WO2011132597A1 - アレイ状のキャパシタで構成されるインダクタ - Google Patents

アレイ状のキャパシタで構成されるインダクタ Download PDF

Info

Publication number
WO2011132597A1
WO2011132597A1 PCT/JP2011/059308 JP2011059308W WO2011132597A1 WO 2011132597 A1 WO2011132597 A1 WO 2011132597A1 JP 2011059308 W JP2011059308 W JP 2011059308W WO 2011132597 A1 WO2011132597 A1 WO 2011132597A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
unit
current
loop
magnetic flux
Prior art date
Application number
PCT/JP2011/059308
Other languages
English (en)
French (fr)
Inventor
サトヤジット サフ
アニルバン バンディオパダヤイ
藤田 大介
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to US13/641,764 priority Critical patent/US9019685B2/en
Priority to JP2012511630A priority patent/JP5804425B2/ja
Priority to EP11771932.8A priority patent/EP2562776B1/en
Publication of WO2011132597A1 publication Critical patent/WO2011132597A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations

Definitions

  • the present invention relates to an inductor composed of an arrayed capacitor. More specifically, the present invention is a device different from the existing three circuit elements, that is, a resistor, a capacitor, and an inductor. This relates to a fourth circuit element in which the charge accumulated in the one-to-one correspondence corresponds.
  • Non-Patent Document 1 The circuit elements reported so far in this context generate a voltage due to a change in magnetic flux, so far so far, the magnetic flux is not directly correlated with the amount of charge but is stored with the generated voltage.
  • the fourth circuit element H has been obtained by correlating the charges.
  • a device in which such a correlation is constructed is a primitive electrical device that cannot generate magnetic flux.
  • An example of such a device is a “memristor” (Patent Document 1, Non-Patent Document 2), which has recently raised an important issue.
  • Patent Document 1 Non-Patent Document 2
  • fourth circuit element of this kind a primary relationship is observed between the accumulated charge and resistance of the device. After all, the fourth circuit element reported so far does not satisfy the essential condition of the true fourth circuit element.
  • Another major problem with this approach is that all properties can be generated by a combination of L, C and R (Non-Patent Document 1). Therefore, the circuit element H defined in this way is not a basic element.
  • the fourth circuit element that has a primary relationship between the accumulated charge and the magnetic flux generated in the device has not yet been invented.
  • his paper in 1971 when Chua first proposed a fourth circuit element, is also incorrect. The reason is that in that paper he can use the combination of L, C and R to make any electrical characteristic of the fourth circuit element he proposes.
  • Non-Patent Document 3 discloses that his proposal in 1971 was not perfect.
  • Non-Patent Document 4 discloses that his proposal in 1971 was not perfect.
  • Chua devised two different devices, a mem-capacitor and a mem-inductor.
  • Chua mathematically formulated the memo capacitor, but does not propose a mathematical formulation of the memo inductor (Non-Patent Document 5).
  • Non-Patent Document 5 It should be noted that there may not be three types of fourth circuit elements, and there should be one, not three.
  • a fourth circuit element is invented 150 years after the first three circuit elements were invented, a new world of electronics would be opened. Unlike the recently reported invention claiming the memristor as the fourth circuit element, the true fourth circuit element H will directly correlate the magnetic flux with the amount of charge in the device. Furthermore, the electrical response of the true fourth circuit element H (hereinafter also referred to as device H) should be such that its characteristics cannot be reproduced by combining L, C and R. The architecture of the new device H should be designed so that it generates real magnetic flux and not the electrical equivalent of magnetic flux, which is a prerequisite for the fourth circuit element. It is.
  • Patent Document 3 Attempts have been made to fuse capacitors and inductors in order to obtain new electrical characteristics.
  • the concept uses conventional capacitors, and in the constructed architecture, no charge is used as a means to control the characteristics of the associated inductor. Therefore, no attempt has been made to construct hardware that adjusts the basic characteristics of the capacitor, that is, the basic characteristics of the inductor, that is, the current by the electric charge.
  • the internal charge storage of a capacitor cannot regulate the current flowing in the circuit unless the resistance of the capacitor itself and the connection path between the two capacitors change simultaneously as a result of the charge storage. Therefore, atomic scale control over the entire architecture is essential, but this is not possible unless an integrated architecture is designed that implements the same principles as atomic scale design.
  • V QFdDPzcZwbs Circuit elements with memory: memristors, memcapacitors andmeminductors http://arxiv.org/PS_cache/arxiv/pdf/0901/0901.3682v1.pdf
  • An object of the present invention is to design a realistic device capable of showing a one-to-one correspondence between accumulated charges in a device and generated magnetic flux.
  • the inventors of the present invention have created an electronic or photon device that provides unprecedented electrical characteristics.
  • This device firstly has a much faster response than any of the existing basic circuit elements, and secondly it provides a linear current output for the DC signal, ie a resistor for the DC signal.
  • the input AC signal is in the opposite phase, and fourth, the electric charge is accumulated and functions as an electromagnetic source.
  • a spiral capacitor-inductor device which is composed of an array of unit capacitors assembled in the form of a loop along its length.
  • an input signal is applied from one electrode end, and an output is taken from the other electrode end.
  • the charge stored in the capacitor increases or decreases as the bias applied to the device increases or decreases, which increases or decreases the loop current, respectively, and consequently changes the magnetic flux generated in the device. Since the charge / discharge of the capacitor decreases or increases the resistance of the current flowing through the path, and thereby increases or decreases the current flowing through the loop-shaped path, the magnetic flux generated in the device is adjusted.
  • This electronic or photon device is referred to as a “helical capacitor-inductor device” or simply “an inductor made from a capacitor”.
  • a spiral capacitor-inductor device provided with an array unit capacitor configured in a loop shape along a length direction, and an input signal is one of the array unit capacitors. Applied from one electrode end, the output is taken from the other electrode end, and the charge accumulated in the unit capacitor increases or decreases with increasing or decreasing bias applied to the device, The reduction increases or decreases the current in the loop, respectively, resulting in a helical capacitor-inductor device that changes the magnetic flux generated in the device.
  • the unit capacitor is a protein, an organic dye, an inorganic compound, a nanoparticle, a dendrimer, and an organometallic complex that can reversibly store and release charges or energy in the structure when given conditions are given from the outside.
  • the unit capacitor is arranged in a structure in which current flows through one or more closed loops along the length of the device, and the structure is one of the following two possible configurations: A and B Can be either one.
  • A. The unit capacitor is physically moved to change its relative position in a regular or random manner along the length of the device, effectively triggering a current flow in a loop and generating the magnetic flux.
  • B. One or more currents from one unit capacitor to another adjacent unit capacitor due to weak interaction, covalent bond, non-covalent bond, metal bond or non-metal bond, resulting in the length of the device
  • An assembly of unit capacitors that forms a predefined helical, disc-shaped, conical or random geometric structure that allows current to flow through the loop.
  • Charging or discharging the unit capacitor changes the conductivity of one or more of the closed loops, thereby increasing or decreasing the current flowing through the loop, thereby changing the magnetic flux generated in the device. Can do.
  • the charging or discharging of the material of the unit capacitor occurs in an orderly or disorderly manner in one or more loops of the entire device, the loop in which the charging or discharging occurs is selected in an orderly or randomly manner, and the magnetic flux is an electron It can only change when the number of loops that are charged in a change or when the current flowing through the device changes.
  • the contribution of the current due to charging and discharging of the material of the unit capacitor and the contribution of the current flowing in the loop jointly change the phase of the input signal under specific conditions, and the phase of the output AC signal of the device is changed to the one end And an input signal applied between the other end can be shifted by 180 ° in the positive or negative direction.
  • An example of the material of the unit capacitor is a microtubule containing an ⁇ heterodimer of tubulin, and electrodes as input and output of the spiral capacitor-inductor device are formed at each end of the microtubule. Can be.
  • the spiral capacitor-inductor has a direct current output within a specific range of an electric bias applied from the outside to the entire device, while having a capacitance characteristic and an inductive characteristic, and the device Operates as a resistor, and at low temperatures, the current-voltage characteristic appears as a hysteresis loop, and the device can be shorted when a specific AC signal is applied in addition to the DC bias.
  • the helical capacitor-inductor device is such that electronic and magnetic energy increases (stores) or decreases (emits) together as electromagnetic energy at a specific rate, so the length of the loop and the unit length within one loop By changing the number of unit capacitors per unit, the energy storage and supply capacity can be adjusted.
  • the spiral capacitor-inductor is configured such that the entire device becomes a ballistic conductor due to the presence of inductive characteristics of a loop current in a specific frequency range of an AC signal applied from the outside. As a result, in this frequency range, the device The input signal can be transmitted in a non-dissipative manner along the length of the signal.
  • the device When the spiral capacitor-inductor exceeds a certain threshold bias applied externally between the two electrodes, the device switches to a high conductive state, and when the threshold voltage is exceeded, the external bias increases. Continuing, the conductivity of the device can be kept unchanged.
  • the spiral capacitor-inductor can increase or decrease the rate of increase / decrease of the output current corresponding to the input pulse compared to the equivalent device composed of the other three basic circuit elements, ie, the resistor, the capacitor and the inductor.
  • the present invention actually realizes a fourth circuit element that has been lacking in the field of artificial electronics for many years since the conceptual inception of 1971.
  • the device of the present invention is a typical device that combines intrinsic capacitance and inductive characteristics in its architectural design, but nevertheless it provides a linear current output like a resistor. To do.
  • the device of the present invention is a typical battery that can store electromagnetic energy and supply it to an external load.
  • the device of the present invention is a device that shifts the phase of an input signal by 180 degrees. This is extremely important. This is because conventional devices cannot be relied upon when the noise exceeds 66% of the input signal, but similar devices connected in sequence can maintain the main signal even if there is noise. .
  • the device of the present invention is based on other basic electronic devices that cause phase changes, that is, resistors (note that actual resistance elements always include capacitance and inductance, so they also cause phase changes), capacitors and inductors. Device with fast response (see graph showing current decay in the body of FIG. 9 (not inset)).
  • the device of the present invention is a device capable of processing multi-level logic beyond a binary processing system.
  • FIG. 1 is a schematic diagram of a helical capacitor-inductor according to the present invention.
  • FIG. This is a two-terminal element, and the electric conductivity of the array-like path is changed by charging unit capacitors arranged in a loop. It is the figure which shows the schematic of the structure of a specific kind of unit capacitor, and an equivalent circuit design.
  • (A) is an example of a memory function further added to a unit capacitor
  • (b) is an example of a molecular material that can be a unit capacitor
  • (c) has a feature that the accumulated charge amount is stepwise with respect to the voltage applied to the device.
  • An example is shown in which a multilevel switch is formed in a unit capacitor. It is a figure explaining the loop in a device.
  • FIG. 3 is a schematic diagram showing a one-to-one correspondence between stored charge, electrical conductivity per unit length of device, and generated magnetic flux.
  • A shows an ideal relationship between the accumulated charge and the magnetic flux generated in the device, and (b) shows an example of an adjustable relationship between the accumulated charge and the magnetic flux generated in the device.
  • (A) is an example of a step-like feature found in the relationship between the number of loops, the length, or the conductivity per unit length and the magnetic flux generated in the device, and (b) is a random feature along the length of the device. The two cases of charging the unit capacitor at the position and random charging of the unit capacitor at different positions are illustrated to illustrate the difference between these two different properties of adjusting the magnetic flux generated in the device.
  • (A) is a figure which shows the output AC signal of the reverse phase which generate
  • (B) is a schematic diagram of the frequency band and the region where the device shows the phase transition of the input signal.
  • (C) is a diagram showing that the voltage-current characteristics of the device have hysteresis characteristics.
  • D is a figure which shows the linear current-voltage characteristic which can generate
  • A shows the increase and decay of the electrical and magnetic components of energy and the time or applied external bias.
  • B is a figure which shows the example of the change of the energy accumulate
  • (A) is a figure which shows the energy transport (ballistic state) without dissipation from one point to another point.
  • B) is a figure which shows a multilevel switch effect.
  • FIG. 4 is a diagram illustrating various current-voltage characteristics with different bias ranges, after a particular external bias is applied, these characteristics do not change, indicating that all current-voltage characteristics overlap each other.
  • FIG. 5 is a diagram comparing the rate of increase / decrease of current in the device and the rate of the other three basic electronic elements.
  • FIG. 5 is an AFM image of the device of the present invention actually constructed using microtubules.
  • FIG. 5 is an AFM image of the device of the present invention actually constructed using microtubules. It is a figure which shows the schematic diagram of the device of this invention actually comprised using the microtube, the schematic diagram of the structure for a current-voltage characteristic measurement, the AFM image of a part of device, and a measurement result.
  • FIG. 5 is a diagram comparing the rate of increase / decrease of current in the device and the rate of the other three basic electronic elements.
  • FIG. 5 is an AFM image of the device of the present invention actually constructed using microtubules.
  • FIG. 5 is a diagram showing the response of the device of the present invention actually constructed using microtubules and the time variation of the electrical and magnetic energy in the device.
  • Schematic diagram showing the structure of the microtubule used in the device of the present invention a diagram showing the phase relationship between the input signal and the employment signal of the device actually constructed using the microtubule, and the input / output frequencies of this device It is a figure which shows a characteristic, and a figure which shows the change of the magnetic flux with respect to the change of the electric charge amount of this device.
  • FIG. 6 is a diagram showing changes in threshold voltage and conductance along the length of a microtubule of a device of the present invention actually constructed using the microtubule.
  • the present invention is a spiral capacitor-inductor device provided with an array of unit capacitors arranged in the form of a loop along the length direction (FIG. 1), and an input signal is transmitted from one electrode end.
  • the output is taken from the other electrode end, and the charge stored in the capacitor increases or decreases faithfully with the increase or decrease of the bias applied to the device, and this increase or decrease is the loop current.
  • the loop current Are respectively increased or decreased, thereby changing the magnetic flux generated in the device.
  • the unit capacitor used to construct this electronic device can be made of any type of organic or inorganic material that can store electrons when external energy is applied to the system (FIG. 2). ).
  • a molecular system is particularly preferable as the unit capacitor. The reason is that this mechanism can be understood on an atomic scale, and electronic or photon characteristics can be adjusted from the atomic scale.
  • a unit capacitor is a single protein molecule, organic dye molecule, inorganic that can store and release charge or energy in its structure when a certain condition (applying a threshold pulse) is externally applied.
  • PSS sodium polystyrene sulfonate
  • biomolecules such as enzyme molecules
  • single vitamin C or DNA Is a unit Adjustment of the system's conductivity by reversible electron exchange capability and electron exchange or conformational changes (detailed below with reference to FIG. 2) are essential requirements. There is no restriction on the number of electrons in the unit capacitor, and the controllability of the system increases as the number of electrons involved in the change in conductivity increases.
  • the unit capacitor having the specific characteristics as described above can be configured by self-organization, or can be automatically guided or manually configured.
  • the structure must be such that current flows through one or more closed loops along the length.
  • This structure may be either of the following two feasible configurations A and B.
  • A. An assembly of unit capacitors that can be physically moved to change their relative position along the length of the device in an orderly or disorderly manner, effectively triggering current flow in the loop In order to generate magnetic flux, it does not have a defined structure (semi-solid or liquid state).
