WO2011132632A1 - Actuator unit - Google Patents

Actuator unit Download PDF

Info

Publication number
WO2011132632A1
WO2011132632A1 PCT/JP2011/059510 JP2011059510W WO2011132632A1 WO 2011132632 A1 WO2011132632 A1 WO 2011132632A1 JP 2011059510 W JP2011059510 W JP 2011059510W WO 2011132632 A1 WO2011132632 A1 WO 2011132632A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
actuators
rod
actuator unit
axial direction
Prior art date
Application number
PCT/JP2011/059510
Other languages
French (fr)
Japanese (ja)
Inventor
修平 山中
潤 大塚
哲也 坂上
光輝 難波
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Publication of WO2011132632A1 publication Critical patent/WO2011132632A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2207/00Specific aspects not provided for in the other groups of this subclass relating to arrangements for handling mechanical energy
    • H02K2207/03Tubular motors, i.e. rotary motors mounted inside a tube, e.g. for blinds

Definitions

  • the present invention relates to an actuator unit including a plurality of actuators.
  • the component transfer apparatus has a multi-axis linear motor (actuator unit) configured by integrally combining a plurality of single-axis linear motors (actuators).
  • the multi-axis linear motor is supported by the substrate transport mechanism and moves horizontally on the base.
  • each single-axis linear motor of the multi-axis linear motor reciprocates a movable part (rod) in the vertical direction to handle electronic components.
  • the conventional actuator unit has the following problems.
  • the multi-axis linear motor of the component transfer device described above has a configuration in which a plurality of single-axis linear motors are integrally combined, and the inter-axis pitch between these single-axis linear motors is fixed. Therefore, it is necessary to sequentially move the multi-axis linear motor in accordance with the respective work positions at the time of electronic component pick-up and release at each single-axis linear motor. That is, after the operation of one single-axis linear motor is completed, it is necessary to perform the operation of the other single-axis linear motor. Therefore, efficient work cannot be performed. Further, this type of component transfer apparatus is required to be further downsized.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide an actuator unit having a compact configuration that can perform work efficiently.
  • an actuator unit includes a plurality of actuators each having a rod and a support body that supports the rod so as to be relatively movable along the axial direction thereof.
  • a plurality of first actuators are arranged close to each other in parallel to form a first layer
  • a plurality of second actuators are arranged close to each other in parallel to form a second layer.
  • the first and second layers are formed so as to be stacked in the thickness direction orthogonal to the axial direction of the first actuator and the axial direction of the second actuator.
  • the axial direction of the first actuator and the axial direction of the second actuator extend so as to intersect each other when viewed from the thickness direction, and the rod of the first actuator and the support body of the second actuator, Are connected one to one.
  • the plurality of first actuators are arranged in parallel close to each other in the first layer, and the plurality of second actuators are arranged in parallel close to each other in the second layer.
  • the axial directions of the second actuators extend in different directions. That is, when viewed from the thickness direction in which the first and second layers are stacked, the first actuator and the second actuator overlap each other and are arranged in a lattice shape, for example.
  • the rod of the first actuator and the support of the second actuator are connected one-to-one. Therefore, when the rod of each first actuator moves (extends or contracts), each second actuator moves independently along the axial direction of the rod. As a result, the second actuators are provided with a variable inter-axis pitch. Therefore, for example, one of the second actuators can perform the work independently by extending and contracting the rod without waiting for the completion of the work of the other second actuator.
  • the first actuators and the second actuators are arranged in close proximity to each other. Therefore, a compact device can be obtained.
  • the actuator unit According to the actuator unit according to the present invention, it is possible to perform work efficiently and to obtain a compact device.
  • the actuator unit 100 of the present embodiment includes, for example, an IC handler that transports electronic components composed of ICs to a tester for performance inspection in the final process of semiconductor manufacturing, a surface mounter that mounts electronic components on a substrate, and the like. Used as an electronic component transport device.
  • the actuator unit 100 includes a plurality of actuators 40 and 50.
  • the actuators 40 and 50 include a rod and a forcer (support) that supports the rod so as to be relatively movable along the axial direction thereof.
  • the actuator unit 100 has a coil configured by surrounding a rod of the actuators 40 and 50 having magnets with a forcer.
  • the actuator unit 100 includes a linear motor 11 that reciprocally moves the rod with respect to the forcer by obtaining a thrust by the magnetic field of the magnet and the current flowing through the coil.
  • the linear motor 11 is a so-called rod type linear motor. The configuration of the linear motor 11 will be described later.
  • Actuator unit 100 has a rectangular flat base 60.
  • the base material 60 is formed so as to extend in the horizontal direction indicated by reference characters X and Y in FIGS. 1 to 4 and to extend in the Y direction.
  • the base material 60 is supported by a transport mechanism (not shown) and is configured to be movable in the XY direction by the transport mechanism.
  • a plurality of first actuators 40 extending along the Y direction are disposed on one surface of the substrate 60 facing the thickness direction (Z direction). Specifically, in the first actuator 40, the axial direction of the rod 41 extends along the Y direction. The rod 41 is supported by a forcer 42 fixed to the substrate 60 and reciprocates in the Y direction with respect to the forcer 42. These first actuators 40 are formed to have the same length, and are arranged close to each other in parallel in the X direction to form a first hierarchy indicated by reference numeral F1 in FIGS. 3 and 4.
  • the first actuators 40 are respectively disposed on both sides of a virtual line V passing through the center in the Y direction of the substrate 60 and extending along the X direction.
  • the first actuators 40A to 40D are arranged in parallel on one side (the lower side in FIG. 1) of the virtual line V in the base material 60, and the first actuator 40A to 40D is arranged on the other side (the upper side in FIG. 1) of the virtual line V.
  • Actuators 40E to 40H are arranged in parallel.
  • the first actuator 40A is disposed at one end in the X direction (the right end in FIG. 1) farthest from the virtual line V. Further, on the one side of the base material 60, the first actuator 40D is disposed at the other end in the X direction (left end in FIG. 1) closest to the virtual line V. Further, the first actuator 40B and the first actuator 40C are arranged at equal intervals in this order between the first actuator 40A and the first actuator 40D. Furthermore, the first actuators 40A, 40B, 40C, and 40D are disposed so as to step toward the virtual line V stepwise from the first actuator 40A toward the first actuator 40D.
  • the first actuators 40E to 40H are arranged symmetrically with respect to the virtual line V in this order with respect to the first actuators 40A to 40D.
  • first support bases 61 projecting from the one surface are formed at both ends in the X direction on one surface of the substrate 60 so as to extend in the Y direction.
  • first support base 61 the surface facing the side opposite to the base material 60 side
  • rails 62A and 62B extending in the Y direction are arranged close to each other in parallel in the X direction.
  • These rails 62A and 62B are formed in the same length, and are shifted from each other in the Y direction.
  • the center in the Y direction of the rail 62A at the one end of the first support base 61 is located on the one side from the virtual line V, and the center of the rail 62B at the other end is from the virtual line V. Is also located on the other side.
  • a plurality of sliders (moving bodies) 63A and 63B are arranged on these rails 62A and 62B so as to be relatively movable in the Y direction with respect to the rails 62A and 62B, thereby constituting a linear motion guide.
  • four sliders 63A are provided on the rail 62A
  • four sliders 63B are provided on the rail 62B.
  • the slider 63A and the slider 63B are arranged in a staggered pattern in a plan view.
  • a plurality of second actuators 50 extending along the X direction are disposed on the side opposite to the base material 60 side. Specifically, in the second actuator 50, the axial direction of the rod 51 extends along the X direction.
  • the rod 51 is supported by the forcer 52 and reciprocates in the X direction with respect to the forcer 52.
  • second actuators 50A to 50H connected in a one-to-one order in this order are provided corresponding to the first actuators 40A to 40H described above.
  • These second actuators 50 are formed to have the same length, and their positions along the X direction are set to be substantially the same.
  • the second actuators 50 are arranged close to each other in parallel in the Y direction to form a second hierarchy indicated by reference numeral F2 in FIGS.
  • the second actuators 50A to 50D are arranged on the one side of the virtual line V, and the second actuators 50E to 50H are arranged on the other side of the virtual line V.
  • the second actuator 50A is arranged furthest away from the virtual line V
  • the second actuator 50D is arranged closest to the virtual line V
  • the second actuators 50A and 50D are connected to each other.
  • the second actuators 50B and 50C are arranged in this order.
  • the second actuator 50E is arranged farthest from the imaginary line V
  • the second actuator 50H is arranged closest to the imaginary line V
  • the second actuators 50F and 50G are arranged in this order.
  • the first level F ⁇ b> 1 constituted by the first actuator 40 and the second level F ⁇ b> 2 constituted by the second actuator 50 include the axial direction (Y direction) of the rod 41 of the first actuator 40 and the second level F ⁇ b> 2.
  • Two actuators 50 are arranged so as to be stacked in the thickness direction (Z direction) orthogonal to the axial direction (X direction) of the rod 51 of the actuator 50.
  • the axial direction of the first actuator 40 and the axial direction of the second actuator 50 extend along the horizontal direction and are orthogonal to each other when viewed from the thickness direction.
  • the lower surface of the forcer 52 of the second actuator 50 (the surface facing the base material 60 side) is fixed to and supported by a rectangular plate-shaped second support base 64.
  • the second support base 64 extends in the horizontal direction and extends in the X direction.
  • the full length of the 2nd support stand 64 is set longer than the width
  • the width along the Y direction of the second support base 64 is set to be substantially the same as or slightly larger than the width of the forcer 52.
  • a pair of sliders 63A and 63A are connected to the lower surface (the surface facing the base material 60) of the second support base 64 of the second actuators 50A, 50C, 50F, and 50H so as to be separated from each other in the X direction.
  • a pair of sliders 63B and 63B are connected to the lower surface of the second support base 64 of the second actuators 50B, 50D, 50E, and 50G so as to be separated from each other in the X direction.
  • the tip ends of the rods 41 of the first actuators 40A to 40H are connected to the second support base 64 formed integrally with the forcers 52 of the second actuators 50A to 50H in this order in a one-to-one relationship.
  • the first actuator 40B is a second actuator in which the adjacent first actuators 40A are connected. It arrange
  • an external device mounting portion 65 is connected to the tip of the rod 51 of the second actuator 50.
  • an external device mounting portion 65 is provided at the other end along the X direction of the rod 51.
  • a suction nozzle for handling an electronic component or the like, a probe for laser processing, or the like can be used as the external device mounting portion 65.
  • the external device mounting portion 65 is set to perform work in the Z direction.
  • FIG. 5 shows a linear motor position detection system according to an embodiment of the present invention.
  • This position detection system interpolates a linear motor 11, a magnetic sensor 12 for detecting the position of the rod 1 of the linear motor 11 (rods 41 and 51 in FIGS. 1 to 4), and a signal output from the magnetic sensor 12.
