WO2011134148A1 - Matériau luminescent à base de silicate et son procédé de production - Google Patents

Matériau luminescent à base de silicate et son procédé de production Download PDF

Info

Publication number
WO2011134148A1
WO2011134148A1 PCT/CN2010/072286 CN2010072286W WO2011134148A1 WO 2011134148 A1 WO2011134148 A1 WO 2011134148A1 CN 2010072286 W CN2010072286 W CN 2010072286W WO 2011134148 A1 WO2011134148 A1 WO 2011134148A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent material
silicate luminescent
mgsi
preparing
mol
Prior art date
Application number
PCT/CN2010/072286
Other languages
English (en)
Chinese (zh)
Inventor
周明杰
廖秋荣
马文波
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to US13/638,668 priority Critical patent/US9045690B2/en
Priority to EP10850481.2A priority patent/EP2565253B1/fr
Priority to PCT/CN2010/072286 priority patent/WO2011134148A1/fr
Priority to JP2013505301A priority patent/JP2013525525A/ja
Priority to CN2010800642287A priority patent/CN102770507A/zh
Publication of WO2011134148A1 publication Critical patent/WO2011134148A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • C09K11/595Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77742Silicates

Definitions

  • the invention belongs to the technical field of luminescent materials, and in particular relates to a silicate luminescent material and a preparation method thereof.
  • luminescent materials have always been one of the hotspots for people to compete in research and development.
  • organic electroluminescent materials for example, organic electroluminescent materials, photoluminescent materials, cathode ray-excited luminescent materials, ultraviolet-excited luminescent materials. These different luminescent materials can be applied to respective illumination and display devices, etc., respectively.
  • a plasma flat panel display is a novel direct view image display device following a cathode ray tube and a liquid crystal display.
  • Plasma flat panel display has the advantages of active illumination, high brightness, large viewing angle, high contrast, good color reproduction, rich grayscale and fast response. It has become an important large-screen high-definition flat panel display technology.
  • the principle of illuminating the plasma display panel is that it is discharged by an inert gas such as Xe or Xe-He, and becomes a plasma state, and emits vacuum ultraviolet rays of 147 nm and 172 nm.
  • the ultraviolet ray excites the phosphor coated on the inner wall to emit red, green, and blue.
  • the primary color light can be color-displayed by spatial color mixing and circuit control.
  • Zn 2 SiO 4 :Mn 2+ is the most commonly used green phosphor in plasma flat panel displays. Under vacuum ultraviolet excitation, Zn 2 SiO 4 :Mn 2+ has excellent brightness and excellent resistance to degradation. Very bright saturation. However, the afterglow time of Zn 2 SiO 4 :Mn 2+ is too long, which is disadvantageous for a picture that is quickly displayed. Further, since the dielectric constant of Zn 2 SiO 4 :Mn 2+ is higher than that of the red and blue phosphors for a plasma display panel, a higher induced voltage is required when driving a display device such as a plasma display panel.
  • This new green phosphor is mainly a Mn 2+ -activated aluminate such as BaMgAl 10 O 17 :Mn 2+ phosphor, Ba 0.9 Mg 0.6 Mn 0.16 ⁇ 8Al 2 O 3 green phosphor, and the like. These new green phosphors have a lower dielectric constant. However, due to the use of Mn2+ as an activator, such green phosphors have a longer afterglow time, and such phosphors also have lower luminance.
  • a silicate luminescent material having a short afterglow and a high luminance is provided.
  • a silicate luminescent material having a chemical formula of Re 4-x Tb x MgSi 3 O 13 , wherein Re is at least one element selected from the group consisting of Y, Gd, La, Lu, and Sc, and 0.05 ⁇ x ⁇ 1 .
  • the source compound of each element is selected according to a molar ratio in the chemical formula Re 4-x Tb x MgSi 3 O 13 , wherein Re is at least one element selected from the group consisting of Y, Gd, La, Lu, and Sc, 0.05 ⁇ X ⁇ 1;
  • the calcined product is calcined in a reducing atmosphere, cooled and ground to obtain the silicate luminescent material.
  • the silicate luminescent material has a short afterglow time of about 2.13 ms, which is much lower than commercial Zn 2 SiO 4 :Mn 2+ ;
  • the silicate luminescent material is based on Re 4 MgSi 3 O 13 and is doped with Tb ions.
  • the matrix has strong absorption of vacuum ultraviolet light and is activated by Tb ions to make the luminescent material in vacuum ultraviolet Strong green light emission under light excitation;
  • silicate luminescent material is very stable, and its performance is basically unchanged after being treated by blisters, high-temperature heating, and the like;
  • the preparation method of the silicate luminescent material can be obtained mainly by pre-baking and roasting treatment, and the process is simple, easy to realize industrialization, and has broad production and application prospects.
  • FIG. 1 is a flow chart of a method for preparing a silicate luminescent material according to an embodiment of the present invention
  • Figure 2 is an emission spectrum of the silicate luminescent material of Example 6 of the present invention, the excitation wavelength is 172 nm;
  • Figure 3 is an excitation spectrum of the silicate luminescent material of Example 6 of the present invention, the monitoring wavelength is 543 nm;
  • Fig. 4 is a graph showing the fluorescence decay curve of the silicate luminescent material of Example 6 of the present invention.
  • the silicate luminescent material of the embodiment of the invention has a chemical formula of Re 4-x Tb x MgSi 3 O 13 , wherein Re is at least one element selected from the group consisting of Y, Gd, La, Lu, and Sc, 0.05 ⁇ x ⁇ 1.
  • Re is two or more elements selected from the group consisting of Y, Gd, La, Lu, and Sc, for example, a combination of Y and Gd, and a combination of four elements of Y, Gd, La, and Lu, and by the combination of these different elements, With higher optical properties of different elements, higher luminosity can be obtained.
  • x is from 0.1 to 0.5, and a suitable amount of Tb ion doping can be obtained.