  • An assembly of unit capacitors in which a current flows from one unit capacitor to another adjacent unit capacitor by any one of weak interaction, covalent bond, non-covalent bond, metal bond and non-metal bond, The result is a defined structure that allows current to flow through one or more loops along the length of the device.
  • An ordered structure is not only a spiral assembly, but also a conical or random assembly that can generate non-uniform magnetic flux, even in the form of a divergent circular loop that results in a disk-shaped assembly. It may be in the form (FIG. 3).
  • One of the most important features of a spiral capacitor-inductor is the change in the conductivity of one or more closed loops by charging and discharging the unit capacitor by modulation of the applied electrical bias (frequency modulation or amplitude modulation) And thereby increasing or decreasing the current in the loop to change the magnetic flux generated in the device.
  • connecting individual unit capacitors is very important in constructing an effective path for electron transport. That is, it is necessary to design the molecule so that the unit capacitors can be appropriately connected.
  • the conductivity of the path should be adjustable by simply charging or discharging the capacitor. When these unit capacitors exchange charge, the conductivity of the individual capacitors increases or decreases, but if this change cannot mask the separation length resistance between the two unit capacitors, the conductivity of the loop does not change, Magnetic flux becomes independent of the amount of charge in the device. Appropriate conductive paths must be designed according to the electrical characteristics of the unit capacitors used.
  • the separation of two adjacent loops must be designed so that current does not leak from one loop to the other and damage the magnetic flux generation in the device.
  • the unit capacitor in the spiral capacitor-inductor When the external bias is changed in the positive or negative direction, the unit capacitor in the spiral capacitor-inductor accumulates or discharges charge. During this process, the selection of which unit capacitor first emits or accumulates electrons and which capacitor is the next is an important parameter.
  • the selection of such unit capacitors for electronic response can occur in order along the conductive path, or can occur randomly by randomly selecting unit capacitors in one or more loops throughout the device. (Fig. 5). These loops can also be chosen in order in this process or randomly from the entire length of the device.
  • Magnetic flux is the density of loops or the number of loops when the number of electronically charged loops changes, when the current flowing through the device changes, or when the number of effective loops carrying large currents changes. It only changes when the ratio between the total number and the device length is effectively changed.
  • Spiral Capacitor-Inductor device has a loop-type design for placement of unit capacitors, so that there are two current components in the device, especially the current contribution from charging and discharging the material of the unit capacitor and the current flowing through the loop. Can interact according to the law of vector addition while providing output. As a result, they together contribute to changing the phase of the input signal.
  • the vector addition suggests that the output of the AC signal is 180 ° out of phase in the positive or negative direction of the input signal applied between the two electrodes. This is because the capacitive current delays the phase of the AC signal by 90 degrees, and the inductor advances the phase of the AC signal by 90 degrees in the positive direction (FIG. 6).
  • Spiral capacitors-inductors have a direct current output that is linear within a specific range of electrical bias applied to the device externally, despite the presence of capacitive and inductive characteristics (Figure 4).
  • the device acts as a resistor. When a DC signal is present, it has a characteristic of resistance, so that an AC / DC operation can coexist with either a DC voltage source or a current source.
  • the device basically shorts when there is an AC signal. At low temperatures, the device exhibits a nearly perfect square hysteresis loop (FIG. 6), which converges with increasing temperature.
  • the electronic energy stored in the unit capacitor and the magnetic energy stored in the loop current field increase or decrease together (accumulate charge) as electromagnetic energy at a specific rate. (Charge is released) (FIG. 7). Therefore, by changing the loop perimeter and the number of unit capacitors per unit length in the loop, the energy storage and energy supply capability can be adjusted.
  • the entire device becomes a ballistic conductor in a certain frequency range of an AC signal applied from the outside (FIG. 8).
  • Such a phenomenon is caused by the presence of an inductive characteristic of the loop current that is known to generate resonance behavior.
  • the input signal is transmitted along the length of the device without dissipation.
  • the rate of increase and decay of the output current when an input pulse is applied to the device is composed of three other basic circuit elements that cause a phase change: a resistor, a capacitor and an inductor Faster than comparable devices (Figure 9).
  • FIG. 1 is a schematic diagram of an inductor adjusted by a capacitor according to the present invention.
  • This device is a supramolecular assembly of unit capacitors, shown as round balls 101, the entire assembly being sandwiched between two electrodes 104, 105 having outlets 102, 106 connected to external circuits, respectively.
  • the device generates a magnetic flux, and the lines of magnetic force are drawn with lines such as 103.
  • the supramolecular assembly is a spiral assembly in which capacitor units 101 are connected in a line.
  • FIG. 2 is a diagram showing a possible design of the unit capacitor.
  • the individual round balls of supramolecular assembly 201 may be single molecules or molecular assemblies.
  • these unit capacitors need not all follow the individual characteristics of conventional capacitors.
  • the conventional capacitor changes the phase of the input AC signal by 90 degrees, and the time increase or decrease of the current follows a well-defined exponential relationship.
  • a molecular material that can be a unit capacitor accumulates a finite amount of charge and does not release it until certain conditions are applied naturally or artificially. Examples of such systems include proteins, single molecule multilevel switches 202 and 205, reversibly redox active nanoparticles 203, dendrimer 204, polymer 206, DNA 207, and the like.
  • a unit capacitor is similar to a conventional capacitor only in that both store charge. However, the mechanism of charge accumulation is quite different. Instead of polarization at the dielectric surface, extra electrons physically change the molecular structure, creating a space suitable for accumulation in the local region of the molecule.
  • the charge accumulation in the unit capacitor is controlled by utilizing the feature that the charge accumulation changes stepwise as the applied bias increases as shown in FIG.
  • the unit capacitor holds the accumulated charge for a specific time. Unlike a conventional capacitor, the resistance of the unit capacitor decreases with the exchange of electric charges, and the unit capacitor easily passes through electrons or carriers. Unit capacitors also produce leakage currents like conventional capacitors, which are advantageous for the particular type of device dealt with here.
  • FIG. 3 (a) Aside from the spiral assembly, an example of a capacitor-tuned inductor device design according to the present invention is shown in FIG. 3 (a), but a two-dimensional device that facilitates embedding the device according to the present invention in an integrated circuit chip. It is possible to make it in the form.
  • a flat spiral assembly 303 (305) of unit capacitors is installed between the two electrodes 301 and 302. At the center of the assembly is one end of the spiral assembly where one electrode 304 is connected and the other electrode is connected to the outer end. Electrode 304 is embedded in the substrate, and one of the tools useful for constructing such an embedded electrode is electron beam lithography.
  • Both the hardware architecture of the present invention shown in FIG. 1 and FIG. 3 (a) generates a uniform magnetic flux. If a linear assembly of unit capacitors is placed on the virtual conical surface 308 and sandwiched between the electrodes 306 and 307, non-uniform magnetic flux is generated.
  • the loops of the spiral assembly can also be adjusted from triangle 309 to hexagon 310, or quite randomly, but to identify specific loops in the random case. It is necessary to draw a virtual dotted boundary 311 or 312 indicated by a dotted line. All of these paths are subject to one specific condition that a unit capacitor such as 313 reduces the resistance of path 314 between the two unit capacitors during the exchange of electrons.
  • a unit capacitor such as 313 reduces the resistance of path 314 between the two unit capacitors during the exchange of electrons.
  • FIG. 3C not only the height of the barrier changes, but also the change in gap width is observed. When an electron travels through a loop path, it encounters a series of potential wells with varying heights and widths.
  • All possible capacitive inductors described above exhibit a linear relationship 401 (FIG. 4 (a)) between the amount of charge in the device and the magnetic flux generated in the device. Since the unit capacitor is formed in a linear shape and the magnetic flux generated in the device depends on the number of loops, the magnetic flux does not change unless the loop is completed.
  • This gap 402 or 403 provides a threshold length for adjusting the magnetic flux generated in the device (FIG. 4B).
  • the path considered for electron transport here is a path with high conductivity, that is, a path formed by electronic charging of the unit capacitor. This charging can be performed in one of two possible modes: a mode 501 (FIG. 5A) for randomly accessing the assembly, or a mode 502 (FIG. 5B) for sequentially accessing one by one. Occur.
  • the AC signal sent to the device of the present invention in the range 602 higher than the threshold frequency 601 of the specific frequency band is shifted in phase by 180 degrees.
  • one of the curves represented by shading is input and the other is output, but either may be input.
  • the current-voltage characteristic of this device according to the invention is the hysteresis loop 603 shown in FIG. 6 (c).
  • the characteristics of the hysteresis loop depend on the electronic properties of the unit capacitor and the coupling between the two unit capacitors connected in a linear fashion. The hysteresis feature is only seen at low temperatures above a certain temperature at which the device begins to conduct.
  • the hysteresis loop When the temperature exceeds a specific temperature range, the hysteresis loop gradually converges to one line, and current-voltage characteristics like a semiconductor are observed (FIG. 6B).
  • the device For pure DC signals, the device conductivity is in the insulator state. However, when an alternating signal is applied, this same device is shorted and conducts like a metal, as shown at 604 in the graph of FIG. As soon as the added AC signal is removed, the device returns to the isolated state.
  • the capacitance and inductive characteristics of the device of the present invention are in contrast to the characteristics 701 of the conventional LC circuit shown on the upper side of FIG.
  • the energy of one component is used to increase the energy of the other component.
  • both the inductive energy and the electrostatic energy increase or decrease together for a specific length device, as shown by the characteristic 702 at the bottom of FIG.
  • the characteristic 702 at the bottom of FIG. As shown in the left graph of FIG. 7B, if the length of the unit capacitor assembly is increased and other parameters remain constant, the overall energy storage capacity of the device increases. Further, as shown in the graph on the right side of FIG. 7B, the diameter of the assembly of unit capacitors may be increased, and the density of the capacitors per unit length and the overall length of the assembly may be kept constant. The energy storage capacity increases.
  • the device of the present invention is close to zero resistance at a particular frequency, in which the entire energy packet does not lose any energy, as shown in the graph of FIG. To the other side. As shown by 802, 803, and 804 in the graph of FIG. 8B, various electrical conductivity can be obtained with this device by changing the length of the assembly.
  • the device of the present invention is also referred to below as H.
  • the response of the current to the electrical bias input increases (902) and decays (901) faster than L and C, as shown in FIG.
  • R, C, and L cannot produce the fourth circuit element H of the present invention, a simplified current representation for H is constructed for relative comparison.
  • the present inventor defines an essential fourth circuit element H that includes all aspects of the symmetry argument summarized in Table 1, and extracts tubulin from pig brain as experimental evidence.
  • Electronic reconstruction of a single microtubule composed of tubulin was performed by reconstructing the structure externally.
  • microtubules MT
  • helical molecular assemblies eg, helical supramolecules such as actin
  • a DC signal, an AC signal (sine wave), or a pulse signal is used as an input signal.
  • a DC signal is used for energy storage
  • an AC signal is used for power transmission.
  • the pulse signal can be used in cases such as application to a nonvolatile digital memory.
  • Cytoskeleton (Denver, Colorado, USA) extracted microtubules from pig brain. Purified MT subunit (tubulin) was stored at ⁇ 80 ° C. In order to polymerize tubulin into microtubules of length 6.5 ⁇ m, microtubule cushion buffer (60% v / v glycerol, 80 mM PIPES ((piperazine-1,4-bis (2-ethanesulfonic acid))) pH 6.
  • this solution was diluted 8 times using a microtubule cushion buffer and Paclitaxal DMSO solution, dropped onto a Si (100) substrate and a comb electrode inclined at 45 °, and at ⁇ 20 ° C. Left overnight. An electric field was applied to the substrate, and MTs were arranged in parallel. Excess MT solution was removed from the substrate using filter paper (Whatman). Next, the substrate was immersed in General Tubulin Buffer and sprayed with N 2 to dry again in the same manner. This process was repeated twice. The substrate was placed in a refrigerator for 3 hours to partially dry the surface.
  • Two gold electrode pads were prepared on both ends of a single-stranded microtubule, and a device was constructed by electron beam lithography. The electrodes at both ends were connected to an external electronic characteristic analysis circuit.
  • the device H is a helical nanotube / nanowire that accumulates / discharges charge like the capacitor C, and a helical current like the inductor L generates magnetic flux.
  • the inductor L and the capacitor C increase and decrease together inside, the ideal device H has a remarkably linear DC output. It is an accurate magnetic flux regulator for purely geometric reasons, and the phase of the input AC signal is shifted by the coexistence of the inductor L and the capacitor C.
  • Device H may initiate ballistic transport. It is speculated that the complete structure becomes a coherent system in a specific field.
  • the microtubule MT regulates the accumulation / transport of electromagnetic energy by changing its length, giving the biological system significant phase shift signal conversion capability.
  • a ball-shaped object represents a capacitor that accumulates electric charges and forms a conductive solenoid. During the time interval ⁇ t, these capacitors accumulate an amount of charge by ⁇ Q and the magnetic flux increases by ⁇ .
  • E + B a region where charges are accumulated
  • E a region where charges are not accumulated
  • FIG. 12B shows a configuration of an experiment for measuring the current-voltage characteristics of the device H. In pulse mode measurement, the voltage source and ammeter are replaced with a function generator and an oscilloscope.
  • FIG. 12C is an AFM image of MT on the silicon substrate attached to the edge of the gold electrode.
  • the lower side of the graph of FIG. 13A shows a rectangular input pulse array having an amplitude of 5 V (> V th ), a width of 1 ⁇ sec, and a frequency of 100 KHz.
  • This pulse array produced a similar rectangular output array shown at the top of the graph. Both the input signal and the output signal were detected with a 47 ⁇ resistor. The gap between two adjacent rectangular pulses was 4 ⁇ sec.
  • the graph on the left side of FIG. 13B shows an increase in output over time for an input rectangular pulse array with an amplitude of 5 V, a width of 250 nsec, and a frequency of 1 MHz.
  • FIG. 13 (b) shows the attenuation of this output at the end of the input pulse.
  • the upper and lower graphs in FIG. 13C represent the increase and attenuation of the electric energy and magnetic energy (represented by E and M, respectively) in the LC parallel connection circuit and H on the time axis.
  • the decreasing curve represents the electrical energy E
  • the increasing curve represents the magnetic energy M.
  • FIG. 13D is a graph for comparison of increase and decay rates on the time axis among H, L, and C.
  • i H is the current value of 63% expressed as a ratio to the saturation value by the time when the current of L or C reaches 8% of the saturation value. To reach 98%.
  • FIG. 14A shows a diagram conceptually showing the microtubule structure.
  • the outer layer CT is C-terminated (C termini: terminated with a hydrocarbon (alkyl) chain, with a negative charge at the end), the middle layer MT is a tubulin assembly, and the center WT is a water column.
  • FIG. 14B shows an input signal and an output signal of the device H. As can be seen from this graph, the output signal has a phase difference of 180 degrees from the input AC signal having a frequency of 5 MHz, and has a peak-peak amplitude of 400 mV at a specific point on the microtubule.
  • FIG. 14C shows the ratio of the output power transmitted to the input power.
  • FIG. 15A shows changes in threshold voltage plotted along the length direction of microtubules (represented by a linear length).
  • Current-voltage curve IV was measured at the top of individual rings starting from the gold electrode-MT junction to the far end to avoid charging the entire MT.
  • the inset in FIG. 15A shows a microtubule. In the figure, 21 relatively bright portions indicate ⁇ rings.
  • a step change in increments of 1.4 ⁇ 10 ⁇ 8 T in the magnetic field appears for each ⁇ ring with an 8 nm period along the 168 nm MT chain at the gold-MT junction.
  • FIG. 15 (b) shows the conductance along the length of the microtubule at -0.5V. This length, or H- 1, is plotted on a logarithmic scale.
  • Unit capacitor 101 Unit capacitor 102: Unit capacitor assembly 305: Disc-shaped present invention is integrated chip type 308: Disc-shaped present invention is a three-dimensional cone type

