WO2011135899A1 - Coil device - Google Patents

Coil device Download PDF

Info

Publication number
WO2011135899A1
WO2011135899A1 PCT/JP2011/053436 JP2011053436W WO2011135899A1 WO 2011135899 A1 WO2011135899 A1 WO 2011135899A1 JP 2011053436 W JP2011053436 W JP 2011053436W WO 2011135899 A1 WO2011135899 A1 WO 2011135899A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
via hole
conductor
coil conductor
layer
Prior art date
Application number
PCT/JP2011/053436
Other languages
French (fr)
Japanese (ja)
Inventor
喜人 大坪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2011135899A1 publication Critical patent/WO2011135899A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer

Definitions

  • the present invention relates to a coil device, and more particularly to a coil device in which a gap is formed between a coil conductor and a magnetic layer.
  • a multilayer coil is usually formed by screen-printing a conductive paste for internal conductors on the surface of a thin ferrite sheet to form a conductive pattern, and then laminating a predetermined number of ferrite sheets on which this conductive pattern is formed, and then laminating them. It is manufactured by forming a body, then firing the laminate, and further forming an external conductor.
  • Patent Documents 1 and 2 a method of forming a gap between the inner conductor layer and the ceramic layer has been considered (Patent Documents 1 and 2).
  • the multilayer coil disclosed in Patent Document 1 is such that voids are formed by increasing the amount of contraction of internal electrodes by adding resin particles having a low specific gravity to a conductive paste. By forming electrodes with this conductive paste, it is possible to form desired voids. As a result, it is possible to manufacture a laminated coil in which the generation of tensile stress between the internal electrode and the ferrite layer is suppressed.
  • Patent Document 2 relates to a multilayer inductor.
  • a disappearing material layer soluble in a solvent is formed in a pattern such as a square shape.
  • a conductor pattern is formed on the lost material layer with a conductor paste that is insoluble in the solvent.
  • the pattern of the insulator material insoluble in the said solvent is formed in the predetermined part of this conductor pattern.
  • dissolution is performed using a solvent, and the void material layer is formed by dissolving and removing the disappearing material layer other than the conductor pattern and the insulator pattern.
  • Patent Document 1 since resin particles are contained in the conductive paste, there is a problem that the electrical characteristics of the internal electrode are deteriorated.
  • the multilayer inductor described in Patent Document 2 has a problem in that it takes time and cost because it dissolves with a solvent after the disappearance material layer is formed.
  • the present invention intends to provide a coil device having a good electrical characteristic by forming a void by providing a constraining layer between a magnetic layer and a coil.
  • a coil device is a coil device including a laminate in which a plurality of magnetic layers are laminated, and a coil including a coil conductor disposed in the laminate, and the magnetic layer In addition, a constraining layer is provided between the coil conductor and a gap is formed on the coil conductor of the multilayer body.
  • this void is formed using a constraining layer, it is not necessary to blend resin powder into the internal electrode as in the prior art described above. As a result, the electrical characteristics are not impaired. In addition, since it is not necessary to form a dissolvable disappearing material layer, the manufacturing is easy and the cost can be reduced.
  • the constraining layer has a constraining layer that has the same shape as the coil conductor or a larger area than the shape of the coil conductor when viewed from the stacking direction.
  • the coil device according to the present invention is characterized in that at least one of a passive component and an active component is further built in one main surface of the laminate.
  • the laminate can be modularized.
  • the coil device according to the present invention is characterized by having an external electrode to which an end of the coil is connected. In this case, it is possible to manufacture a chip coil with improved inductance characteristics without deteriorating the DC resistance.
  • the coil has a plurality of coil conductors and a plurality of via holes.
  • the inductance value can be selectively changed by changing the number of turns of the coil.
  • the tensile stress between the magnetic layer and the coil can be suppressed by forming the air gap. As a result, it is possible to improve the inductance characteristics without deteriorating the DC resistance.
  • this void is formed using a constraining layer, the electrical characteristics are not impaired and the cost can be reduced.
  • FIG. 4 is a cross-sectional view showing a manufacturing process subsequent to FIG. 3.
  • the coil device of the present invention includes a rectangular parallelepiped laminated body 33, four external electrodes 6a to 6d formed on the bottom surface of the laminated body 33, and lands 32a formed on the upper surface of the laminated body 33. To 32d, and an IC 34 and a capacitor 35 joined to the stacked body 33 through lands 32a to 32d.
  • the laminated body 33 is configured by laminating a plurality of ceramic sheets.
  • the stacked body 33 includes a via hole 2, a via hole 3, a via hole 4, a via hole 5, internal electrodes 8a to 8d, a via hole 10, a coil 36, a via hole 27, internal electrodes 29a to 29d, and via holes 31a to 31d.
  • the internal electrodes 8a to 8d are arranged on the side close to the bottom surface of the multilayer body 33.
  • the internal electrodes 8a to 8d are electrically connected to the external electrodes 6a to 6d through the via hole 2, the via hole 3, the via hole 4 and the via hole 5.
  • the coil 36 is formed in a spiral shape by the coil conductors 13, 17, 21, 25 and the via holes 16, 20, 24.
  • the constraining layers 12, 15, 19, and 23 (see FIGS. 2 and 3) provided under the coil conductors 13, 17, 21, and 25 are omitted in FIG.
  • the coil 36 is disposed between the internal electrodes 8a to 8d and the internal electrodes 29a to 29d in the central portion of the multilayer body 33.
  • the coil 36 is electrically connected to the internal electrode 8 a through the via hole 10.
  • the internal electrodes 29a to 29d are disposed closer to the upper surface of the multilayer body 33 than the coil 36.
  • the internal electrode 29 a is electrically connected to the coil 36 through the via hole 27.
  • the internal electrodes 29a to 29d are electrically connected to the lands 32a to 32d through via holes 31a to 31d.
  • FIG. 2 is an enlarged view of the coil conductor 17 of FIG. 1 and the constraining layer 15 (not shown in FIG. 1) disposed under the coil conductor 17.
