WO2011137708A2 - 电阻检测装置及方法 - Google Patents

电阻检测装置及方法 Download PDF

Info

Publication number
WO2011137708A2
WO2011137708A2 PCT/CN2011/072728 CN2011072728W WO2011137708A2 WO 2011137708 A2 WO2011137708 A2 WO 2011137708A2 CN 2011072728 W CN2011072728 W CN 2011072728W WO 2011137708 A2 WO2011137708 A2 WO 2011137708A2
Authority
WO
WIPO (PCT)
Prior art keywords
current
resistance
module
counting
output
Prior art date
Application number
PCT/CN2011/072728
Other languages
English (en)
French (fr)
Other versions
WO2011137708A3 (zh
Inventor
王正香
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180000392.6A priority Critical patent/CN102317798B/zh
Priority to PCT/CN2011/072728 priority patent/WO2011137708A2/zh
Publication of WO2011137708A2 publication Critical patent/WO2011137708A2/zh
Publication of WO2011137708A3 publication Critical patent/WO2011137708A3/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/14Measuring resistance by measuring current or voltage obtained from a reference source

Definitions

  • the present invention relates to the field of circuits, and in particular, to a resistance detecting apparatus and method. Background art
  • a chip is an important part of an electronic device such as a computer, and refers to a silicon chip containing an integrated circuit.
  • the manufacturing process is to use a certain process to connect components, such as resistors, capacitors, inductors, transistors, and diodes, which are required in a circuit, to each other, and to be fabricated on a piece of silicon to have the required circuit function.
  • Microstructure Since all the components in the circuit are structurally integrated, the volume of the entire circuit is greatly reduced, and the number of lead wires and solder joints is also greatly reduced, thereby making the electronic components toward miniaturization and low power consumption. And a big step in high reliability.
  • the accuracy of passive components such as resistors on the chip is low due to temperature and process.
  • the actual resistance of the resistor usually varies by 20% or more relative to its nominal value. Therefore, the designer of the chip integrated circuit cannot know the actual resistance of the resistor on the chip, so that the resistance of the resistor on the chip cannot be adjusted by external means such as programming to be sufficiently equal to their nominal values. Guarantee the performance of the circuit on the chip. Summary of the invention
  • the embodiment of the invention provides a resistance detecting device and method.
  • the technical solution is as follows:
  • a resistance detecting apparatus comprising: a reference resistor and a resistance detecting circuit; the resistor detecting circuit configured to respectively generate a reference current related to the reference resistor and a follower related to the measured resistance And outputting a proportional relationship between the reference current and the following current, so that the resistance of the measured resistance can be obtained according to the proportional relationship and the resistance of the reference resistor.
  • a resistance detecting method comprising:
  • the actual resistance of the measured resistance can be accurately obtained according to the proportional relationship of the output and the resistance of the reference resistor, so that the actual resistance is relatively
  • the amount of change in the nominal value, and thus the relative change in the resistance of the same type of other resistors on the chip enables the designer of the chip integrated circuit to adjust other resistors of the same type on the chip according to the amount of change.
  • the resistance values are made equal to their nominal values to ensure the performance of the circuit on the chip.
  • FIG. 1 is a schematic structural view of a resistance detecting device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a resistance detecting device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic circuit diagram of a current generating module for generating a reference current according to a second embodiment of the present invention
  • FIG. 4 is a schematic diagram of a circuit for generating a follow current according to a second embodiment of the present invention
  • FIG. 6 is a circuit diagram of a current comparison module according to Embodiment 2 of the present invention.
  • FIG. 7 is a waveform diagram of a reference current and a modulated current according to Embodiment 2 of the present invention.
  • FIG. 8 is an output waveform diagram of a counting module according to Embodiment 2 of the present invention.
  • FIG. 9 is an output waveform diagram of a current comparison module according to Embodiment 2 of the present invention.
  • FIG. 10 is a flowchart of a resistance detecting method according to Embodiment 3 of the present invention. detailed description
  • the embodiment of the present invention provides a resistance detecting device.
  • the device includes: an off-chip reference resistor 101 and a resistance detecting circuit 102 on the chip;
  • the resistance detecting circuit 102 is configured to respectively generate a reference current related to the reference resistor 101 and to be compared with the measured resistance 103 The following current is turned off, and the proportional relationship between the reference current and the following current is output, so that the resistance of the measured resistance 103 can be obtained according to the proportional relationship and the resistance of the reference resistor 101.
  • the resistance detecting device detects the measured resistance on the chip by using the off-chip reference resistor and the resistance detecting circuit on the chip, and the proportional relationship between the output and the resistance of the reference resistor outside the chip can be Accurately obtain the actual resistance of the measured resistance, so as to know the actual resistance value relative to its nominal value, and thus know the relative change of the same type of other resistance on the chip, so that the chip integration
  • the designer of the circuit can adjust the resistance of other resistors of the same type on the chip according to the variation to make them equal to their nominal values, thereby ensuring the performance of the circuit on the chip.
  • Embodiment 2 Embodiment 2
  • the embodiment of the present invention provides a resistance detecting device.
  • the device includes: an off-chip reference resistor 201 and a resistance detecting circuit 202 on the chip;
  • the reference resistor 201 and the measured resistance 203 on the chip are both connected to the resistance detecting circuit 202;
  • the resistance detecting circuit 202 is configured to respectively generate a reference current related to the reference resistor 201 and a following current associated with the measured resistance 203, and output a proportional relationship between the reference current and the following current, so that the resistance of the measured resistance 203 can be This is obtained based on the proportional relationship and the resistance of the reference resistor 201.