Abstract

 第四の回路素子として、長さ方向に沿ってループの形態に構成されたアレイ状の単位キャパシタ101を設けたらせん状キャパシタ-インダクタデバイスが与えられる。ここで、入力信号がアレイ状単位キャパシタの一方の端から印加され、出力が他方の端から取り出され、単位キャパシタ内に蓄積される電荷がデバイスに印加されるバイアスの増大または減少に合わせて増加または減少し、電荷の増大または減少がループの電流をそれぞれ増大または減少させ、その結果、デバイス内に発生する磁束103を変化させる。これにより、蓄積された電荷で磁束の大きさが決まる、インダクタ、キャパシタ、抵抗に次ぐ第四の回路素子が提供される。

Description

アレイ状のキャパシタで構成されるインダクタ
 本発明は、アレイ状のキャパシタで構成されるインダクタに関し、より詳しくは、既存の3つの回路素子、即ち抵抗、キャパシタおよびインダクタとは異なるデバイスであり、このデバイス内で発生される磁束とデバイス内に蓄積される電荷が1対1で対応する第四の回路素子に関する。
 約150年前に、抵抗(R)、キャパシタ(C)およびインダクタ(L)の3つの回路素子が発明された。電荷、電圧、電流および磁束が対で変化して、抵抗(R)、キャパシタ(C)およびインダクタ(L)を定義する。これらの定義の中で、電荷、電圧、電流および磁束は、電荷と磁束を除き、夫々2回出現する。1971年に、Leon O. Chuaが電荷と磁束を相関させることによって第四の回路素子を提案した(非特許文献1)。これに関連してこれまで報告されてきた回路素子は磁束の変化によって電圧が発生するため、今までのところは、磁束を電荷の量に直接相関させるのではなく、発生された電圧と蓄積された電荷を相関させたものが第四の回路素子Hとされてきた。このような相関関係が構築されたデバイスは、磁束を発生できない原始的な電気デバイスである。こうしたデバイスの一例が「メモリスタ(memristor)」であり(特許文献1、非特許文献2)、これが、近年、重要な論点を提起した。この種のいわゆる第四の回路素子では、デバイスの蓄積電荷と抵抗との間に一次関係が見られる。結局、これまで報告されてきた第四の回路素子は真の第四の回路素子の必須条件は満たされていない。このアプローチの別の大きな問題は、すべての特性が、L、CおよびRの組合せで生成できることである(非特許文献1)。従って、このようにして定義された回路素子Hは基本的素子ではない。換言すれば、蓄積された電荷とデバイス内に発生した磁束との間に一次関係のある第四の回路素子はまだ発明されていないのである。この点に関して、Chuaが初めて第四の回路素子を提案した1971年の彼の論文もまた正しくない。その理由は、その論文において、彼がL、CおよびRの組み合わせを使用して彼が提案する第四の回路素子の任意の電気的特性を作ることができているからである。
 最近では、いわゆる「メモリスタ」は40年近くもの間存在していることがはっきりしている。略半世紀の間に出版された数多くの論文は、現在、ウェキペディアに掲載されている(非特許文献3)。同時に、Chuaも1971年の自分の提案が完全なものではなかったと認めている(非特許文献4)。第四の回路素子に関する提案を一般化するために、Chuaはさらに2つの異なるデバイス、メモキャパシタ(mem-capacitor)とメモインダクタ(mem-inductor)を案出した。Chuaはメモキャパシタを数学的に定式化したが、メモインダクタの数学的定式化は提案していない(非特許文献5)。第四の回路素子が3種類存在することはありえず、3つではなく1つであるべきであることに注意しなければならない。Chuaは、メモキャパシタとメモインダクタを現実に作製することは次の課題であろうと提議している。本発明者はここで、第四の回路素子を現実に作製するために、Chuaが提案したものとはまったく異なる議論を採用する。
 最初の3つの回路素子が発明されてから150年後に第四の回路素子が発明されれば、新しいエレクトロニクスの世界が開かれることだろう。メモリスタを第四の回路素子と主張する最近報告された発明とは異なり、真の第四の回路素子Hは、磁束をデバイス内の電荷の量に直接相関させるだろう。さらに、真の第四の回路素子H(以下、デバイスHとも称する)による電気的な応答は、L、CおよびRを組み合わせたのではその特性を再現できないようなものであるはずである。新たなデバイスHのアーキテクチャは、本当の磁束を発生させるのであって、磁束と電気的に同等のものを発生させるのではないような設計とすべきであり、これが第四の回路素子の必須条件である。
 新規な電気的特性を得るために、キャパシタとインダクタを融合させる試みがなされてきた(特許文献3)。しかしながら、その概念は従来のキャパシタを用いており、構築されたアーキテクチャでは、電荷は関連するインダクタの特性を制御する手段としては一切用いられない。したがって、キャパシタの基本的特性、つまり電荷によってインダクタの基本的特性、つまり電流を調整するようなハードウェアの構築は試みられていない。キャパシタの内部電荷蓄積は、キャパシタそのものの抵抗と2つのキャパシタの間の接続経路が電荷の蓄積の結果としてそれと同時に変化しないかぎり、回路内を流れる電流を調整できない。したがって、アーキテクチャ全体に対する原子規模の制御が不可欠であるが、これは、原子規模の設計と同じ原理を実現する統合されたアーキテクチャが設計されない限り不可能である。実効的に蓄積電荷と電束の1対1対応を示すデバイスはあるものの、上記のデバイスは現在までに実現されていない。
米国公開特許公報2009/0184397 米国公開特許公報2009/0163826 米国公開特許公報2002/0118077 米国公開特許公報2008/0316677
Chua, L. O., Memristor-missing circuit element. IEEE Transactions onCircuit Theory CT18, 507-519 (1971). Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S., Themissing memristor found. Nature 453, 80-83 (2008). http://en.wikipedia.org/wiki/Memristor Memristor and memristive state symposium 21 november 2008http://www.youtube.com/watch?v=QFdDPzcZwbs Circuit elements with memory: memristors, memcapacitors andmeminductors http://arxiv.org/PS_cache/arxiv/pdf/0901/0901.3682v1.pdf
 本発明の課題は、デバイス内の蓄積電荷と発生された磁束の1対1対応を示すことのできる、現実的なデバイスを設計することである。
 本発明の発明者は、これまでにない電気特性を提供する電子または光子デバイスを創案した。このデバイスは、第一に、その応答は既存の基本的回路素子のいずれよりもはるかに速く、第二に、直流信号に対して線形の電流出力を供給する、つまり直流信号に対して抵抗器として機能し、第三に、入力交流信号を逆位相にし、第四に、電荷を蓄積し、電磁源として機能する。
 まず、本発明によれば、長さ方向に沿ってループの形態に集合された単位キャパシタのアレイで構成されたらせん状キャパシタ-インダクタデバイスが提供される。ここにおいて、入力信号が一方の電極端から印加され、出力がもう一方の電極端から取り出される。キャパシタ内に蓄積される電荷はこのデバイスに印加されるバイアスの増大または減少に合わせて増大または減少し、これがループ電流をそれぞれ増大または減少させ、その結果、デバイス内に発生する磁束を変化させる。
 キャパシタの充放電によって、経路を流れる電流の抵抗が減少または増大し、それによってループ状の経路を流れる電流が増大または減少して、デバイス内に発生する磁束が調整されることから、本明細書ではこの電子または光子デバイスを「らせん状キャパシタ-インダクタデバイス」または、単に「キャパシタから作られたインダクタ」と呼ぶ。
 本発明の一側面によれば、長さ方向に沿ってループの形態に構成されたアレイ状単位キャパシタを設けたらせん状キャパシタ-インダクタデバイスであって、入力信号が前記アレイ状単位キャパシタの一方の電極端から印加され、出力が他方の電極端から取り出され、前記単位キャパシタ内に蓄積される電荷が前記デバイスに印加されるバイアスの増大または減少に合わせて増加または減少し、前記電荷の増大または減少が前記ループの電流をそれぞれ増大または減少させ、その結果、前記デバイス内に発生する磁束を変化させるらせん状キャパシタ-インダクタデバイスが実現する。
 前記単位キャパシタは、外部から所定の条件が与えられたときにその構造内に電荷またはエネルギーを可逆的に蓄積・放出できる、たんぱく質、有機染料、無機合成物、ナノ粒子、デンドリマ、有機金属複合体、ポリマ、生体分子からなる材料のうちのいずれか1つまたは複数の組み合わせを使って構築されることができる。
 前記単位キャパシタが、前記デバイスの長さ方向に沿って1つまたは複数の閉ループの中を電流が流れるような構造に配置され、前記構造が下記AとBの2つの実現可能な構成のうちのいずれか一方であることができる。
  A.前記単位キャパシタが物理的に移動して、前記デバイスの長さ方向に沿って秩序的または無秩序的にその相対的位置を変化させ、ループ内の電流の流れを有効にトリガし前記磁束を発生させる単位キャパシタの組立体。
  B.弱い相互作用、共有結合、非共有結合、金属結合または非金属結合によって、1つの単位キャパシタから隣接する他の単位キャパシタに電流が流れ、その結果、デバイスの長さ方向に沿った1つまたは複数の前記ループに電流が流れるような定義済みのらせん状、ディスク型、円錐形またはランダムな幾何学構造を形成する、単位キャパシタの組立体。
 前記単位キャパシタの充電または放電によって1つまたは複数の前記閉ループの導電率が変化し、それによって前記ループ内を流れる電流を増大または減少させ、その結果、前記デバイス内に発生する磁束を変化させることができる。
 前記単位キャパシタの材料の充電または放電は前記デバイス全体の1つまたは複数のループの中で秩序的または無秩序的に起こり、前記充電または放電の起こるループが秩序的またはランダムに選択され、磁束は電子的に充電されたループの個数が変化したときまたは前記デバイス内を流れる電流が変化したときにのみ変化することができる。
 前記単位キャパシタの材料の充電と放電による電流の寄与と前記ループ内を流れる電流の寄与が特定の条件において共同して入力信号の位相を変化させ、デバイスの出力交流信号の位相を前記一方の端と前記他方の端の間に印加される入力信号から正または負の方向に180°ずらすことができる。