  • This enlarged view is an enlarged view of a portion without a via hole.
  • a gap is formed between the coil conductor 17 and the constraining layer 15. The same applies to the other coil conductors 13, 21, 25. Further, the reason why a void is formed by providing a constraining layer will be described later.
  • FIG. 3 and 4 are cross-sectional views showing the manufacturing process of the coil device according to the present embodiment.
  • FIG. 4 the manufacturing method of this coil apparatus is demonstrated in detail.
  • a nonmagnetic sheet 1 made of a material mainly composed of Fe, Cu, and Zn is prepared. Via holes are formed in the nonmagnetic sheet 1 and filled with conductive paste to form via holes 2a, 3a, 4a and 5a.
  • external electrodes 6a to 6d are formed on the nonmagnetic material sheet 1 and the via holes 2a, 3a, 4a, and 5a by screen printing.
  • the external electrode 6a is formed to be connected to the via hole 2a, the external electrode 6b is connected to the via hole 3a, the external electrode 6c is connected to the via hole 4a, and the external electrode 6d is connected to the via hole 5a.
  • this non-magnetic material sheet 1 is laminated
  • a nonmagnetic sheet 7 formed in the same manner as the nonmagnetic sheet 1 is prepared.
  • the nonmagnetic sheet 7 includes via holes 2b, 3b, 4b, and 5b and internal electrodes 8a to 8d printed in a predetermined pattern.
  • a nonmagnetic sheet 9 having a predetermined via hole 10a is also prepared. (FIG. 3C).
  • a magnetic sheet 11 made of a ferrite material mainly composed of Fe, Ni, and Zn is prepared.
  • a constraining layer 12 made of a material mainly composed of alumina is formed on the magnetic sheet 11 by screen printing.
  • the constraining layer 12 may have the same shape as that of a coil conductor 13 to be described later or a larger area than the coil conductor 13 when viewed from the stacking direction. If comprised in this way, formation of a space
  • the thickness of the constraining layer 12 is desirably less than or equal to half the thickness of the magnetic material sheet 11. If comprised in this way, the sintering density of the magnetic material sheet immediately under it will hardly change.
  • via holes are formed in the magnetic sheet 11 and the constraining layer 12.
  • the via paste 10b is formed by filling the conductive paste.
  • the coil conductor 13 made of Ag, Ag—Pd, or the like is formed on the constraining layer 12 by screen printing.
  • the coil conductor 13 is preferably smaller than the area of the constraining layer 12.
  • the magnetic sheet 14 includes a constraining layer 15, a via hole 16, and a coil conductor 17.
  • the magnetic sheet 18 includes a constraining layer 19, a via hole 20, and a coil conductor 21.
  • the magnetic sheet 22 includes a constraining layer 23, a via hole 24, and a coil conductor 25. (FIG. 3B).
  • a nonmagnetic sheet 26 made of a material mainly composed of Fe, Cu, and Zn is prepared.
  • a hole for a via hole is formed in the nonmagnetic sheet 26.
  • the via paste 27a is formed by filling the conductive paste.
  • a nonmagnetic sheet 28 is prepared.
  • a hole for a via hole is formed in the nonmagnetic sheet 28 and filled with a conductive paste to form a via hole 27b.
  • internal electrodes 29a to 29d made of Ag, Ag—Pd, or the like are formed on the via hole 27b and the nonmagnetic material sheet 28 by screen printing.
  • the internal electrode 29a is formed so as to be connected to the via hole 27b.
  • a nonmagnetic sheet 30 is prepared. Via holes are formed in the nonmagnetic sheet 30 and filled with a conductive paste to form via holes 31a to 31d. Thereafter, lands 32a to 32d made of Ag, Ag-Pd, or the like are formed by screen printing. The land 32a is formed so as to be connected to the via hole 31a, the land 32b is connected to the via hole 31b, the land 32c is connected to the via hole 31c, and the land 32d is connected to the via hole 31d.
  • the non-magnetic sheets 1, 7 and 9, the magnetic sheets 11, 14, 18 and 22, and the non-magnetic sheets 26, 28 and 30 are laminated and pressure-bonded. (FIG. 4). Then, it bakes and the laminated body 33 is formed.
  • a coil conductor made of Ag, Ag—Pd, or the like starts sintering shrinkage at 300 to 400 ° C., and finishes sintering shrinkage at 700 to 800 ° C.
  • a constraining layer is provided under the coil conductor, since no adhesive force is generated between the coil conductor and the constraining layer other than physical contact, the constraining layer does not affect the sintering shrinkage of the coil conductor.
  • the magnetic sheet contains a ferrite material as a main component, the sintering shrinkage starts at 500 ° C. or more, and the sintering shrinkage ends at 900 to 1100 ° C.
  • the constraining layer provided under the coil conductor is mainly composed of alumina, it sinters and shrinks at a temperature higher than 1100 ° C., which is the temperature at which the magnetic material sheet is sintered. That is, the constraining layer does not shrink during sintering of the coil conductor and when the magnetic sheet is sintered. Therefore, it has a function of restraining the shrinkage of the ferrite sheet.
  • the magnetic sheet on the coil conductor is sintered and contracted. That is, the coil conductor is subjected to compressive stress on the upper side and tensile stress on the lower side. As a result, the coil conductor peels off on the upper magnetic sheet side or the lower constraining layer side, whichever has the lower adhesion force, and a gap is formed. Since the gap is formed, the residual stress is released, so that the inductance can be improved without deteriorating the direct current resistance.
  • Example 1 A substantially octagonal helical coil was prepared under the following conditions, and samples of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 were prepared.
  • the constraining layer was formed only under the coil conductor
  • Example 2 was formed on the entire sheet under the coil conductor
  • Comparative Example 1 was not constrained
  • Comparative Example 2 was burned out on the coil conductor itself. The material is added. Table 1 shows the results of measuring the inductance and DC resistance of this sample.
  • Coil conductor width 200 ⁇ m
  • coil conductor thickness 10 ⁇ m
  • number of coil turns 8
  • total length of coil conductor about 30 mm
  • Non-magnetic sheet 2a, 2b Via hole 3a, 3b: Via hole 4a, 4b: Via hole 5a, 5b: Via hole 6a, 6b, 6c, 6d: External electrode 8a, 8b, 8c, 8d: Internal electrode 10a, 10b: Via hole 11, 14, 18, 22: Magnetic sheet 12, 15, 19, 23: Restraint layer 13, 17, 21, 25: Coil conductor 16, 20, 24: Via hole 26, 28, 30: Non Magnetic sheet 27a, 27b: Via hole 29a, 29b, 29c, 29d: Internal electrode 31a, 31b, 31c, 31d: Via hole 32a, 32b, 32c, 32d: Land 33: Laminate 34: IC 35: Capacitor 36: Coil