  • the silicate luminescent material In the above silicate luminescent material, Re 4 MgSi 3 O 13 is used as a matrix, and Tb ions are doped, the matrix has strong absorption to vacuum ultraviolet light, and the activation of Tb ions makes the luminescent material in vacuum ultraviolet It has a strong green light emission under light excitation, and thus has a higher light-emitting brightness.
  • the silicate luminescent material absorbs energy through the matrix under the excitation of vacuum ultraviolet light, and is transmitted to the luminescent center Tb ions, and the green light emission is generated by the Tb ions.
  • the silicate luminescent material has strong absorption at 147 nm and 172 nm, thereby improving its luminescence intensity, and is suitably applied to devices such as plasma display panels.
  • the silicate luminescent material has a short afterglow time of about 2.13 ms, which is much lower than commercial Zn 2 SiO 4 :Mn 2+ ;
  • the silicate luminescent material is based on Re 4 MgSi 3 O 13 and is doped with Tb ions.
  • the matrix has strong absorption of vacuum ultraviolet light and is activated by Tb ions to make the luminescent material in vacuum ultraviolet Strong green light emission under light excitation;
  • silicate luminescent material is very stable, and its performance is basically unchanged after being treated by blisters, high-temperature heating, and the like.
  • a flow chart of a method for preparing a silicate luminescent material according to an embodiment of the present invention includes the following steps:
  • the source compound of Re is preferably at least one of an oxide, a carbonate, an oxalate, and a nitrate
  • the source compound of Tb is preferably an oxide or a carbonic acid thereof.
  • the source compound of magnesium is at least one of magnesium oxide, magnesium carbonate, magnesium oxalate, and magnesium nitrate
  • the source compound of silicon is silica.
  • x is preferably from 0.1 to 0.5.
  • Step S02 includes the steps of: adding boric acid to a mixture of source compounds of the above elements, and grinding and mixing them, and the amount of boric acid added is Re 4-x Tb x MgSi 3 O 13 molar amount (or can be calculated as Mg ion) The molar amount is 0.5 to 5%.
  • the specific procedure of mixing is as follows: After adding boric acid, the mixture is sufficiently ground in a mortar, uniformly mixed, and then subjected to step S03.
  • Step S03 specifically includes a process of pre-baking a mixture of source compounds of each element in an air atmosphere at a temperature of 1000 to 1400 ° C for 1 to 8 hours.
  • the prebaking temperature is preferably from 1100 to 1300 ° C, and the prebaking time is preferably from 2 to 6 hours.
  • Step S04 specifically includes the following steps: grinding the product of the calcination treatment, and calcining at a temperature of 1100 to 1500 ° C for 1 to 8 hours under a reducing atmosphere.
  • the temperature at the time of baking is preferably 1250 to 1400
  • the calcination time is preferably 2 to 6 hours.
  • the calcination temperature is higher than the prebaking temperature, for example, about 100 to 350 ° C, and the total time of prebaking and calcination is preferably 5 to 12 hours.
  • the reducing atmosphere may be an atmosphere formed by a nitrogen gas and a hydrogen mixed gas, a carbon monoxide gas or hydrogen gas having a volume ratio of 95:5.
  • the above prebaking treatment may also be referred to as heat treatment, and the calcination treatment may also be referred to as sintering treatment.
  • the calcined product may be further ground into a powder and sieved to form a phosphor of a certain particle size.
  • the silicate luminescent material can be obtained by the calcination and the calcination treatment, and the whole preparation process is simple and the cost is low.
  • compositions of the silicate luminescent materials and methods for their preparation, as well as their properties, etc. are exemplified below by way of various examples.
  • Example 1 Green phosphor composed of Y 3.95 Tb 0.05 MgSi 3 O 13
  • Example 4 Green phosphor composed of Gd 3.2 Tb 0.8 MgSi 3 O 13
  • Example 7 Green phosphor composed of La 1.5 Sc 0.5 Lu 1.5 Tb 0.5 MgSi 3 O 13
  • Example 8 Green phosphor composed of Y 3 Lu 0.3 Tb 0.7 MgSi 3 O 13
  • the mixture was sintered at 1500 ° C for 2 hours under a 95% N 2 + 5% H 2 weak reducing atmosphere, cooled to room temperature, and after grinding, a white product was obtained, which was a YLaGdLu 0.5 Tb 0.5 MgSi 3 O 13 green phosphor.
  • Example 10 Green phosphor composed of Y 3.6 Gd 0.1 Sc 0.1 Tb 0.2 MgSi 3 O 13
  • the Y 3 Gd 0.5 Tb 0.5 MgSi 3 O 13 luminescent material of Example 6 was exemplified below, and its excitation spectrum, emission spectrum, and fluorescence decay were tested to illustrate the luminescent properties of the luminescent material of the present invention.
  • the emission spectrum of the Y 3 Gd 0.5 Tb 0.5 MgSi 3 O 13 luminescent material obtained in the above Example 6 is shown.
  • the luminescent material prepared in Example 6 is emitted at 172 nm excitation, which has a strong absorption peak at around 543 nm, and the integrated intensity of the emission spectrum is high, indicating that the material has strong luminescence properties, and has a higher luminescence property. High brightness.
  • the excitation spectrum of the Y 3 Gd 0.5 Tb 0.5 MgSi 3 O 13 luminescent material obtained in the above Example 6 is shown.
  • the Y 3 Gd 0.5 Tb 0.5 MgSi 3 O 13 luminescent material has a strong absorption of ultraviolet light of about 172 nm, indicating that it has good absorption in the vacuum ultraviolet band.
  • the fluorescence decay curve of the Y 3 Gd 0.5 Tb 0.5 MgSi 3 O 13 luminescent material obtained in the above Example 6 is shown.
  • the figure shows that the afterglow time of the material is 2.13ms, which is much lower than the afterglow time of the current commercial green powder.
  • the afterglow time of the Zn 2 SiO 4 :Mn 2+ material is 7.1ms, indicating that it has a short afterglow. Low fluorescence lifetime.
  • the afterglow time of the silicate luminescent material is short, about 2.13 ms, which is much lower than the commercial Zn 2 SiO 4 :Mn 2+ and is excited by vacuum ultraviolet light. There is a strong green light emission.
  • the silicate luminescent material can be obtained by the pre-baking and roasting treatment, thereby making the preparation process simple, the cost low, and having a broad production and application prospect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