 前記単位キャパシタの前記材料の例は、チューブリンのαβヘテロ二量体を含む微小管であり、前記微小管の各端に前記らせん状キャパシタ-インダクタデバイスの入力及び出力としての電極が形成されているようにできる。
 前記らせん状キャパシタ-インダクタは、静電容量特性および誘導特性が存在しながら、前記デバイス全体に外部から印加される電気バイアスの特定の範囲内で直流電流出力が線形であり、前記範囲において前記デバイスは抵抗として動作し、低温では電流電圧特性がヒステリシスループとして現れ、直流バイアスに加えて特定の交流信号が印加されると、前記デバイスは短絡するようにできる。
 前記らせん状キャパシタ-インダクタデバイスは、電子および磁気エネルギーが特定のレートで電磁エネルギーとして共に増大(蓄積され)、または減少し(放出され)、したがって前記ループの長さと1つのループ内の単位長さあたりの単位キャパシタの数を変化させることによって、エネルギーの蓄積および供給能力を調整するようにできる。
 前記らせん状キャパシタ-インダクタは、外部から印加される交流信号の特定の周波数範囲において、ループ電流の誘導特性の存在によって前記デバイス全体がバリスティック導電体となり、その結果、この周波数範囲において、前記デバイスの長さに沿って入力信号が散逸のない状態で伝達されるようにできる。
 前記らせん状キャパシタ-インダクタは、前記2つの電極の間に外部から印加される特定の閾値バイアスを超えると、前記デバイスは高い導電状態に切り換わり、前記閾値電圧を超えると、外部バイアスが増大し続けても、前記デバイスの導電率は変化しないようにできる。
 前記らせん状キャパシタ-インダクタは、入力パルスに対応する出力電流の増減のレートが、他の3つの基本回路素子、即ち抵抗、キャパシタおよびインダクタで構成された同等のデバイスより速いようにできる。
 本発明の効果を以下に列挙する。
1.本発明は、1971年の概念上の発端以来長年にわたって人工電子機器分野で欠けていた第四の回路素子を現実に実現する。
2.本発明により、特定の周波数範囲で散逸のない信号を送信することが可能となる。これは、室温の雰囲気中でバリスティック輸送を実現する特異なデバイスである。
3.本発明のデバイスは、そのアーキテクチャ設計の中に本来的な静電容量特性及び誘導特性を併せ持つ典型的なデバイスであるが、それにも関わらず、このデバイスは抵抗のように線形の電流出力を供給する。
4.本発明のデバイスは、電磁エネルギーを蓄積し、外部負荷にこれを供給できる典型的なバッテリである。
5.本発明のデバイスは、入力信号の位相を180度ずらすデバイスである。これはきわめて重要である。それは、ノイズが入力信号の66%を超えるマトリクスになると、従来のデバイスは信頼できないが、同じようなデバイスを順次連結したものは、ノイズがあっても主要信号を維持して処理できるからである。
6.本発明のデバイスは、他の位相変化を起こす基本的電子デバイス、即ち抵抗(現実の抵抗素子には必ずキャパシタンス、インダクタンス分が含まれるため、やはり位相変化を引き起こすことに注意)、キャパシタおよびインダクタより応答が速いデバイスである(図9の本体(差し込み図でないもの)における電流の減衰を示すグラフを参照)。
7.本発明のデバイスは、二値処理システムを超えて、多レベル論理を処理できるデバイスである。
本発明によるらせん状キャパシタ-インダクタの概略図である。これは2端子素子であり、ループ状に配置された単位キャパシタの充電によって、アレイ状の経路の導電率が変化する。 特定の種類の単位キャパシタの構成の概略図および等価回路設計を示す図である。(a)は単位キャパシタにさらに加わったメモリ機能の例、(b)は単位キャパシタとなりうる分子材料の例、(c)はデバイスに印加される電圧に関して蓄積電荷量が階段状の特徴を有し、単位キャパシタ中でそれによって多レベルスイッチが形成される例を示す。 デバイス内のループを説明する図である。(a)は特定のループを構成するためのランダム経路の形状の閉ループあるいは単位キャパシタが形成する幾何学的に対称のループの例、(b)は実効ループ電流における正または負のドリフトを得る、単位キャパシタの力学的運動の例、(c)は単位キャパシタの充電により、ループ内の隣接する単位キャパシタの間の結合が変化し、それによって単位長さあたりの導電率が変化することを示す。 蓄積電荷、デバイスの単位長さあたりの導電率と発生する磁束との間の1対1の対応を示す概略図である。(a)は蓄積電荷とデバイス内に発生した磁束の理想関係、(b)は蓄積電荷とデバイス内に発生した磁束の調整可能な関係の例を示す。 顕著に異なるアーキテクチャにおける単位キャパシタの充電効果を示す図である。(a)はループの数、長さ、または単位長さあたりの導電率とデバイス内に発生する磁束の関係に見られる階段状の特徴の例、(b)はデバイスの長さに沿ったランダムの位置における単位キャパシタの充電と、異なる位置での単位キャパシタのランダムな充電の2つの場合を図示して、デバイス内に発生する磁束を調整するこれら2つの異なる性質の違いを示す。 (a)は特定の周波数での入力およびデバイス内に発生した逆位相の出力交流信号を示す図である。(b)は周波数帯域と、デバイスが入力信号の相転移を示す領域の概略図である。(c)はデバイスの電圧-電流特性がヒステリシス特性を持っていることを示す図である。(d)は電圧範囲の特定部分で発生しうる線形の電流電圧特性を示す図である。 (a)はエネルギーの電気及び磁気成分の増大と減衰および時間または印加された外部バイアスを示す図である。(b)はデバイスの長さ、ループの径、単位長さあたりのキャパシタとデバイス内に蓄積されるエネルギーの変化の例を示す図である。 (a)は1つの点から別の点への散逸のないエネルギー輸送(バリスティック状態)を示す図である。(b)は多レベルスイッチ効果を示す図。異なるバイアス範囲によるさまざまな電流電圧特性を示す図であり、特定の外部バイアスが印加された後、これらの特性は変化せず、すべての電流電圧特性が相互に重なり合うことを示している。 デバイス内の電流の増減レートと、このレートを既存の他の3つの基本的電子素子のレートと比較した図である。 微小管を使用して実際に構成された本発明のデバイスのAFM像である。 微小管を使用して実際に構成された本発明のデバイスのAFM像である。 微小管を使用して実際に構成された本発明のデバイスの模式図、電流-電圧特性測定のための構成の模式図、デバイスの一部分のAFM像、及び測定結果を示す図である。 微小管を使用して実際に構成された本発明のデバイスの派する応答及びデバイス内の電気エネルギー及び磁気エネルギーの時間変化を示す図である。 本発明のデバイスに使用された微小管の構造を示す模式図、微小管を使用して実際に構成されたデバイスの入力信号と出職信号の位相関係を示す図、このデバイスの入出力の周波数特性を示す図、及びこのデバイスの電荷量の変化に対する磁束の変化を示す図である。 微小管を使用して実際に構成された本発明のデバイスの微小管の長さに沿った閾値電圧とコンダクタンスの変化を示す図である。
 以下に、本発明を更に詳細に説明する。
 前述のように、本発明は、長さ方向に沿ってループの形態に構成された単位キャパシタのアレイを設けたらせん状キャパシタ-インダクタデバイスであり(図1)、入力信号が一方の電極端から印加され、出力がもう一方の電極端から取り出され、キャパシタ内に蓄積される電荷は、デバイスに印加されるバイアスの増大または減少に忠実に合わせて増大または減少し、この増大、減少がループ電流をそれぞれ増大または減少させ、その結果、デバイス内に発生する磁束を変化させる。
 この電子デバイスを構成するために使用される単位キャパシタは、外部エネルギーがシステムに印加されたときに電子を蓄積できるものであれば、どのような種類の有機または無機材料からでも作製できる(図2)。単位キャパシタとしては特に分子システムが好ましい。その理由は、このメカニズムを原子規模で理解することができ、電子的または光子的な特性を原子規模から調整できるからである。単位キャパシタは、特定の条件(閾値パルスの印加)が外部からもたらされた場合に、その構造内に電荷またはエネルギーを蓄積し、これを放出できる、単一のたんぱく質分子、有機染料分子、無機複合物、単一のナノ粒子、デンドリマの単一ユニット、有機金属錯体、PSS(ポリスチレンスルホン酸ナトリウム)のようなポリマビーズ、酵素分子のような単一の生体分子、あるいはビタミンCまたはDNAの単一ユニットである。可逆的電子交換能力と、電子交換または立体構造変化(以下で図2を参照して詳述する)によるシステムの導電率の調整は必須の要件である。単位キャパシタ内の電子数の制限条件はなく、導電率の変化に関わる電子の数が増えるとシステムの制御性が増す。
 らせん状キャパシタ-インダクタの内部では、上述のような特定の特性を有する単位キャパシタが自己組織化によって自ら構成するか、あるいは自動的に導かれ、または手作業で構成されることによって、デバイスの長さ方向に沿った1つまたは複数の閉ループの中を電流が流れるような構造にならなければならない。この構造は、次の2つの実現可能な構成A、Bのいずれでもよい。
  A.単位キャパシタの組立体であって、単位キャパシタが物理的に移動して、デバイスの長さ方向に沿って秩序だってあるいは無秩序にその相対的位置を変化させ、ループ内の電流の流れを有効にトリガし、磁束を発生させるため、確定した構造を持っていないもの(半固体または液体状態)。
  B.単位キャパシタの組立体であって、弱い相互作用、共有結合、非共有結合、金属結合および非金属結合のうちのいずれかによって、1つの単位キャパシタから隣接する他の単位キャパシタに電流が流れ、その結果、デバイスの長さ方向に沿った1つまたは複数のループに電流が流れるような、確定した構造を形成するもの。
 秩序のある構造は、らせん状組立体だけでなく、円盤型の組立体になるような末広がりの円形のループの形態でも、不均一な磁束を生成することがある円錐形またはランダムな組立体の形態でもよい(図3)。
 らせん状キャパシタ-インダクタの最も重要な特徴の1つは、印加される電気的バイアスの変調(周波数変調あるいは振幅変調)による単位キャパシタの充電と放電によって、1つまたは複数の閉ループの導電率を変化させ、それによってループ内の電流を増大または減少させて、デバイス内に生成される磁束を変化させることである。
 したがって、個々の単位キャパシタを連結することが、電子輸送の実効的な経路を構築する上で非常に重要である。すなわち、単位キャパシタの間が適切に連結できるように分子を設計することが必要である。経路の導電率は、単にキャパシタを充電または放電するだけで調整できるべきである。これらの単位キャパシタが電荷を交換すると個々のキャパシタの導電率は増加あるいは減少するが、この変化が2つの単位キャパシタの間の分離長の抵抗をマスクできないと、ループの導電率は変化せず、磁束はデバイス内の電荷の量と無関係となってしまう。使用される単位キャパシタの電気的特徴に従って適当な導電経路を設計しなければならない。