Abstract

Disclosed is a coil device, in which a void is arranged between a magnetic material layer and a coil conductor and therefore has good electric properties. In the coil device, a constraint layer is arranged between the magnetic material layer and the coil conductor to form the void.

Description

コイル装置Coil device
 本発明は、コイル装置に関し、特に、コイル導体と磁性体層の間に空隙が形成されたコイル装置に関する。 The present invention relates to a coil device, and more particularly to a coil device in which a gap is formed between a coil conductor and a magnetic layer.
 積層型コイルは、通常、薄層のフェライトシートの表面に内部導体用導電性ペーストをスクリーン印刷して導電パターンを形成し、この導電パターンの形成されたフェライトシートを所定枚数積層、圧着して積層体を形成し、その後、該積層体を焼成し、さらに外部導体を形成することにより製造される。 A multilayer coil is usually formed by screen-printing a conductive paste for internal conductors on the surface of a thin ferrite sheet to form a conductive pattern, and then laminating a predetermined number of ferrite sheets on which this conductive pattern is formed, and then laminating them. It is manufactured by forming a body, then firing the laminate, and further forming an external conductor.
 このような積層型コイルでは、内部導体を構成する導電性材料とフェライト材料の熱膨張係数が異なり、収縮挙動が異なる。この結果、焼成後の冷却によりフェライト層と内部導体層との界面で引張応力が発生し、この応力に基づく磁歪効果によって透磁率が低下し、インダクタンスの低下を招く。 In such a laminated coil, the thermal expansion coefficients of the conductive material and the ferrite material constituting the inner conductor are different, and the contraction behavior is different. As a result, tensile stress is generated at the interface between the ferrite layer and the internal conductor layer due to cooling after firing, and the magnetic permeability is reduced by the magnetostrictive effect based on this stress, leading to a reduction in inductance.
 このような引張応力の発生を抑制するために、内部導体層とセラミック層との間に空隙を形成する方法が考えられている(特許文献1、2)。特許文献1に開示の積層型コイルは、導電性ペーストに比重の軽い樹脂粒子を含有させて内部電極の収縮量を大きくすることで、空隙を形成するというものである。この導電性ペーストで電極を形成することにより、所望の空隙を形成することが可能である。この結果、内部電極とフェライト層との間の引張応力の発生が抑制された積層型コイルを製造することが可能となる。 In order to suppress the occurrence of such tensile stress, a method of forming a gap between the inner conductor layer and the ceramic layer has been considered (Patent Documents 1 and 2). The multilayer coil disclosed in Patent Document 1 is such that voids are formed by increasing the amount of contraction of internal electrodes by adding resin particles having a low specific gravity to a conductive paste. By forming electrodes with this conductive paste, it is possible to form desired voids. As a result, it is possible to manufacture a laminated coil in which the generation of tensile stress between the internal electrode and the ferrite layer is suppressed.
 特許文献2は、積層型インダクタに関するものである。基板上に、溶媒に可溶性の消失材料層を方形状等のパターン状に形成する。この消失材料層に、前記溶媒に不溶である導体ペーストで導体パターンを形成する。そして、この導体パターンの所定部分に前記溶媒に不溶である絶縁体材料のパターンを形成する。その後、溶媒による溶解処理を行い、導体パターンおよび絶縁体パターン以外の部分の消失材料層を溶解除去することで空隙を形成する。 Patent Document 2 relates to a multilayer inductor. On the substrate, a disappearing material layer soluble in a solvent is formed in a pattern such as a square shape. A conductor pattern is formed on the lost material layer with a conductor paste that is insoluble in the solvent. And the pattern of the insulator material insoluble in the said solvent is formed in the predetermined part of this conductor pattern. Thereafter, dissolution is performed using a solvent, and the void material layer is formed by dissolving and removing the disappearing material layer other than the conductor pattern and the insulator pattern.
特開2004-79994号公報JP 2004-79994 A 特開2006-66764号公報JP 2006-66764 A
 しかしながら、特許文献1では、導電性ペーストに樹脂粒子を含有させるため、内部電極の電気特性が悪くなるという問題があった。 However, in Patent Document 1, since resin particles are contained in the conductive paste, there is a problem that the electrical characteristics of the internal electrode are deteriorated.
 また、特許文献2に記載の積層型インダクタは、消失材料層を形成後、溶媒による溶解処理を行うため、手間とコストがかかるという問題があった。 In addition, the multilayer inductor described in Patent Document 2 has a problem in that it takes time and cost because it dissolves with a solvent after the disappearance material layer is formed.
 本発明は、これらの状況を鑑み、磁性体層とコイルの間に拘束層を設けることで空隙を形成し、その結果、良好な電気特性を有したコイル装置を提供しようとするものである。 In view of these circumstances, the present invention intends to provide a coil device having a good electrical characteristic by forming a void by providing a constraining layer between a magnetic layer and a coil.
 本発明に係るコイル装置は、複数の磁性体層が積層されてなる積層体と、この積層体の内部に配置されたコイル導体を含むコイルとを備えたコイル装置であって、前記磁性体層と前記コイル導体の間に拘束層を備えるとともに、前記積層体の前記コイル導体上には空隙が形成されていることを特徴としている。 A coil device according to the present invention is a coil device including a laminate in which a plurality of magnetic layers are laminated, and a coil including a coil conductor disposed in the laminate, and the magnetic layer In addition, a constraining layer is provided between the coil conductor and a gap is formed on the coil conductor of the multilayer body.
 空隙が形成されることで、磁性体層とコイルとの間の引張応力を抑制することができる。その結果、直流抵抗を悪化させることなくインダクタンスの特性改善を実現できる。 </ T> By forming the gap, the tensile stress between the magnetic layer and the coil can be suppressed. As a result, it is possible to improve the inductance characteristics without deteriorating the DC resistance.
 この空隙は拘束層を利用して形成するため、前述した先行技術のように内部電極に樹脂粉末を配合する必要がない。その結果、電気特性を損なうことがない。また、溶解可能な消失材料層を形成する必要がないので、製造が容易であるとともに、コスト低減が可能となる。 Since this void is formed using a constraining layer, it is not necessary to blend resin powder into the internal electrode as in the prior art described above. As a result, the electrical characteristics are not impaired. In addition, since it is not necessary to form a dissolvable disappearing material layer, the manufacturing is easy and the cost can be reduced.