Matériau luminescent à base de silicate et son procédé de production. La formule chimique du matériau luminescent à base de silicate selon l'invention est Re4-xTbxMg3SiO13, Re étant au moins un élément choisi dans le groupe constitué par Y, Gd, La, Lu et Sc, et 0,05≤x≤1. Ce matériau luminescent à base de silicate a une incandescence résiduelle courte de 2,13 ms, et il peut émettre une forte lumière verte dans des conditions d'excitation ultraviolette sous vide. De plus, il possède des propriétés physiques et chimiques stables. Le procédé de production utilisé pour produire le matériau luminescent à base de silicate selon l'invention est simple et rentable.
PCT/CN2010/072286 2010-04-28 2010-04-28 Matériau luminescent à base de silicate et son procédé de production WO2011134148A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/638,668 US9045690B2 (en) 2010-04-28 2010-04-28 Silicate luminescent material and production method thereof
EP10850481.2A EP2565253B1 (fr) 2010-04-28 2010-04-28 Matériau luminescent à base de silicate et son procédé de production
PCT/CN2010/072286 WO2011134148A1 (fr) 2010-04-28 2010-04-28 Matériau luminescent à base de silicate et son procédé de production
JP2013505301A JP2013525525A (ja) 2010-04-28 2010-04-28 ケイ酸塩発光材料及びその製造方法
CN2010800642287A CN102770507A (zh) 2010-04-28 2010-04-28 硅酸盐发光材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/072286 WO2011134148A1 (fr) 2010-04-28 2010-04-28 Matériau luminescent à base de silicate et son procédé de production