 2つの隣接するループの分離は、一方のループから他方のループへと電流がリークして、デバイス内の磁束の発生を損なわないように設計しなければならない。
 外部のバイアスを正または負の方向に変化させると、らせん状キャパシタ-インダクタの中にある単位キャパシタは電荷を蓄積または放出する。このプロセス中、最初に電子を放出または蓄積するのはどの単位キャパシタで、次はどのキャパシタかの選択は重要なパラメータである。電子的応答に関するこのような単位キャパシタの選択は、導電経路に沿って1つずつ秩序だって起こりえるし、あるいはデバイス全体の1つまたは複数のループの単位キャパシタをランダムに選択することによって無秩序に起こりえる(図5)。これらのループもまた、このプロセスにおいて秩序だって、あるいはデバイスの長さ全体からランダムに選択され得る。磁束は、電子的に充電されたループの個数が変化したとき、またはデバイスの中を流れる電流が変化したとき、大きな電流を流している実効ループの数が変化したとき、ループの密度またはループの総数とデバイスの長さの比が実効的に変化したときにのみ変化する。
 らせん状キャパシタ-インダクタデバイス内の単位キャパシタの配置をループ型設計とすることにより、デバイス内に2つの電流成分、とりわけ単位キャパシタの材料の充電と放電による電流の寄与とループ内を流れる電流の寄与が、出力を供給しながらベクトル加法の法則に従って相互作用できるようになる。その結果、これらが一緒に入力信号の位相を変化させることに寄与する。ベクトル加法から、交流信号の出力が2つの電極の間に印加される入力信号の正の方向または負の方向に180°位相のずれたものとなることが示唆される。それは、容量性の電流は交流信号の位相を90度遅らせ、インダクタは交流信号の位相を正の方向に90度進めるからである(図6)。
 らせん状キャパシタ-インダクタは、容量特性および誘導性特性が存在するにもかかわらず、デバイスに外部から印加される電気バイアスの特定の範囲内で直流電流出力が線形であり(図4)、この領域でデバイスは抵抗として動作する。直流信号が存在する場合は抵抗の特徴を有することから、その交流動作については直流の電圧源と電流源の何れとも共存できるという、インダクタやキャパシタでは不可能である独自の機能が得られる。印加される電気バイアスのスキャン中、交流信号があるとデバイスは基本的に短絡する。低温であると、デバイスは略完璧な角型ヒステリシスループを示すが(図6)、このヒステリシスループは温度の上昇とともに収束する。
 らせん状キャパシタ-インダクタにおいて、単位キャパシタの中に蓄積される電子エネルギーとループ電流の電界に保存される磁気エネルギーは、特定のレートで、電磁エネルギーとして一緒に増大(電荷が蓄積される)または減少(電荷が放出される)する(図7)。したがって、ループ周囲長とループ内の単位長あたりの単位キャパシタの数を変えることにより、エネルギー蓄積とエネルギー供給の能力を調整できる。
 本発明によるらせん状キャパシタ-インダクタでは、外部から印加される交流信号のある周波数範囲において、デバイス全体がバリスティック導電体となる(図8)。このような現象は、共鳴挙動を発生させることが知られるループ電流の誘導性の特性の存在によって起こる。誘導性共鳴の結果、この周波数範囲では、デバイスの長さに沿って入力信号が散逸のない状態で伝達される。
 らせん状キャパシタ-インダクタの電流電圧測定中、2つの電極の間に外部から印加されるバイアスがある閾値を超えると、デバイスが高導電状態に切り換わることが観察された。閾値電圧を超えて外部バイアスが更に増加し続けても、デバイスの導電率は変化しない。
 らせん状キャパシタ-インダクタにおいて、入力パルスがデバイスに印加されたときの出力電流の増大と減衰のレートは、位相変化を起こす他の3つの基本的回路素子、即ち抵抗、キャパシタおよびインダクタで構成された同等のデバイスより速い(図9)。
 図1は、本発明によるキャパシタにより調整されるインダクタの概略図である。このデバイスは、丸いボール101として示される単位キャパシタの超分子組立体であり、組立体全体が、それぞれ外部回路に接続された出口102,106を有する2つの電極104,105に挟まれている。デバイスは磁束を発生させ、その磁力線が103のような線で描かれている。図1において、超分子組立体はキャパシタユニット101が線状に接続されたらせん状の組立体である。
 図2は、単位キャパシタの可能な設計を示す図である。超分子組立体201の個々の丸いボールは、単分子でも分子の組立体でもよい点に注意されたい。しかしながら、これらの単位キャパシタは、従来のキャパシタの個々の特性に皆従う必要はない。従来のキャパシタは入力交流信号の位相を90度変化させ、電流の時間的増大または減少は明確に定義された指数関数的関係に従う。ここでは、単位キャパシタとなりうる分子材料は、有限量の電荷を蓄積し、特定の条件が自然に、または人工的に加えられるまではこれを放出しない。このようなシステムの例としては、たんぱく質、単分子多レベルスイッチ202,205、可逆的に酸化還元活性なナノ粒子203、デンドリマ204、ポリマ206、DNA207等が挙げられる。単位キャパシタが従来のキャパシタと似ているのは、どちらも電荷を蓄積するという点だけである。しかしながら、電荷蓄積のメカニズムはまったく異なる。誘電体表面での分極の代わりに、余分な電子が物理的に分子の構成を変化させて、蓄積に適した空間を分子の局所的領域に作る。単位キャパシタ内の電荷蓄積の制御は、図2に示されるような、印加されたバイアスの増大に伴って電荷の蓄積が階段状に変化するという特徴を利用して行われる。単位キャパシタは、蓄積された電荷を特定の時間にわたって保持する。従来のキャパシタとは異なり、電荷の交換に伴い、単位キャパシタの抵抗が低下し、単位キャパシタは電子またはキャリアを通過させて簡単に輸送する。単位キャパシタはまた、ここで扱っている特定の種類のデバイスにとって好都合であるところの、従来のキャパシタのような漏れ電流を生成する。
 らせん状の組立体とは別に、本発明によるキャパシタで調整されるインダクタデバイスの設計例は図3(a)に示されているのだが、本発明によるデバイスを集積回路チップに埋め込みやすい二次元の形で作製することが可能である。2つの電極301,302の間に、単位キャパシタの平面らせん状組立体303(305)が設置される。組立体の中央にらせん状組立体の一端があり、ここに一方の電極304が接続され、他方の電極は外側の端に接続される。電極304は基板の内部に埋め込まれており、このような埋め込み電極の構築に役立つツールのひとつに電子ビームリソグラフィがある。
 図1と図3(a)に示される本発明のハードウェアアーキテクチャはどちらも一様な磁束を発生する。単位キャパシタの線状の組立体を仮想の円錐表面308上に配置し、電極306,307に挟まれるようにした場合は、一様でない磁束が生成される。
 図3(b)に示すように、らせん状組立体のループはまた、三角形309から六角形310まで、あるいはまったくランダムに調節することもできるが、ランダムの場合は特定のループを識別するために点線で示される仮想の点線の境界線311または312を描く必要がある。これらの経路はすべて、313のような単位キャパシタが、電子の交換中に2つの単位キャパシタ間の経路314の抵抗を減少させるという1つの特定の条件に従っている。図3(c)の等価ポテンシャル井戸表現ではバリアの高さが変化するだけではなく、ギャップ幅の変化も観測される。電子がループ経路を通って移動する場合には、その電子は多様な高さと幅を持つ一連のポテンシャル井戸に遭遇する。
 上述の可能な静電容量インダクタはすべて、デバイス内の電荷の量とデバイス内に発生する磁束の間に線形の関係401(図4(a))を示す。単位キャパシタは線状に構成され、デバイス内に発生する磁束はループの数に依存するため、ループが完成しないと磁束は変化しない。このギャップ402または403は、デバイス内で発生される磁束を調整するための閾値長を与える(図4(b))。一点注意しなければならないのは、ここで電子輸送について考慮する経路は、導電率の高い経路、つまり単位キャパシタの電子充電により形成される経路であるということである。この充電は、組立体にランダムにアクセスする態様501(図5(a))、あるいは1つずつ逐次的にアクセスする態様502(図5(b))の、可能な2つの態様の何れかで起こる。
 図6(a)に示すように、特定の周波数帯域の閾値周波数601より高い範囲602で本発明のデバイスに送られる交流信号は、その出力において180度位相がずらされる。図6(a)において濃淡で表した曲線の一方が入力でもう一方が出力であるが、どちらが入力であってよい。本発明によるこのデバイスの電流-電圧の特徴は、図6(c)に示すヒステリシスループ603である。ヒステリシスループの特徴は、単位キャパシタの電子的性質と線状に接続された2つの単位キャパシタの間の結合によって異なる。ヒステリシスの特徴は、デバイスが導電を開始するある温度から上の低温状態でのみ見られる。特定の温度範囲を超えると、ヒステリシスループは徐々に1本の線に収束し、半導体のような電流電圧特性が観測される(図6(b))。純粋な直流信号に対しては、デバイスの導電率は絶縁体状態となる。しかしながら、交流信号が加わると、この同じデバイスは短絡し、図6(c)のグラフに604で示すように、金属のように導電する。追加された交流信号が取り除かれたとたんに、デバイスは絶縁状態に戻る。
 本発明のデバイスの静電容量および誘導特性は、図7(a)の上側に示す従来のLC回路の特性701とは対照的である。従来のLC回路では、1つのコンポーネントのエネルギーを使って他方のコンポーネントのエネルギーが増大する。しかしながら、本発明のデバイスの場合、特定の長さのデバイスについて、図7(a)の下側に特性702で示すように、誘導エネルギーと静電容量エネルギーは両方とも一緒に増減する。図7(b)の左側のグラフに示すように、単位キャパシタの組立体の長さを増大させ、他のパラメータが一定のままとすると、デバイスのエネルギー蓄積容量全体は増大する。また、図7(b)の右側のグラフに示すように、単位キャパシタの組立体の直径を増大させ、単位長さあたりのキャパシタの密度と組立体全体の長さを一定のままとした場合も、エネルギー蓄積容量は増大する。