 また、本発明に係るコイル装置は、前記拘束層の形状は、積層方向から見て前記コイル導体の形状と同じもしくはコイル導体の形状より面積の大きい拘束層であることが好ましい。 In the coil device according to the present invention, it is preferable that the constraining layer has a constraining layer that has the same shape as the coil conductor or a larger area than the shape of the coil conductor when viewed from the stacking direction.
 この場合には、空隙の形成がより確実なものとなるため、直流抵抗を悪化させることなく、インダクタンスの特性のより大きな改善効果を得ることができる。 In this case, since the formation of the air gap is more reliable, it is possible to obtain a greater improvement effect of the inductance characteristics without deteriorating the direct current resistance.
 また、本発明に係るコイル装置は、前記積層体の一方主面に受動部品と能動部品の少なくとも一方がさらに内蔵されていることを特徴としている。 Further, the coil device according to the present invention is characterized in that at least one of a passive component and an active component is further built in one main surface of the laminate.
 この場合には、該積層体のモジュール化が可能となる。 In this case, the laminate can be modularized.
 また、本発明に係るコイル装置は、前記コイルの端部が接続された外部電極を有することを特徴としている。この場合には、直流抵抗を悪化させることなくインダクタンス特性が改善されたチップコイルの製造が可能となる。 Further, the coil device according to the present invention is characterized by having an external electrode to which an end of the coil is connected. In this case, it is possible to manufacture a chip coil with improved inductance characteristics without deteriorating the DC resistance.
 また、本発明に係るコイル装置は、前記コイルは複数のコイル導体と複数のビアホールとを有することが好ましい。この場合には、コイルの巻き数を変えることで、インダクタンス値を選択的に変更することができる。 In the coil device according to the present invention, it is preferable that the coil has a plurality of coil conductors and a plurality of via holes. In this case, the inductance value can be selectively changed by changing the number of turns of the coil.
 本発明によれば、空隙が形成されることで、磁性体層とコイルとの間の引張応力を抑制することができる。その結果、直流抵抗を悪化させることなくインダクタンスの特性改善を実現できる。 According to the present invention, the tensile stress between the magnetic layer and the coil can be suppressed by forming the air gap. As a result, it is possible to improve the inductance characteristics without deteriorating the DC resistance.
 この空隙は拘束層を利用して形成するため、電気特性を損なうことがないとともに、コスト低減が可能となる。 Since this void is formed using a constraining layer, the electrical characteristics are not impaired and the cost can be reduced.
本発明のコイル装置の断面図である。It is sectional drawing of the coil apparatus of this invention. 本発明のコイル装置のコイル及び拘束層部分の拡大断面図である。It is an expanded sectional view of the coil and constraining layer part of the coil apparatus of this invention. 本発明のコイル装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the coil apparatus of this invention. 図3に続く製造工程を示す断面図である。FIG. 4 is a cross-sectional view showing a manufacturing process subsequent to FIG. 3.
 以下に、本発明の一実施形態に係るコイル装置について、図1~図4を参照して説明する。 Hereinafter, a coil device according to an embodiment of the present invention will be described with reference to FIGS.
 本発明のコイル装置は、図1に示すように、直方体の積層体33と、積層体33の底面に形成された4つの外部電極6a~6dと、積層体33の上面に形成されたランド32a~32dと、ランド32a~32dを介して積層体33に接合されたIC34及びコンデンサ35を備えている。 As shown in FIG. 1, the coil device of the present invention includes a rectangular parallelepiped laminated body 33, four external electrodes 6a to 6d formed on the bottom surface of the laminated body 33, and lands 32a formed on the upper surface of the laminated body 33. To 32d, and an IC 34 and a capacitor 35 joined to the stacked body 33 through lands 32a to 32d.
 積層体33は、複数のセラミックシートが積層され構成されている。積層体33は、ビアホール2、ビアホール3、ビアホール4、ビアホール5、内部電極8a~8d、ビアホール10、コイル36、ビアホール27、内部電極29a~29d、ビアホール31a~31dを備えている。 The laminated body 33 is configured by laminating a plurality of ceramic sheets. The stacked body 33 includes a via hole 2, a via hole 3, a via hole 4, a via hole 5, internal electrodes 8a to 8d, a via hole 10, a coil 36, a via hole 27, internal electrodes 29a to 29d, and via holes 31a to 31d.
 内部電極8a~8dは、積層体33の底面に近い側に配置されている。内部電極8a~8dは、ビアホール2、ビアホール3、ビアホール4、ビアホール5によって、前記外部電極6a~6dと電気的に接続されている。 The internal electrodes 8a to 8d are arranged on the side close to the bottom surface of the multilayer body 33. The internal electrodes 8a to 8d are electrically connected to the external electrodes 6a to 6d through the via hole 2, the via hole 3, the via hole 4 and the via hole 5.
 コイル36は、コイル導体13、17、21、25とビアホール16、20、24によって螺旋状に構成されている。なお、コイル導体13、17、21、25の下に設けられている拘束層12、15、19、23(図2、図3参照)は、図1においては省略する。 The coil 36 is formed in a spiral shape by the coil conductors 13, 17, 21, 25 and the via holes 16, 20, 24. The constraining layers 12, 15, 19, and 23 (see FIGS. 2 and 3) provided under the coil conductors 13, 17, 21, and 25 are omitted in FIG.
 コイル36は、積層体33の中央部分で内部電極8a~8dと内部電極29a~29dとの間に配置されている。コイル36は、ビアホール10によって、前記内部電極8aと電気的に接続されている。 The coil 36 is disposed between the internal electrodes 8a to 8d and the internal electrodes 29a to 29d in the central portion of the multilayer body 33. The coil 36 is electrically connected to the internal electrode 8 a through the via hole 10.
 内部電極29a~29dは、前記コイル36より積層体33の上面に近い側に配置されている。内部電極29aは、ビアホール27によって、前記コイル36と電気的に接続されている。また、内部電極29a~29dは、ビアホール31a~31dによって、前記ランド32a~32dと電気的に接続されている。 The internal electrodes 29a to 29d are disposed closer to the upper surface of the multilayer body 33 than the coil 36. The internal electrode 29 a is electrically connected to the coil 36 through the via hole 27. The internal electrodes 29a to 29d are electrically connected to the lands 32a to 32d through via holes 31a to 31d.