Publications (1)

Publication Number Publication Date
WO2011134148A1 true WO2011134148A1 (fr) 2011-11-03

Family

ID=44860761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072286 WO2011134148A1 (fr) 2010-04-28 2010-04-28 Matériau luminescent à base de silicate et son procédé de production

Country Status (5)

Country Link
US (1) US9045690B2 (fr)
EP (1) EP2565253B1 (fr)
JP (1) JP2013525525A (fr)
CN (1) CN102770507A (fr)
WO (1) WO2011134148A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116875308A (zh) * 2023-07-17 2023-10-13 中国科学院长春应用化学研究所 发光材料及其制备方法、led光源
CN116891741A (zh) * 2023-07-12 2023-10-17 陕西学前师范学院 一种宽带黄绿色荧光粉及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112390647B (zh) * 2019-08-12 2023-05-05 中国科学院宁波材料技术与工程研究所 一种紫外激发实现光谱拓展的核壳荧光陶瓷粉体及其制备方法
CN112426367A (zh) * 2020-12-11 2021-03-02 西安邮电大学 用于齿科的可标记发光修复材料及制备方法、粘结剂及制备方法和修复结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951915A (en) * 1996-01-22 1999-09-14 Kasei Optonix, Ltd. Phosphorescent phosphor
CN1470597A (zh) * 2003-07-07 2004-01-28 中国科学院长春应用化学研究所 硅酸盐发光薄膜的制备方法
CN101077973A (zh) * 2006-05-26 2007-11-28 大连路明发光科技股份有限公司 硅酸盐荧光材料及其制造方法以及使用其的发光装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713169B2 (ja) 2005-01-25 2011-06-29 国立大学法人鳥取大学 蛍光体
US20090315448A1 (en) * 2005-04-07 2009-12-24 Sumitomo Chemical Company, Limited Phosphor, phosphor paste and light emitting device
TWI378138B (en) 2007-04-02 2012-12-01 Univ Nat Chiao Tung Green-emitting phosphors and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951915A (en) * 1996-01-22 1999-09-14 Kasei Optonix, Ltd. Phosphorescent phosphor
CN1470597A (zh) * 2003-07-07 2004-01-28 中国科学院长春应用化学研究所 硅酸盐发光薄膜的制备方法
CN101077973A (zh) * 2006-05-26 2007-11-28 大连路明发光科技股份有限公司 硅酸盐荧光材料及其制造方法以及使用其的发光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2565253A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116891741A (zh) * 2023-07-12 2023-10-17 陕西学前师范学院 一种宽带黄绿色荧光粉及其制备方法
CN116891741B (zh) * 2023-07-12 2024-04-19 陕西学前师范学院 一种宽带黄绿色荧光粉及其制备方法
CN116875308A (zh) * 2023-07-17 2023-10-13 中国科学院长春应用化学研究所 发光材料及其制备方法、led光源