 本発明のデバイスは特定の周波数で抵抗ゼロに近い状態となり、この状態では、図8(a)のグラフに示すように、エネルギーパケット全体が、エネルギーを一切失うことなく、組立体の一方の側から反対側に伝達される。図8(b)のグラフの802、803、804に示すように、組立体の長さを変化させれば、このデバイスで多様な導電率を得ることも可能である。本発明のデバイスを以下ではHとも称する。電気バイアス入力に対する電流の反応は、図9に示すように、LとCの場合より速く増大し(902)、減衰する(901)。R、CおよびLで本発明の第四の回路素子Hを生成することはできないが、相対比較のために、Hについての簡略化した電流の表現を構築する。チューブリン二量体はQ=Q(1-exp(-t/CR))に従って充電される。Q∝Lであるので、L=L(1-exp(-t/CR))を得る。インダクタの電流はi=i(1-exp(-tR/L))に従って増大するため、H内の電流は、式i=i(1-exp(-tR/L(1-exp(-t/CR))))に従って増大し、式i=i(exp(-tR/L(exp(-t/CR))))に従って減少する。Cの支配的な電流を考慮して、電流の増大をi=i(1-exp(-t/RC(1-exp(-Rt/L))))として得る。ここでは、これらの式を使って本発明のデバイスに関する電流のグラフを作成した。
 ここで、本願発明者は表1にまとめた対称性の議論のすべての側面を含む本質的な第四の回路素子Hを定義し、その実験的証拠として、豚の脳からチューブリンを抽出しその構造を外部で再構成することによって、チューブリンから構成された単一の微小管の電子的測定を行った。実施例に記載するように、特性解析の結果、微小管(microtubules、MT)は上述の基準に従うことがわかった。また、他のいくつかのらせん状分子組立体(たとえばアクチンなどのらせん状の超分子)も同様の特性を示した。
Figure JPOXMLDOC01-appb-T000001
 上記では入力信号として、直流信号、交流信号(正弦波)、パルス信号を用いた場合を述べたが、たとえば、直流信号はエネルギー貯蔵のような場合に使用し、交流信号は電力伝送のような場合に使用し、パルス信号は不揮発デジタルメモリーへの適用のような場合に使用することができる。
 サイトスケルトン社(米国コロラド州デンバー)により豚の脳から微小管が抽出された。精製されたMTサブユニット(チューブリン)を-80℃で保存した。チューブリンを長さ6.5μmの微小管に重合させるために、微小管クッションバッファ(60%v/vグリセロール、80mM PIPES((ピペラジン-1,4-ビス(2-エタンスルホン酸)) pH6.8、1mM EGTA(エチレングリコールビス四酢酸)、1mM MgCl)160μLを、General Tubulin Buffer(80mM PIPES pH7,1mM EGTA,2mM MgCl)830μlと100mM GTP(グアノシン三リン酸)溶液10μlに添加した。この混合物をアイスバス内に10分間保管した。この混合物から、溶液200μlをチューブリン1mgに添加し、再びアイスバスで10分間インキュベートした。その後、このストックを35~37℃のインキュベータ内に40分間置いた。次に、微小管を安定させるために、無水DMSOに溶解させたPaclitaxal20μlを溶液に加え、さらに37℃で10分間インキュベートした。MTの長さを約4~20μmに調整した。
 薄膜を作るために、微小管クッションバッファとPaclitaxal DMSO溶液を使ってこの溶液を8倍に希釈し、45°傾斜させたSi(100)基板と櫛型電極の上に滴下し、-20℃で一晩放置した。基板に電界を印加し、MTを平行に配列した。濾紙(Whatman)を使って余分なMT溶液を基板から除去した。次に、基板をGeneralTubulin Bufferに浸漬し、Nを吹き付けて再び同様に乾燥させた。この工程を2度繰り返した。基板を冷蔵庫に3時間入れ、表面を部分的に乾燥させた。
 αおよびβチューブリンが46×80×65Åの大きさのαβヘテロ二量体に再構成されたことが、超微細先端を有する原子間力顕微鏡で確認された。MTのポテンシャルマップの作成により、格子Aの構・BR>ャを確認した。
 1本鎖の微小管の両端に、2つの金電極パッドを作製し、電子光線リソグラフィでデバイスを構築した。両端の電極を外部の電子特性解析回路に接続した。
 メモリスタと異なり、微小管MTでは、表1に示すように、既存の3つの素子の特性の全てに関する対称性の議論が正しいものと確認できる。本発明によるデバイスHは、キャパシタCのように電荷を蓄積/放出するらせん状ナノチューブ/ナノワイヤであり、インダクタLのようにらせん状の電流が磁束を発生させる。インダクタLとキャパシタCは内部で一緒に増減するが、理想のデバイスHはその直流出力が顕著に線形である。純粋に幾何学的な理由から、正確な磁束調整器であり、インダクタLとキャパシタCの共存によって入力交流信号の位相がずれる。デバイスHはバリスティック輸送を開始しうる。それは、完全な構造が特定の場ではコヒーレントな系になるためであると推測される。微小管MTは、その長さを変化させることによって電磁エネルギーの蓄積/輸送を調整し、重要な位相ずれ信号変換能力を生物系に与える。
 これに対し、Chuaは第四の回路素子であるメモリスタの定義に、1つの対称性議論φαQしか用いなかった。らせんの周期性と充電の量子化により、MTはその長さを変更することによってその電磁エネルギー/力を正確に調整できる。バリスティック状態に切り換わる閾値バイアスは、その長さと共に大きくなる。同時に、磁束は階段状に増大する。したがって、MTは、その長さを変化させることによってエネルギー蓄積量とそのコヒーレント輸送に必要なクリティカル信号を変化させることができる。その結果、処理可能な最大論理状態も変えられる。以上のことから、生体細胞中の第四の回路素子MTは、細胞骨格を通じた非常に複雑な多レベルの信号処理において重要な役割を果たすことができる。本発明者による研究以前は、MTは単にキャパシタとして使用されていた(特許文献4)。
 MTに基づく本発明の実施例を、実際に構成された本発明のデバイスのAFM像及びその測定データ、ならびに概略図を参照しながら以下で説明する。
[第4の回路素子Hの基本的性質]
 図10及び図11はMTに基づいて実際に構成された本発明のデバイスのAFM像を示す。図からわかるように、MTが金でできた2本の平行電極間に上から下へ伸びている。
 図12(a)で、ボール状のものは電荷を蓄積して導電ソレノイドを形成するキャパシタを表す。時間区間Δtの間、これらのキャパシタはΔQだけの量の電荷を蓄積して磁束がΔφだけ増加する。固定長のデバイスHについて、電荷を蓄積した領域をE+Bで表し、蓄積していない領域をEで表す。図12(b)はデバイスHの電流-電圧特性測定のための実験の構成を表す。なお、パルスモード測定においては、電圧源と電流計をファンクションジェネレータとオシロスコープに置き換える。図12(c)は金電極の縁に取り付けられている、シリコン基板上のMTのAFM像である。2本の白い平行線をこの像中に描くことで、MTの螺旋のピッチを示す。このスキャンはノンコンタクトモードで、スキャンレート0.3Hz、ゲイン1、セットポイント-0.671μmで行われ、1.5μmの先端振幅であった。図12(d)の上側のグラフはVmax=0.5V、1V及び1.5Vについてのスキャンレートが0.01V/秒のバイアスを印加して測定された、低導電状態での電流-電圧曲線であり、下側のグラフは高導電状態におけるVmax=2.5Vでの電流-電圧特性を拡大したものである。
[微小管の重大な特徴]
 図13(a)のグラフの下側は振幅5V(>Vth)、幅1μ秒、周波数100KHzの矩形入力パルスアレイを示す。このパルスアレイがグラフ上側に示す同様な矩形出力アレイを生成した。入力信号と出力信号はともに47Ωの抵抗器で検出した。隣接する2つの矩形パルスのギャップは4μ秒であった。図13(b)の左側のグラフは、振幅5V、幅250n秒、周波数1MHzの入力矩形パルスアレイに対する出力の時間軸上の増大を示す。同様に、図13(b)の右側のグラフは入力パルス終了の際のこの出力の減衰を示す。図13(c)の上側と下側の2つのグラフは夫々LC並列接続回路とH中での電気エネルギー及び磁気エネルギー(夫々EとMであらわす)の時間軸上の増大と減衰を表す。上側のグラフにおいて、減少するカーブは電気エネルギーEを表し、増大するカーブは磁気エネルギーMを表す。これに対して、デバイスHについての下側のグラフでは、これらの2本のカーブは1本の線のように見える。これは、磁気エネルギーと電気エネルギーが両方とも時間とともに増大するからである。図13(d)はH、L及びCの間の時間軸上の増加、減衰レートの比較のグラフである。ここで、L=R=C=1としている。R=2、C=2の場合には、iは、LあるいはCの電流がその飽和値の8%に到達する時点までに、飽和値に対する比率で表現して現在の値である63%から98%に到達する。
[MTの第4の回路素子としての特別の特徴]
 図14(a)は微小管構造を概念的に表した図を示す。外側の層CTはC終端(C termini:炭化水素(アルキル)鎖で終端、終端には負電荷が存在))、中間の層MTはチューブリンアセンブリ、中央部WTは水柱(watercolumn)である。図14(b)はデバイスHの入力信号及び出力信号を示す。このグラフから判るように、出力信号は周波数5MHzの入力交流信号と180度の位相差があり、また微小管上の特定の点で400mVのピーク-ピーク振幅を持つ。図14(c)は伝達される出力電力の入力電力に対する比率を現す。この比率は周波数によって変化し、ほぼ2MHz付近にピークを持つ。図14(d)は電荷量ΔQに対する磁束Δφの変化を示す。この変化は微小管の長さに沿ってプロットされている。このQは報告されている長さ方向の電荷密度3.8e/Åを使用して、従ってMT上の2つの異なる点に位置する2つのリング間のΔQを使用して計算された(交互に、ΔQは1αβ≒10eについてのQとして計算され、1つのリングは13αβ単位を有する)。この勾配つまりH(=Δφ/ΔQ)は15×10であり、これは抵抗Rよりも2桁大きい。
[第4の回路素子の応用]
 図15(a)は微小管の長さ方向(直線状の長さであらわす)に沿ってプロットした閾値電圧の変化を示す。電流-電圧カーブIVは、MT全体の充電を避けるため、金電極とMTの接合部から開始して遠端まで、個別のリングの頂部で測定した。図15(a)中の差し込み図は微小管を示す。同図において、21個の相対的に明るい部分はαβリングを示す。磁界の1.4×10-8T刻みの階段状変化は金-MT接合部における168nmMTチェーンに沿った8nm周期のαβリング毎に現れる。図15(b)は-0.5Vでの微小管の長さに沿ったコンダクタンスを示す。この長さつまりH-1は両対数目盛りでプロットしている。
101:単位キャパシタ
102:単位キャパシタの組立体
305:円盤形状の本発明を集積チップ型にしたもの
308:円盤形状の本発明を立体の円錐型にしたもの