 図2は、図1のコイル導体17とコイル導体17の下に配置された拘束層15(図1では省略)を拡大した図である。なお、この拡大図はビアホールのない部分を拡大した図である。コイル導体17と拘束層15の間には、空隙が形成されている。また、他のコイル導体13、21、25についても同様である。さらに、拘束層を設けて空隙ができる理由については後述する。 FIG. 2 is an enlarged view of the coil conductor 17 of FIG. 1 and the constraining layer 15 (not shown in FIG. 1) disposed under the coil conductor 17. This enlarged view is an enlarged view of a portion without a via hole. A gap is formed between the coil conductor 17 and the constraining layer 15. The same applies to the other coil conductors 13, 21, 25. Further, the reason why a void is formed by providing a constraining layer will be described later.
 図3、図4は、本実施形態に係るコイル装置の製造工程を示す断面図である。図3、図4を参照して、本コイル装置の製造方法について詳細に説明する。まず、Fe、Cu、Znを主成分とする材料からなる非磁性体シート1を用意する。この非磁性体シート1にビアホール用の穴を形成し、導電ペーストを充填して、ビアホール2a、3a、4a、5aを形成する。その後、非磁性体シート1及びビアホール2a、3a、4a、5aの上に、スクリーン印刷で外部電極6a~6dを形成する。外部電極6aはビアホール2a、外部電極6bはビアホール3a、外部電極6cはビアホール4a、外部電極6dはビアホール5aとそれぞれ接続するように形成する。なお、この非磁性体シート1は、後の工程で形成される他のシートと積層する際、外部電極の形成された面を底面として積層する。 3 and 4 are cross-sectional views showing the manufacturing process of the coil device according to the present embodiment. With reference to FIG. 3, FIG. 4, the manufacturing method of this coil apparatus is demonstrated in detail. First, a nonmagnetic sheet 1 made of a material mainly composed of Fe, Cu, and Zn is prepared. Via holes are formed in the nonmagnetic sheet 1 and filled with conductive paste to form via holes 2a, 3a, 4a and 5a. Thereafter, external electrodes 6a to 6d are formed on the nonmagnetic material sheet 1 and the via holes 2a, 3a, 4a, and 5a by screen printing. The external electrode 6a is formed to be connected to the via hole 2a, the external electrode 6b is connected to the via hole 3a, the external electrode 6c is connected to the via hole 4a, and the external electrode 6d is connected to the via hole 5a. In addition, when this non-magnetic material sheet 1 is laminated | stacked with the other sheet | seat formed at a next process, it laminates | stacks by making the surface in which the external electrode was formed into a bottom face.
 次に、前記非磁性体シート1と同様に形成された非磁性体シート7を用意する。この非磁性体シート7は、ビアホール2b、3b、4b、5bと所定のパターンで印刷された内部電極8a~8dを備えている。また、所定のビアホール10aが形成された非磁性体シート9も用意する。(図3(c))。 Next, a nonmagnetic sheet 7 formed in the same manner as the nonmagnetic sheet 1 is prepared. The nonmagnetic sheet 7 includes via holes 2b, 3b, 4b, and 5b and internal electrodes 8a to 8d printed in a predetermined pattern. In addition, a nonmagnetic sheet 9 having a predetermined via hole 10a is also prepared. (FIG. 3C).
 次に、Fe、Ni、Znを主成分とするフェライト材料からなる磁性体シート11を用意する。この磁性体シート11の上にスクリーン印刷でアルミナを主成分とする材料からなる拘束層12を形成する。この拘束層12は、積層方向から見て後述のコイル導体13の形状と同じか、もしくはコイル導体13より大きな面積であってもよい。このように構成すると、空隙の形成がより確実なものとなる。また、拘束層12の厚みは磁性体シート11の厚みの半分以下であることが望ましい。このように構成すると、その直下にある磁性体シートの焼結密度をほとんど変えることはない。次に、磁性体シート11及び拘束層12にビアホール用の穴を形成する。その後、導電ペーストを充填して、ビアホール10bを形成する。次に、拘束層12の上にスクリーン印刷でAg、Ag-Pd等からなるコイル導体13を形成する。このコイル導体13は、拘束層12の面積より小さいことが望ましい。 Next, a magnetic sheet 11 made of a ferrite material mainly composed of Fe, Ni, and Zn is prepared. A constraining layer 12 made of a material mainly composed of alumina is formed on the magnetic sheet 11 by screen printing. The constraining layer 12 may have the same shape as that of a coil conductor 13 to be described later or a larger area than the coil conductor 13 when viewed from the stacking direction. If comprised in this way, formation of a space | gap will become more reliable. In addition, the thickness of the constraining layer 12 is desirably less than or equal to half the thickness of the magnetic material sheet 11. If comprised in this way, the sintering density of the magnetic material sheet immediately under it will hardly change. Next, via holes are formed in the magnetic sheet 11 and the constraining layer 12. Thereafter, the via paste 10b is formed by filling the conductive paste. Next, the coil conductor 13 made of Ag, Ag—Pd, or the like is formed on the constraining layer 12 by screen printing. The coil conductor 13 is preferably smaller than the area of the constraining layer 12.
 次に、前記磁性体シート11と同様に形成された、磁性体シート14、18、22を用意する。磁性体シート14は、拘束層15、ビアホール16、コイル導体17を備えている。磁性体シート18は、拘束層19、ビアホール20、コイル導体21を備えている。磁性体シート22は、拘束層23、ビアホール24、コイル導体25を備えている。(図3(b))。 Next, magnetic sheets 14, 18, and 22 formed in the same manner as the magnetic sheet 11 are prepared. The magnetic sheet 14 includes a constraining layer 15, a via hole 16, and a coil conductor 17. The magnetic sheet 18 includes a constraining layer 19, a via hole 20, and a coil conductor 21. The magnetic sheet 22 includes a constraining layer 23, a via hole 24, and a coil conductor 25. (FIG. 3B).
 次に、Fe、Cu、Znを主成分とする材料からなる非磁性体シート26を用意する。この非磁性体シート26にビアホール用の穴を形成する。その後、導電ペーストを充填して、ビアホール27aを形成する。 Next, a nonmagnetic sheet 26 made of a material mainly composed of Fe, Cu, and Zn is prepared. A hole for a via hole is formed in the nonmagnetic sheet 26. Thereafter, the via paste 27a is formed by filling the conductive paste.
 次に非磁性体シート28を用意する。この非磁性体シート28にビアホール用の穴を形成し、導電ペーストを充填して、ビアホール27bを形成する。その後、ビアホール27b及び非磁性体シート28の上にスクリーン印刷でAg、Ag-Pd等からなる内部電極29a~29dを形成する。内部電極29aは、ビアホール27bと接続するように形成する。 Next, a nonmagnetic sheet 28 is prepared. A hole for a via hole is formed in the nonmagnetic sheet 28 and filled with a conductive paste to form a via hole 27b. Thereafter, internal electrodes 29a to 29d made of Ag, Ag—Pd, or the like are formed on the via hole 27b and the nonmagnetic material sheet 28 by screen printing. The internal electrode 29a is formed so as to be connected to the via hole 27b.