Also Published As

Publication number Publication date
CN102770507A (zh) 2012-11-07
EP2565253A1 (fr) 2013-03-06
EP2565253B1 (fr) 2016-08-24
US9045690B2 (en) 2015-06-02
EP2565253A4 (fr) 2013-03-06
JP2013525525A (ja) 2013-06-20
US20130020534A1 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
WO2012134043A2 (fr) Luminophore à base d'oxynitrure
US20130140491A1 (en) Green to Yellow Light-Emitting Aluminate Phosphors
WO2011134148A1 (fr) Matériau luminescent à base de silicate et son procédé de production
WO2012000179A1 (fr) Matériaux luminescents de particules métalliques contenant du silicate de zinc-manganèse et procédés de préparation de ceux-ci
WO2013056408A1 (fr) Matériau à base de nitrure électroluminescent rouge et partie électroluminescente et dispositif électroluminescent le comprenant
CN109370580B (zh) 一种铋离子激活的钛铝酸盐荧光粉及其制备方法与应用
CN101486910B (zh) 一种白光led用绿色荧光粉及其制备方法
CN101831293B (zh) 一种高亮度高稳定性蓝色铝酸盐荧光粉的制备方法
WO2011103721A1 (fr) Matière luminescente verte à base de borate de gadolinium dopé au terbium et procédé de préparation associé
WO2011066685A1 (fr) Materiau lumineux a base de borate et son procede de preparation
WO2012009844A1 (fr) Matériau luminescent de silicate et son procédé de fabrication
WO2014134854A1 (fr) Verre luminescent en silicate dopé aux terres rares et procédé de préparation de celui-ci
US9416308B2 (en) Core-shell structured silicate luminescent material and preparation method therefor
CN102010710B (zh) 一种蓝色荧光粉及其制备方法
WO2012009845A1 (fr) Substance luminescente et procédé de préparation correspondant
WO2011130926A1 (fr) Matériau luminescent en gallate de lanthane doté par des ions de terre rare contenant des particules métalliques et son procédé de préparation
WO2020015422A1 (fr) Poudre fluorescente de nitrure pour l'émission de lumière à semi-conducteur et son procédé de préparation, et appareil électroluminescent
WO2010139117A1 (fr) Substance luminescente verte et leurs procédés de préparation
CN102381841B (zh) 一种黄绿色发光玻璃陶瓷材料及其制备方法
CN101831296B (zh) 一种真空紫外激发的绿色硅酸盐荧光粉的制备方法
WO2013058478A1 (fr) Luminophore vert à base d'oxyde et son procédé de fabrication et diode électroluminescente (led) blanche l'utilisant
WO2012022019A1 (fr) Poudre luminescente à couleur ajustable et procédé de préparation de celle-ci
CN109294583B (zh) 一种白光led用铈离子掺杂钛酸钆钡蓝光荧光粉及其制备方法
KR100589405B1 (ko) 진공자외선을 여기원으로 하는 발광소자용 녹색형광체와그 제조방법 및 이를 포함하는 발광소자
WO2013191358A1 (fr) Luminophore et dispositif émettant de la lumière le comprenant

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064228.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850481

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13638668

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013505301

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010850481

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010850481

Country of ref document: EP