Claims (7)

  1.  中心軸が長さ方向に沿ってループの形態に構成されたアレイ状単位キャパシタを設けたらせん状キャパシタ-インダクタデバイスであって、
     入力信号が前記アレイ状単位キャパシタの一方の端から印加され、出力信号が他方の端から取り出され、
     前記単位キャパシタ内に蓄積される電荷が前記デバイスに印加されるバイアスの増大または減少に合わせて増加または減少し、
     前記電荷の増大または減少が前記ループの電流をそれぞれ増大または減少させることにより、前記デバイス内に発生する磁束を変化させるらせん状キャパシタ-インダクタデバイス。
  2.  前記単位キャパシタが、外部から所定の条件が与えられたときにその構造内に電荷またはエネルギーを可逆的に蓄積・放出できる、たんぱく質、有機染料、無機合成物、ナノ粒子、デンドリマ、有機金属複合体、ポリマ、生体分子からなる材料のうちのいずれか1つまたは複数の組み合わせを使って構築される、請求項1に記載のらせん状キャパシタ-インダクタデバイス。
  3.  前記単位キャパシタが、前記デバイスの長さ方向に沿って1つまたは複数の閉ループの中を電流が流れるような構造に配置され、前記構造が下記AとBの2つの実現可能な構成のうちのいずれか一方である請求項2に記載のらせん状キャパシタ-インダクタデバイス。
      A.前記単位キャパシタが物理的に移動して、前記デバイスの長さ方向に沿って秩序的または無秩序的にその相対的位置を変化させ、ループ内の電流の流れを有効にトリガし前記磁束を発生させる単位キャパシタの組立体。
      B.弱い相互作用、共有結合、非共有結合、金属結合または非金属結合によって、1つの単位キャパシタから隣接する他の単位キャパシタに電流が流れることにより、デバイスの長さに沿った1つまたは複数の前記ループに電流が流れるような定義済みのらせん状、ディスク型、円錐形またはランダムな幾何学構造を形成する、単位キャパシタの組立体。
  4.  前記単位キャパシタの充電または放電によって1つまたは複数の前記閉ループの導電率が変化し、それによって前記ループ内を流れる電流を増大または減少させることにより、前記デバイス内に発生する磁束を変化させる、請求項3に記載のらせん状キャパシタ-インダクタデバイス。
  5.  前記単位キャパシタの材料の充電または放電は前記デバイス全体の1つまたは複数のループの中で秩序的または無秩序的に起こり、前記充電または放電の起こるループが秩序的またはランダムに選択され、磁束は電子的に充電されたループの個数が変化したときまたは前記デバイス内を流れる電流が変化したときにのみ変化する、請求項4に記載のらせん状キャパシタ-インダクタデバイス。
  6.  前記単位キャパシタの材料の充電と放電による電流の寄与と前記ループ内を流れる電流の寄与が特定の条件において共同して入力信号の位相を変化させ、デバイスの出力交流信号の位相を前記一方の端と前記他方の端の間に印加される入力信号から正または負の方向に180°ずらす、請求項1から5のいずれかに記載のらせん状キャパシタ-インダクタデバイス。
  7.  前記単位キャパシタの前記材料はチューブリンのαβヘテロ二量体を含む微小管であり、前記微小管の各端に前記らせん状キャパシタ-インダクタデバイスへの信号の入力及び出力のための電極が形成されている、請求項2に記載のらせん状キャパシタ-インダクタデバイス。
PCT/JP2011/059308 2010-04-19 2011-04-14 アレイ状のキャパシタで構成されるインダクタ WO2011132597A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/641,764 US9019685B2 (en) 2010-04-19 2011-04-14 Inductor comprising arrayed capacitors
JP2012511630A JP5804425B2 (ja) 2010-04-19 2011-04-14 キャパシタアレイで構成されるインダクタ
EP11771932.8A EP2562776B1 (en) 2010-04-19 2011-04-14 Inductor composed of capacitor array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-096217 2010-04-19
JP2010096217 2010-04-19