 次に、非磁性体シート30を用意する。この非磁性体シート30にビアホール用の穴を形成し、導電ペーストを充填して、ビアホール31a~31dを形成する。その後、スクリーン印刷でAg、Ag-Pd等からなるランド32a~32dを形成する。ランド32aはビアホール31aと、ランド32bはビアホール31bと、ランド32cはビアホール31cと、ランド32dはビアホール31dとそれぞれ接続するように形成する。 Next, a nonmagnetic sheet 30 is prepared. Via holes are formed in the nonmagnetic sheet 30 and filled with a conductive paste to form via holes 31a to 31d. Thereafter, lands 32a to 32d made of Ag, Ag-Pd, or the like are formed by screen printing. The land 32a is formed so as to be connected to the via hole 31a, the land 32b is connected to the via hole 31b, the land 32c is connected to the via hole 31c, and the land 32d is connected to the via hole 31d.
 次に、前記非磁性体シート1、7、9、磁性体シート11、14、18、22、非磁性体シート26、28、30を積層し圧着する。(図4)。その後、焼成し、積層体33が形成される。 Next, the non-magnetic sheets 1, 7 and 9, the magnetic sheets 11, 14, 18 and 22, and the non-magnetic sheets 26, 28 and 30 are laminated and pressure-bonded. (FIG. 4). Then, it bakes and the laminated body 33 is formed.
 次に、本実施形態における空隙が形成される理由について説明する。Ag、Ag-Pd等からなるコイル導体は、300~400℃で焼結収縮が始まり、700~800℃で焼結収縮が終了する。コイル導体下には拘束層が設けられているが、コイル導体と拘束層には物理的な接触以外に密着力は発生しないため、拘束層はコイル導体の焼結収縮には影響しない。一方、磁性体シートはフェライト材料を主成分としているため、500℃以上で焼結収縮を開始し、900~1100℃で焼結収縮を終了する。磁性体シートが焼結収縮する温度域ではコイル導体の焼結収縮はほぼ終了しているか、もしくはコイル導体の焼結収縮のピークは過ぎている状態である。また、コイル導体下に設けられた拘束層は、アルミナを主成分としているため、磁性体シートが焼結終了する温度である1100℃よりも高温で焼結収縮する。つまり、拘束層は、コイル導体の焼結時及び磁性体シートの焼結時には焼結収縮しない。したがって、フェライトシートの収縮を拘束する働きをもつ。 Next, the reason why voids are formed in this embodiment will be described. A coil conductor made of Ag, Ag—Pd, or the like starts sintering shrinkage at 300 to 400 ° C., and finishes sintering shrinkage at 700 to 800 ° C. Although a constraining layer is provided under the coil conductor, since no adhesive force is generated between the coil conductor and the constraining layer other than physical contact, the constraining layer does not affect the sintering shrinkage of the coil conductor. On the other hand, since the magnetic sheet contains a ferrite material as a main component, the sintering shrinkage starts at 500 ° C. or more, and the sintering shrinkage ends at 900 to 1100 ° C. In the temperature range where the magnetic sheet is sintered and contracted, the sintering contraction of the coil conductor is almost finished, or the peak of the sintering contraction of the coil conductor has passed. In addition, since the constraining layer provided under the coil conductor is mainly composed of alumina, it sinters and shrinks at a temperature higher than 1100 ° C., which is the temperature at which the magnetic material sheet is sintered. That is, the constraining layer does not shrink during sintering of the coil conductor and when the magnetic sheet is sintered. Therefore, it has a function of restraining the shrinkage of the ferrite sheet.
 磁性体シートの焼結収縮時、コイル導体下に設けられた拘束層と接している磁性体シートは、拘束層の影響により焼結収縮しない。一方で、コイル導体上の磁性体シートは焼結収縮する。つまり、コイル導体は上側に圧縮応力、下側には引張応力が働くことになる。これにより、コイル導体は上側の磁性体シート側か下側の拘束層側、いずれか密着力の低い側で剥がれが発生し空隙ができる。空隙ができることにより、残留応力が解放されるため、直流抵抗を悪化させることなくインダクタンスを改善できる。
(実験例)
 次のような条件で、ほぼ八角形状のらせん状コイルを作成し、実施例1、実施例2、比較例1、比較例2のサンプルを用意した。なお、実施例1は拘束層をコイル導体下のみに形成したもの、実施例2はコイル導体下のシート全面に形成したもの、比較例1は拘束層なし、比較例2はコイル導体そのものに焼失材料を添加したものである。このサンプルについて、インダクタンスおよび直流抵抗を測定した結果を表1に示す。
When the magnetic sheet is sintered and contracted, the magnetic sheet in contact with the constraining layer provided under the coil conductor is not sintered and contracted due to the influence of the constraining layer. On the other hand, the magnetic sheet on the coil conductor is sintered and contracted. That is, the coil conductor is subjected to compressive stress on the upper side and tensile stress on the lower side. As a result, the coil conductor peels off on the upper magnetic sheet side or the lower constraining layer side, whichever has the lower adhesion force, and a gap is formed. Since the gap is formed, the residual stress is released, so that the inductance can be improved without deteriorating the direct current resistance.
(Experimental example)
A substantially octagonal helical coil was prepared under the following conditions, and samples of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 were prepared. In Example 1, the constraining layer was formed only under the coil conductor, Example 2 was formed on the entire sheet under the coil conductor, Comparative Example 1 was not constrained, and Comparative Example 2 was burned out on the coil conductor itself. The material is added. Table 1 shows the results of measuring the inductance and DC resistance of this sample.
 条件:コイル導体の幅=200μm、コイル導体の厚み=10μm、コイル巻き数=8巻き、コイル導体の全長=約30mm Conditions: Coil conductor width = 200 μm, coil conductor thickness = 10 μm, number of coil turns = 8, total length of coil conductor = about 30 mm
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表1から明らかなように、実施例1、2については比較例1、2に対し、直流抵抗が悪化することなくインダクタンスが高くなっている。 As is apparent from Table 1, the inductances of Examples 1 and 2 are higher than those of Comparative Examples 1 and 2 without deteriorating the DC resistance.
 1、7、9:非磁性体シート
 2a、2b:ビアホール
 3a、3b:ビアホール
 4a、4b:ビアホール
 5a、5b:ビアホール
 6a、6b、6c、6d:外部電極
 8a、8b、8c、8d:内部電極
 10a、10b:ビアホール
 11、14、18、22:磁性体シート
 12、15、19、23:拘束層
 13、17、21、25:コイル導体
 16、20、24:ビアホール
 26、28、30:非磁性体シート
 27a、27b:ビアホール
 29a、29b、29c、29d:内部電極
 31a、31b、31c、31d:ビアホール
 32a、32b、32c、32d:ランド
 33:積層体
 34:IC
 35:コンデンサ
 36:コイル
1, 7, 9: Non-magnetic sheet 2a, 2b: Via hole 3a, 3b: Via hole 4a, 4b: Via hole 5a, 5b: Via hole 6a, 6b, 6c, 6d: External electrode 8a, 8b, 8c, 8d: Internal electrode 10a, 10b: Via hole 11, 14, 18, 22: Magnetic sheet 12, 15, 19, 23: Restraint layer 13, 17, 21, 25: Coil conductor 16, 20, 24: Via hole 26, 28, 30: Non Magnetic sheet 27a, 27b: Via hole 29a, 29b, 29c, 29d: Internal electrode 31a, 31b, 31c, 31d: Via hole 32a, 32b, 32c, 32d: Land 33: Laminate 34: IC
35: Capacitor 36: Coil