  • the resistance detecting circuit 202 specifically includes a current generating module 202a, a counting module 202b, a counting signal to current module 202c, a current comparing module 202d, and a latching module 202e.
  • the current generating module 202a is configured to respectively generate a reference current related to the reference resistor 201 and a following current associated with the measured resistance 203, and output the reference current to the current comparison module 202d, and output the following current to the counting signal to current module 202c. .
  • the current generating module 202a further receives a reference voltage, and uses the reference voltage to generate a reference current and a follower current.
  • the reference voltage can be a bandgap reference voltage, or other type of voltage such as a supply voltage.
  • the reference current generated above is inversely proportional to the reference resistor 201, and the generated follower current is inversely proportional to the measured resistance 203.
  • the reference resistor 201 is represented by Rext
  • the measured resistance 203 is represented by Rinn
  • the reference voltage is represented by Vref
  • the reference current is represented by Iext
  • the following current is represented by linn
  • the circuit for generating Iext in the current generating module 202a may be as shown in FIG. 3.
  • the circuit for generating the linn may be as shown in FIG. 4, and of course, other circuits capable of implementing the corresponding functions may be used. Specifically limited. Iext is generated by Vref, Rext, op amp AMP1, current mirrors M31 and M32, linn by Vref, Rinn, op amp AMP2, Current mirrors M41 and M42 are generated, of which AMP1 and AMP2 are identical, current mirrors M31, M32 and current mirror
  • M41 and M42 are identical.
  • the op amps AMP1 and AMP2 force the voltages of N31 and N41 equal to Vref, thus making:
  • the counting module 202b is configured to start counting from a preset initial value, generate a counting signal, and output the counting signal to the counting signal to current module 202c and the latching module 202e.
  • the preset initial value may be zero or other suitable values.
  • the embodiment of the present invention is described only by using a preset initial value of zero, but is not limited thereto.
  • the counting module 202b in the embodiment of the present invention can be implemented by a counter commonly used in digital logic circuits.
  • the input CLK of the counting module 202b in Fig. 2 is a clock signal for the counter.
  • the count signal is represented by the N-bit digital signal Dcount, and Dcount is incremented every other CLK cycle, and Dcount is D ⁇ 0>, D ⁇ 1>, ..., D ⁇ N-1> from the low bit to the high bit, respectively.
  • the counting signal to current module 202c is configured to receive the following current linn output by the current generating module 202a and the counting signal Dcount output by the counting module 202b, and use the Dcount modulation linn to generate the modulated current Iinn_count, and output the Iinn_count to the current comparison module 202d. .
  • the circuit for generating the Iinn_count by the counting signal to the current module 202c is as shown in FIG. 5, and of course, other circuits capable of implementing the corresponding functions may be used, which is not specifically limited in this embodiment.
  • the current comparison module 202d is configured to receive the modulated current Iinn_count output by the counting signal to current module 202c and the reference current Iext output by the current generating module 202a, and compare the sizes of the Iinn_count and lext. If the Iinn_count is greater than or equal to lext, the current comparison module The output signal of 202d causes latch module 202e to latch the currently generated Dcount, which is a proportional relationship between lext and linn. If Iinn_count is less than lext, the output signal of current comparison module 202d causes counting module 202b to continue counting and executing The step of modulating linn with Dcount to generate Iinn_count.
  • the output signal output by the current comparison module 202d to the counting module 202b and the latch module 202e may be represented as SENSE_OK.
  • Iinn_count is greater than or equal to lext
  • the SENSE_OK signal is high, causing the counting module 202b to stop counting and causing the latching module.
  • 202e performs latching; when Iinn_count is less than lext, the SENSE_OK signal is low, causing the counting module 202b to continue counting.
  • the comparison circuit of the current comparison module 202d may be as shown in FIG. 6, and of course, other circuits capable of implementing the corresponding functions may be used, which is not specifically limited in this embodiment.
  • Iinn_count and lext respectively pass the current to voltage device, that is, electricity
  • Iinn_count when Iinn_count is greater than Iext, the voltage of N61 is greater than the voltage of N62, and the voltage comparator COMP outputs a high level. Conversely, when Iinn_count is less than Iext, a low level is output.
  • the latching module 202e is configured to control whether to latch the counting signal Dcount generated by the counting module 202b according to the output signal of the current comparison module 202d, and if so, output the Dcount as a proportional relationship between Iext and linn.
  • the latch module 202e in the embodiment of the present invention can be implemented by a latch commonly used in digital logic circuits.
  • the resistance of the measured resistance 203 is equal to the proportional relationship multiplied by the resistance of the reference resistor 201, and multiplied by a constant factor.
  • EN_SENSE is the enable signal used to initiate the detection process.
  • the resistance detection circuit 202 is reset.
  • the current generation module 202a generates Iext and linn
  • the counting module 202b counts from 0 and outputs Dcount.
  • the count signal to current module 202c modulates linn with Dcount and outputs the modulated current Iinn_count.
  • the current comparison module 202d compares the sizes of the lower Iinn_count and Iext. If the Iinn_count is greater than or equal to Iext, the SENSE_OK signal output by the current comparison module 202d is high, the counting module 202b stops counting, and the latch module 202e latches.
  • the current Dcount is proportional, that is, the Dcount currently output by the latch counting module 202b, the detection process ends, the resistance detecting circuit 202 returns to the reset state, and continues to wait for the enable signal of the resistance detection; if the Iinn_count is smaller than Iext, the current comparison module 202d outputs The SENSE_OK signal is low, the counting module 202b continues to count, and the detection process continues until Iinn_count is greater than or equal to Iext.
  • the waveforms of Iext and Iinn_count are as shown in FIG. 7, the output waveform of the counting module 202b is as shown in FIG. 8, and the output waveform of the current comparison module 202d is as shown in FIG. 9, where tst . p indicates the time at which the counting is stopped.
  • the Dcount output by the counting module 202b is relatively small, and thus the Iinn_count is smaller than Iext.
  • the SENSE_OK outputted by the current comparison module 202d is at a low level, and the counting module 202b continues to count.
  • Iinn_count also gradually increases, getting closer to Iext.
  • the resistance of the measured resistance is proportional to Dcount, that is, the proportional relationship of the final output Dstop indicates the actual resistance of the measured resistance, and the larger Dstop indicates the resistance of the measured resistance.
  • the actual resistance is larger, and vice versa.
  • the resistance value of the selected reference resistor is not specifically limited, and the resistance value of the reference resistor may be smaller than the nominal resistance of the measured resistance, or may be equal to the nominal resistance of the measured resistance. It can also be greater than the nominal resistance of the resistor under test.
  • the follower current can be scaled down to a certain level by setting the values of ⁇ and ⁇ in the current generating module 202a for subsequent modulation and comparison.
  • the preferred solution is to select a reference resistance equal to the nominal resistance of the measured resistance, so that the circuit used to generate the reference current is approximately the same as the circuit used to generate the following current, minimizing the reduction. Error due to the difference between the two circuits.
  • the actual resistance of the same type of resistor on the same chip is consistent with the change of its nominal value, because the same type of resistor is produced in the same process and material.
  • the errors are also basically the same. Therefore, after detecting the actual resistance of a resistor on the chip by using the resistance detecting device provided by the embodiment of the present invention, the amount of change of the actual resistance value relative to the nominal value thereof can be calculated, for example, by 10%, then It can be inferred that the actual resistance of other resistors of the same type on the chip should also increase by 10% relative to its nominal value.
  • the idea of the on-chip resistance detecting device provided by the present invention can also be used to detect other physical quantities on the chip that vary with process, temperature, power supply voltage, etc., such as capacitance value, resistance-capacitance time constant, transistor threshold, etc. .
  • the resistance detecting device detects the measured resistance on the chip by using the off-chip reference resistor and the resistance detecting circuit on the chip, and the proportional relationship between the output and the resistance of the reference resistor outside the chip can be Accurately obtain the actual resistance of the measured resistance, so as to know the actual resistance value relative to its nominal value, and thus know the relative change of the same type of other resistance on the chip, so that the chip integration
  • the designer of the circuit can adjust the resistance of other resistors of the same type on the chip according to the variation to make them equal to their nominal values, thereby ensuring the performance of the circuit on the chip.
  • Embodiment 3 Embodiment 3
  • the embodiment of the present invention provides a resistance detecting method.
  • the resistance of the measured resistance on the chip is detected according to the resistance detecting circuit on the chip of the reference resistor by selecting a reference resistor. Referring to FIG. 10, the method flow is as follows:
  • 1002 respectively generate a reference current related to the reference resistance and a following current associated with the measured resistance; specifically, the generated reference current is inversely proportional to the reference resistance, and the following current is inversely proportional to the measured resistance.
  • 1003 Outputs the proportional relationship between the reference current and the following current, so that the resistance of the measured resistance can be obtained according to the proportional relationship and the resistance of the reference resistor.
  • counting from a preset initial value generating a counting signal, and modulating the following current with the counting signal to generate a modulated current; comparing the magnitude of the modulated current and the reference current, if the modulated current is greater than or equal to the reference current , the currently generated counting signal is latched, and the counting signal is a proportional relationship between the reference current and the following current. If the modulated current is less than the reference current, the counting is continued, and the following current is modulated by the counting signal to generate the modulated signal. The steps of the current.
  • the modulated current can be proportional to the count signal.
  • the resistance of the measured resistance is equal to the proportional relationship of the output multiplied by the resistance of the reference resistor, and multiplied by a constant factor.
  • the resistance detecting method provided by the embodiment of the invention detects the measured resistance on the chip by using the off-chip reference resistor and the resistance detecting circuit on the chip, and according to the proportional relationship of the output and the resistance of the reference resistor outside the chip, Accurately obtain the actual resistance of the measured resistance, so as to know the actual resistance value relative to its nominal value, and thus know the relative change of the same type of other resistance on the chip, so that the chip integration
  • the designer of the circuit can adjust the resistance of other resistors of the same type on the chip according to the variation to make them equal to their nominal values, thereby ensuring the performance of the circuit on the chip.
  • the resistance detecting device detects the resistance value of the chip
  • only the division of each functional module is illustrated.
  • the function may be assigned differently according to requirements.
  • the function module is completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the method for detecting the resistance provided by the above embodiment is the same as the embodiment of the resistor detecting device. For details of the implementation process, refer to the device embodiment, and details are not described herein again.
  • serial numbers of the embodiments of the present invention are merely for the description, and do not represent the advantages and disadvantages of the embodiments. All or part of the steps in the embodiment of the present invention may be implemented by using software, and the corresponding software program may be stored in a readable storage medium, such as an optical disk or a hard disk.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

公开了一种电阻检测装置及方法,属于电路领域。该装置包括:基准电阻(101)和电阻检测电路(102);所述电阻检测电路(102),用于产生与所述基准电阻(101)相关的基准电流和与被测电阻(103)相关的跟随电流,输出所述基准电流和所述跟随电流之间的比例关系(105),使所述被测电阻(103)的阻值能根据所述比例关系(105)和所述基准电阻(101)的阻值得到。使用基准电阻(101)和电阻检测电路(102)来对芯片(104)上的被测电阻(103)进行检测,根据输出的比例关系(105)和基准电阻(101)的阻值可以准确地得到被测电阻(103)的实际阻值,从而知道了其实际阻值相对于其标称值的变化量,进而能知道该芯片(104)上同种类型的其他电阻阻值的相对变化量。

Description

电阻检测装置及方法 技术领域
本发明涉及电路领域, 特别涉及一种电阻检测装置及方法。 背景技术 说
芯片是计算机等电子设备的重要组成部分, 是指内含集成电路的硅片。 其制作过程是, 通过采用一定的工艺, 把一个电路中所需的电阻、 电容、 电感、 晶体管和二极管等元件及布 线相互连在一起, 制作在一块硅片上, 成为具有所需电路功能的微型结构。 由于电路中的所 有元件在结构上已组成一个整体, 因此, 整个电路的体书积大大縮小, 且引出线和焊接点的数 目也大为减少, 从而使电子元件向着微小型化、 低功耗和高可靠性方面迈进了一大步。
在实现本发明的过程中, 发明人发现现有技术至少存在以下缺点:
由于芯片生产工艺的局限, 受温度和工艺的影响, 芯片上的电阻等无源元件的精度较低, 例如电阻的实际阻值通常相对其标称值要变化 20%, 甚至更多。 因此, 芯片集成电路的设计 人员无法知道芯片上的电阻的实际阻值, 从而无法通过程序设计等外部手段去调整该芯片上 的电阻的阻值, 使之与它们的标称值充分相等, 进而保证芯片上电路的性能。 发明内容
为了检测芯片上的电阻的实际阻值, 本发明实施例提供了一种电阻检测装置及方法。 所 述技术方案如下:
一方面, 提供了一种电阻检测装置, 所述装置包括: 基准电阻和电阻检测电路; 所述电阻检测电路, 用于分别产生与所述基准电阻相关的基准电流和与被测电阻相关的 跟随电流, 输出所述基准电流和所述跟随电流之间的比例关系, 使所述被测电阻的阻值能根 据所述比例关系和所述基准电阻的阻值得到。
另一方面, 提供了一种电阻检测方法, 所述方法包括:
选取一基准电阻;
分别产生与所述基准电阻相关的基准电流和与被测电阻相关的跟随电流;
输出所述基准电流和所述跟随电流之间的比例关系, 使所述被测电阻的阻值能根据所述 比例关系和所述基准电阻的阻值得到。
本发明实施例提供的技术方案的有益效果是:
通过使用基准电阻和电阻检测电路来对芯片上的被测电阻进行检测, 根据输出的比例关 系和基准电阻的阻值可以准确地得到被测电阻的实际阻值, 从而知道了其实际阻值相对于其 标称值的变化量, 进而能知道该芯片上同种类型的其他电阻阻值的相对变化量, 使芯片集成 电路的设计人员能够根据该变化量调整该芯片上同种类型的其他电阻的阻值, 使之与它们的 标称值充分相等, 进而保证芯片上电路的性能。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用的附 图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域 普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一提供的电阻检测装置结构示意图;
图 2是本发明实施例二提供的电阻检测装置结构示意图;
图 3是本发明实施例二提供的电流产生模块用于产生基准电流的电路示意图; 图 4是本发明实施例二提供的电流产生模块用于产生跟随电流的电路示意图; 图 5是本发明实施例二提供的计数信号转电流模块的电路示意图;
图 6是本发明实施例二提供的电流比较模块的电路示意图;
图 7是本发明实施例二提供的基准电流和调制后的电流的波形图;
图 8是本发明实施例二提供的计数模块的输出波形图;
图 9是本发明实施例二提供的电流比较模块的输出波形图;
图 10是本发明实施例三提供的电阻检测方法流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作进 一步地详细描述。
实施例一
本发明实施例提供了一种电阻检测装置, 参见图 1, 该装置包括: 芯片外的基准电阻 101 和芯片上的电阻检测电路 102;
电阻检测电路 102, 用于分别产生与基准电阻 101相关的基准电流和与被测电阻 103相 关的跟随电流, 输出该基准电流和跟随电流之间的比例关系, 使被测电阻 103的阻值能根据 该比例关系和基准电阻 101的阻值得到。
本发明实施例提供的电阻检测装置, 通过使用芯片外的基准电阻和芯片上的电阻检测电 路来对芯片上的被测电阻进行检测, 根据输出的比例关系和芯片外的基准电阻的阻值可以准 确地得到被测电阻的实际阻值, 从而知道了其实际阻值相对于其标称值的变化量, 进而能知 道该芯片上同种类型的其他电阻阻值的相对变化量, 使芯片集成电路的设计人员能够根据该 变化量调整该芯片上同种类型的其他电阻的阻值, 使之与它们的标称值充分相等, 进而保证 芯片上电路的性能。 实施例二
本发明实施例提供了一种电阻检测装置, 参见图 2, 该装置包括: 芯片外的基准电阻 201 和芯片上的电阻检测电路 202;
基准电阻 201和芯片上的被测电阻 203均与电阻检测电路 202相连;
电阻检测电路 202, 用于分别产生与基准电阻 201相关的基准电流和与被测电阻 203相 关的跟随电流, 输出该基准电流和跟随电流之间的比例关系, 使被测电阻 203的阻值能根据 该比例关系和基准电阻 201的阻值得到。
其中, 电阻检测电路 202, 具体包括电流产生模块 202a、 计数模块 202b、 计数信号转电 流模块 202c、 电流比较模块 202d和锁存模块 202e。