  • a position detection circuit 13 for processing.
  • the position signal output by the position detection circuit 13 is input to the driver 14 of the linear motor 11.
  • the driver 14 includes a power converter such as a PWM inverter (PWM: Pulse Width Modulation) that supplies power in a form suitable for controlling the linear motor 11, a signal from the position detection circuit 13, and a command from a host computer.
  • a controller for controlling the power converter is incorporated.
  • the magnetic sensor 12 and the position detection circuit 13 are connected by an encoder cable 15.
  • the coil of the linear motor 11 and the power converter of the driver are connected by a power cable 16.
  • FIG. 6 is a perspective view (partially sectional view) of the linear motor 11.
  • the linear motor 11 is a rod type linear motor in which the rod 1 moves in the axial direction with respect to the forcer 2 (the forcers 42 and 52 in FIGS. 1 to 4).
  • the linear motor 11 is used to mount a chip-shaped electronic component or the like on the tip of the rod 1 and mount the electronic component at a predetermined position on the substrate.
  • end cases 9 are attached to both end faces of the forcer 2.
  • a bush 8 that is a bearing for guiding the linear motion of the rod 1 is attached to the end case 9.
  • One of these end cases 9 constitutes a position detection head.
  • the rod 1 is made of a non-magnetic material such as stainless steel and has a hollow space like a pipe.
  • a plurality of cylindrical magnets 3 are stacked in the hollow space of the rod 1 so that the same poles face each other. That is, the magnet 3 is laminated so that the N pole and the N pole face each other, and the S pole and the S pole face each other.
  • a pole shoe 7 (magnetic pole block) made of a magnetic material such as iron is interposed between the magnets 3.
  • the rod 1 penetrates through the stacked coils 4 and is supported by the forcer 2 so as to be movable in the axial direction.
  • the coil 4 is formed by winding a copper wire in a spiral shape and is held by a coil holder 5. Since it is necessary to insulate adjacent coils 4, ring-shaped resin spacers 5 a are provided between the coils 4.
  • a printed circuit board 6 is provided on the coil holder 5. A winding end 4 a of the coil 4 is connected to the printed circuit board 6.
  • the forcer 2 is integrally formed with the coil 4 by insert molding in which the coil 4 and the coil holder 5 are set in a mold and molten resin or special ceramics is injected into the mold. As shown in FIG. 6, the forcer 2 is formed with a plurality of fins 2 a in order to improve the heat dissipation of the coil 4.
  • the coil 4 held by the coil holder 5 is housed in the aluminum forcer 2 and the gap between the coil 4 and the forcer 2 is filled with an adhesive so that the coil 4 and the coil holder 5 are fixed to the forcer 2. May be.
  • FIG. 8 shows the positional relationship between the magnet 3 and the coil 4 of the linear motor.
  • Three coils 4 form a set of three-phase coils composed of U, V, and W phases.
  • a coil unit is comprised by combining one set of three-phase coils.
  • a three-phase current having a phase difference of 120 ° is applied to a plurality of coils divided into U, V, and W phases, a moving magnetic field that moves in the axial direction of the coil 4 is generated.
  • the rod 1 obtains a thrust by the moving magnetic field and performs a linear motion relative to the coil 4 in synchronization with the speed of the moving magnetic field.
  • a magnetic sensor 12 for detecting the position of the rod 1 is attached to one end case 9 which is a magnetic sensor housing case.
  • the magnetic sensor 12 is disposed from the rod 1 through a predetermined gap, and detects a change in the magnetic field direction (magnetic vector direction) of the rod 1 caused by the linear motion of the rod 1.
  • the magnetic sensor 12 includes a Si or glass substrate 21 and a ferromagnetic thin film metal of an alloy mainly composed of a ferromagnetic metal such as Ni or Fe formed on the substrate 21. And a magnetoresistive element 22.
  • the magnetic sensor 12 is called an AMR (Anisotropic-Magnetro-Resistance) sensor (anisotropic magnetoresistive element) because its resistance value changes in a specific magnetic field direction.
  • FIG. 10 shows the magnetic sensor 12 attached to the end case 9.
  • the end case 9 is provided with a magnetic sensor housing portion 26 configured from a space for housing the magnetic sensor 12.
  • the periphery of the magnetic sensor 12 is filled with a filler 27.
  • the magnetic sensor 12 has a temperature characteristic, and its output changes with changes in temperature.
  • a material having a lower thermal conductivity than the forcer 2 is used for the end case 9 and the filler 27.
  • epoxy resin is used for the forcer 2
  • PPS polyphenylene sulfide
  • FIG. 11 shows the bush 8 which is a bearing attached to the end case 9. Since the end case 9 has a bearing function, a phenomenon in which the gap between the rod 1 and the magnetic sensor 12 fluctuates can be prevented.
  • FIG. 12 shows a configuration diagram of the position detection circuit 13.
  • a sine wave signal and a cosine wave signal output from the magnetic sensor 12 are taken into the position detection circuit 13.
  • the pitch between the magnetic poles of the rod 1 is, for example, on the order of several tens of mm, which is much larger than the order of several hundred ⁇ m of the magnetic encoder. When the rod 1 is used as a magnetic scale, it is necessary to subdivide the sine wave signal and the cosine wave signal output from the magnetic sensor 12 to increase the resolution.
  • a sine wave signal and a cosine wave signal whose phases are different by 90 ° are respectively input to the A / D converter 30.
  • the A / D converter 30 samples the sine wave-like signal and the cosine wave-like signal into the digital data DA and DB at predetermined cycles, respectively.
  • the plurality of first actuators 40 are arranged in parallel close to each other in the first hierarchy F1, and the plurality of second actuators 50 are arranged in the second hierarchy F2.
  • the axial directions of the first and second actuators 40 and 50 extend in different directions. That is, when viewed from the thickness direction in which the first and second layers F1 and F2 are stacked, the first actuator 40 and the second actuator 50 overlap each other and are arranged in a substantially lattice shape.
  • the rod 41 of the first actuator 40 and the forcer 52 of the second actuator 50 are connected on a one-to-one basis. Therefore, when the rod 41 of each first actuator 40 reciprocates (that is, the rod 41 extends or contracts with respect to the forcer 42), each second actuator 50 becomes independent along the axial direction of the rod 41. Can move. As a result, since the second actuators 50 are provided with a variable inter-axis pitch, one of the second actuators 50 can extend the rod 51 without waiting for the completion of the work of the other second actuator 50. Shrink and work independently.
  • the actuator unit 100 according to the present embodiment, the first actuators 40 and the second actuators 50 are reliably disposed close to each other. Therefore, the actuator unit 100 having a compact configuration can be obtained.
  • the first and second actuators 40 and 50 are configured using the linear motor 11. Therefore, the entire actuator unit 100 is reliably reduced in size.
  • the linear motor 11 is used, so that the reciprocation of the rods 41 and 51 with respect to the forcers 42 and 52 is performed with high accuracy. As a result, work can be performed with high accuracy.
  • the rod 41 of the first actuator 40 moves, so that the second actuator 50 connected to the rod 41 moves in the Y direction among the horizontal directions. Then, the rod 51 of the second actuator 50 moves in the X direction that is orthogonal to the Y direction in the horizontal direction, so that the external device mounting portion 65 performs an operation on the electronic component or the like. Therefore, the work range in which the external device mounting portion 65 disposed at the tip of the rod 51 of the second actuator 50 works can be set relatively freely in the horizontal plane, and a sufficient work range can be secured. .
  • the forcer 52 of the second actuator 50 is supported on the pair of first support bases 61 and 61 that are separated from each other in the X direction on the base material 60. Therefore, the second actuator 50 hardly moves along the Y direction and moves stably. Therefore, the work of the external device mounting portion 65 of the second actuator 50 can be performed with high accuracy.
  • the actuator unit 100 on the first support base 61, the rails 62A and 62B are arranged close to each other in parallel, and the sliders 63A and 63B are arranged in a staggered manner.
  • the second actuators 50 can be arranged close to each other. Therefore, the inter-axis pitch between the second actuators 50 is further reduced, and the movement range of the second actuators 50 in the Y direction is expanded. Further, the actuator unit 100 is further downsized.
  • the first and second actuators 40 and 50 are configured using the linear motor 11, but the configuration is not limited thereto. That is, one of the first and second actuators 40 and 50 may be configured using the linear motor 11. Alternatively, instead of the first and second actuators 40 and 50 being configured using the linear motor 11, the first and second actuators 40 and 50 are configured using a linear actuator that converts the rotational motion of the drive motor into a linear motion and outputs the linear motion, an air cylinder, or the like. It doesn't matter.
  • the axial direction of the first actuator 40 and the axial direction of the second actuator 50 extend along the horizontal direction, and are arranged orthogonal to each other when viewed from the thickness direction.
  • the axial direction of the first actuator 40 and the axial direction of the second actuator 50 need only be arranged so as to intersect with each other, and are not limited to being orthogonal.
  • the angle formed by the axial direction of the first actuator 40 and the axial direction of the second actuator 50 is within the range of 80 ° to 100 ° when viewed from the thickness direction. It is preferable to set to.
  • the external device mounting portion 65 is provided at the other end of the second actuator 50.
  • the configuration is not limited to this configuration, and the external device mounting portion 65 may be provided at the one end. .
  • a suction nozzle for handling an electronic component or the like, a probe for laser processing, or the like is used as the external device mounting portion 65, and the external device mounting portion 65 is set to perform work in the Z direction.
  • the external device mounting portion 65 for example, another actuator that extends the axial direction of the rod along the thickness direction may be further disposed.
  • the external device attachment portion 65 may be configured to perform work in the X direction or the like other than the Z direction. In this way, it is possible to respond to various requests.
  • the first actuators 40A to 40D and the first actuators 40E to 40H are arranged on the base member 60 in line symmetry with the virtual line V interposed therebetween.
  • the present invention is not limited to this configuration.
  • the virtual line V may be arranged asymmetrically.
  • the first actuators 40A to 40D (40E to 40H) are arranged so as to gradually approach the virtual line V from the first actuator 40A (40E) toward the first actuator 40D (40H).
  • the first actuator 40B (40F) and the first actuator 40C (40G) may be arranged with each other, or may have other arrangements.
  • the arrangement of the second actuators 50A to 50H connected to the first actuators 40A to 40H may be interchanged.
  • the base member 60 of the actuator unit 100 is formed in a rectangular flat plate shape, but is not limited to this configuration. That is, unevenness may be formed on one surface of the substrate 60.
  • the 1st actuator 40 may be arrange
  • the rods 41 and 51 of the first and second actuators 40 and 50 extend so as to be orthogonal to each other along the horizontal direction.
  • the present invention is not limited to this configuration. That is, for example, the rod 41 of the first actuator 40 may extend along the horizontal direction (Y direction), and the rod 51 of the second actuator 50 may extend along the vertical direction (X direction).
  • the movement of the rod 41 of the first actuator 40 causes the second actuator 50 connected to the rod 41 to move in the horizontal direction.
  • the external device mounting portion 65 provided at the tip of the rod 51 is processed and measured with respect to the electronic component or the like arranged in the X direction. Work such as handling can be performed.
  • the thickness direction (Z direction) is set in the horizontal direction.
  • first actuator (actuator) 50 Second actuator (actuator) 65 ... External device mounting portion 100 ... Actuator unit F1 ... First layer F2 ... Second layer X ... Axial direction Y of second actuator ... Axial direction Z of first actuator ... Thickness direction