Claims (5)

  1.  複数の磁性体層が積層されてなる積層体と、この積層体の内部に配置されたコイル導体を含むコイルとを備えたコイル装置であって、
     前記磁性体層と前記コイル導体の間に拘束層を備えるとともに、前記積層体の前記コイル導体上には空隙が形成されていることを特徴とするコイル装置。
    A coil device comprising: a laminate formed by laminating a plurality of magnetic layers; and a coil including a coil conductor disposed inside the laminate,
    A coil device comprising a constraining layer between the magnetic layer and the coil conductor, and a gap formed on the coil conductor of the laminate.
  2.  前記拘束層の形状は、積層方向から見て前記コイル導体の形状と同じもしくはコイル導体の形状より面積の大きい拘束層であることを特徴とする請求項1に記載のコイル装置。 The coil device according to claim 1, wherein the shape of the constraining layer is a constraining layer having the same area as the shape of the coil conductor or a larger area than the shape of the coil conductor when viewed from the stacking direction.
  3.  前記積層体の一方主面に受動部品と能動部品の少なくとも一方がさらに内蔵された請求項1又は請求項2に記載のコイル装置。 The coil device according to claim 1 or 2, wherein at least one of a passive component and an active component is further built in one main surface of the laminate.
  4.  前記コイルの端部が接続された外部電極を有することを特徴とする請求項1から請求項3のうちの1項に記載のコイル装置。 The coil device according to any one of claims 1 to 3, further comprising an external electrode to which an end of the coil is connected.
  5.  前記コイルは複数のコイル導体と、
     複数のビアホールと、
     を有することを特徴とする請求項1から請求項4のうちの1項に記載のコイル装置。
    The coil includes a plurality of coil conductors,
    Multiple via holes,
    5. The coil device according to claim 1, comprising:
PCT/JP2011/053436 2010-04-28 2011-02-18 Coil device WO2011135899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010103421 2010-04-28
JP2010-103421 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011135899A1 true WO2011135899A1 (en) 2011-11-03