电流产生模块 202a, 用于分别产生与基准电阻 201相关的基准电流和与被测电阻 203相 关的跟随电流, 并将基准电流输出到电流比较模块 202d, 将跟随电流输出到计数信号转电流 模块 202c。其中, 该电流产生模块 202a还接收一参考电压, 用该参考电压产生基准电流和跟 随电流。 该参考电压可以为带隙基准电压, 或者电源电压等其他类型的电压。 上述产生的基 准电流与基准电阻 201成反比关系, 产生的跟随电流与被测电阻 203成反比关系。 假设基准 电阻 201用 Rext表示, 被测电阻 203用 Rinn表示, 参考电压用 Vref表示, 基准电流用 Iext 表示, 跟随电流用 linn表示, 那么, 在本发明实施例中, 电流、 电压和电阻之间的关系可以 表示为:
Iext="H, Iinn= H, 其中, α和 β表示预设的常量。
Rext Rinn
具体地, 电流产生模块 202a中用于产生 Iext的电路可以如图 3所示,用于产生 linn的电 路可以如图 4所示, 当然也可以采用其他能实现相应功能的电路, 本实施例不作具体限定。 Iext由 Vref、 Rext、 运放 AMP1、 电流镜 M31和 M32产生, linn由 Vref、 Rinn、 运放 AMP2, 电流镜 M41和 M42产生, 其中, AMP1和 AMP2完全相同, 电流镜 M31、 M32和电流镜
M41、 M42完全相同。 运放 AMP1和 AMP2迫使 N31和 N41的电压等于 Vref, 因此使得:
Vref . n Vref
Iext= , Iinn= p 。
Rext Rinn
计数模块 202b, 用于从预设的初始值开始计数, 产生计数信号, 并将该计数信号输出到 计数信号转电流模块 202c和锁存模块 202e。其中, 预设的初始值可以是零, 也可以是其他合 适的值, 本发明实施例仅以预设的初始值是零进行说明, 但不限定于此。 本发明实施例中的 计数模块 202b可以用数字逻辑电路中常见的计数器来实现,图 2中计数模块 202b的输入 CLK 是计数器用的时钟信号。 假设计数信号用 N位数字信号 Dcount表示, 并且 Dcount每隔一个 CLK的周期加 1, Dcount从低位到高位分别为 D<0>, D<1>, ..., D<N-1>。
计数信号转电流模块 202c, 用于接收电流产生模块 202a输出的跟随电流 linn和计数模 块 202b输出的计数信号 Dcount, 并用 Dcount调制 linn, 生成调制后的电流 Iinn_count, 并将 Iinn_count输出到电流比较模块 202d。 在本发明实施例中, 计数信号转电流模块 202c调制后 的电流 Iinn_count与 Dcount成正比关系, 也就是 Iinn_count=Iinn*Dcount。
具体地, 计数信号转电流模块 202c用于产生 Iinn_count的电路如图 5所示, 当然也可以 采用其他能实现相应功能的电路, 本实施例不作具体限定。 linn经由电流镜 M51、 M52流过 M60, 再通过电流镜 M61,M62...... M6N分别镜像成电流为 1倍, 2倍, ......2N- 1倍的电流, 这些电流分别受计数模块 202b输出的 N位计数信号 D<0>,D<1> ...... D<N-l>的控制, 如果对 应数字位为 1(高电平), 那么对应的电流将叠加到 Iinn_count中, 反之, 如果对应的数字位为 0(低电平),那么对应的电流将不叠加到 Iinn_count中。这样就实现了 Iinn_count=Iinn*Dcount。
电流比较模块 202d, 用于接收计数信号转电流模块 202c输出的调制后的电流 Iinn_count 和电流产生模块 202a输出的基准电流 Iext,并比较 Iinn_count和 lext的大小,如果 Iinn_count 大于等于 lext, 则电流比较模块 202d的输出信号使锁存模块 202e锁存当前产生的 Dcount, 该 Dcount为 lext和 linn之间的比例关系, 如果 Iinn_count小于 lext, 则电流比较模块 202d 的输出信号使计数模块 202b继续计数, 并执行用 Dcount调制 linn, 生成 Iinn_count的步骤。 例如, 电流比较模块 202d 向计数模块 202b 和锁存模块 202e 输出的输出信号可以表示为 SENSE_OK, 当 Iinn_count大于等于 lext时, SENSE_OK信号为高电平, 使计数模块 202b 停止计数、并使锁存模块 202e进行锁存; 当 Iinn_count小于 lext时, SENSE_OK信号为低电 平, 使计数模块 202b继续计数。
具体地, 电流比较模块 202d的比较电路可以如图 6所示, 当然也可以采用其他能实现相 应功能的电路, 本实施例不作具体限定。 Iinn_count和 lext分别经由电流转电压的器件, 即电 阻 Rl和 R2产生相应的电压信号 N61和 N62, N61和 N62分别送给电压比较器 COMP的正 端和负端进行比较, 输出比较结果 SENSE_OK信号, 其中 R1=R2。 在本发明实施例中, 当 Iinn_count大于 Iext时, N61的电压大于 N62的电压, 电压比较器 COMP输出高电平, 反之, 当 Iinn_count小于 Iext时, 输出低电平。
锁存模块 202e, 用于根据电流比较模块 202d的输出信号控制是否锁存计数模块 202b当 前产生的计数信号 Dcount, 如果是, 则输出该 Dcount作为 Iext和 linn之间的比例关系。 本 发明实施例中的锁存模块 202e可以用数字逻辑电路中常见的锁存器来实现。
进一步地, 电阻检测电路 202输出 Iext和 linn之间的比例关系后, 使被测电阻 203的阻 值等于该比例关系乘以基准电阻 201的阻值, 再乘以一常数因子。
下面再结合图 2对该电阻检测装置的检测过程进行整体上的说明。 图 2中各模块输入的
EN_SENSE 是用来启动检测过程的使能信号, EN_SENSE=0 时电阻检测电路 202 复位, EN_SENSE=1 时电阻检测电路 202 进入电阻检测过程。 该电阻检测装置上电后, 先令 EN_SENSE=0 , 将电阻检测电路复位, 复位后处于等待电阻检测使能信号的状态, 直到 EN_SENSE=1 时进入电阻检测过程。 电阻检测过程开始后, 电流产生模块 202a即产生 Iext 和 linn, 计数模块 202b从 0开始计数, 输出 Dcount。 计数信号转电流模块 202c用 Dcount 调制 linn后, 输出调制后的电流 Iinn_count。 计数模块 202b每计数一次, 电流比较模块 202d 比较下 Iinn_count和 Iext的大小, 如果 Iinn_count大于等于 Iext, 电流比较模块 202d输出的 SENSE_OK信号为高电平,计数模块 202b停止计数,锁存模块 202e锁存当前 Dcount作为比 例关系, 即锁存计数模块 202b当前输出的 Dcount, 检测过程结束, 电阻检测电路 202回到 复位状态, 继续等待电阻检测的使能信号; 如果 Iinn_count小于 Iext, 电流比较模块 202d输 出的 SENSE_OK信号为低电平, 计数模块 202b继续计数, 检测过程继续, 直到 Iinn_count 大于等于 Iext。
在电阻检测的过程中, Iext和 Iinn_count的波形如图 7所示, 计数模块 202b的输出波形 如图 8所示, 电流比较模块 202d的输出波形如图 9所示, 其中 tstp表示停止计数的时刻。 检 测过程开始时, 计数模块 202b输出的 Dcount比较小, 因而 Iinn_count小于 Iext,这时电流比 较模块 202d输出的 SENSE_OK为低电平, 计数模块 202b继续计数, 随着计数模块 202b的 输出 Dcount渐渐增加, 因而 Iinn_count也渐渐增大, 越来越接近 Iext, 当 Iinn_count开始大 于或等于 Iext时, SENSE_OK变为高电平,这时计数模块 202b停止计数,此时计数模块 202b 输出的 Dcount值为 Dstop, 锁存模块 202e锁存比例关系 Dstop, 检测过程结束, 电阻检测电 路 202 回到复位状态, 等待重新进行电阻检测的使能信号。 检测过程结束的时候 Iinn_count 刚刚大于 Iext或者等于 Iext, 可见 linn— count和 Iext应该是近似相等的, 有如下关系: linn— count=Iext,
Vref Vref
由于 linn— count=Iinn*Dcount, Iext= a , Iinn= β ,
Rext Rinn
Vref Vref
因此 *Dcount=a ,
Rinn Rext
消掉 Vref后得到 Rinn=― Rext*Dcount。
a
由上式可知, 在 Rext已知的情况下, 被测电阻的阻值正比于 Dcount, 也就是说最后输出 的比例关系 Dstop指示了被测电阻的实际阻值, Dstop越大表明被测电阻的实际阻值越大, 反 之则越小。
需要说明的是, 本发明实施例不对选取的基准电阻的阻值进行具体限定, 基准电阻的阻 值既可以小于被测电阻的标称阻值, 也可以等于被测电阻的标称阻值, 还可以大于被测电阻 的标称阻值。无论采用何种阻值的基准电阻, 都可以通过在电流产生模块 202a中设置 α和 β 的值, 将跟随电流按比例縮小到一定的水平, 以便进行后续的调制和比较。 当然, 在实际应 用中, 优选方案是选取与被测电阻的标称阻值相等的基准电阻, 这样可以使用于产生基准电 流的电路和用于产生跟随电流的电路近似相同, 最大限度的减小由于两个电路不同引起的误 差。
进一步地, 通常情况下同一芯片上的同种类型的电阻的实际阻值相对于其标称值的变化 是一致的, 这是因为同种类型的电阻其生产工艺和材料是一样的, 造成的误差也基本一致。 因此, 在用本发明实施例提供的电阻检测装置检测出芯片上一个电阻的实际阻值后, 可以计 算出其实际阻值相对于其标称值的变化量, 比如增大了 10%, 那么可以推算出该芯片上同种 类型的其他电阻的实际阻值也应当相对于其标称值增大了 10%。
需要说明的是, 本发明提供的芯片上的电阻检测装置的思想还可以用于检测芯片上其他 的随工艺、 温度、 电源电压等变化的物理量, 比如电容值、 电阻电容时间常数、 晶体管阈值 等。 本发明实施例提供的电阻检测装置, 通过使用芯片外的基准电阻和芯片上的电阻检测电 路来对芯片上的被测电阻进行检测, 根据输出的比例关系和芯片外的基准电阻的阻值可以准 确地得到被测电阻的实际阻值, 从而知道了其实际阻值相对于其标称值的变化量, 进而能知 道该芯片上同种类型的其他电阻阻值的相对变化量, 使芯片集成电路的设计人员能够根据该 变化量调整该芯片上同种类型的其他电阻的阻值, 使之与它们的标称值充分相等, 进而保证 芯片上电路的性能。 实施例三
本发明实施例提供了一种电阻检测方法, 通过选取一个基准电阻, 根据该基准电阻用芯 片上的电阻检测电路检测芯片上的被测电阻的阻值, 参见图 10, 方法流程具体如下:
1001 : 选取一基准电阻;
1002: 分别产生与该基准电阻相关的基准电流和与被测电阻相关的跟随电流; 具体地, 产生的基准电流与基准电阻成反比关系, 跟随电流与被测电阻成反比关系。 1003: 输出基准电流和跟随电流之间的比例关系, 使被测电阻的阻值能根据该比例关系 和基准电阻的阻值得到。
具体地, 从预设的初始值开始计数, 产生计数信号, 并用该计数信号调制跟随电流, 生 成调制后的电流; 比较调制后的电流和基准电流的大小, 如果调制后的电流大于等于基准电 流, 则锁存当前产生的计数信号, 该计数信号为基准电流和跟随电流之间的比例关系, 如果 调制后的电流小于基准电流, 则继续计数, 并执行用计数信号调制跟随电流, 生成调制后的 电流的步骤。
其中, 可以使调制后的电流与计数信号成正比关系。
进一步地, 被测电阻的阻值等于输出的比例关系乘以基准电阻的阻值, 再乘以一常数因 子。
本发明实施例提供的电阻检测方法, 通过使用芯片外的基准电阻和芯片上的电阻检测电 路来对芯片上的被测电阻进行检测, 根据输出的比例关系和芯片外的基准电阻的阻值可以准 确地得到被测电阻的实际阻值, 从而知道了其实际阻值相对于其标称值的变化量, 进而能知 道该芯片上同种类型的其他电阻阻值的相对变化量, 使芯片集成电路的设计人员能够根据该 变化量调整该芯片上同种类型的其他电阻的阻值, 使之与它们的标称值充分相等, 进而保证 芯片上电路的性能。 需要说明的是: 上述实施例提供的电阻检测装置在检测芯片上的电阻阻值时, 仅以上述 各功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分配由不同的功 能模块完成, 即将装置的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部分 功能。 另外, 上述实施例提供的电阻检测方法与电阻检测装置实施例属于同一构思, 其具体 实现过程详见装置实施例, 这里不再赘述。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 本发明实施例中的全部或部分步骤, 可以利用软件实现, 相应的软件程序可以存储在可 读取的存储介质中, 如光盘或硬盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则之 内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种电阻检测装置, 其特征在于, 所述装置包括: 基准电阻和电阻检测电路; 所述电阻检测电路, 用于分别产生与所述基准电阻相关的基准电流和与被测电阻相关的 跟随电流, 输出所述基准电流和所述跟随电流之间的比例关系, 使所述被测电阻的阻值能根 据所述比例关系和所述基准电阻的阻值得到。
2、 根据权利要求 1所述的装置, 其特征在于, 所述电阻检测电路, 具体包括电流产生模 块、 计数模块、 计数信号转电流模块、 电流比较模块和锁存模块;
所述电流产生模块, 用于分别产生与所述基准电阻相关的基准电流和与被测电阻相关的 跟随电流, 并将所述基准电流输出到所述电流比较模块, 将所述跟随电流输出到所述计数信 号转电流模块;
所述计数模块, 用于从预设的初始值开始计数, 产生计数信号, 并将所述计数信号输出 到所述计数信号转电流模块和所述锁存模块;
所述计数信号转电流模块, 用于接收所述电流产生模块输出的跟随电流和所述计数模块 输出的计数信号, 并用所述计数信号调制所述跟随电流, 生成调制后的电流, 并将所述调制 后的电流输出到所述电流比较模块;
所述电流比较模块, 用于接收所述计数信号转电流模块输出的调制后的电流和所述电流 产生模块输出的基准电流, 并比较所述调制后的电流和所述基准电流的大小, 如果所述调制 后的电流大于等于所述基准电流, 则所述电流比较模块的输出信号使所述锁存模块锁存当前 产生的计数信号, 所述计数信号为所述基准电流和所述跟随电流之间的比例关系, 如果所述 调制后的电流小于所述基准电流,则所述电流比较模块的输出信号使所述计数模块继续计数, 并执行用所述计数信号调制所述跟随电流, 生成调制后的电流的步骤;
所述锁存模块, 用于根据所述电流比较模块的输出信号控制是否锁存所述计数模块当前 产生的计数信号, 如果是, 则输出所述计数信号作为所述基准电流和所述跟随电流之间的比 例关系。
3、根据权利要求 2所述的装置, 其特征在于, 所述计数信号转电流模块调制后的电流与 所述计数信号成正比关系。
4、根据权利要求 1所述的装置, 其特征在于, 所述电阻检测电路使所述被测电阻的阻值 等于所述比例关系乘以所述基准电阻的阻值, 再乘以一常数因子。
5、 根据权利要求 1-4中任一权利要求所述的装置, 其特征在于, 所述电流产生模块产生 的基准电流与所述基准电阻成反比关系, 产生的跟随电流与所述被测电阻成反比关系。
6、 一种电阻检测方法, 其特征在于, 所述方法包括:
选取一基准电阻;
分别产生与所述基准电阻相关的基准电流和与被测电阻相关的跟随电流;
输出所述基准电流和所述跟随电流之间的比例关系, 使所述被测电阻的阻值能根据所述 比例关系和所述基准电阻的阻值得到。
7、根据权利要求 6所述的方法, 其特征在于, 所述输出所述基准电流和所述跟随电流之 间的比例关系, 具体包括:
从预设的初始值开始计数, 产生计数信号, 并用所述计数信号调制所述跟随电流, 生成 调制后的电流;
比较所述调制后的电流和所述基准电流的大小, 如果所述调制后的电流大于等于所述基 准电流, 则锁存当前产生的计数信号, 所述计数信号为所述基准电流和所述跟随电流之间的 比例关系, 如果所述调制后的电流小于所述基准电流, 则继续计数, 并执行用所述计数信号 调制所述跟随电流, 生成调制后的电流的步骤。
8、 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括:
所述调制后的电流与所述计数信号成正比关系。
9、根据权利要求 6所述的方法, 其特征在于, 所述被测电阻的阻值能根据所述比例关系 和所述基准电阻的阻值得到, 具体包括:
所述被测电阻的阻值等于所述比例关系乘以所述基准电阻的阻值, 再乘以一常数因子。
10、 根据权利要求 6-9中任一权利要求所述的方法, 其特征在于, 所述方法还包括: 所述基准电流与所述基准电阻成反比关系, 所述跟随电流与所述被测电阻成反比关系。
PCT/CN2011/072728 2011-04-13 2011-04-13 电阻检测装置及方法 WO2011137708A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180000392.6A CN102317798B (zh) 2011-04-13 2011-04-13 电阻检测装置及方法
PCT/CN2011/072728 WO2011137708A2 (zh) 2011-04-13 2011-04-13 电阻检测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/072728 WO2011137708A2 (zh) 2011-04-13 2011-04-13 电阻检测装置及方法