Publications (1)

Publication Number Publication Date
WO2011132597A1 true WO2011132597A1 (ja) 2011-10-27

Family

ID=44834118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059308 WO2011132597A1 (ja) 2010-04-19 2011-04-14 アレイ状のキャパシタで構成されるインダクタ

Country Status (4)

Country Link
US (1) US9019685B2 (ja)
EP (1) EP2562776B1 (ja)
JP (1) JP5804425B2 (ja)
WO (1) WO2011132597A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036298A (ja) * 2014-08-07 2016-03-22 国立研究開発法人物質・材料研究機構 連続的に自己組織化する物質
JP2017117988A (ja) * 2015-12-25 2017-06-29 国立研究開発法人物質・材料研究機構 らせん状キャパシタ−インダクタデバイス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN109002602B (zh) * 2018-07-11 2023-01-31 杭州电子科技大学 一种浮地磁控忆感器仿真器电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176238A (ja) * 1997-12-10 1999-07-02 Japan Science & Technology Corp 導電性核酸ポリマー薄膜
US20020118077A1 (en) 2000-12-20 2002-08-29 The United States Government As Represented By The U. S. Air Force Composite capacitor/inductor
JP2005294109A (ja) * 2004-04-01 2005-10-20 Toyota Motor Corp 燃料電池用基体及び燃料電池
JP2006013153A (ja) * 2004-06-25 2006-01-12 Fuji Xerox Co Ltd デカップリング素子およびその製造方法、並びにそれを用いたプリント基板回路
US20080316677A1 (en) 2005-01-25 2008-12-25 Naturalnano Research, Inc. Ultracapacitors comprised of mineral microtubules
WO2009028728A1 (ja) * 2007-08-31 2009-03-05 Canon Kabushiki Kaisha ブロックポリマーおよびデバイス
US20090163826A1 (en) 2006-04-03 2009-06-25 Blaise Laurent Mouttet Memristor crossbar neural interface
US20090184397A1 (en) 2008-01-22 2009-07-23 Nadine Gergel-Hackett Nonvolatile memory device and processing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946397A (en) * 1974-12-16 1976-03-23 Motorola, Inc. Inductor or antenna arrangement with integral series resonating capacitors
JPH0766616A (ja) * 1993-06-18 1995-03-10 Takahito Nagase 通信用アンテナ
JP3106942B2 (ja) * 1995-12-28 2000-11-06 株式会社村田製作所 Lc共振部品
US6664103B2 (en) * 1998-05-20 2003-12-16 Integrated Nano-Technologies, Llc Chemically assembled nano-scale circuit elements
US6642552B2 (en) * 2001-02-02 2003-11-04 Grail Semiconductor Inductive storage capacitor
JP5112017B2 (ja) * 2007-11-19 2013-01-09 株式会社日立製作所 Rfコイルおよび磁気共鳴撮像装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176238A (ja) * 1997-12-10 1999-07-02 Japan Science & Technology Corp 導電性核酸ポリマー薄膜
US20020118077A1 (en) 2000-12-20 2002-08-29 The United States Government As Represented By The U. S. Air Force Composite capacitor/inductor
JP2005294109A (ja) * 2004-04-01 2005-10-20 Toyota Motor Corp 燃料電池用基体及び燃料電池
JP2006013153A (ja) * 2004-06-25 2006-01-12 Fuji Xerox Co Ltd デカップリング素子およびその製造方法、並びにそれを用いたプリント基板回路
US20080316677A1 (en) 2005-01-25 2008-12-25 Naturalnano Research, Inc. Ultracapacitors comprised of mineral microtubules
US20090163826A1 (en) 2006-04-03 2009-06-25 Blaise Laurent Mouttet Memristor crossbar neural interface
WO2009028728A1 (ja) * 2007-08-31 2009-03-05 Canon Kabushiki Kaisha ブロックポリマーおよびデバイス
US20090184397A1 (en) 2008-01-22 2009-07-23 Nadine Gergel-Hackett Nonvolatile memory device and processing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUA, L. O.: "Memristor-missing circuit element", IEEE TRANSACTIONS ON CIRCUIT THEORY CT18, 1971, pages 507 - 519
See also references of EP2562776A4
STRUKOV, D. B.; SNIDER, G. S.; STEWART, D. R.; WILLIAMS, R. S.: "The missing memristor found", NATURE, vol. 453, 21 November 2008 (2008-11-21), pages 80 - 83

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036298A (ja) * 2014-08-07 2016-03-22 国立研究開発法人物質・材料研究機構 連続的に自己組織化する物質
JP2017117988A (ja) * 2015-12-25 2017-06-29 国立研究開発法人物質・材料研究機構 らせん状キャパシタ−インダクタデバイス

Also Published As

Publication number Publication date
JP5804425B2 (ja) 2015-11-04
US9019685B2 (en) 2015-04-28
US20130106538A1 (en) 2013-05-02
EP2562776A4 (en) 2017-11-29
JPWO2011132597A1 (ja) 2013-07-18
EP2562776B1 (en) 2019-07-31
EP2562776A1 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
Boyn et al. High-performance ferroelectric memory based on fully patterned tunnel junctions
JP5804425B2 (ja) キャパシタアレイで構成されるインダクタ
Wang et al. Construction of a room-temperature Pt/Co/Ta multilayer film with ultrahigh-density skyrmions for memory application
Yakushiji et al. Enhanced tunnel magnetoresistance in granular nanobridges
Abd El Qader et al. Switching at small magnetic fields in Josephson junctions fabricated with ferromagnetic barrier layers
Murphy et al. Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops
US20130270503A1 (en) Multi-layer phase change material
Tsuruoka et al. Rate-limiting processes in the fast SET operation of a gapless-type Cu-Ta2O5 atomic switch
US7547906B2 (en) Multi-functional chalcogenide electronic devices having gain
JP2008536103A (ja) 静電的に制御された原子的な規模の導電性デバイス
Ouyang Application of nanomaterials in two-terminal resistive-switching memory devices
Meitei et al. Effect of annealing on forming-free bipolar resistive switching of Gd2O3 thin films
Cao et al. Switchable anomalous Hall effects in polar-stacked 2D antiferromagnet MnBi2Te4
Lu et al. Purely electronic nanometallic resistance switching random-access memory
US20070267622A1 (en) Multi-functional chalcogenide electronic devices having gain
Sun et al. High-power LiNbO3 domain-wall nanodevices
US9355698B2 (en) Memory and logic device and methods for performing thereof
Fedorov et al. Interplay of ferroelectricity and single electron tunneling
Tulina et al. Reproducible switching in normal metal–manganite single crystal point contacts with memory effect
WO2020053988A1 (ja) リザボア素子及びニューロモルフィック素子
Dabek et al. Dynamic response of tunneling magnetoresistance sensors to nanosecond current step
Schmidt Prospects for application of ferroelectric manganites with controlled vortex density
JP6664809B2 (ja) らせん状キャパシタ−インダクタデバイス
Tuomisto et al. Tsu-Esaki modeling of tunneling currents in ferroelectric tunnel junctions
WO2023106001A1 (ja) スピントロニクスデバイス、磁気メモリ、電子機器、及びスピントロニクスデバイスの作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511630

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011771932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13641764

Country of ref document: US