Abstract

Disclosed is an actuator unit which comprises a first hierarchy formed by a plurality of first actuators (40) disposed next to and in parallel with each other, and a second hierarchy formed by a plurality of second actuators (50) disposed next to and in parallel with each other, positioned such that the first hierarchy and second hierarchy overlap in a thickness direction (Z) of the intersection of an axis direction (Y) of the first actuators (40) and an axis direction (X) of the second actuators (50). Further, the axis direction (Y) of the first actuators (40) and the axis direction (X) of the second actuators (50) intersect and extend when seen from the thickness direction (Z), and rods (40) of the first actuators (40) and supporting bodies (52) of the second actuators are individually connected.

Description

アクチュエータユニットActuator unit
 本発明は、アクチュエータを複数備えたアクチュエータユニットに関する。本願は、2010年4月23日に、日本に出願された特願2010-100067号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an actuator unit including a plurality of actuators. This application claims priority based on Japanese Patent Application No. 2010-100067 filed in Japan on April 23, 2010, the contents of which are incorporated herein by reference.
 近年、電子機器等の小型化や高機能化に伴って、電子機器に搭載される基板等の小型化・高集積化が求められている。この種の電子機器の製造には、例えば、特許文献1に示されるような部品移載装置が用いられる。部品移載装置は、複数の単軸リニアモータ(アクチュエータ)が一体に組み合わされて構成される多軸リニアモータ(アクチュエータユニット)を有する。そして、この多軸リニアモータは、基板搬送機構に支持されて基台上を水平方向に移動させる。また、多軸リニアモータの各単軸リニアモータは、可動部(ロッド)を鉛直方向に往復移動させて、電子部品のハンドリングを行う。 In recent years, with the downsizing and high functionality of electronic devices, there has been a demand for downsizing and high integration of substrates and the like mounted on electronic devices. For manufacturing this type of electronic apparatus, for example, a component transfer apparatus as shown in Patent Document 1 is used. The component transfer apparatus has a multi-axis linear motor (actuator unit) configured by integrally combining a plurality of single-axis linear motors (actuators). The multi-axis linear motor is supported by the substrate transport mechanism and moves horizontally on the base. In addition, each single-axis linear motor of the multi-axis linear motor reciprocates a movable part (rod) in the vertical direction to handle electronic components.
特開2009-171662号公報JP 2009-171662 A
 しかしながら、従来のアクチュエータユニットでは、次のような課題がある。
 前述した部品移載装置の多軸リニアモータは、複数の単軸リニアモータが一体に組み合わされた構成を有し、これら単軸リニアモータ同士の軸間ピッチは固定されている。従って、各単軸リニアモータにおける電子部品のピックアップ時やリリース時のそれぞれの作業位置に対応して、多軸リニアモータを順次移動させる必要がある。すなわち、一方の単軸リニアモータの作業が完了した後に、他方の単軸リニアモータの作業を行う必要がある。そのため、効率的な作業を行うことができない。
 また、この種の部品移載装置には、さらなる小型化が要求されている。
However, the conventional actuator unit has the following problems.
The multi-axis linear motor of the component transfer device described above has a configuration in which a plurality of single-axis linear motors are integrally combined, and the inter-axis pitch between these single-axis linear motors is fixed. Therefore, it is necessary to sequentially move the multi-axis linear motor in accordance with the respective work positions at the time of electronic component pick-up and release at each single-axis linear motor. That is, after the operation of one single-axis linear motor is completed, it is necessary to perform the operation of the other single-axis linear motor. Therefore, efficient work cannot be performed.
Further, this type of component transfer apparatus is required to be further downsized.
 本発明は、このような事情に鑑みてなされたものであって、効率よく作業を行うことが可能で、コンパクトな構成のアクチュエータユニットを提供することを目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide an actuator unit having a compact configuration that can perform work efficiently.
 前記目的を達成するために、本発明に係るアクチュエータユニットは、ロッドと前記ロッドをその軸方向に沿って相対移動可能に支持する支持体とを有するアクチュエータを複数備える。そして、これらアクチュエータのうち、複数の第1アクチュエータが、互いに並列に近接して配置されて第1階層が形成され、複数の第2アクチュエータが、互いに並列に近接して配置されて第2階層が形成され、前記第1、第2階層は前記第1アクチュエータの軸方向及び第2アクチュエータの軸方向に直交する厚さ方向に積層するように配置される。さらに、前記第1アクチュエータの軸方向と前記第2アクチュエータの軸方向とは、前記厚さ方向から見て互いに交差して延びており、前記第1アクチュエータのロッドと前記第2アクチュエータの支持体とが1対1で連結される。 In order to achieve the above object, an actuator unit according to the present invention includes a plurality of actuators each having a rod and a support body that supports the rod so as to be relatively movable along the axial direction thereof. Among these actuators, a plurality of first actuators are arranged close to each other in parallel to form a first layer, and a plurality of second actuators are arranged close to each other in parallel to form a second layer. The first and second layers are formed so as to be stacked in the thickness direction orthogonal to the axial direction of the first actuator and the axial direction of the second actuator. Further, the axial direction of the first actuator and the axial direction of the second actuator extend so as to intersect each other when viewed from the thickness direction, and the rod of the first actuator and the support body of the second actuator, Are connected one to one.
 本発明に係るアクチュエータユニットでは、複数の第1アクチュエータが第1階層に互いに近接して並列に配列され、複数の第2アクチュエータが第2階層に互いに近接して並列に配列され、これら第1、第2アクチュエータの軸方向同士が互いに異なる方向に延びている。すなわち、第1、第2階層が積層する厚さ方向から見て、第1アクチュエータと第2アクチュエータとは互いにオーバーラップして、例えば格子状に配置される。 In the actuator unit according to the present invention, the plurality of first actuators are arranged in parallel close to each other in the first layer, and the plurality of second actuators are arranged in parallel close to each other in the second layer. The axial directions of the second actuators extend in different directions. That is, when viewed from the thickness direction in which the first and second layers are stacked, the first actuator and the second actuator overlap each other and are arranged in a lattice shape, for example.
 さらに、本発明に係るアクチュエータユニットでは、第1アクチュエータのロッドと第2アクチュエータの支持体とが1対1で連結される。そのため、各第1アクチュエータのロッドが移動する(伸長する又は収縮する)ことによって、各第2アクチュエータは前記ロッドの軸方向に沿って独立して移動する。その結果、第2アクチュエータ同士は、互いの軸間ピッチが可変に設けられる。そのため、例えば、一方の第2アクチュエータは、他方の第2アクチュエータの作業の完了を待つことなくロッドを伸長・収縮させて、独立して作業を行える。 Furthermore, in the actuator unit according to the present invention, the rod of the first actuator and the support of the second actuator are connected one-to-one. Therefore, when the rod of each first actuator moves (extends or contracts), each second actuator moves independently along the axial direction of the rod. As a result, the second actuators are provided with a variable inter-axis pitch. Therefore, for example, one of the second actuators can perform the work independently by extending and contracting the rod without waiting for the completion of the work of the other second actuator.
 よって、従来のように、各アクチュエータの作業状況に対応して、アクチュエータユニット全体を順次移動させる必要がない。従って、作業が効率よく行われるとともに生産性が向上する。
 また、本発明に係るアクチュエータでは、第1アクチュエータ同士、及び、第2アクチュエータ同士が確実に近接して配置される。従って、コンパクトな装置が得られる。
Therefore, unlike the prior art, it is not necessary to sequentially move the entire actuator unit in accordance with the work status of each actuator. Therefore, work is performed efficiently and productivity is improved.
Further, in the actuator according to the present invention, the first actuators and the second actuators are arranged in close proximity to each other. Therefore, a compact device can be obtained.
 本発明に係るアクチュエータユニットによれば、効率よく作業を行うことが可能で、コンパクトな装置が得られる。 According to the actuator unit according to the present invention, it is possible to perform work efficiently and to obtain a compact device.
本発明の一実施形態に係るアクチュエータユニットの概略構成を示す平断面図である。It is a plane sectional view showing a schematic structure of an actuator unit concerning one embodiment of the present invention. 図1のA部を拡大して示す図である。It is a figure which expands and shows the A section of FIG. 本発明の一実施形態に係るアクチュエータユニットの概略構成を示す正断面図である。It is a front sectional view showing a schematic configuration of an actuator unit according to an embodiment of the present invention. 本発明の一実施形態に係るアクチュエータユニットの概略構成を示す側断面図である。It is a sectional side view showing a schematic structure of an actuator unit concerning one embodiment of the present invention. 本発明の一実施形態における位置検出システムの構成図である。It is a block diagram of the position detection system in one Embodiment of this invention. リニアモータの斜視図(一部断面図を示す)である。It is a perspective view (a partial sectional view is shown) of a linear motor. コイルホルダに保持されたコイルユニットを示す斜視図である。It is a perspective view which shows the coil unit hold | maintained at the coil holder. リニアモータのマグネットとコイルの位置関係を示す図である。It is a figure which shows the positional relationship of the magnet and coil of a linear motor. 磁気センサの原理を示す斜視図である。It is a perspective view which shows the principle of a magnetic sensor. エンドケースに取り付けられる磁気センサを示す側面図である。It is a side view which shows the magnetic sensor attached to an end case. エンドケースに取り付けられるブッシュを示す側面図である。It is a side view which shows the bush attached to an end case. 位置検出回路の構成図である。It is a block diagram of a position detection circuit.
 本実施形態のアクチュエータユニット100は、例えば、半導体製造の最終工程において性能検査用のテスタにICから構成される電子部品を搬送するICハンドラや、基板上に電子部品を実装する表面実装機などの電子部品搬送装置として用いられる。 The actuator unit 100 of the present embodiment includes, for example, an IC handler that transports electronic components composed of ICs to a tester for performance inspection in the final process of semiconductor manufacturing, a surface mounter that mounts electronic components on a substrate, and the like. Used as an electronic component transport device.
 図1~図4に示すように、アクチュエータユニット100は、複数のアクチュエータ40、50を備える。アクチュエータ40、50は、ロッドと、ロッドをその軸方向に沿って相対移動可能に支持するフォーサ(支持体)とを有する。詳細には、アクチュエータユニット100は、マグネットを有するアクチュエータ40、50のロッドをフォーサが囲んで構成されるコイルを有する。さらに、アクチュエータユニット100は、マグネットの磁界とコイルに流れる電流とによって推力を得てロッドをフォーサに対して往復移動させるリニアモータ11を有する。このリニアモータ11は、いわゆるロッドタイプのリニアモータである。リニアモータ11の構成については後述する。 As shown in FIGS. 1 to 4, the actuator unit 100 includes a plurality of actuators 40 and 50. The actuators 40 and 50 include a rod and a forcer (support) that supports the rod so as to be relatively movable along the axial direction thereof. Specifically, the actuator unit 100 has a coil configured by surrounding a rod of the actuators 40 and 50 having magnets with a forcer. Furthermore, the actuator unit 100 includes a linear motor 11 that reciprocally moves the rod with respect to the forcer by obtaining a thrust by the magnetic field of the magnet and the current flowing through the coil. The linear motor 11 is a so-called rod type linear motor. The configuration of the linear motor 11 will be described later.
 アクチュエータユニット100は、矩形平板状の基材60を有する。この基材60は、図1~図4において符号X、Yで示される水平方向に拡がっているとともに、Y方向に延びて形成されている。また、基材60は、不図示の搬送機構によって支持されているとともに、搬送機構によりX-Y方向に移動可能に構成されている。 Actuator unit 100 has a rectangular flat base 60. The base material 60 is formed so as to extend in the horizontal direction indicated by reference characters X and Y in FIGS. 1 to 4 and to extend in the Y direction. The base material 60 is supported by a transport mechanism (not shown) and is configured to be movable in the XY direction by the transport mechanism.