Family

ID=44861220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053436 WO2011135899A1 (en) 2010-04-28 2011-02-18 Coil device

Country Status (1)

Country Link
WO (1) WO2011135899A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191904A (en) * 2014-03-27 2015-11-02 Tdk株式会社 laminated coil component
JP2016225663A (en) * 2016-10-05 2016-12-28 Tdk株式会社 Manufacturing method of multilayer coil component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696953A (en) * 1991-01-22 1994-04-08 Taiyo Yuden Co Ltd Laminated inductor element and its manufacture
WO2008004633A1 (en) * 2006-07-05 2008-01-10 Hitachi Metals, Ltd. Laminated component
JP2008037675A (en) * 2006-08-02 2008-02-21 Murata Mfg Co Ltd Low temperature-sinterable ceramic composition, ceramic substrate, method for manufacturing the same, and electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696953A (en) * 1991-01-22 1994-04-08 Taiyo Yuden Co Ltd Laminated inductor element and its manufacture
WO2008004633A1 (en) * 2006-07-05 2008-01-10 Hitachi Metals, Ltd. Laminated component
JP2008037675A (en) * 2006-08-02 2008-02-21 Murata Mfg Co Ltd Low temperature-sinterable ceramic composition, ceramic substrate, method for manufacturing the same, and electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191904A (en) * 2014-03-27 2015-11-02 Tdk株式会社 laminated coil component
JP2016225663A (en) * 2016-10-05 2016-12-28 Tdk株式会社 Manufacturing method of multilayer coil component

Similar Documents

Publication Publication Date Title
CN107017081B (en) Laminated inductor
KR101862401B1 (en) Layered Inductor and Manufacturing Method fo the Same
KR102105389B1 (en) Multilayered electronic component
KR101994722B1 (en) Multilayered electronic component
WO2009087928A1 (en) Open magnetic circuit stacked coil component and process for producing the open magnetic circuit stacked coil component
JP6058584B2 (en) Multilayer electronic component and manufacturing method thereof
JP5621573B2 (en) Coil built-in board
US20050126682A1 (en) Monolithic ceramic substrate and method for making the same
JP6328370B2 (en) Multilayer chip electronic components
WO2007145189A1 (en) Laminated ceramic electronic component
US20140283375A1 (en) Multilayered inductor and method of manufacturing the same
JP5682548B2 (en) Multilayer inductor element and manufacturing method thereof
CN107527724B (en) Coil component and method for manufacturing same
KR20130096026A (en) Multilayer type inductor and method of manufacturing the same
CN111009394A (en) Laminated coil array
KR102217286B1 (en) Hybrid inductor and manufacturing method thereof
KR20150080797A (en) Ceramic electronic component
WO2012144103A1 (en) Laminated inductor element and method for manufacturing same
JP6091838B2 (en) Multilayer chip electronic components
CN108630406B (en) Coil electronic component and method of manufacturing the same
WO2011135899A1 (en) Coil device
CN111834077B (en) Coil electronic component
KR20150042169A (en) Multilayer type inductor and method of manufacturing the same
JP5527048B2 (en) Ceramic multilayer substrate
JP4659463B2 (en) Multilayer inductor and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP