expands the possibilities for fuel cell stacks.
  • material savings and at the same time weight and volume reduction are achieved with the same performance, so that the fuel cell stack is also suitable for transportable systems.
  • the performance of a stack can be increased by stacking more cells into a stack that makes the bipolar plates lighter and thinner.
  • the bipolar plate further comprises sealing elements, holes for the passage of process gases and inflow and outlet areas between the holes and the gas distributor structure.
  • the bipolar plate according to the invention has made possible a particularly efficient and cost-effective method for producing a fuel cell stack. The method is characterized in that only a single joining process is required to produce a fuel cell stack.
  • the bipolar plate according to the invention is also designed so that only one form of bipolar plates is needed for a stack.
  • the ceramic plates are designed to be substantially the same size as the bipolar plates and the holes are already provided for the passage of gases.
  • the fuel cell stack is formed.
  • the ceramic plates are joined to the bipolar plates by means of glass solder. Furthermore, a sealing of the outer edges of the ceramic plates is required.
  • a fuel cell stack according to the invention comprises alternately oppositely layered bipolar plates according to the invention and ceramic plates in each case as electrolyte, wherein both the bipolar plates and the ceramic plates have holes on the edge for the passage of process gases.
  • the ceramic plates and the bipolar plates are gas-tight in the area of the holes and the edge by means of glass solder. added.
  • the ceramic plates are sealed at their outer edges. This can be achieved, for example, by shedding the entire stack. It should be noted that the openings in the ceramic are also sealed by means of sleeves or a castable and heat-resistant material.
  • FIG. 1 shows a macroscopic cross-sectional image of a gas distributor structure of a bipolar plate produced according to the invention
  • FIG. 2 shows a three-dimensional representation of a metallic bipolar plate according to the invention
  • FIG. 3 shows a fuel cell stack according to the invention in a partially exploded view
  • FIG. 4 is a cross-sectional view of the fuel cell stack shown in FIG. 3; FIG.
  • Fig. 5 is a sectional view of the detail A in Fig. 4;
  • FIG. 6 is a longitudinal sectional view of the fuel cell stack shown in FIG. 3; FIG.
  • FIG. 7 is a sectional view of the detail X in FIG. 6.
  • FIG. 1 shows a macroscopic illustration of the cross section of a gas distributor structure of a metallic bipolar plate 01 produced according to the invention.
  • the gas distributor structure is formed by complementary shaped grooves 02 and webs 03, which are formed on both sides of the bipolar plate 01.
  • the reshaping of the bipolar plate 01 takes place according to the invention, at least in the region of the gas distributor structure, by means of a type of fineblanking, which is also referred to as enforcement. Enforcement is also called partial fineblanking.
  • partial shear cutting Grooves 02 is sheared off, however, the shearing is stopped shortly before the cutting stroke, so that one obtains a uniform groove structure without cracks or similar defects.
  • a thickness D of the bipolar plate 01 prior to its machining is between 0.5 and 5 mm.
  • the width B of the producible grooves 02 is between 0.5 and 5 mm, preferably the grooves 02 1, 5 mm wide.
  • a channel depth T preferably between 0.25 and 2.5 mm but also up to 4 mm can be achieved.
  • the bipolar plate can also be further treated after this process, for example ground flat. In this case, only the surfaces of the protruding webs should be smoothed, but not such a strong material removal done that the lifted webs are leveled again.
  • the line course of the material is not interrupted in the way it is the case during milling or other machining process. This can be clearly seen in FIG.
  • This undisturbed flow of material within the bipolar plate subsequently results in improved utility in fuel cell stacks. If microcracks nevertheless occur in the method according to the invention, it is possible to that they heal themselves by the high operating or operating temperature.
  • FIG. 2 shows a spatial representation of the bipolar plate 01, as it is preferably used for a high-temperature solid oxide fuel cell.
  • the bipolar plate 01 comprises a gas distributor structure 05 with the grooves 02 and the webs 03. Furthermore, the bipolar plate 01 comprises holes 04 for the passage of process gases, which are provided in both end regions of the bipolar plate. Between the holes 04 and the gas distributor structure, an inflow region 06 and an outlet region 07 are provided, through which the process gases are introduced via the holes 04 into the gas distributor structure. On the side of the inflow region 06, two of the holes 04 are provided with edge-side depressions 08, through which the process gas can flow into the inflow region 06 and from there into the gas distributor structure. The outlet takes place via the outlet region 07 and the hole 04 arranged there in the middle.
  • the just described holes 04 in the inlet region 07 each carry at its edge a survey 09 as a sealant to allow a seal to this gas space during stacking. These holes are used to supply the opposite side of the bipolar plate 01 with the other process gas.
  • the depressions 08 are complementary on the opposite side of the bipolar plate 01 as a survey 09th (Sealant with respect to the other gas distributor structure) carried out while the projections 09 on the opposite side represent depressions.
  • a peripheral edge 10 for sealing the gas space is formed on the side of the bipolar plate shown as the top side.
  • the peripheral edge 10 is on the underside of the bipolar plate a circumferential groove. On this side of the plate other sealing measures must be taken.
  • the sealing means are preferably produced by high-pressure pressing on the bipolar plate before the gas distributor structure is produced. However, it is also conceivable to also produce these structures by penetration (or partial shear cutting).
  • bipolar plates 01 and ceramic plates 1 1 are stacked alternately.
  • the ceramic plates 1 1 also have in their edge regions holes 12 which cover the holes 04 of the bipolar plates 01 when stacked.
  • a simplified assembly and sealing concept can be achieved.
  • FIG. 4 shows a cross-sectional view of a fuel cell stack with three fuel cells arranged in series.
  • the bipolar plates 01 are each arranged opposite one another in such a way that exactly one ceramic plate 11 faces two outer sides or two lower sides of the bipolar plates 01, respectively.
  • FIG. 5 illustrates detail A from FIG. 4.
  • the connection points 13 are defined by the one-sided peripheral edge 10, which is not on the underside of the bipolar plate because of the embossing Can act sealing element. For this reason, here the connection point 14 in the edge region of the ceramic plate 1 1 is required.
  • Fig. 6 shows a longitudinal section of the stack shown in Fig. 3, in Fig. 7, the detail X of FIG. 6 is shown.
  • the plates are rotated in their plane by 180 ° to allow the supply of the anodes and cathodes with the process gases.
  • the recesses 08 in the edge region of the illustrated holes are each directed upward to allow the inflow or outflow of the process gases into and out of the fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une plaque bipolaire métallique (01) pour un empilement de piles à combustible, une plaque bipolaire de ce type, un empilement de piles à combustible et un procédé de fabrication dudit empilement de piles à combustible. La plaque bipolaire présente une structure de répartition de gaz (05) sur chacun de ses deux côtés plats. Selon l'invention, les structures de répartition de gaz (05) sont réalisées des deux côtés simultanément par cisaillage partiel, des rainures (02) et nervures (03) de formes complémentaires étant formées. La plaque bipolaire est appropriée pour la fabrication très simple d'un empilement de piles à combustible.
PCT/EP2011/057175 2010-05-11 2011-05-05 Procédé de fabrication d'une plaque bipolaire métallique, plaque bipolaire, ainsi qu'empilement de piles à combustible et procédé de fabrication dudit empilement de piles à combustible WO2011141340A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010020178.2 2010-05-11
DE102010020178A DE102010020178A1 (de) 2010-05-11 2010-05-11 Verfahren zur Herstellung einer metallischen Biopolarplatte, Bipolarplatte sowie Brennstoffzellenstapel und Verfahren zu dessen Herstellung

Publications (1)

Publication Number Publication Date
WO2011141340A1 true WO2011141340A1 (fr) 2011-11-17

Family

ID=44320369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/057175 WO2011141340A1 (fr) 2010-05-11 2011-05-05 Procédé de fabrication d'une plaque bipolaire métallique, plaque bipolaire, ainsi qu'empilement de piles à combustible et procédé de fabrication dudit empilement de piles à combustible

Country Status (2)

Country Link
DE (1) DE102010020178A1 (fr)
WO (1) WO2011141340A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640958A (zh) * 2020-06-01 2020-09-08 浙江锋源氢能科技有限公司 一种燃料电池单电池和燃料电池
DE102022110834A1 (de) 2022-05-03 2023-11-09 Schaeffler Technologies AG & Co. KG Brennstoffzellensystem und Verfahren zur Herstellung einer Plattenanordnung für einen Brennstoffzellenstapel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2608299B1 (fr) 2011-12-22 2014-04-09 Feintool Intellectual Property AG Dispositif et procédé de fabrication de plaques bipolaires métalliques
BR112015027576A2 (pt) * 2013-05-02 2017-09-19 Haldor Topsoe As Entrada de gás para unidade de soec
WO2014177213A1 (fr) * 2013-05-02 2014-11-06 Topsoe Energy Conversion & Storage A/S Admission de gaz pour cellule à oxyde solide
WO2024051879A1 (fr) 2022-09-09 2024-03-14 Schaeffler Technologies AG & Co. KG Procédé de production de plaque bipolaire, plaque bipolaire et cellule électrochimique
DE102023118897A1 (de) 2022-09-09 2024-03-14 Schaeffler Technologies AG & Co. KG Bipolarplatten-Herstellungsverfahren, Bipolarplatte und elektrochemische Zelle

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020004158A1 (en) * 2000-07-07 2002-01-10 Noriyuki Suzuki Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
EP1246283A2 (fr) * 2001-03-30 2002-10-02 ElringKlinger AG Système d'étanchéité/d'écartement électriquement isolant
DE10126723A1 (de) 2001-05-31 2002-12-12 Forschungszentrum Juelich Gmbh Interkonnektor für eine Brennstoffzelle
DE10358458A1 (de) * 2003-12-13 2005-07-14 Elringklinger Ag Bauelement einer Brennstoffzelleneinheit
DE102004056422A1 (de) 2004-11-23 2006-05-24 Forschungszentrum Jülich GmbH Gasverteilerplatte für eine Hochtemperatur-Brennstoffzelle
EP1686641A1 (fr) * 2003-11-11 2006-08-02 Nitta Corporation Separateur et methode de production pour separateur
US20070231664A1 (en) * 2006-03-30 2007-10-04 Elringklinger Ag Fuel cell stack
US20080023320A1 (en) * 2004-06-22 2008-01-31 Honda Motor Co., Ltd. Method for Manufacturing Separator for Fuel Cell
US20080199739A1 (en) * 2007-02-20 2008-08-21 Commonwealth Scientific And Industrial Research Organisation Electrochemical cell stack and a method of forming a bipolar interconnect for an electrochemical cell stack
DE102007025479A1 (de) * 2007-05-31 2008-12-04 Bayerische Motoren Werke Aktiengesellschaft Einzel-Brennstoffzelle für einen Brennstoffzellen-Stapel
WO2009007729A1 (fr) 2007-07-12 2009-01-15 Mrx Housewares Limited Plateau de cuisson
DE102007053879A1 (de) 2007-11-09 2009-05-14 Forschungszentrum Jülich GmbH Hochtemperatur-Brennstoffzellenstapel sowie dessen Herstellung
US20090169964A1 (en) * 2005-12-16 2009-07-02 Sadao Ikeda Separator of Fuel Cell
WO2009157981A1 (fr) * 2008-06-23 2009-12-30 Blanchet Scott C Pile à combustible présentant des limites de transfert de masse réduites

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020004158A1 (en) * 2000-07-07 2002-01-10 Noriyuki Suzuki Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
EP1246283A2 (fr) * 2001-03-30 2002-10-02 ElringKlinger AG Système d'étanchéité/d'écartement électriquement isolant
DE10126723A1 (de) 2001-05-31 2002-12-12 Forschungszentrum Juelich Gmbh Interkonnektor für eine Brennstoffzelle
EP1686641A1 (fr) * 2003-11-11 2006-08-02 Nitta Corporation Separateur et methode de production pour separateur
DE10358458A1 (de) * 2003-12-13 2005-07-14 Elringklinger Ag Bauelement einer Brennstoffzelleneinheit
US20080023320A1 (en) * 2004-06-22 2008-01-31 Honda Motor Co., Ltd. Method for Manufacturing Separator for Fuel Cell
DE102004056422A1 (de) 2004-11-23 2006-05-24 Forschungszentrum Jülich GmbH Gasverteilerplatte für eine Hochtemperatur-Brennstoffzelle
US20090169964A1 (en) * 2005-12-16 2009-07-02 Sadao Ikeda Separator of Fuel Cell
US20070231664A1 (en) * 2006-03-30 2007-10-04 Elringklinger Ag Fuel cell stack
US20080199739A1 (en) * 2007-02-20 2008-08-21 Commonwealth Scientific And Industrial Research Organisation Electrochemical cell stack and a method of forming a bipolar interconnect for an electrochemical cell stack
DE102007025479A1 (de) * 2007-05-31 2008-12-04 Bayerische Motoren Werke Aktiengesellschaft Einzel-Brennstoffzelle für einen Brennstoffzellen-Stapel
WO2009007729A1 (fr) 2007-07-12 2009-01-15 Mrx Housewares Limited Plateau de cuisson
DE102007053879A1 (de) 2007-11-09 2009-05-14 Forschungszentrum Jülich GmbH Hochtemperatur-Brennstoffzellenstapel sowie dessen Herstellung
WO2009157981A1 (fr) * 2008-06-23 2009-12-30 Blanchet Scott C Pile à combustible présentant des limites de transfert de masse réduites

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640958A (zh) * 2020-06-01 2020-09-08 浙江锋源氢能科技有限公司 一种燃料电池单电池和燃料电池
DE102022110834A1 (de) 2022-05-03 2023-11-09 Schaeffler Technologies AG & Co. KG Brennstoffzellensystem und Verfahren zur Herstellung einer Plattenanordnung für einen Brennstoffzellenstapel
DE102022110834B4 (de) 2022-05-03 2024-03-21 Schaeffler Technologies AG & Co. KG Brennstoffzellensystem

Also Published As

Publication number Publication date
DE102010020178A1 (de) 2011-11-17

Similar Documents

Publication Publication Date Title
WO2011141340A1 (fr) Procédé de fabrication d'une plaque bipolaire métallique, plaque bipolaire, ainsi qu'empilement de piles à combustible et procédé de fabrication dudit empilement de piles à combustible
EP1453133B1 (fr) Pile à combustible ou électrolyseur et procédé de fabrication
DE102004008231B9 (de) Brennstoffzellenanordnung und Verfahren zur Herstellung einer Flachrohrbrennstoffzelle
DE112005001970B4 (de) Separatorplattenanordnung
EP2973809B1 (fr) Plaque bipolaire pour une pile à combustible, pile à combustible et procédé permettant de fabriquer la plaque bipolaire
DE112014000307B4 (de) Anschlussplatte für eine Brennstoffzelle, Herstellungsverfahren für eine Anschlussplatte für eine Brennstoffzelle und Brennstoffzelle
EP2181474A1 (fr) Plaque bipolaire pour piles à combustible
EP4128399B1 (fr) Ensemble plaque bipolaire, utilisation d'un ensemble plaque bipolaire, et empilement de piles à combustible ou d'électrolyse comprenant une pluralité d'ensembles plaques bipolaires
WO2015144269A1 (fr) Plaque bipolaire et pile à combustible équipée de cette plaque
EP2054964B1 (fr) Unité de répétition pour un empilement de cellules électrochimiques et son empilement
DE10302124A1 (de) Dichtungsaufbau für eine Brennstoffzelle bzw. einen Elektrolyseur sowie Verfahren zu dessen Herstellung und Brennstoffzelle bzw. Elektrolyseur aufweisend den Dichtungsaufbau
DE102011018184A1 (de) Elektrogeformte Bipolarplatten für Brennstoffzellen
WO2011141308A1 (fr) Empilement de piles à combustible et son procédé de production
EP1981108B1 (fr) Agencement d'interconnecteur et procédé de fabrication d'un agencement de contact pour un empilement de piles à combustible
EP2132814B1 (fr) Système de mise en contact et procédé d'assemblage d'un empilement de cellules électrochimiques constitué d'au moins un système de mise en contact
DE10039024B4 (de) Brennstoffzellenstapel mit internen Gasanschlüssen
DE10317388A1 (de) Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung
DE102022121234A1 (de) Elektrochemischer Reaktionszellenstapel
DE102014205551A1 (de) Verfahren zur Herstellung einer Bipolarplatte mit Dichtung sowie Bipolarplatte
EP3278390B1 (fr) Ensemble de cellules électrochimiques ainsi emploi dudit ensemble
DE102015119166B4 (de) Anschlussplatte für eine Brennstoffzelle und Brennstoffzelle
EP1933407A1 (fr) Plaque bipolaire et bloc de pile à combustible pour un empilement
DE102005027065B4 (de) Distanzhalteranordnung und Brennstoffzelleneinheit für einen Brennstoffzellenstapel
EP2372825B1 (fr) Module de pile à combustible
DE102021131474A1 (de) Elektrochemische Reaktionseinzelzelle und elektrochemischer Reaktionszellenstapel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11718082

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11718082

Country of ref document: EP

Kind code of ref document: A1