 基材60の厚さ方向(Z方向)を向く一面には、Y方向に沿って延びる第1アクチュエータ40が複数配設されている。詳しくは、第1アクチュエータ40は、ロッド41の軸方向がY方向に沿って延びている。そして、ロッド41は、基材60に固定されたフォーサ42に支持されているとともにフォーサ42に対してY方向に往復移動する。これら第1アクチュエータ40同士は同じ長さに形成されており、X方向に互いに並列に近接して配置されて、図3及び図4に符号F1で示す第1階層を形成している。 A plurality of first actuators 40 extending along the Y direction are disposed on one surface of the substrate 60 facing the thickness direction (Z direction). Specifically, in the first actuator 40, the axial direction of the rod 41 extends along the Y direction. The rod 41 is supported by a forcer 42 fixed to the substrate 60 and reciprocates in the Y direction with respect to the forcer 42. These first actuators 40 are formed to have the same length, and are arranged close to each other in parallel in the X direction to form a first hierarchy indicated by reference numeral F1 in FIGS. 3 and 4.
 図1及び図2に示すように、第1アクチュエータ40は、基材60のY方向の中央を通りX方向に沿って延びる仮想線Vを挟んで両側にそれぞれ配設されている。詳しくは、基材60における仮想線Vの一方側(図1における下側)に、第1アクチュエータ40A~40Dが並列に配列され、仮想線Vの他方側(図1における上側)に、第1アクチュエータ40E~40Hが並列に配列されている。 As shown in FIGS. 1 and 2, the first actuators 40 are respectively disposed on both sides of a virtual line V passing through the center in the Y direction of the substrate 60 and extending along the X direction. Specifically, the first actuators 40A to 40D are arranged in parallel on one side (the lower side in FIG. 1) of the virtual line V in the base material 60, and the first actuator 40A to 40D is arranged on the other side (the upper side in FIG. 1) of the virtual line V. Actuators 40E to 40H are arranged in parallel.
 基材60の前記一方側において、第1アクチュエータ40Aは、仮想線Vから最も離間してX方向の一端(図1における右端)に配置されている。また、基材60の前記一方側において、第1アクチュエータ40Dは、仮想線Vに最も近接してX方向の他端(図1における左端)に配置されている。また、第1アクチュエータ40Aと第1アクチュエータ40Dとの間には、第1アクチュエータ40Bと第1アクチュエータ40Cとがこの順に等間隔に並べられている。さらに、第1アクチュエータ40A、40B、40C、40Dは、第1アクチュエータ40Aから第1アクチュエータ40Dへ向かうに従い段階的に仮想線Vへ向かうように配置されている。 On the one side of the base material 60, the first actuator 40A is disposed at one end in the X direction (the right end in FIG. 1) farthest from the virtual line V. Further, on the one side of the base material 60, the first actuator 40D is disposed at the other end in the X direction (left end in FIG. 1) closest to the virtual line V. Further, the first actuator 40B and the first actuator 40C are arranged at equal intervals in this order between the first actuator 40A and the first actuator 40D. Furthermore, the first actuators 40A, 40B, 40C, and 40D are disposed so as to step toward the virtual line V stepwise from the first actuator 40A toward the first actuator 40D.
 また、基材60の前記他方側において、第1アクチュエータ40E~40Hは、前述の第1アクチュエータ40A~40Dに対してこの順に、仮想線Vに関して線対称に配置されている。 Further, on the other side of the base member 60, the first actuators 40E to 40H are arranged symmetrically with respect to the virtual line V in this order with respect to the first actuators 40A to 40D.
 また、基材60の一面におけるX方向の両端には、前記一面から突出する略直方体状の一対の第1支持台61がY方向に延びて形成されている。第1支持台61の一面(基材60側と反対側を向く面)には、Y方向に延びる一対のレール(軌道体)62A、62BがX方向に間隔を開けて並列に近接して配置されている。これらレール62A、62Bは同じ長さに形成されており、Y方向に互いにずれて配置されている。詳しくは、第1支持台61における前記一端のレール62AにおけるY方向の中央は、仮想線Vよりも前記一方側に位置しており、前記他端のレール62Bの前記中央は、仮想線Vよりも前記他方側に位置している。 Further, a pair of substantially rectangular parallelepiped first support bases 61 projecting from the one surface are formed at both ends in the X direction on one surface of the substrate 60 so as to extend in the Y direction. On one surface of the first support base 61 (the surface facing the side opposite to the base material 60 side), a pair of rails (track bodies) 62A and 62B extending in the Y direction are arranged close to each other in parallel in the X direction. Has been. These rails 62A and 62B are formed in the same length, and are shifted from each other in the Y direction. Specifically, the center in the Y direction of the rail 62A at the one end of the first support base 61 is located on the one side from the virtual line V, and the center of the rail 62B at the other end is from the virtual line V. Is also located on the other side.
 また、これらレール62A、62Bには、複数のスライダ(移動体)63A、63Bがレール62A、62Bに対してY方向に相対移動可能に配設されて、直動ガイドを構成している。本実施形態では、レール62Aに4つのスライダ63Aが設けられ、レール62Bに4つのスライダ63Bが設けられている。詳しくは、第1支持台61においてスライダ63Aとスライダ63Bとは、平面視で略千鳥状に配置されている。 Further, a plurality of sliders (moving bodies) 63A and 63B are arranged on these rails 62A and 62B so as to be relatively movable in the Y direction with respect to the rails 62A and 62B, thereby constituting a linear motion guide. In the present embodiment, four sliders 63A are provided on the rail 62A, and four sliders 63B are provided on the rail 62B. Specifically, in the first support base 61, the slider 63A and the slider 63B are arranged in a staggered pattern in a plan view.
 また、第1アクチュエータ40のZ方向において、基材60側の反対側には、X方向に沿って延びる第2アクチュエータ50が複数配設されている。詳しくは、第2アクチュエータ50では、そのロッド51の軸方向がX方向に沿って延びている。そして、ロッド51はフォーサ52に支持されているとともにフォーサ52に対してX方向に往復移動する。 In the Z direction of the first actuator 40, a plurality of second actuators 50 extending along the X direction are disposed on the side opposite to the base material 60 side. Specifically, in the second actuator 50, the axial direction of the rod 51 extends along the X direction. The rod 51 is supported by the forcer 52 and reciprocates in the X direction with respect to the forcer 52.
 本実施形態では、第2アクチュエータ50として、前述の第1アクチュエータ40A~40Hに対応してこの順に1対1で連結される第2アクチュエータ50A~50Hが設けられている。これら第2アクチュエータ50同士は同じ長さに形成されており、X方向に沿う互いの位置が略同一に設定されている。第2アクチュエータ50は、Y方向に互いに並列に近接して配置されて、図3及び図4に符号F2で示す第2階層を形成している。 In the present embodiment, as the second actuator 50, second actuators 50A to 50H connected in a one-to-one order in this order are provided corresponding to the first actuators 40A to 40H described above. These second actuators 50 are formed to have the same length, and their positions along the X direction are set to be substantially the same. The second actuators 50 are arranged close to each other in parallel in the Y direction to form a second hierarchy indicated by reference numeral F2 in FIGS.
 図1において、これら第2アクチュエータ50のうち、第2アクチュエータ50A~50Dは仮想線Vの前記一方側に配置され、第2アクチュエータ50E~50Hは仮想線Vの前記他方側に配置されている。詳しくは、前記一方側においては、第2アクチュエータ50Aが仮想線Vから最も離間して配置され、第2アクチュエータ50Dが仮想線Vに最も近接して配置され、これら第2アクチュエータ50A、50D同士の間に、第2アクチュエータ50B、50Cがこの順に配置されている。 In FIG. 1, among these second actuators 50, the second actuators 50A to 50D are arranged on the one side of the virtual line V, and the second actuators 50E to 50H are arranged on the other side of the virtual line V. In detail, on the one side, the second actuator 50A is arranged furthest away from the virtual line V, the second actuator 50D is arranged closest to the virtual line V, and the second actuators 50A and 50D are connected to each other. Between them, the second actuators 50B and 50C are arranged in this order.
 また、前記他方側においては、第2アクチュエータ50Eが仮想線Vから最も離間して配置され、第2アクチュエータ50Hが仮想線Vに最も近接して配置され、これら第2アクチュエータ50E、50H同士の間に、第2アクチュエータ50F、50Gがこの順に配置されている。 On the other side, the second actuator 50E is arranged farthest from the imaginary line V, the second actuator 50H is arranged closest to the imaginary line V, and between the second actuators 50E and 50H. In addition, the second actuators 50F and 50G are arranged in this order.
 基材60上において、第1アクチュエータ40で構成される第1階層F1と第2アクチュエータ50で構成される第2階層F2とは、第1アクチュエータ40のロッド41の軸方向(Y方向)及び第2アクチュエータ50のロッド51の軸方向(X方向)に直交する厚さ方向(Z方向)に積層するように配置されている。本実施形態では、第1アクチュエータ40の軸方向と第2アクチュエータ50の軸方向とが、水平方向に沿ってそれぞれ延びているとともに、前記厚さ方向から見て互いに直交して配置されている。 On the base material 60, the first level F <b> 1 constituted by the first actuator 40 and the second level F <b> 2 constituted by the second actuator 50 include the axial direction (Y direction) of the rod 41 of the first actuator 40 and the second level F <b> 2. Two actuators 50 are arranged so as to be stacked in the thickness direction (Z direction) orthogonal to the axial direction (X direction) of the rod 51 of the actuator 50. In the present embodiment, the axial direction of the first actuator 40 and the axial direction of the second actuator 50 extend along the horizontal direction and are orthogonal to each other when viewed from the thickness direction.
 また、第2アクチュエータ50のフォーサ52の下面(基材60側を向く面)は、矩形板状の第2支持台64に固定され、支持されている。第2支持台64は、水平方向に拡がるとともにX方向に沿って延びている。そして、第2支持台64の全長は、基材60のX方向に沿う幅よりも長く設定されている。また、第2支持台64のY方向に沿う幅は、フォーサ52の前記幅と略同一又は僅かに大きく設定されている。 Further, the lower surface of the forcer 52 of the second actuator 50 (the surface facing the base material 60 side) is fixed to and supported by a rectangular plate-shaped second support base 64. The second support base 64 extends in the horizontal direction and extends in the X direction. And the full length of the 2nd support stand 64 is set longer than the width | variety along the X direction of the base material 60. FIG. In addition, the width along the Y direction of the second support base 64 is set to be substantially the same as or slightly larger than the width of the forcer 52.
 また、第2アクチュエータ50A、50C、50F、50Hにおける第2支持台64の下面(基材60側を向く面)には、一対のスライダ63A、63AがX方向に互いに離間して連結されている。また、第2アクチュエータ50B、50D、50E、50Gにおける第2支持台64の前記下面には、一対のスライダ63B、63BがX方向に互いに離間して連結されている。そして、第2アクチュエータ50A~50Hのフォーサ52と一体に形成された第2支持台64には、第1アクチュエータ40A~40Hのロッド41の先端部がこの順に1対1で連結されている。 In addition, a pair of sliders 63A and 63A are connected to the lower surface (the surface facing the base material 60) of the second support base 64 of the second actuators 50A, 50C, 50F, and 50H so as to be separated from each other in the X direction. . A pair of sliders 63B and 63B are connected to the lower surface of the second support base 64 of the second actuators 50B, 50D, 50E, and 50G so as to be separated from each other in the X direction. The tip ends of the rods 41 of the first actuators 40A to 40H are connected to the second support base 64 formed integrally with the forcers 52 of the second actuators 50A to 50H in this order in a one-to-one relationship.
 詳しくは、図2において、例えば、互いに隣り合う第1アクチュエータ40A、40B、及び、第2アクチュエータ50A、50Bに着目すると、第1アクチュエータ40Bは、隣り合う第1アクチュエータ40Aが連結された第2アクチュエータ50AのZ方向に沿う基材60側と重なり合うように配置されている。 Specifically, in FIG. 2, for example, when focusing on the first actuators 40A and 40B and the second actuators 50A and 50B adjacent to each other, the first actuator 40B is a second actuator in which the adjacent first actuators 40A are connected. It arrange | positions so that it may overlap with the base-material 60 side along the Z direction of 50A.
 また、第2アクチュエータ50のロッド51の先端部には、外部機器取付部65が連結されている。本実施形態では、ロッド51のX方向に沿う前記他端に外部機器取付部65が設けられている。外部機器取付部65としては、例えば電子部品等をハンドリングする吸着ノズルやレーザー加工用のプローブ等を用いることができる。本実施形態では、外部機器取付部65が、Z方向に作業を施すように設定されている。 Further, an external device mounting portion 65 is connected to the tip of the rod 51 of the second actuator 50. In the present embodiment, an external device mounting portion 65 is provided at the other end along the X direction of the rod 51. As the external device mounting portion 65, for example, a suction nozzle for handling an electronic component or the like, a probe for laser processing, or the like can be used. In the present embodiment, the external device mounting portion 65 is set to perform work in the Z direction.
 また、本実施形態のアクチュエータユニット100では、リニアモータ11を用いた位置検出システムが構成されている。
 図5は本発明の一実施形態におけるリニアモータの位置検出システムを示す。この位置検出システムは、リニアモータ11と、リニアモータ11のロッド1(図1~図4においてはロッド41、51)の位置を検出する磁気センサ12と、磁気センサ12が出力する信号を内挿処理する位置検出回路13と、を備える。位置検出回路13が出力する位置の信号は、リニアモータ11のドライバ14に入力される。ドライバ14には、リニアモータ11を制御するのに適した形態の電力を供給するPWMインバータ(PWM:Pulse Width Modulation)などの電力変換器、並びに位置検出回路13からの信号及び上位コンピュータからの指令によって電力変換器を制御する制御器が組み込まれる。磁気センサ12と位置検出回路13とは、エンコーダケーブル15によって接続される。リニアモータ11のコイルとドライバの電力変換器とは、動力ケーブル16によって接続される。
In the actuator unit 100 of the present embodiment, a position detection system using the linear motor 11 is configured.
FIG. 5 shows a linear motor position detection system according to an embodiment of the present invention. This position detection system interpolates a linear motor 11, a magnetic sensor 12 for detecting the position of the rod 1 of the linear motor 11 ( rods 41 and 51 in FIGS. 1 to 4), and a signal output from the magnetic sensor 12. A position detection circuit 13 for processing. The position signal output by the position detection circuit 13 is input to the driver 14 of the linear motor 11. The driver 14 includes a power converter such as a PWM inverter (PWM: Pulse Width Modulation) that supplies power in a form suitable for controlling the linear motor 11, a signal from the position detection circuit 13, and a command from a host computer. A controller for controlling the power converter is incorporated. The magnetic sensor 12 and the position detection circuit 13 are connected by an encoder cable 15. The coil of the linear motor 11 and the power converter of the driver are connected by a power cable 16.
 図6は、リニアモータ11の斜視図(一部断面図)である。リニアモータ11は、フォーサ2(図1~図4では、フォーサ42、52)に対してロッド1が軸線方向に移動するロッドタイプリニアモータである。リニアモータ11は、例えば、ロッド1の先端にチップ状の電子部品などが取り付けられ、電子部品を基板上の所定の位置にマウントするのに用いられる。 FIG. 6 is a perspective view (partially sectional view) of the linear motor 11. The linear motor 11 is a rod type linear motor in which the rod 1 moves in the axial direction with respect to the forcer 2 (the forcers 42 and 52 in FIGS. 1 to 4). The linear motor 11 is used to mount a chip-shaped electronic component or the like on the tip of the rod 1 and mount the electronic component at a predetermined position on the substrate.
 フォーサ2内には、複数のコイル4が積層される。フォーサ2の両端面のそれぞれには、エンドケース9が取り付けられる。エンドケース9には、ロッド1の直線運動を案内するための軸受であるブッシュ8が取り付けられる。尚、これらのエンドケース9のうち1つが、位置検出ヘッドを構成している。 In the forcer 2, a plurality of coils 4 are stacked. End cases 9 are attached to both end faces of the forcer 2. A bush 8 that is a bearing for guiding the linear motion of the rod 1 is attached to the end case 9. One of these end cases 9 constitutes a position detection head.
 ロッド1は、例えばステンレス等の非磁性材から形成され、パイプのように中空の空間を有する。ロッド1の中空空間には、円柱状の複数のマグネット3(セグメント磁石)が、互いに同極が対向するように積層される。すなわち、マグネット3は、N極とN極とが対向し、S極とS極とが対向するように積層される。マグネット3の間には、例えば鉄等の磁性体からなるポールシュー7(磁極ブロック)が介在する。ロッド1は、積層されたコイル4内を貫通すると共に、フォーサ2に軸線方向に移動可能に支持されている。 The rod 1 is made of a non-magnetic material such as stainless steel and has a hollow space like a pipe. A plurality of cylindrical magnets 3 (segment magnets) are stacked in the hollow space of the rod 1 so that the same poles face each other. That is, the magnet 3 is laminated so that the N pole and the N pole face each other, and the S pole and the S pole face each other. A pole shoe 7 (magnetic pole block) made of a magnetic material such as iron is interposed between the magnets 3. The rod 1 penetrates through the stacked coils 4 and is supported by the forcer 2 so as to be movable in the axial direction.
 図7に示されるように、コイル4は銅線が螺旋状に巻かれて形成され、コイルホルダ5に保持されている。隣接するコイル4を絶縁させる必要があるので、コイル4の間にはリング状の樹脂製スペーサ5aが設けられる。コイルホルダ5上にはプリント基板6が設けられる。コイル4の巻線の端部4aは、プリント基板6に結線される。 As shown in FIG. 7, the coil 4 is formed by winding a copper wire in a spiral shape and is held by a coil holder 5. Since it is necessary to insulate adjacent coils 4, ring-shaped resin spacers 5 a are provided between the coils 4. A printed circuit board 6 is provided on the coil holder 5. A winding end 4 a of the coil 4 is connected to the printed circuit board 6.
 本実施形態では、コイル4及びコイルホルダ5を金型にセットし、溶融した樹脂又は特殊セラミックスを金型内に注入するインサート成形によって、フォーサ2がコイル4と一体に成形される。図6に示されるように、フォーサ2には、コイル4の放熱性を高めるためにフィン2aが複数形成される。なお、コイルホルダ5に保持されたコイル4をアルミ製のフォーサ2に収納し、コイル4とフォーサ2との間のすきまを接着剤で埋めることで、コイル4及びコイルホルダ5がフォーサ2に固定されてもよい。 In this embodiment, the forcer 2 is integrally formed with the coil 4 by insert molding in which the coil 4 and the coil holder 5 are set in a mold and molten resin or special ceramics is injected into the mold. As shown in FIG. 6, the forcer 2 is formed with a plurality of fins 2 a in order to improve the heat dissipation of the coil 4. The coil 4 held by the coil holder 5 is housed in the aluminum forcer 2 and the gap between the coil 4 and the forcer 2 is filled with an adhesive so that the coil 4 and the coil holder 5 are fixed to the forcer 2. May be.
 図8は、リニアモータのマグネット3とコイル4との位置関係を示す。コイル4は3つでU・V・W相から構成される一組の三相コイルを形成する。そして、一組の三相コイルを複数組み合わせて、コイルユニットが構成される。U・V・W相の三相に分けられた複数のコイルに位相が120°ずつ異なる三相電流が流されると、コイル4の軸線方向に移動する移動磁界が発生する。ロッド1は、移動磁界により推力を得て、移動磁界の速さに同期してコイル4に対して相対的に直線運動を行う。 FIG. 8 shows the positional relationship between the magnet 3 and the coil 4 of the linear motor. Three coils 4 form a set of three-phase coils composed of U, V, and W phases. And a coil unit is comprised by combining one set of three-phase coils. When a three-phase current having a phase difference of 120 ° is applied to a plurality of coils divided into U, V, and W phases, a moving magnetic field that moves in the axial direction of the coil 4 is generated. The rod 1 obtains a thrust by the moving magnetic field and performs a linear motion relative to the coil 4 in synchronization with the speed of the moving magnetic field.
 図6に示されるように、磁気センサ収容ケースであるエンドケース9の一方には、ロッド1の位置を検出するための磁気センサ12が取り付けられる。磁気センサ12は、ロッド1から所定のすきまを介して配置され、ロッド1の直線運動によって生ずるロッド1の磁界の方向(磁気ベクトルの方向)の変化を検出する。 As shown in FIG. 6, a magnetic sensor 12 for detecting the position of the rod 1 is attached to one end case 9 which is a magnetic sensor housing case. The magnetic sensor 12 is disposed from the rod 1 through a predetermined gap, and detects a change in the magnetic field direction (magnetic vector direction) of the rod 1 caused by the linear motion of the rod 1.
 図9に示されるように、磁気センサ12は、Si若しくはガラス基板21と、基板21の上に形成されたNi,Feなどの強磁性金属を主成分とする合金の強磁性薄膜金属で構成される磁気抵抗素子22とを有する。磁気センサ12は、特定の磁界方向で抵抗値が変化するためAMR(Anisotropic-Magnetro-Resistance)センサ(異方性磁気抵抗素子)と呼ばれる。 As shown in FIG. 9, the magnetic sensor 12 includes a Si or glass substrate 21 and a ferromagnetic thin film metal of an alloy mainly composed of a ferromagnetic metal such as Ni or Fe formed on the substrate 21. And a magnetoresistive element 22. The magnetic sensor 12 is called an AMR (Anisotropic-Magnetro-Resistance) sensor (anisotropic magnetoresistive element) because its resistance value changes in a specific magnetic field direction.
 図10は、エンドケース9に取り付けられる磁気センサ12を示す。エンドケース9には、磁気センサ12を収容するための空間から構成される磁気センサ収容部26が設けられる。
 磁気センサ収容部26内に磁気センサ12が配置された後、磁気センサ12の周囲が充填材27で埋められる。その結果、磁気センサ12がエンドケース9に固定される。磁気センサ12は温度特性を有し、温度の変化によって出力が変化する。コイル4から受ける熱の影響を低減するため、エンドケース9及び充填材27には、フォーサ2よりも熱伝導率の低い材料が使用される。例えば、フォーサ2にはエポキシ系の樹脂が使用され、エンドケース9及び充填材27には、ポリフェニレンサルファイド(PPS)が使用される。
FIG. 10 shows the magnetic sensor 12 attached to the end case 9. The end case 9 is provided with a magnetic sensor housing portion 26 configured from a space for housing the magnetic sensor 12.
After the magnetic sensor 12 is arranged in the magnetic sensor housing portion 26, the periphery of the magnetic sensor 12 is filled with a filler 27. As a result, the magnetic sensor 12 is fixed to the end case 9. The magnetic sensor 12 has a temperature characteristic, and its output changes with changes in temperature. In order to reduce the influence of heat received from the coil 4, a material having a lower thermal conductivity than the forcer 2 is used for the end case 9 and the filler 27. For example, epoxy resin is used for the forcer 2, and polyphenylene sulfide (PPS) is used for the end case 9 and the filler 27.
 図11は、エンドケース9に取り付けられた軸受であるブッシュ8を示す。エンドケース9が軸受機能を有することで、ロッド1と磁気センサ12との間のギャップが変動する現象を防止することができる。 FIG. 11 shows the bush 8 which is a bearing attached to the end case 9. Since the end case 9 has a bearing function, a phenomenon in which the gap between the rod 1 and the magnetic sensor 12 fluctuates can be prevented.
 図12は、位置検出回路13の構成図を示す。磁気センサ12が出力する正弦波状の信号及び余弦波状の信号は、位置検出回路13に取り込まれる。内挿回路(インターポレータ)である位置検出回路13は、位相が90°異なる正弦波状の信号及び余弦波状の信号にディジタル的な内挿処理を加えて高分解能の位相角データを出力する。ロッド1の磁極間のピッチは例えば数十mmのオーダーであり、磁気式のエンコーダの数百μmのオーダーに比べてはるかに大きい。ロッド1が磁気スケールとして流用されるときには、磁気センサ12が出力する正弦波状の信号及び余弦波状の信号を細分化し、分解能を上げる必要がある。磁気センサ12が出力する正弦波状の信号及び余弦波状の信号の変化は、分解能が上げられた位置検出回路に大きな影響を及ぼす。このため、磁気センサ12が出力する正弦波状の信号及び余弦波状の信号の変化は小さいことが望ましい。 FIG. 12 shows a configuration diagram of the position detection circuit 13. A sine wave signal and a cosine wave signal output from the magnetic sensor 12 are taken into the position detection circuit 13. The position detection circuit 13, which is an interpolation circuit (interpolator), applies digital interpolation processing to a sine wave signal and a cosine wave signal whose phases are different by 90 °, and outputs high-resolution phase angle data. The pitch between the magnetic poles of the rod 1 is, for example, on the order of several tens of mm, which is much larger than the order of several hundred μm of the magnetic encoder. When the rod 1 is used as a magnetic scale, it is necessary to subdivide the sine wave signal and the cosine wave signal output from the magnetic sensor 12 to increase the resolution. Changes in the sinusoidal signal and the cosine wave signal output from the magnetic sensor 12 have a significant effect on the position detection circuit with increased resolution. For this reason, it is desirable that changes in the sine wave signal and the cosine wave signal output from the magnetic sensor 12 are small.
 位相が90°異なる正弦波状の信号及び余弦波状の信号は、それぞれ、A/D変換器30に入力される。A/D変換器30は、正弦波状の信号及び余弦波状の信号を、それぞれ所定の周期でディジタルデータDA,DBにサンプリングする。 A sine wave signal and a cosine wave signal whose phases are different by 90 ° are respectively input to the A / D converter 30. The A / D converter 30 samples the sine wave-like signal and the cosine wave-like signal into the digital data DA and DB at predetermined cycles, respectively.
 以上説明したように、本実施形態に係るアクチュエータユニット100では、複数の第1アクチュエータ40が、第1階層F1に互いに近接して並列に配列され、複数の第2アクチュエータ50が、第2階層F2に互いに近接して並列に配列される。そして、これら第1、第2アクチュエータ40、50の軸方向同士が、互いに異なる方向に延びている。すなわち、第1、第2階層F1、F2が積層する厚さ方向から見て、第1アクチュエータ40と第2アクチュエータ50とは互いにオーバーラップして、略格子状に配置されている。 As described above, in the actuator unit 100 according to the present embodiment, the plurality of first actuators 40 are arranged in parallel close to each other in the first hierarchy F1, and the plurality of second actuators 50 are arranged in the second hierarchy F2. Are arranged close to each other in parallel. The axial directions of the first and second actuators 40 and 50 extend in different directions. That is, when viewed from the thickness direction in which the first and second layers F1 and F2 are stacked, the first actuator 40 and the second actuator 50 overlap each other and are arranged in a substantially lattice shape.
 そして、本実施形態に係るアクチュエータユニット100では、第1アクチュエータ40のロッド41と第2アクチュエータ50のフォーサ52とが1対1で連結されている。そのため、各第1アクチュエータ40のロッド41が往復移動する(すなわち、ロッド41がフォーサ42に対して伸長する又は収縮する)ことによって、各第2アクチュエータ50はロッド41の軸方向に沿って独立して移動できる。その結果、第2アクチュエータ50同士は互いの軸間ピッチが可変に設けられているので、一方の第2アクチュエータ50が、他方の第2アクチュエータ50の作業の完了を待つことなくロッド51を伸長・収縮させて、独立して作業を行える。 In the actuator unit 100 according to the present embodiment, the rod 41 of the first actuator 40 and the forcer 52 of the second actuator 50 are connected on a one-to-one basis. Therefore, when the rod 41 of each first actuator 40 reciprocates (that is, the rod 41 extends or contracts with respect to the forcer 42), each second actuator 50 becomes independent along the axial direction of the rod 41. Can move. As a result, since the second actuators 50 are provided with a variable inter-axis pitch, one of the second actuators 50 can extend the rod 51 without waiting for the completion of the work of the other second actuator 50. Shrink and work independently.
 よって、従来のように、各アクチュエータにおけるそれぞれの作業状況に対応して、アクチュエータユニット全体を順次移動させる必要がない。従って、作業が効率よく行われるとともに生産性が向上する。
 また、本実施形態に係るアクチュエータユニット100では、第1アクチュエータ40同士、及び、第2アクチュエータ50同士が確実に近接して配置される。従って、コンパクトな構成のアクチュエータユニット100が得られる。
Therefore, unlike the prior art, it is not necessary to sequentially move the entire actuator unit in accordance with the respective work situation in each actuator. Therefore, work is performed efficiently and productivity is improved.
Further, in the actuator unit 100 according to the present embodiment, the first actuators 40 and the second actuators 50 are reliably disposed close to each other. Therefore, the actuator unit 100 having a compact configuration can be obtained.
 また、本実施形態に係るアクチュエータユニット100では、第1、第2アクチュエータ40、50がリニアモータ11を用いて構成されている。そのため、アクチュエータユニット100の全体が確実に小型化される。また、本実施形態に係るアクチュエータユニット100では、リニアモータ11が用いられることにより、ロッド41、51のフォーサ42、52に対する往復移動が高精度に行われる。その結果、作業を高精度で行うことができる。 Further, in the actuator unit 100 according to the present embodiment, the first and second actuators 40 and 50 are configured using the linear motor 11. Therefore, the entire actuator unit 100 is reliably reduced in size. In the actuator unit 100 according to the present embodiment, the linear motor 11 is used, so that the reciprocation of the rods 41 and 51 with respect to the forcers 42 and 52 is performed with high accuracy. As a result, work can be performed with high accuracy.
 また、本実施形態に係るアクチュエータユニット100では、第1アクチュエータ40のロッド41が移動することにより、ロッド41に連結された第2アクチュエータ50が水平方向のうちY方向に移動する。そして、第2アクチュエータ50のロッド51が水平方向のうちY方向と直交するX方向に移動することにより、外部機器取付部65が電子部品等に対して作業を行う。そのため、第2アクチュエータ50のロッド51の先端部に配置された外部機器取付部65が作業を行う作業範囲が、水平面内において比較的自在に設定できるとともに、十分な作業範囲を確保することができる。 Also, in the actuator unit 100 according to the present embodiment, the rod 41 of the first actuator 40 moves, so that the second actuator 50 connected to the rod 41 moves in the Y direction among the horizontal directions. Then, the rod 51 of the second actuator 50 moves in the X direction that is orthogonal to the Y direction in the horizontal direction, so that the external device mounting portion 65 performs an operation on the electronic component or the like. Therefore, the work range in which the external device mounting portion 65 disposed at the tip of the rod 51 of the second actuator 50 works can be set relatively freely in the horizontal plane, and a sufficient work range can be secured. .
 また、本実施形態に係るアクチュエータユニット100では、第2アクチュエータ50のフォーサ52が、基材60上においてX方向に離間する一対の第1支持台61、61に支持されている。そのため、第2アクチュエータ50が、Y方向に沿って振れにくく、安定して移動する。従って、第2アクチュエータ50の外部機器取付部65の作業を高精度で行うことができる。 In the actuator unit 100 according to the present embodiment, the forcer 52 of the second actuator 50 is supported on the pair of first support bases 61 and 61 that are separated from each other in the X direction on the base material 60. Therefore, the second actuator 50 hardly moves along the Y direction and moves stably. Therefore, the work of the external device mounting portion 65 of the second actuator 50 can be performed with high accuracy.
 また、本実施形態に係るアクチュエータユニット100では、第1支持台61上において、レール62A、62Bが互いに並列に近接して配置され、スライダ63A、63B同士が互いに千鳥状に配置される。その結果、第2アクチュエータ50同士を近接して配置することができる。そのため、第2アクチュエータ50同士の軸間ピッチがより縮小するとともに、第2アクチュエータ50のY方向への移動範囲が拡大する。また、アクチュエータユニット100がさらに小型化する。 Further, in the actuator unit 100 according to the present embodiment, on the first support base 61, the rails 62A and 62B are arranged close to each other in parallel, and the sliders 63A and 63B are arranged in a staggered manner. As a result, the second actuators 50 can be arranged close to each other. Therefore, the inter-axis pitch between the second actuators 50 is further reduced, and the movement range of the second actuators 50 in the Y direction is expanded. Further, the actuator unit 100 is further downsized.
 尚、本発明は前述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
 例えば、前述の実施形態では、第1、第2アクチュエータ40、50がリニアモータ11を用いて構成されているが、この構成に限定されない。すなわち、第1、第2アクチュエータ40、50のうち、いずれかがリニアモータ11を用いて構成されてもよい。或いは、第1、第2アクチュエータ40、50がリニアモータ11を用いて構成される代わりに、駆動モータの回転運動を直線運動に変換して出力するリニアアクチュエータや、エアシリンダ等を用いて構成されても構わない。 For example, in the above-described embodiment, the first and second actuators 40 and 50 are configured using the linear motor 11, but the configuration is not limited thereto. That is, one of the first and second actuators 40 and 50 may be configured using the linear motor 11. Alternatively, instead of the first and second actuators 40 and 50 being configured using the linear motor 11, the first and second actuators 40 and 50 are configured using a linear actuator that converts the rotational motion of the drive motor into a linear motion and outputs the linear motion, an air cylinder, or the like. It doesn't matter.
 また、前述の実施形態では、第1アクチュエータ40の軸方向と第2アクチュエータ50の軸方向とが水平方向に沿ってそれぞれ延びているとともに、厚さ方向から見て互いに直交して配置されているが、この構成に限定されない。すなわち、第1アクチュエータ40の軸方向と第2アクチュエータ50の軸方向とは、互いに交差して配置されていればよく、直交に限定されない。ただし、動作の精度を十分に確保するためには、第1アクチュエータ40の軸方向と第2アクチュエータ50の軸方向とがなす角度が、前記厚さ方向から見て80°~100°の範囲内に設定されることが好ましい。 Further, in the above-described embodiment, the axial direction of the first actuator 40 and the axial direction of the second actuator 50 extend along the horizontal direction, and are arranged orthogonal to each other when viewed from the thickness direction. However, it is not limited to this configuration. That is, the axial direction of the first actuator 40 and the axial direction of the second actuator 50 need only be arranged so as to intersect with each other, and are not limited to being orthogonal. However, in order to ensure sufficient operation accuracy, the angle formed by the axial direction of the first actuator 40 and the axial direction of the second actuator 50 is within the range of 80 ° to 100 ° when viewed from the thickness direction. It is preferable to set to.
 また、前述の実施形態では、第2アクチュエータ50の前記他端に外部機器取付部65が設けられているが、この構成に限定されず、外部機器取付部65が前記一端に設けられてもよい。 In the above-described embodiment, the external device mounting portion 65 is provided at the other end of the second actuator 50. However, the configuration is not limited to this configuration, and the external device mounting portion 65 may be provided at the one end. .
 また、前述の実施形態では、外部機器取付部65として例えば電子部品等をハンドリングする吸着ノズルやレーザー加工用のプローブ等が用いられ、外部機器取付部65がZ方向に作業を施すように設定されたが、この構成に限定されない。すなわち、外部機器取付部65として、例えば、ロッドの軸方向を前記厚さ方向に沿って延ばす他のアクチュエータがさらに配設されてもよい。また、外部機器取付部65が、Z方向以外のX方向等に作業を施すように構成されてもよい。このように、種々様々な要求に対応可能である。 In the above-described embodiment, for example, a suction nozzle for handling an electronic component or the like, a probe for laser processing, or the like is used as the external device mounting portion 65, and the external device mounting portion 65 is set to perform work in the Z direction. However, it is not limited to this configuration. That is, as the external device mounting portion 65, for example, another actuator that extends the axial direction of the rod along the thickness direction may be further disposed. Further, the external device attachment portion 65 may be configured to perform work in the X direction or the like other than the Z direction. In this way, it is possible to respond to various requests.
 また、前述の実施形態では、基材60上に、第1アクチュエータ40A~40Dと第1アクチュエータ40E~40Hとが仮想線Vを挟んで線対称に配置されているが、この構成に限定されず、仮想線Vに関して非対称に配置されても構わない。 In the above-described embodiment, the first actuators 40A to 40D and the first actuators 40E to 40H are arranged on the base member 60 in line symmetry with the virtual line V interposed therebetween. However, the present invention is not limited to this configuration. , The virtual line V may be arranged asymmetrically.
 また、前述の実施形態では、第1アクチュエータ40A~40D(40E~40H)は、第1アクチュエータ40A(40E)から第1アクチュエータ40D(40H)へ向かうに従い段階的に仮想線Vに近づくように配置されているが、この構成に限定されない。すなわち、例えば、第1アクチュエータ40B(40F)と第1アクチュエータ40C(40G)とを互いに入れ替えて配置してもよく、またそれ以外の配置を有しても構わない。また、第1アクチュエータ40A~40Hに連結される第2アクチュエータ50A~50Hの配置が互いに入れ替えられても構わない。 In the above-described embodiment, the first actuators 40A to 40D (40E to 40H) are arranged so as to gradually approach the virtual line V from the first actuator 40A (40E) toward the first actuator 40D (40H). However, it is not limited to this configuration. That is, for example, the first actuator 40B (40F) and the first actuator 40C (40G) may be arranged with each other, or may have other arrangements. Further, the arrangement of the second actuators 50A to 50H connected to the first actuators 40A to 40H may be interchanged.
 また、前述の実施形態では、アクチュエータユニット100の基材60は、矩形平板状に形成されているが、この構成に限定されない。すなわち、基材60の一面に凹凸が形成されてもよい。この場合、第1アクチュエータ40が前記一面における凹部又は凸部のいずれに配置されても構わない。 In the above-described embodiment, the base member 60 of the actuator unit 100 is formed in a rectangular flat plate shape, but is not limited to this configuration. That is, unevenness may be formed on one surface of the substrate 60. In this case, the 1st actuator 40 may be arrange | positioned in any of the recessed part or convex part in the said one surface.
 また、前述の実施形態では、第1、第2アクチュエータ40、50のロッド41、51は、互いに直交して水平方向に沿うように延びているが、この構成に限定されない。すなわち、例えば、第1アクチュエータ40のロッド41が水平方向(Y方向)に沿うように延び、第2アクチュエータ50のロッド51が鉛直方向(X方向)に沿うように延びてもよい。この場合、第1アクチュエータ40のロッド41の移動により、ロッド41に連結された第2アクチュエータ50が水平方向に移動する。そして、第2アクチュエータ50のロッド51が鉛直方向に移動することにより、ロッド51の先端部に設けられた外部機器取付部65が、そのX方向に配置された電子部品等に対して加工、測定、ハンドリング等の作業を行うことができる。尚、この場合、前記厚さ方向(Z方向)が水平方向に設定される。 In the above-described embodiment, the rods 41 and 51 of the first and second actuators 40 and 50 extend so as to be orthogonal to each other along the horizontal direction. However, the present invention is not limited to this configuration. That is, for example, the rod 41 of the first actuator 40 may extend along the horizontal direction (Y direction), and the rod 51 of the second actuator 50 may extend along the vertical direction (X direction). In this case, the movement of the rod 41 of the first actuator 40 causes the second actuator 50 connected to the rod 41 to move in the horizontal direction. Then, when the rod 51 of the second actuator 50 moves in the vertical direction, the external device mounting portion 65 provided at the tip of the rod 51 is processed and measured with respect to the electronic component or the like arranged in the X direction. Work such as handling can be performed. In this case, the thickness direction (Z direction) is set in the horizontal direction.
 本発明によれば、効率よく作業を行うことが可能で、コンパクトな構成のアクチュエータが得られる。 According to the present invention, it is possible to perform work efficiently and to obtain an actuator having a compact configuration.
1、41、51…ロッド
2、42、52…フォーサ(支持体)
3…マグネット
4…コイル
11…リニアモータ
40…第1アクチュエータ(アクチュエータ)
50…第2アクチュエータ(アクチュエータ)
65…外部機器取付部
100…アクチュエータユニット
F1…第1階層
F2…第2階層
X…第2アクチュエータの軸方向
Y…第1アクチュエータの軸方向
Z…厚さ方向
1, 41, 51 ... Rod 2, 42, 52 ... Forcer (support)
3 ... magnet 4 ... coil 11 ... linear motor 40 ... first actuator (actuator)
50 ... Second actuator (actuator)
65 ... External device mounting portion 100 ... Actuator unit F1 ... First layer F2 ... Second layer X ... Axial direction Y of second actuator ... Axial direction Z of first actuator ... Thickness direction

Claims (7)

  1.  ロッドと前記ロッドをその軸方向に沿って相対移動可能に支持する支持体とを有するアクチュエータを複数備えたアクチュエータユニットであって、
     これらアクチュエータのうち複数の第1アクチュエータが、互いに並列に近接して配置されて第1階層が形成され、複数の第2アクチュエータが、互いに並列に近接して配置されて第2階層が形成され、前記第1、第2階層は前記第1アクチュエータの軸方向及び第2アクチュエータの軸方向に直交する厚さ方向に積層するように配置され、
     前記第1アクチュエータの軸方向と前記第2アクチュエータの軸方向とは、前記厚さ方向から見て互いに交差して延びており、
     前記第1アクチュエータのロッドと前記第2アクチュエータの支持体とが1対1で連結されているアクチュエータユニット。
    An actuator unit comprising a plurality of actuators having a rod and a support body that supports the rod so as to be relatively movable along the axial direction thereof,
    Among these actuators, a plurality of first actuators are arranged close to each other in parallel to form a first layer, a plurality of second actuators are arranged close to each other in parallel to form a second layer, The first and second layers are arranged so as to be stacked in a thickness direction orthogonal to the axial direction of the first actuator and the axial direction of the second actuator,
    The axial direction of the first actuator and the axial direction of the second actuator extend so as to intersect each other when viewed from the thickness direction,
    An actuator unit in which the rod of the first actuator and the support of the second actuator are connected one-to-one.
  2.  前記第1、第2アクチュエータでは、前記ロッドがマグネットを有し、前記支持体が前記ロッドを囲むコイルを有し、前記マグネットの磁界と前記コイルに流れる電流とによって前記ロッドを前記支持体に対して往復移動させるリニアモータが用いられる請求項1に記載のアクチュエータユニット。 In the first and second actuators, the rod has a magnet, the support has a coil surrounding the rod, and the rod is attached to the support by a magnetic field of the magnet and a current flowing through the coil. The actuator unit according to claim 1, wherein a linear motor that reciprocates is used.
  3.  前記第1、第2アクチュエータの前記ロッドは、互いに直交して水平方向に沿うように延びている請求項1に記載のアクチュエータユニット。 The actuator unit according to claim 1, wherein the rods of the first and second actuators extend so as to be orthogonal to each other and along a horizontal direction.
  4.  前記第1、第2アクチュエータの前記ロッドは、互いに直交して水平方向に沿うように延びている請求項2に記載のアクチュエータユニット。 3. The actuator unit according to claim 2, wherein the rods of the first and second actuators extend so as to be orthogonal to each other and along a horizontal direction.
  5.  前記第1アクチュエータの前記ロッドは水平方向に沿うように延び、前記第2アクチュエータの前記ロッドは鉛直方向に沿うように延びている請求項1に記載のアクチュエータユニット。 2. The actuator unit according to claim 1, wherein the rod of the first actuator extends along a horizontal direction, and the rod of the second actuator extends along a vertical direction.
  6.  前記第1アクチュエータの前記ロッドは水平方向に沿うように延び、前記第2アクチュエータの前記ロッドは鉛直方向に沿うように延びている請求項2に記載のアクチュエータユニット。 3. The actuator unit according to claim 2, wherein the rod of the first actuator extends along a horizontal direction, and the rod of the second actuator extends along a vertical direction.
  7.  前記第2アクチュエータの前記ロッドの先端部には、外部機器取付部が設けられている請求項1~6のいずれか一項に記載のアクチュエータユニット。 The actuator unit according to any one of claims 1 to 6, wherein an external device mounting portion is provided at a tip portion of the rod of the second actuator.
PCT/JP2011/059510 2010-04-23 2011-04-18 Actuator unit WO2011132632A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-100067 2010-04-23
JP2010100067A JP4838372B2 (en) 2010-04-23 2010-04-23 Actuator unit

Publications (1)

Publication Number Publication Date
WO2011132632A1 true WO2011132632A1 (en) 2011-10-27

Family

ID=44834151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059510 WO2011132632A1 (en) 2010-04-23 2011-04-18 Actuator unit

Country Status (3)

Country Link
JP (1) JP4838372B2 (en)
TW (1) TW201212492A (en)
WO (1) WO2011132632A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109664A (en) * 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd Xy robot and component-mounting apparatus
JP2007068326A (en) * 2005-08-31 2007-03-15 Thk Co Ltd Linear motor unit and method of combining same
JP2008017571A (en) * 2006-07-04 2008-01-24 Juki Corp Linear motor and parts mounter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028665A1 (en) * 1996-12-24 1998-07-02 Koninklijke Philips Electronics N.V. Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109664A (en) * 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd Xy robot and component-mounting apparatus
JP2007068326A (en) * 2005-08-31 2007-03-15 Thk Co Ltd Linear motor unit and method of combining same
JP2008017571A (en) * 2006-07-04 2008-01-24 Juki Corp Linear motor and parts mounter

Also Published As

Publication number Publication date
TW201212492A (en) 2012-03-16
JP4838372B2 (en) 2011-12-14
JP2011234436A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP6014040B2 (en) Linear motor device and control method
US8362720B2 (en) Linear motor position detection system
US10541596B2 (en) Displacement device
KR101679170B1 (en) Combined linear and rotary actuator system
JP5510338B2 (en) Linear motor
JP5443718B2 (en) Linear motor system and control device
EP1365498A2 (en) Voice coil linear actuator, apparatus using the actuator, and method for manufacturing the actuator
CN105634241A (en) Micro-nano positioning device and voice coil motor therefor
JP5646476B2 (en) Actuator
CN101610022B (en) Planar motor adopting groove-type coil
US7040481B1 (en) Apparatus, method of manufacturing and method of using a linear actuator
CN205544874U (en) Receive positioner a little and voice coil motor thereof
WO2011132632A1 (en) Actuator unit
JP4543375B2 (en) Moving coil linear motor and control method thereof
US11843300B2 (en) Linear motor, transport apparatus, and production apparatus
JP2007068326A (en) Linear motor unit and method of combining same
JP2010259205A (en) Linear motor and linear motor unit
US20240055970A1 (en) Linear motor, transport apparatus, and production apparatus
JP2008259374A (en) Linear motor, and stage apparatus
JP2009011157A (en) Linear motor unit and combination method of the same
CN114253004A (en) Linear two-dimensional translation normal stress type electromagnetic micro-motion platform
JPH01129751A (en) Positioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771967

Country of ref document: EP

Kind code of ref document: A1