Publications (2)

Publication Number Publication Date
WO2011137708A2 true WO2011137708A2 (zh) 2011-11-10
WO2011137708A3 WO2011137708A3 (zh) 2012-02-23

Family

ID=44904135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072728 WO2011137708A2 (zh) 2011-04-13 2011-04-13 电阻检测装置及方法

Country Status (2)

Country Link
CN (1) CN102317798B (zh)
WO (1) WO2011137708A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675461B (zh) * 2013-12-20 2016-03-30 北京航天测控技术有限公司 基于可调电流源的电阻测量方法
CN110161313B (zh) 2019-06-19 2020-07-24 中南大学 一种微差法与比例法结合的电阻高精度测量系统与方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349777A (en) * 1979-11-19 1982-09-14 Takeda Riken Kogyo Kabushikikaisha Variable current source
US5469071A (en) * 1993-12-07 1995-11-21 Kabushiki Kaisha Toshiba Resistor sensor input apparatus
CN2702317Y (zh) * 2003-12-02 2005-05-25 赵军 电阻类仪器比例法检定电路
CN1963556A (zh) * 2006-11-24 2007-05-16 中国计量科学研究院 一种用于整体校验低温电流比较仪比例的仪器及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349777A (en) * 1979-11-19 1982-09-14 Takeda Riken Kogyo Kabushikikaisha Variable current source
US5469071A (en) * 1993-12-07 1995-11-21 Kabushiki Kaisha Toshiba Resistor sensor input apparatus
CN2702317Y (zh) * 2003-12-02 2005-05-25 赵军 电阻类仪器比例法检定电路
CN1963556A (zh) * 2006-11-24 2007-05-16 中国计量科学研究院 一种用于整体校验低温电流比较仪比例的仪器及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, QIHUA.: 'Resistance Measurement and Non-electric Measuration.' February 1981, page 78 *

Also Published As

Publication number Publication date
CN102317798A (zh) 2012-01-11
CN102317798B (zh) 2013-06-26
WO2011137708A3 (zh) 2012-02-23

Similar Documents

Publication Publication Date Title
CN103066985B (zh) 具有复用引脚的芯片
CN111585550B (zh) 过压保护用电流比较电路
JP5255248B2 (ja) 電源安定化回路、電子デバイス、および、試験装置
WO2016119139A1 (en) Fault detection and self-recovery method for crystal oscillator
CN107764431B (zh) 芯片内核温度检测电路
US7898222B2 (en) Battery charger and associated method
TWI419172B (zh) Reference current generator for resistive memory and its
CN111751693B (zh) 一种检测双极型晶体管电流放大倍数的方法和电路
TWI418964B (zh) 用於測試積體電路之產品測試系統
WO2011137708A2 (zh) 电阻检测装置及方法
TWI514398B (zh) 用於動態隨機存取記憶體之去耦合電容值校正裝置及方法
CN212726971U (zh) 过压保护用电流比较电路
US8552753B2 (en) Circuits and methods for sensing resistance
TWI717838B (zh) 電源供應器
TWI715096B (zh) 過電流保護裝置及方法
US8258798B2 (en) On chip duty cycle measurement module
TW201910798A (zh) 參考電壓電路之測試系統及方法
JP2008008714A (ja) 半導体測定装置
TWI517565B (zh) 驅動能力與晶片終端電阻値自我調校方法及其裝置
JP2012119946A (ja) 定電流回路
TWI494932B (zh) 電壓產生器
US20180024191A1 (en) Integrated circuit structure
KR101509421B1 (ko) 클럭신호와 피크검출기를 이용한 파워온 리셋 회로
CN108235180B (zh) 一种蓝牙电路
US20230057897A1 (en) Semiconductor device with contact check circuitry

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000392.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777129

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777129

Country of ref document: EP

Kind code of ref document: A2