WO2011132422A1 - 立体映像表示装置、立体映像表示方法 - Google Patents

立体映像表示装置、立体映像表示方法 Download PDF

Info

Publication number
WO2011132422A1
WO2011132422A1 PCT/JP2011/002327 JP2011002327W WO2011132422A1 WO 2011132422 A1 WO2011132422 A1 WO 2011132422A1 JP 2011002327 W JP2011002327 W JP 2011002327W WO 2011132422 A1 WO2011132422 A1 WO 2011132422A1
Authority
WO
WIPO (PCT)
Prior art keywords
parallax
image
parallax images
images
unit
Prior art date
Application number
PCT/JP2011/002327
Other languages
English (en)
French (fr)
Inventor
渡辺 辰巳
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011541018A priority Critical patent/JP5631329B2/ja
Priority to EP11770989.9A priority patent/EP2562581A4/en
Priority to CN201180002194.3A priority patent/CN102449534B/zh
Publication of WO2011132422A1 publication Critical patent/WO2011132422A1/ja
Priority to US13/284,038 priority patent/US9215452B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/315Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being time-variant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/376Image reproducers using viewer tracking for tracking left-right translational head movements, i.e. lateral movements

Definitions

  • the present invention relates to a stereoscopic image display apparatus that can observe stereoscopic images without using special glasses.
  • a device for displaying a stereoscopic image without using special glasses a device in which a parallax barrier, a lenticular lens or the like (spectral means) is arranged on the viewer side of a display device such as a liquid crystal panel or a PDP is known. ing. In this apparatus, thereby, the light from the image for the left eye and the image for the right eye displayed on the display panel is separated into left and right to display a stereoscopic image.
  • FIG. 21 is a diagram showing the principle of a 3D image display apparatus 91a without glasses using a parallax barrier 92. As shown in FIG.
  • 91 is a video display panel
  • 92 is a parallax barrier
  • the video display panel 91 includes a column in which the left-eye pixels L are arranged in the vertical direction (z direction shown in the figure) with respect to the paper surface of FIG. 21 and a column in which the right-eye pixels R are arranged in the vertical direction. It is formed alternately.
  • the parallax barrier 92 has a large number of slit-shaped openings 92a extending in the vertical direction, and a light-shielding section 92b extending in the vertical direction is formed between two adjacent openings 92a. Yes.
  • binocular parallax that allows a human to feel a stereoscopic image is between the left-eye image 93L including the left-eye pixels L and the right-eye image 93R including the right-eye pixels. is there.
  • An observer 94 who wants to observe a stereoscopic image places his head at a predetermined position 94Px (normal viewing position). As a result, the left-eye image 93L is incident on the left eye 94L via the opening 92a, and the right-eye image 93R is incident on the right eye 94R via the opening 92a. Thereby, a stereoscopic image can be recognized.
  • the light of the right eye image 93R is blocked by the light shielding portion 92b and is not incident on the left eye 94L, and the light of the left eye image 93L is not incident on the right eye 94R. It is blocked by and does not enter.
  • the observer 94 needs to position the head position (head position) 94P at a predetermined position 94Px. That is, when the head position 94P deviates from the predetermined position 94Px, the light of the right eye image 93R enters the left eye 94L, and the light of the left eye image 93L enters the right eye 94R. Therefore, there arises a problem that a good stereoscopic image cannot be recognized (reverse view).
  • the observer 94 first needs to find the normal viewing position 94Px that can be observed well, and fix the head position 94P to the position 94Px.
  • the problem of normal vision and reverse vision due to the head position is not only when two parallax images for the left eye and right eye are presented, but a plurality of three or more parallax images are displayed. It also occurs in some cases.
  • FIG. 22 is a diagram showing an example in which a 4-parallax image is presented.
  • Images A, B, C, and D correspond to a plurality of presented parallax images.
  • position 9L (positions 9La, 9Lb%) Indicates the observer position
  • positions 9La, 9Lb, 9Lc, and 9Ld indicate positions where the parallax images A, B, C, and D can be seen, respectively.
  • the plurality of parallax images 99a to 99d are repeatedly presented at predetermined intervals on the parallel surface 9LL parallel to the video display panel 1.
  • the right eye 94R When the right eye 94R is at a position where the parallax image 99a can be seen (position 9La: for example, the fifth position from the left among the illustrated positions), the right eye 94R has the parallax image 99a. Incident.
  • viewing by a plurality of viewers is performed by the technique using a plurality of parallax images shown in FIG. That is, when the left eye 94L of one viewer 94 is at the position 9La and the right eye 94R is at the position 9Lb, the following is performed. That is, at this time, the left eye 94L of the other viewer 94 is at the position 9Lc, and the right eye 94R of the other viewer 94 is at the position 9Ld. Are also viewed by the viewer 94.
  • Non-Patent Document 1 As mentioned above, reverse vision occurs even when such a technique is used.
  • Non-Patent Document 1 As mentioned above, reverse vision occurs even when such a technique is used.
  • FIG. 23A is a diagram showing a conventional image display method shown in Non-Patent Document 1 using three parallax images (images a to c) for two viewers.
  • Non-Patent Document 1 In the technique of Non-Patent Document 1, as illustrated, three parallax images are associated with one parallax barrier opening. Then, by using observer tracking, there is shown a method that allows two observers (observers 9b1 and 9b2) to be stereoscopically viewed without causing reverse viewing.
  • FIG. 23B is a diagram showing a table of operations according to the method of Non-Patent Document 1.
  • Non-Patent Document 1 only three parallax images (i, ii, iii) are used as the three parallax images (a, b, c) displayed on the display as shown in FIG. 23A.
  • the parallax image ii is presented (incident) to the left eye (position) and the parallax image iii is presented (incident) to the right eye (the third row in the third row). (5th column, 6th column).
  • the parallax image i is presented to the left eye and the parallax image ii is presented to the right eye (seventh column and eighth column).
  • the viewpoint position of each image is the position of the photographing device when the image is photographed by the photographing device.
  • the positions of the left eye 94L and the right eye 94R of the first viewer 9b1 are the position b (third column) and the position c (fourth column) (see FIG. 23A).
  • the positions of the left eye 94L and the right eye 94R of the second viewer 9b2 are the position a (first column) and the position b (second column).
  • images of i, ii, and iii are presented at positions a, b, and c, respectively (second column to fourth column of the third row). ).
  • the image (image i) presented at the position a is an image at the viewpoint position on the left side of the viewpoint position of the image (image ii) presented at the position b.
  • the image (image ii) presented at the position b is an image at the viewpoint position on the left side of the viewpoint position of the image (image iii) presented at the position c.
  • the viewpoint position of the image seen by the left eye 94L can be seen by the right eye 94R for any viewer.
  • the image is on the left side of the viewpoint position of the image.
  • both the first and second viewers 9b1 and 9b2 appropriately perceive stereoscopic video, and any viewer can perform stereoscopic viewing.
  • the first viewer 9b1 moves to the right (see the movement 9b1m in FIG. 23A), it is assumed that the first viewer 9b1 is not being tracked. Then, when the image is presented as described above in the third row, second column to fourth column of the table (see the above description), the first viewer 9b1 receives the left eye 94L. In addition, the parallax image iii (third row and fourth column) is seen, and the parallax image i (third row and second column) is seen by the right eye 94R. As a result, the image viewed by the first viewer 9b1 is reversed left and right, causing reverse viewing.
  • the first viewer 9b1 sees the parallax image i in the left eye 94L and the parallax image ii in the right eye 94R (fourth row, fifth column, sixth column, fourth column, second column).
  • the second viewer 9b2 views the parallax image ii with the left eye 94L and the parallax image iii with the right eye 94R (the fourth column, the seventh column, the eighth column, the second column, the third column). Display the image so that
  • the two viewers can both view stereoscopically even in the state of the fourth row in the table of FIG. 23B after the movement 9b1m of FIG. 23A is performed.
  • the first viewer 9b1 views the parallax image i in the left eye 94L and the parallax image ii in the right eye 94R (the fifth row, third column to fourth column in the table)
  • the second viewer 9b2 displays the parallax image ii so that the left eye 94L sees the parallax image ii and the right eye 94R sees the parallax image iii (fifth row, fourth column, second column). Change the order of.
  • both viewers can stereoscopically view.
  • Patent Document 1 When there are a plurality of viewers, the technique of Patent Document 1 cannot cope.
  • Non-Patent Document 1 see FIG. 22
  • an object of the present invention is to provide a stereoscopic video display device that can more reliably display a stereoscopic video by preventing the occurrence of reverse vision and more reliably.
  • the stereoscopic image display apparatus displays a plurality of parallax images, and a plurality of observers can simultaneously display special glasses (not normal glasses such as glasses for presbyopia).
  • a stereoscopic video display apparatus that observes stereoscopic vision without using glasses used to perceive video, and includes a plurality of pixel columns for each of the parallax images from a plurality of parallax images.
  • a two-dimensional display unit that selects a pixel column from the two-dimensional display unit and displays the parallax image on the selected pixel column, and light from the plurality of pixel columns, and each parallax image corresponds to the parallax image
  • a separation unit for separation, a position detection unit for detecting the position of an observer who observes stereoscopic vision, and display control of each parallax image according to the detected position And detect A position where there is no predetermined eye (for example, the right eye) of the left eye and right eye of the observer at the predetermined position (a position other than the position where the predetermined eye is present: 3 (refer to position 1134 in FIG.
  • 3D is a stereoscopic video display device including a parallax arrangement control unit that presents the parallax image 1101 in FIG.
  • this stereoscopic video display device uses n + 1 number of parallax images for the number of viewers n, and controls the display position of the parallax image on the display panel according to the detected head position. Even in the case of three or more viewers, a stereoscopic video display capable of observing a stereoscopic video without reverse viewing may be provided.
  • the interval between the predetermined positions where the parallax images are presented may be subdivided more than the interocular distance. And, by using n ⁇ m + 1 number n parallax images according to the subdivision number m, and controlling the display position of the parallax image on the display panel according to the detected head position, three or more people
  • the plurality of viewers may also be able to observe a stereoscopic image without back-viewing, and to reduce a crosstalk region generated between predetermined positions.
  • the present stereoscopic image display device only the left eye image L and the right eye image R are prepared, and by interpolating two LR parallax images according to the number of viewers, a plurality of parallax images are generated and used. Depending on the number of viewers, a stereoscopic image may be observed without reverse viewing for three or more viewers without preparing a parallax image again.
  • a stereoscopic video display apparatus that can observe stereoscopic video without causing reverse viewing even when three or more multiple viewers (multiple viewers) observe (view) at the same time.
  • a position that is not the position of a predetermined eye (for example, the right eye) of any one of the observers after the change (see position 1134). ) Is specified, and processing can be simplified.
  • a complicated configuration (see the table in FIG. 23B) is not required, and the configuration can be simplified.
  • the interval for presenting each parallax image is subdivided from the interocular distance and combined with the parallax image display control at the head position to suppress reverse vision and reduce the area where crosstalk occurs. Can do.
  • FIG. 1 is a diagram showing a configuration of a stereoscopic video display apparatus according to the first aspect of the present invention.
  • FIG. 2 is a diagram schematically showing the processing (in the case of three viewers) of the parallax arrangement control means of the stereoscopic video display device according to the first invention of the present invention.
  • FIG. 3 is a diagram schematically showing the processing (in the case of four viewers) of the parallax arrangement control means of the stereoscopic video display device according to the first invention of the present invention.
  • FIG. 4 is a diagram schematically showing the processing (in the case of n viewers) of the parallax arrangement control means of the stereoscopic video display device according to the first invention of the present invention.
  • FIG. 1 is a diagram showing a configuration of a stereoscopic video display apparatus according to the first aspect of the present invention.
  • FIG. 2 is a diagram schematically showing the processing (in the case of three viewers) of the parallax arrangement control means of the stereoscopic video display
  • FIG. 5 is a diagram showing the configuration of the position detecting means of the stereoscopic video display apparatus according to the first aspect of the present invention.
  • FIG. 6 is a diagram showing the configuration of the head detecting means of the stereoscopic video display apparatus according to the first aspect of the present invention.
  • FIG. 7 is a diagram schematically showing the processing of the position detecting means of the stereoscopic video display apparatus according to the first aspect of the present invention.
  • FIG. 8 is a diagram schematically showing the processing of the pattern matching unit of the head detecting means of the stereoscopic image display apparatus according to the first aspect of the present invention.
  • FIG. 9 is a diagram showing a configuration of a stereoscopic video display apparatus according to the second aspect of the present invention.
  • FIG. 10A is a diagram schematically illustrating the operation of the display interval control unit of the stereoscopic video display apparatus according to the second aspect of the present invention.
  • FIG. 10B is a diagram schematically illustrating a display interval control unit of the stereoscopic video display apparatus according to the second aspect of the present invention.
  • FIG. 10A is a diagram schematically illustrating the operation of the display interval control unit of the stereoscopic video display apparatus according to the second aspect of the present invention.
  • FIG. 10B is a diagram schematically illustrating a display interval control unit of
  • FIG. 13 is a diagram schematically showing processing of the parallax control means of the stereoscopic video display apparatus according to the second aspect of the present invention (in the case of three viewers and a subdivision number m).
  • FIG. 14 is a diagram showing a configuration of a stereoscopic video display apparatus according to the third aspect of the present invention.
  • FIG. 15 is a block diagram showing the configuration of the parallax image generating means of the stereoscopic video display apparatus according to the third aspect of the present invention.
  • FIG. 16A is a diagram showing a procedure for generating a parallax image of the stereoscopic video display apparatus according to the third aspect of the present invention.
  • FIG. 16B is a diagram illustrating a procedure for generating a parallax image of the stereoscopic video display apparatus according to the third aspect of the present invention.
  • FIG. 17 is a diagram illustrating the operation of the stereoscopic image display apparatus.
  • FIG. 18 is a diagram illustrating the operation of the stereoscopic image display apparatus.
  • FIG. 19 is a diagram illustrating the operation of the stereoscopic image display apparatus.
  • FIG. 20 is a diagram illustrating the operation of the stereoscopic image display apparatus.
  • FIG. 21 is a diagram illustrating a configuration of a conventional stereoscopic video display device based on barrier control using two parallaxes.
  • FIG. 22 is a diagram illustrating a configuration of a conventional stereoscopic video display device based on barrier control using a plurality of parallaxes (four parallaxes).
  • FIG. 23A is a schematic diagram of a conventional pixel display method using three parallax images for two viewers.
  • FIG. 23B is a diagram showing a table of operations in the method of FIG. 23A.
  • FIG. 24 is a diagram showing a configuration in which a lenticular plate is used.
  • the stereoscopic image display apparatus displays a plurality of parallax images (for example, the images 1101 to 1105 in FIG. 3), and simultaneously uses a stereoscopic image for a plurality of viewers (viewers 114a to 114d) without using special glasses.
  • a stereoscopic image display device 100s (such as FIG. 1) that observes a view (stereoscopic image), and for each parallax image (for example, image 1103) among a plurality of parallax images from a plurality of viewpoints (a plurality of viewpoint positions).
  • a pixel column (a pixel column) is selected from a plurality of pixel columns (a to d pixel columns), and the selected image (image 1103) is displayed in the selected pixel column (a pixel column) 2
  • Light including light of each image (images 1101 to 1105) from the dimension display unit 100 and a plurality of pixel columns is converted into each parallax image (image 1103 in FIG. 3).
  • Supports parallax images As shown at a predetermined position (position 1136), a separation unit (barrier forming unit 101) that separates the light of each parallax image (see light 101Lp in FIG.
  • the position detection unit 102 for detecting the position of the camera, and display control of each parallax image according to the detected position, and the left eye and the right of the viewer (viewers 114a, 114b%)
  • a position (position 1134) where the predetermined eye (right eye) of the eyes is not present is specified, and a predetermined parallax image among the plurality of parallax images is specified at the specified position (position 1134).
  • a parallax arrangement control unit 103 that presents (an image 1101 with the leftmost viewpoint position).
  • stereoscopic video is obtained by controlling the display position of the parallax image on the display panel according to the detected position of the viewer's head using the number of parallax images equal to the number of viewers + 1. A method for performing the display will be described.
  • the predetermined position interval where each parallax image is presented is subdivided into an interval shorter than the interocular distance.
  • the third embodiment in the first or second invention, only the left eye image L and the right eye image R are prepared, and two LR parallax images are interpolated according to the number of viewers to obtain a plurality of parallax images.
  • a method for displaying a stereoscopic image by introducing a method for generating and using the image will be described.
  • FIG. 1 shows a configuration of a stereoscopic video display apparatus according to the first embodiment of the present invention.
  • FIG. 4 shows a more generalized example of parallax image arrangement control in the case of the viewer n.
  • the interval PLen at which the parallax image is presented is the same as the interocular distance Leye.
  • FIG. 5 shows the configuration of the position detection unit in the stereoscopic image display apparatus according to the first embodiment of the present invention
  • FIG. 6 shows the configuration of the head detection unit in the position detection unit.
  • 7 shows an outline of processing of the position detection unit
  • FIG. 8 shows an example of pattern matching in the head detection unit 180.
  • FIG. 1 is a diagram illustrating a configuration of a stereoscopic video display device 100s.
  • the stereoscopic video display device 100 s includes each component such as a camera 104.
  • the camera 104 captures an image (image 104I) of an area (area 100R) where the viewer 100x (viewer 100x1 or the like) exists.
  • the position detection unit 102 detects the position variation of the viewer 100x based on the captured image 104I.
  • the initial adjustment unit 105 adjusts parameters used in position detection for position detection by the position detection unit 102 when the stereoscopic image display device 100s is installed (for the first time) in a living room or the like of a house. Adjustment of display device, parallax barrier, etc. is performed.
  • the 2D display unit 100 displays a 2D parallax image.
  • the display circuit 108 is a display circuit for causing the two-dimensional display unit 100 to display, and may be a control circuit for controlling the operation of the two-dimensional display unit 100, for example.
  • the barrier forming unit (separating unit: parallax barrier, parallax barrier, etc.) 101 opens and allows the light 101L of the image from the two-dimensional display unit 100 to open or to be blocked.
  • the light portion of the parallax image (image 110) presented to the position in the light 101L enters the predetermined position (position 113 in FIG. 2).
  • the parallax image is presented at the position.
  • the viewer 114 has an eye (left eye or right eye) at that position, the image presented at that position can be seen by that eye.
  • the barrier control circuit 106 controls the operation of the barrier forming unit 101.
  • the parallax arrangement control unit 103 based on the result of the position detection unit 102 (information 102I output by the position detection unit 102), arrangement of parallax images to be displayed by the two-dimensional display unit 100 (position 113 where the image 1101 is presented) Etc.).
  • the storage unit 107s is, for example, a RAM (Random Access Memory) or the like, stores a plurality of parallax images 107 displayed by the two-dimensional display unit 100, and displays the plurality of stored parallax images 107.
  • a RAM Random Access Memory
  • parallax barrier (parallax barrier) 101 when the parallax barrier (parallax barrier) 101 is composed of a thin film film, it becomes a fixed barrier. Therefore, in this case, it is assumed that the initial adjustment unit 105 does not adjust the barrier position or the pitch. In this case, the barrier control circuit 106 controls whether to transmit the entire surface of the film or to enable the barrier (perform opening and shielding).
  • the whole including the two-dimensional display unit 100 and the barrier forming unit 101 is appropriately referred to as a display unit 100h.
  • the stereoscopic image display device 100s may be a television, for example. That is, the stereoscopic video display device 100s may receive the signal and display the plurality of parallax images 107 of the stereoscopic video that is the broadcast video represented by the received signal on the display unit 100h. . Thus, the stereoscopic video display device 100s may cause the viewer 114 to perceive the received stereoscopic video and display the stereoscopic video to the viewer 114.
  • the initial adjustment unit 105 performs adjustment of the display device, the parallax barrier, and the like.
  • the pitch width and the barrier position of the barrier are adjusted at a predetermined optimum viewing distance (the positions of the opening portion and the shielding portion are controlled). , Implemented in units of pixels or sub-pixels).
  • FIG. 5 is a diagram illustrating a configuration of the position detection unit 102.
  • FIG. 6 is a diagram illustrating a configuration of a head detection unit 180 (see FIG. 5) included in the position detection unit 102.
  • the following processing may be performed as parameter adjustment processing related to position detection.
  • a camera image obtained by photographing a person facing the front at a predetermined distance is used.
  • luminance / color distribution adjustment in the captured image and threshold parameter adjustment in pattern matching described later are performed so that the face portion in the camera image can be extracted.
  • a reference value adjustment for calculating the distance between a plurality of viewers a reference face image in the image database (template storage memory) 188 (FIG. 6).
  • the relative ratio amount RFace between the size FLEN (FIG. 7) and the size len of the extracted front face image is also obtained.
  • FIG. 7 is a diagram schematically showing the processing of the position detection unit 102.
  • a stereoscopic video visual evaluation using a test image that is an image from the optimum viewing distance is performed. Then, based on the visibility and the degree of blur / fusion identified from the three-dimensional video visual evaluation, the display circuit 108 tunes the tone characteristics and controls the parallax amount in the representative LR parallax image (linear coefficient). Strength control and horizontal shift amount adjustment). This corresponds to adjustment so that the reference parallax image A can be viewed at the reference point (point 104s indicated by the star) in FIG.
  • the position detection process to be executed is a process as shown in FIG.
  • the camera 104 captures an image of a region where a viewer is supposed to be present (for example, part or all of the region 100R in FIG. 1).
  • the camera 104 is such an area where a viewer is estimated to be present (for example, in the case of a living room, the viewing angle is 100 degrees from the TV (television), and the viewing distance is within 1.5 to 6,7 m. It is necessary for the camera to satisfy the condition that it has an angle of view so that a region can be photographed.
  • the head detection unit 180 Based on the photographed image, the head detection unit 180 (FIGS. 5 and 6) extracts a human head (head region) in the image (processing Sa1: column (a) in FIG. 7). ).
  • the reference point setting unit 182 sets a reference point (point 104s) for detecting the relative size in the image (processing Sa2: column (b) of FIG. 7). ).
  • the viewer position detection unit 181 displays each of the two viewers A and B (a plurality of viewers). Head detection is performed to determine the distance Len_AB between the viewer A and the viewer B, the distance Len_A between the viewer A and the reference point, and the distance Len_B between the viewer B and the reference point, respectively. .
  • the basic face image size FLEN held in the image database 188 is compared with the following value.
  • the values are representative values of the extracted size slen_A of the head area of the person A and the size slne_B of the head area of the person B.
  • the relative specific amount RFace is obtained by comparing FLEN with this representative value.
  • slen_A, slne_B the extracted human head region size compared with FLEN
  • the following values are used: A value may be used. That is, in that case, slen_A that is the size of the extracted area of the person A corresponding to the reference face image A may be used for comparison with FLEN. Further, the average value of slen_A and slen_B may be compared with FLEN.
  • the threshold value is set to Leye / 2 as the size at which the crosstalk hardly occurs.
  • the position detection unit 102 outputs a signal instructing execution of the parallax image arrangement control suitable for such position movement.
  • FIG. 5 Details of the head detecting unit 180 (FIG. 5) are configured as shown in FIG. 6, for example.
  • the template storage memory 188 may be configured by an external memory outside the head detection unit 180.
  • the template storage memory 188 may be included in the head detection unit 180.
  • the contour detection unit 185 acquires contour information from the input color image signal (image data).
  • contour detection unit 185 The processing in the contour detection unit 185 will be described in detail below.
  • the contour detection unit 185 performs two-dimensional filter processing using a two-dimensional filter having a size of 3 ⁇ 3, which is represented by the following (Expression 2), and each pixel (i, The differential vector vd (i, j) (xd (i, j), yd (i, j)) of j) is obtained.
  • the contour detection unit 185 compares the above stv (i, j) in each pixel (i, j) with this TH2 using the predetermined threshold value TH2, as shown in the following (Formula 4). Thus, the contour pixel extraction is performed.
  • contour information E (i, j) obtained by the contour detection unit 185 (hereinafter sometimes simply referred to as “contour information Ei”) is used as the feature amount extraction unit 186 (FIG. 6). Is output.
  • the color degree detection unit 184 calculates the skin color degree of the pixels in each cluster after the clusters are classified by the color distribution.
  • the converted information is obtained so that the cluster region including many pixels having a high skin color degree has an output of 1.0.
  • the feature amount extraction unit 186 is also supplied with this color degree information, and obtains the suffereds degree FHi (i, j) based on the contour information and the feature amount from the skin color degree amount.
  • the calculation may be a linear combination of two feature values, or may be a non-linear transformation.
  • the inventors degree FHi (i, j) may be obtained only by the contour information Ei without using the skin color degree.
  • Examples of the target area where the target area is extracted include a face area, a person area (upper body, whole body), and a face part area such as eyes, nose, and mouth.
  • the template storage memory 188 stores standard shape data of the face area (may be plural or may be shape data in a plurality of directions). Keep it.
  • the template storage memory 188 stores the standard shape data (a plurality of person areas.
  • the shape data in a plurality of directions may be used. But you can hold it.
  • the template storage memory 188 holds standard shape data of each part area.
  • Pnum is the number of templates
  • Wp and Hp are the number of horizontal pixels and the number of vertical pixels, respectively, of the rectangular template.
  • FIG. 8 is a schematic diagram for explaining an example of the pattern matching method.
  • the pattern matching unit 187 executes processing 187q for executing the method.
  • the rectangular area candidate SR [i, j, Wp, Hp] having the horizontal width Wp and the vertical width Hp with the pixel (i, j) as the center is set for the template 188P.
  • MAX indicates that the maximum value of R (i, j, p) is obtained for the pixel (i, j) and the template 188P.
  • rectangular region candidates SR [i, j, Wp, Hp] corresponding to the maximum value MR are obtained as target region information BestSR [i, j, Extract as W, H ⁇ ].
  • the target area information BestSR [i, j, W, H] is used as input image information [width / 2, height]. / 2, width, height] is output.
  • width indicates the number of horizontal pixels of the input image
  • height indicates the number of vertical pixels of the input image
  • the target area information BestSR [i, j, W, H] obtained by the pattern matching unit 187 is output from the head detection unit 180 as target region information (187I in FIG. 6).
  • the parallax arrangement control unit 103 displays the signal by the two-dimensional display unit 100. The process of optimal arrangement of parallax images to be performed is performed.
  • FIGS. 2, 3, and 4 shows an example of the processing.
  • FIG. 4 shows generalized parallax image arrangement control when the number of viewers is n.
  • FIG. 2 shows a panel (two-dimensional display unit) 100 that displays an image (two-dimensional parallax image).
  • a parallax barrier (barrier forming unit) 101 for presenting the light 101Lp from each parallax image (image 110: for example, image 1101) to a predetermined viewing position (position 1132) by opening or blocking is shown. It is.
  • viewing positions 113 (viewing positions 1131, 1132, etc.) on a straight line 113L at a predetermined distance from the panel 100 are shown.
  • a combination 118 (combination 118a) of the two positions of the left eye position (position 1132) and the right eye position (position 1133) of the viewer 114 (for example, the first viewer 114a) is shown.
  • parallax image numbers (1, 2,%) Of the parallax images 115 (parallax images 110) observed at the respective positions 113 are shown.
  • the setting unit 116 when performing the arrangement setting of the parallax image 115 to be presented is shown.
  • the setting unit 116 is a unit to which two or more positions (5 in the example of FIG. 2) belong.
  • interval PLen there is an interval PLen between two positions (positions 1131 and 1132) where two images (parallax images) 115 presented at two adjacent positions 113 are presented.
  • This interval PLen is the same as the interocular distance Leye, which is the distance between the left eye and the right eye of the viewer 114.
  • Leye the distance between the left eye and the right eye of the viewer 114.
  • two positions (positions 1132 and 1133) of the left eye position and the right eye position are adjacent to each other. This corresponds to the position of the image (for example, the image 1101 at the position 1132 and the image 1102 at the position 1133).
  • the portion where the viewer 114 is shown indicates the position where the viewer 114 is located.
  • the position of the two eyes of the viewer 114 when the position of the viewer 114 is the position. Is shown.
  • the position of the left eye (position 1132) of the two eyes of the first viewer 114a is at the presentation position of the parallax image 1101, and the position of the right eye (position 1133) is In addition, it is indicated that the image is present at the presentation position of the parallax image 1102.
  • the distance PLen between the positions of the two parallax images 115 (parallax images 110) adjacent to each other is the distance between the left front of the viewer 114 and the right eye.
  • the interocular distance is Leye.
  • the unit 116 used when setting the parallax image arrangement to be presented is within (a, d, c, d, a) within the straight line 113L (on the straight line 113L) as shown in FIG. It is composed of five positions 113.
  • a unit 1161 that is one of the units 116 includes five positions 1131 to 1135.
  • Positions 1131, 1132, 1133, 1134, and 135 in the setting unit 116 are a position where parallax a is presented, a position where parallax b is presented, a position where parallax c is presented, and parallax, respectively.
  • the first parallax position (position 1132), which is the head position among the positions where the eyes of the three viewers 114a to 114c are located, and the final parallax position where the eyes are located.
  • NSP 4.
  • NumP is a reference value for placement control, and is also defined as Th_NSP as shown in FIG.
  • eyes are arranged at all positions between the first parallax position (position 1132) and the final parallax position (position 1135) among the positions of the eyes of a plurality of viewers. Will be.
  • the first parallax image 1101 in the parallax image set OG4 is arranged at the position of the first eye (position 1132), and the parallax number is incremented by 1 from there to the right parallax position. Try to assign things.
  • the position a (position 1131) at the right end of the unit 116 is folded back to the head in the unit 116, so the parallax position a (position 1131) at the head is set to the second parallax position a.
  • the same number as the assigned parallax image number is assigned.
  • a position 103p indicated by a circle in FIG. 2 indicates the position of the parallax position number at which the parallax image 1101 at the top is arranged in the parallax image set OG4.
  • the unit 116 for setting the parallax image arrangement to be presented needs to consider the combination of e and a. Therefore, the viewing position 113 is composed of six positions (a, d, c, d, e, a).
  • the positions 1131, 1132, 1133, 1134, 1135, and 1136 included in the setting unit 116 are the position where the parallax a is presented, the position where the parallax b is presented, the position where the parallax c is presented, and the position of the parallax d, respectively.
  • the position where the parallax e is presented is shown, the position where the parallax e is presented, and the position where the second parallax a is presented.
  • this NSP is larger than this value, so the four parallax images are located between the first parallax position where the eyes are located and the final parallax position where the eyes are located. Shows that there is a space portion where no eyes are arranged.
  • the parallax image 1101 that is the foremost among the images 110 included in the parallax image set OG5 is arranged at the parallax position (position 1134) after the blank portion, and from there to the right parallax position. A value obtained by adding the parallax numbers one by one is assigned.
  • the parallax position a is the second time at the head parallax position a (position 1131).
  • the same number (3) as the parallax image number (3) set at (position 1136) is allocated, and the parallax is assigned to each position from the subsequent position 1132 to the left part (position 1133) of the region where no eye is placed.
  • the position 1134 that is the position 103p with a circle is the position of the parallax position number at which the parallax image 1 (image 1101) at the top is arranged in the parallax image set OG5.
  • FIG. 4 is a diagram illustrating an example of optimal arrangement control of parallax images in the case of a generalized viewer n.
  • FIG. 4 shows a case where a plurality of viewers are not at the same position (v1, v2,..., Vn, vn + 1).
  • the unit (setting unit) 116 for setting the arrangement of the parallax images to be presented is in the viewing position 113 (v1, v2, v3, v4,..., Vn, vn + 1, v1) as shown in FIG. ) (N + 2) positions.
  • the first parallax image 1 (image 1101) in the parallax image set OGn is arranged at the parallax position (position 103p) after the blank portion.
  • the parallax number of v1 at the right end of the setting unit 116 is also allocated to the parallax position v1 at the head, and after that, the parallax number is added and assigned from v2 to the left position of the area where no eye is placed. It becomes.
  • NSP NumP
  • the eyes are all arranged between the first parallax position and the final parallax position of the plurality of viewers' eye positions.
  • the first parallax image 1 in the parallax image set OGn is arranged at the position of the first eye, and a value obtained by adding one parallax number to the right parallax position from there is assigned.
  • the parallax position v1 at the right end of the unit 116 is folded back to the top in the setting unit 116, the same number as the parallax image number set at the second parallax position v1 is assigned to the parallax position v1 at the top. Then, the parallax numbers are assigned in order up to the first parallax position of the positions of the eyes of a plurality of viewers. This enables optimal placement.
  • the position of the eyes of the plurality of viewers overlaps between the first parallax position and the final parallax position of the positions of the eyes of the plurality of viewers in terms of setting units. For this reason, although there is a blank portion where no eyes are arranged, as in the example of FIG. 2, the first parallax image 1 in the parallax image set OGn is arranged at the position of the first eye, and then the right side This can be dealt with by using a method of assigning the parallax numbers added one by one as the parallax position is reached.
  • the positions of the eyes of the plurality of viewers are overlapped between the first parallax position and the final parallax position among the positions of the eyes of the plurality of viewers in terms of setting units.
  • the unit 116 there are two or more blank portions where no eyes are arranged.
  • the reverse vision can be improved by arranging the images in the manner described above.
  • NSP NumP
  • the most disparity image 1 in the disparity image set OGn is arranged at the position of the leading eye, and from there, This can be dealt with by using a method of assigning a parallax number added one by one as it goes to the parallax position.
  • the first parallax image 1 in the parallax image set OGn is arranged from the parallax position after the blank portion. Then, as the parallax position on the right is reached, a value obtained by adding the parallax numbers one by one is assigned. On the other hand, the parallax number of v1 at the right end of the setting unit 116 is also allocated to the parallax position v1 at the head, and the parallax number is added and allocated from the subsequent v2 to the left position of the area where no eye is placed.
  • NSP NSP> NumP
  • NSP ⁇ NumP the positions of the eyes of the plurality of viewers overlap each other when viewed in the setting unit between the first parallax position and the final parallax position of the plurality of viewers' eyes.
  • the parallax image 1 at the top in the parallax image set OGn is arranged at the position of the top eye, and the parallax position on the right side from there This can be dealt with by using a method of assigning a parallax number added one by one.
  • parallax number 1 is assigned from vn + 1 and folded back to the left end, it is possible to suppress reverse vision that occurs when there are viewers in vn and vn + 1 as well. is there.
  • the foremost parallax image 1 in the parallax image set OG4 is arranged at the position of the first eye, and from there to the right parallax position Allocating the parallax numbers added one by one.
  • the same number as the parallax image number set for the second parallax position v1 is assigned to the parallax position v1 at the head, and the parallax number is assigned by sequentially adding up to the first parallax position of the positions of the eyes of a plurality of viewers
  • the first parallax image 1 in the parallax image set OGn is arranged from the parallax position after the blank part. Then, a value obtained by adding the parallax numbers one by one is assigned from the position toward the right parallax position.
  • the parallax number of v1 at the right end of the setting unit 116 is also allocated to the parallax position v1 at the head, and after that, the parallax number is added and assigned from v2 to the left position of the area where the eye is not arranged. Become.
  • a parallax image of (number of viewers + 1) is prepared for the number of viewers n, and between the first parallax position and the final parallax position of a plurality of viewer eyes defined within the setting unit.
  • FIGS. 2 to 4 show only the case where the viewer's eye position is at a specific position, but a plurality of viewers can be placed at the parallax positions that can be obtained by the number of viewers in FIGS. Even if there is an eye position, a parallax image arrangement in which reverse viewing does not occur can be performed in the same procedure.
  • parallax images are prepared for the maximum number of viewers nmax, and the parallax images are displayed according to the rules as described above when the position movement is determined as a result of head detection.
  • the placement control is performed.
  • a search is made from the beginning of the unit 116, and a position where there is a blank area between the first parallax position and the final parallax position among the positions of the eyes of a plurality of viewers is examined.
  • the foremost parallax image 1 in the parallax image set OGn is arranged at the parallax position after the blank portion.
  • the parallax number of v1 at the right end of the setting unit 116 is also allocated to the parallax position v1 at the head, and the parallax numbers are sequentially added and assigned from the subsequent v2 to the left position of the area where no eye is placed. is there.
  • the parallax image 1 at the top in the parallax image set OGn is arranged at the position of the first eye, and from there, the parallax is increased toward the right parallax position. Assign a number added by one.
  • the parallax image 1 at the top in the parallax image set OGn is arranged from the parallax position after the blank portion, but even by arranging as shown in FIG. Correspondence is possible.
  • the first parallax image 1 in the parallax image set OGn is arranged from the parallax position after the blank portion.
  • the starting point of the leftmost parallax image is determined, and from there, the parallax images in the right direction are arranged in order to suppress reverse viewing.
  • the start point of the final parallax image on the rightmost side may be determined, and from there, the parallax images in the left direction may be arranged in order.
  • the start position of the rightmost parallax image is set to the parallax position one adjacent to the left with respect to the start point of the leftmost parallax image defined by the two methods described above.
  • the parallax image with the largest number is assigned to this position, and a parallax number subtracted by 1 is assigned to the parallax position on the left side.
  • the parallax number at the head of the parallax position v1 is assigned to the parallax number at the right end of the unit 116. Even by doing this, it is possible to realize appropriate processing.
  • a square error value with the data in the template storage memory obtained by a learning method such as a neural network can be used as an evaluation function at the time of matching.
  • the stereoscopic video display device 100s may be a television, for example. Further, a display or the like that displays a stereoscopic image displayed by the personal computer may be used. Moreover, the game machine which displays the three-dimensional video which is a game screen may be used. In addition, an advertisement display device that displays a stereoscopic video as an advertisement may be used, or another type of device may be used.
  • FIG. 9 shows a configuration of a stereoscopic video display apparatus according to the second embodiment of the present invention.
  • FIG. 10 shows processing of the display interval control unit 201 that controls the interval at which parallax images are presented.
  • the viewer n 3 and the subdivision is performed.
  • FIG. 9 is a diagram showing a configuration of a stereoscopic video display device.
  • the display interval control unit 201 performs a process of controlling a preset distance PLen between parallax images.
  • a plurality of parallax images are presented from a panel to a space at a predetermined depth distance at predetermined PLen intervals.
  • the interval PLen between these two parallax images is usually set to the human interocular distance Leye.
  • FIG. 10A is a diagram showing a normal arrangement.
  • FIG. 10B is a diagram showing an arrangement in Lee / 2.
  • the parallax images observed at each position are arranged as shown in FIG. 10A (showing the case of four parallax images, on the right side of D, In addition, a parallax image A is arranged, followed by B, C, and D. Similarly, the left side of the parallax image A is repeatedly arranged in the order of A, B, C, and D).
  • the right eye also moves between B and C according to the left eye, and the right eye can see a mixed video of the parallax image B and the parallax image C.
  • FIG. 13 is a diagram schematically showing the processing (in the case of three viewers, the number of subdivisions m) in the second embodiment.
  • the parallax image A ′ is presented at an intermediate position between A and B, and the parallax images B ′ and C ′ are presented at an intermediate position between B and C and an intermediate position between C and D, respectively.
  • the sub-parallax arrangement control unit 202 performs parallax image arrangement control on the two-dimensional display unit 100 in accordance with the result of the position detection unit 102.
  • the sub-parallax arrangement control unit 202 optimizes the parallax image arrangement as shown in FIGS. 11, 12, and 13.
  • the parallax image arrangement may be optimized based on the position detection result (viewer position information) of the position detection unit 102 at a predetermined time timing.
  • the position detection unit 102 may optimize the parallax image arrangement based on both of whether it is determined that the viewer position has moved and a predetermined time timing.
  • the processing outline of the sub-parallax arrangement control unit 202 is as shown in FIGS.
  • the definition configuration in FIG. 11 is the same as that in FIGS. 2, 3, and 4 described in the first embodiment.
  • the interval PLen where the parallax images are presented is halved compared to the case of FIG.
  • the viewer 213a and the viewer 213b have such a combination that one parallax image is inserted between the left eye and the right eye.
  • Reference numeral 214 indicates the position of each viewer's eye.
  • the left eye position of the viewer 213a is the presentation position of the parallax image b, and the right eye position is present at the presentation position of the parallax image d. Shown (214a).
  • the unit 212 for setting the parallax image arrangement to be presented is composed of seven positions (a, d, c, d, e, a, b) in the viewing position 210 as shown in FIG. .
  • 211a, 211b, 211c, 211d, 211e, 211f, and 211g are the position where the parallax a is presented, the position where the parallax b is presented, the position where the parallax c is presented, and the presentation of the parallax d, respectively.
  • reference numerals indicating positions such as reference numeral 211a, are illustrated in a relatively lower part of the drawing.
  • the number of parallaxes NSP between the first parallax position (position 211 b) and the final parallax position (position 211 g) where the eye is located, among the positions of the eyes of the two viewers, is calculated. .
  • NSP 6.
  • the NSP corresponding to the difference between the first parallax position and the final parallax position of the positions of the eyes of multiple viewers within the setting unit is larger than the NumP value. Indicates that there is a part.
  • the presence of the space portion (blank region) described above between the first parallax position and the final parallax position of the positions of the eyes of multiple viewers means that the parallax image number is interrupted at that portion. .
  • the parallax image 1 at the head of the parallax image set PG is arranged from the parallax position (position 211e) after (immediately after) the blank area.
  • FIG. 11 shows this state, and the position 103p with a circle is the position of the parallax position number where the parallax image 1 (image 1101: the above-mentioned) at the top in the parallax image set PG is arranged. Show.
  • the eyes are arranged at all positions between the first parallax position and the final parallax position among the positions of the eyes of the plurality of viewers.
  • the first parallax image 1 in the parallax image set PG5 is arranged at the position of the first eye, and the parallax number is incremented by 1 as it goes from there to the right parallax position. Try to assign things.
  • the parallax positions a (position 211f) and b (position 211g) at the right end of the unit 212 are folded back to the head in the unit 212, the parallax positions a (position 211a) and b (position 211b) at the head are Allocate the same number (2 and 3) as the parallax image numbers (2 and 3) set to the final positions (positions 211f and 211g) and before the first parallax position (position 211e) of the positions of the eyes of the plurality of viewers.
  • the parallax numbers are added in order and assigned.
  • the distance between two different parallax images is half the interocular distance Leye
  • the unit 212 for setting the parallax image arrangement to be presented is nine positions (a, d, c, d, e, f, g, a, b) within the viewing position 210. Consists of.
  • 211a, 211b, 211c, 211d, 211e, 211f, 211g, 211h, and 211i are respectively the position where the parallax a is presented, the position where the parallax b is presented, and the position where the parallax c is presented.
  • the position where the parallax d is presented, the position where the parallax e is presented, the position where the parallax f is presented, the position where the parallax g is presented, the position where the second parallax a is presented, the second parallax b Indicates the position to be presented.
  • the number of parallaxes NSP between the first parallax position (position 211 a) and the final parallax position (position 211 h) with the eye position among the positions of the eyes of the three viewers is 8 It becomes.
  • the presence of a blank area between the first parallax position (position 211a) and the final parallax position (211h) among the positions of the eyes of a plurality of viewers means that there is a parallax. This means that the image number is interrupted. Therefore, the parallax image 1 at the top in the parallax image set PG is arranged at the parallax position (position 211d) after the blank portion.
  • a position 203p indicated by a circle indicates the position of the parallax position number at which the parallax image 1 at the top is arranged in the parallax image set PG.
  • the unit 212 for setting the parallax image arrangement to be presented is in the viewing position 210 (a1, a2,..., Am, b1, b2,..., Bm, c1, c2,. (3m + m + 1) positions of cm, d).
  • the number of parallaxes NSP between the first parallax position (position 211a) where the eyes of the three viewers are located and the final parallax position (position 211j) where the eyes are located is obtained and required.
  • the first parallax image 1 in the parallax image set PG is arranged from the parallax position (position 211i) after the blank.
  • parallax numbers a1 to am at the right end of the unit 212 are also allocated to the parallax positions a1 to am at the head, and the subsequent b1 (position 211e) to bm (position 211h) are the same as in FIGS. In this order, parallax numbers are assigned.
  • FIG. 11 to FIG. 13 show the case where the viewer's eyes are in a specific position. It is possible to control the arrangement of parallax images.
  • the parallax image presentation pattern is repeated, even when there are three viewers, different viewers may exist at the first parallax presentation position and the second same parallax presentation position (for example, FIG. 12 and the first time a and c have a viewer 213a and the second time a and c have a viewer 213c).
  • the first parallax image 1 in the parallax image set PG7 is arranged at the position of the first eye, and from there, the parallax number is incremented by one as it goes to the right parallax position. It is possible to cope with this by using a method of assigning.
  • parallax number 1 is assigned from the parallax position g and turned back to the left end
  • viewers are also present at the parallax position f (position 211f) and the second parallax position a (position 221h).
  • the rule for the optimal arrangement control of the parallax image 110 displayed at the pixel row position on the panel 100 in the case of the viewer n and the subdivision number m is as follows.
  • the parallax number NSP between the first parallax position of the viewer's eye positions and the final parallax position where the eyes are located is calculated.
  • Th_NSP is calculated from (Equation 9) based on the number of viewers n and the number of subdivisions m.
  • n the number of viewers
  • m the number of subdivisions.
  • Th_NSP is the same value as the required number of parallax images NumP, but is newly defined as a reference value for arrangement control.
  • the parallax number is added and allocated up to the front parallax position among the positions of the eyes of a plurality of viewers.
  • 1 in the parallax image set PG is set to the parallax image position (position 103p) behind the first blank part, and a number added one by one is set as the parallax image position.
  • a plurality of viewers can be seen between the first parallax position and the final parallax position at the positions of the eyes of a plurality of viewers in terms of setting units.
  • the present invention can also be applied when the positions of the eyes overlap.
  • parallax images are prepared when the interval for presenting parallax images is subdivided by 1 / m from the interocular distance.
  • the display interval of the parallax images is subdivided into m by performing arrangement control when displaying the parallax images according to the rules as described above. This shows that even when a plurality of viewers of 3 or more and nmax or less are viewing at the same time, there is an effect that a stereoscopic image can be observed without reverse viewing.
  • the first embodiment corresponds to the case where the subdivision number m is 1 in the second embodiment.
  • control rule for disparity image arrangement is that a higher-speed process can be realized by creating an LUT table in advance.
  • parallax images are arranged in 212 in FIG. 11 as 5, 1, 2, 3, 4, 5, 1, and the left eye of the viewer 213b is displayed.
  • the parallax image 4 is presented, and the parallax image 1 is presented to the right eye, causing reverse vision.
  • the start point of the rightmost parallax image is determined, and from there, the parallax images in the left direction are sequentially arranged. May be.
  • the start position of the rightmost parallax image is set to the parallax position that is one adjacent to the left with respect to the start point of the leftmost parallax image. That is, the parallax image with the largest number is assigned to this position, and the one obtained by subtracting the parallax number by 1 is assigned to the parallax position on the left side.
  • the parallax number at the right end of the unit 212 can also be realized by assigning the parallax number of the parallax position at the head.
  • control rule for disparity image arrangement here is high-speed processing can be realized by creating a LUT table in advance. It is also possible to convert to a predetermined conversion function and use a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit).
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • FIG. 14 shows a configuration of a stereoscopic video display apparatus according to the third embodiment of the present invention.
  • FIG. 15 shows the configuration of the parallax image generation unit 301 in the stereoscopic video display apparatus according to the third embodiment.
  • the parallax image generation unit 301 instead of receiving a plurality of parallax images, the parallax image generation unit 301 generates a predetermined parallax image using an LR parallax image as an input. The element to be added is added.
  • this element 301 can also be applied to the second embodiment.
  • Other components are the same as those in the first or second embodiment.
  • the feature of the present invention is that it is not necessary to prepare a plurality of parallax images according to the number of viewers in advance, and a predetermined necessary parallax image using a left-eye parallax image L and a right-eye parallax image R capable of binocular parallax is used It is to secure a necessary parallax image by generating the parallax image by interpolation.
  • This process is performed by the parallax image generation unit 301 in FIG.
  • FIG. 15 is a diagram illustrating a configuration of the parallax image generation unit 301.
  • the parallax image generation unit 301 includes an interpolation process selection unit 310, an image interpolation generation unit 311, an image extrapolation generation unit 312, and a parallax number confirmation unit 313.
  • FIG. 16A and FIG. 16B are diagrams schematically showing a state of generating a parallax image by interpolation.
  • FIG. 16A shows an example of interpolation generation when combined with the first embodiment
  • FIG. 16B shows an example of interpolation generation when combined with the second embodiment.
  • the interpolation processing selection unit 310 generates a new parallax image using extrapolation interpolation or a new parallax image using interpolation interpolation based on the parallax image at that time. To decide.
  • the number of parallax confirmation unit 313 determines whether or not the number of parallax images is the required number NumP, and when there is the necessary number, the processing in the parallax image generation unit 301 is completed.
  • the process returns to the determination process in the interpolation process selection unit 310 and selection of the interpolation process is started.
  • parallax images 301i, 301h, 301j are interpolated by interpolation from the four parallax images (four images 301a, 301b, 301t, 301x) at that time.
  • Generated processing 301u, 301w).
  • the parallax image 1 (image 301g) and the parallax image 7 (image 301k) are generated by extrapolation from the LR parallax images (images 301a and 301b), respectively.
  • three parallax images 2, 4, and 5 are generated by interpolation using the parallax images 1 and 7 and the prepared LR parallax images (parallax 3 and parallax 5). Take the process.
  • the parallax image generation unit 301 performs the parallax image interpolation generation process for NumP-2.
  • parallax image interpolation it is also possible to perform parallax image interpolation using a conversion function prepared in advance. Further, the parallax image obtained at that time may be subjected to statistical analysis such as multivariate analysis or linear approximation to estimate the conversion function. Then, it is possible to generate a new parallax image using the conversion function estimated in the estimation. In this case, until a predetermined number of parallax images necessary for the conversion function estimation are obtained, a process for generating parallax image interpolation by combining interpolation and extrapolation as described in FIG. 16B or the like is used. I think it ’s good.
  • the initial adjustment unit 105 is acted on to increase the pitch between parallax barriers and lenticular lenses. It is preferable to correct parameters such as the pitch between the centers of the two. However, if the increase that occurs is an increase of about 1 or 2 parallax images, the width of the change in pitch, etc. required for the increase is considered to be very small. It is also possible to respond by not changing.
  • the two-dimensional display unit 100 that displays a parallax image may be a liquid crystal panel using a backlight light source, or a PDP or an organic EL panel that emits light. Good. That is, as the two-dimensional display unit 100, any display unit that can display a pixel column of a parallax image is applicable.
  • the head detection unit 180 an example in which one camera image is used has been described. However, it is also possible to perform stereo measurement using two or more camera images, so that the position detection accuracy is improved. Will be improved.
  • illumination light such as an LED light source is irradiated on a target object (a viewer or an observer who observes a stereoscopic image).
  • a TOF method that measures distance by measuring the time TOF (Time Of Flight) until it returns, or a wire-connected method that performs three-dimensional position measurement using electromagnetic force, etc. Is possible.
  • the predetermined test pattern is always expressed in the area where the viewer is photographed, and the represented test pattern is included in the image where the viewer is photographed. It is also possible to use a method of displaying a test pattern to be expressed and performing a geometric survey based on the size of the portion of the test pattern, the moire change of the pixel value, and the like.
  • the process based on the position detection may be a process for detecting the whole person image, or a process for extracting the pupil or eye region. And the result may be used in position detection.
  • the barrier formation position and the pitch interval are described as being fixed except for the initial adjustment.
  • the barrier position and the barrier pitch may be actively changed according to the head position.
  • a device for example, a TFT liquid crystal panel
  • shielding and opening light transmittance
  • the present technology can be applied when adjusting the time when the panel according to the present invention is set in a space such as a living room to be viewed and when using a fixed barrier position and a barrier pitch.
  • the lenticular board (lenticular board 82 of FIG. 24) which arranged the cylindrical lens was used, By controlling the refraction angle of the lens, the same effect can be realized even if a lenticular forming unit that presents each parallax image is used at a predetermined position.
  • the initial adjustment unit 105 performs fine adjustment of the lenticular position and adjustment of the refractive index of the parallax image by the lenticular.
  • the barrier control circuit 106 is provided with a lenticular control circuit, and the barrier formation unit 101 is provided with a lenticular formation unit.
  • the present invention can be realized not only as a device, a system, an integrated circuit, etc., but also as a method that uses processing means constituting the device as steps, or as a program that causes a computer to execute the steps, It can also be realized as a recording medium such as a computer-readable CD-ROM in which the program is recorded, or as information, data or a signal indicating the program.
  • a recording medium such as a computer-readable CD-ROM in which the program is recorded, or as information, data or a signal indicating the program.
  • These programs, information, data, and signals may be distributed via a communication network such as the Internet.
  • a stereoscopic video display apparatus that can observe stereoscopic video without causing reverse viewing even when three or more viewers view simultaneously.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

 3人以上の複数視聴者が同時に視聴した場合でも、逆視を発生させることがなく、立体映像を観察することができるようにされた立体映像表示装置(100s)では、それぞれの視差画像について、画素列を選択して、その視差画像を、選択された前記画素列で表示する2次元表示部(100)と、光(101L)を、それぞれの視差画像が、その視差画像に対応する所定位置に提示されるように、分離するバリア形成部(101)と、観察者(114)の位置を検出する位置検出部(102)と、検出された位置にいる観察者(114)の右眼がない位置(1134)を特定して、特定された位置(1134)に、予め定められた視差画像(1101)を提示させる視差配置制御部(103)とを備える。

Description

立体映像表示装置、立体映像表示方法
 本発明は、特殊なメガネを用いることなしに、立体映像を観察することができる立体映像表示装置に関するものである。
 従来より、特殊なメガネを使用しないで立体映像を表示する装置として、液晶パネルやPDP等の表示装置の観察者側に、パララックスバリアやレンチキュラーレンズ等(分光手段)を配置した装置が知られている。この装置では、これにより、表示パネルに表示された左眼用の画像と、右眼用の画像とからの光を、左右に分離して、立体映像を表示する。
 図21は、パララックスバリア92を用いた、メガネなし方式の立体映像表示装置91aの原理を示す図である。
 図中、91は映像表示パネルであり、92はパララックスバリアである。
 映像表示パネル91には、左眼用画素Lが、図21の紙面に対して垂直方向(図示されるz方向)に並ぶ列と、右眼用画素Rが、垂直方向に並ぶ列とが、交互に形成されている。
 また、パララックスバリア92は、垂直方向に延びる、スリット状の開口部92aが多数形成されており、互いに隣り合う2つの開口部92aの間には、垂直方向に延びる遮光部92bが形成されている。
 なお、前記左眼用画素Lで構成される左眼用映像93Lと、右眼用画素で構成される右眼用映像93Rとの間には、人間が立体映像を感じるだけの両眼視差がある。
 立体映像を観察したい観察者94は、頭部を、所定の位置94Px(正視位置)に位置させる。これにより、左眼94Lに、左眼用映像93Lを、開口部92aを介して入射させ、右眼94Rに、右眼用映像93Rを、開口部92aを介して入射させる。これにより、立体映像を認識することができる。
 なお、このとき、左眼94Lには、右眼用映像93Rの光は、遮光部92bで遮断されて、入射せず、右眼94Rには、左眼用映像93Lの光は、遮光部92bで遮断されて、入射しない。
 しかしながら、このような従来の立体映像表示装置91aでは、観察者94は、頭部の位置(頭部位置)94Pを、所定の位置94Pxに位置させる必要がある。つまり、頭部の位置94Pが、上記所定の位置94Pxから外れた場合、左眼94Lに、右眼用映像93Rの光が入射し、右眼94Rに左眼用映像93Lの光が入射して、良好な立体映像を認識することができないという問題が生じる(逆視)。
 このため、観察者94は、立体映像を鑑賞するためには、まず、良好に観察することができる正視位置94Pxを見つけ出し、その位置94Pxに、頭部の位置94Pを固定させる必要がある。
 また、立体映像を鑑賞中に、頭部が正視位置94Pxから外れた場合、頭部の位置94Pを移動させて、その位置94Pを再度、正視位置94Pxに位置させる必要がある。
 この改善として、頭部の位置94Pに応じて、頭部の位置94Pが、上述の正視が生じる位置94Pxから外れた位置である場合には、左眼用画像93Lと、右眼用画像93Rを入れ換え、位置94Pxから外れた、現在の頭部位置94Pで、正視映像が見えるようにする技術が、(特許文献1)に記載されている。ただし、この方法では、視聴者が1人の場合にしか対応することができない。
 なお、このような、頭部位置による、正視と逆視の問題は、左眼と右眼用の2視差画像を提示した場合のみならず、3以上の個数だけの複数の視差画像を表示した場合にも発生する。
 図22は、4視差画像を提示した例を示す図である。
 画像A,B,C,D(視差画像99a~99d)が、提示された複数の視差画像に相当する。
 また、位置9L(位置9La、9Lb…)は、観察者位置を示し、位置9La、9Lb、9Lc、9Ldは、各々、視差画像A、B、C、Dの見える位置を示すものとする。
 この図で表示されるように、複数の視差画像99a~99dは、映像表示パネル1に対して平行である平行面9LL上に、所定の間隔で、繰り返し提示される。
 そのため、例えば、頭部位置94P(図21)の動きに応じて、左眼94Lが、視差画像99dが見える位置(位置9Ld)にあった場合、左眼94Lに、視差画像99dが入射する。
 そして、右眼94Rが、視差画像99aが見える位置(位置9La:例えば、図示される各位置のうち、左から5番目の位置など)にあった場合、右眼94Rには、視差画像99aが入射する。
 このことで、逆視が発生する。
 また、左眼94Lが、位置9Laと位置9Lbの途中にあり、右眼94Rが、位置9Lbと位置9Lcの途中にあった場合、クロストークが発生する。
 なお、このような、図22に示される、複数の視差画像を用いる技術により、複数の視聴者による視聴がされる。つまり、一方の視聴者94の左眼94Lが位置9Laにあり、右眼94Rが位置9Lbにあるときに、次の通りである。つまり、このときには、他方の視聴者94の左眼94Lが、位置9Lcにあり、他方の視聴者94の右眼94Rが、位置9Ldにあることにより、一方の視聴者94による視聴と同時に、他方の視聴者94による視聴もされる。
 先述のように、このような技術が用いられる時にも、逆視が生じる。このような、図23Aの技術で生じる逆視の改善技術として、(非特許文献1)に記載された手法がある。
 図23Aは、2人の視聴者に対して、3視差画像(画像a~c)を用いた、非特許文献1で示される、従来の画像表示方式を示す図である。
 非特許文献1の技術では、図示されたように、パララックスバリア開口部1つに対して、3つの視差画像を対応させる。そして、観察者トラッキングを用いることで、2人の観察者(観察者9b1、9b2)の何れでも、逆視が生じることなく、立体視可能となる方式が示されている。
 図23Bは、非特許文献1の方式での動作の表を示す図である。
 非特許文献1の方式では、図23Aに示されるよう、ディスプレイに表示する3視差画像(a,b,c)として、視差画像3枚(i,ii,iii)のみを用いる。
 そして、2人の視聴者94(視聴者9b1、9b2)の状態が、静止した状態(「2人とも静止状態」の語が示された、図23Bの表における第3行)である場合には、次の通りである。
 つまり、この場合には、視聴者1(視聴者9b1)においては、左眼(の位置)に視差画像iiが、右眼に視差画像iiiがそれぞれ提示(入射)される(第3行の第5列、第6列)。また、視聴者2においては、左眼に視差画像iが、右眼に視差画像iiがそれぞれ提示される(第7列、第8列)。
 なお、こうして、それぞれの視聴者のそれぞれの眼により、その眼の位置に入射(提示)される画像(視差画像)が見られる(知覚される)。
 つまり、それぞれの画像(視差画像i、ii、iii)の視点位置は、その画像が撮影装置により撮影された際における、撮影装置の位置などである。
 そして、視聴者94の左眼94Lにより見られる画像の視点位置が、右眼94Rにより見られる画像の視点位置と比べて、より左側であれば、適切に、立体映像が知覚される。
 そして、表の第3行の状態では、第1の視聴者9b1の左眼94Lおよび右眼94Rの位置が、bの位置(第3列)およびcの位置(第4列)である(図23A参照)。そして、この状態では、第2の視聴者9b2の左眼94Lおよび右眼94Rの位置が、aの位置(第1列)およびbの位置(第2列)である。
 そこで、このような、第3行の状態の場合には、a、b、cの位置に、それぞれ、i、ii、iiiの画像が提示される(第3行の第2列~第4列)。
 つまり、aの位置に提示される画像(画像i)は、bの位置に提示される画像(画像ii)の視点位置よりも左側の視点位置の画像である。そして、bの位置に提示される画像(画像ii)は、cの位置に提示される画像(画像iii)の視点位置よりも左側の視点位置の画像である。
 第3行の状態の場合に、このように、3視差画像(a、b、c)を並べれば、何れの視聴者でも、左眼94Lで見られる画像の視点位置が、右眼94Rで見られる画像の視点位置よりも左側である。このため、第1、第2の視聴者9b1、9b2が、ともに、適切に立体映像を知覚し、何れの視聴者も、立体視が可能となる。
 なお、第1の視聴者9b1が右に動いた場合において(図23Aの動き9b1mを参照)、仮に、この第1の視聴者9b1を、トラッキングしていないとする。そうすれば、上述された、表の第3行第2列~第4列のように、画像の提示がされると(先述の説明を参照)、第1の視聴者9b1は、左眼94Lに、視差画像iii(第3行第4列)を、右眼94Rに視差画像i(第3行第2列)をそれぞれ見るというようになる。これにより、第1の視聴者9b1により見られる画像が、左右逆になり、逆視が生じてしまう。
 そこで、第1の視聴者9b1は、左眼94Lに視差画像iを、右眼94Rに視差画像iiをそれぞれ見ると共に(第4行第5列、第6列、第4列、第2列)、第2の視聴者9b2は、左眼94Lに視差画像iiを、右眼94Rに視差画像iiiをそれぞれ見る(第4行の第7列、第8列、第2列、第3列)ことになるように、画像の表示をする。
 このことで、図23Aの移動9b1mがされた後における、図23Bの表の第4行の状態の場合にも、2人の視聴者が、ともに、立体視できるようになる。
 また、視聴者2が左に動いた場合にも(動き9b2m、表の第5行を参照)、同様にして、逆視がなくなるようにされる。
 つまり、この場合には、第1の視聴者9b1は、左眼94Lに視差画像iを、右眼94Rに視差画像iiをそれぞれ見ると共に(表の第5行第3列~第4列)、第2の視聴者9b2は、左眼94Lに、視差画像iiを、右眼94Rに視差画像iiiをそれぞれ見ることになるように(第5行第4列、第2列)、表示する視差画像の並びを替える。
 すると、動き9b2mがされた後における、表の第5行の場合にも、2人の視聴者が、何れも立体視可能となる。
特許第3030243号公報
「パララックスバリアを用いた複数観察者トラッキング型立体ディスプレイ」包躍,画像電子学会誌,第32巻,第5号,pp.667-673(2003)
 複数の視聴者がいる場合、特許文献1の技術では、対応することができない。
 また、非特許文献1(図22参照)の場合には、視聴者が2人である場合にまでしか対応することができず、3人以上の視聴者がいる場合には、逆視となる視聴者が発生する可能性が高い。
 そこで、本発明は、より確実に、逆視が発生するのが回避されて、より確実に、立体映像の表示ができる立体映像表示装置を提供することを目的とする。
 上記の課題を解決するために、本立体映像表示装置は、複数の視差画像を表示して、同時に複数の観察者が、特殊なメガネ(単なる老眼用のメガネなどの通常のメガネではない、立体映像を知覚するのに用いられるメガネ)を用いず、立体視を観察する立体映像表示装置であって、多視点からの複数の前記視差画像のうちのそれぞれの前記視差画像について、複数の画素列から画素列を選択して、その視差画像を、選択された前記画素列で表示する2次元表示部と、前記複数の画素列からの光を、それぞれの前記視差画像が、その視差画像に対応する所定位置に提示されるように、分離する分離部と、立体視を観察する観察者の位置を検出する位置検出部と、検出された前記位置に応じて、それぞれの前記視差画像の表示制御を行い、検出された前記位置にいる前記観察者の左眼および右眼のうちの予め定められた方の眼(例えば右眼)がない位置(予め定められた方の眼がある位置以外の他の位置:図3の位置1134など参照)を特定して、特定された前記位置に、複数の前記視差画像のうちの予め定められた前記視差画像(視点位置が、何れの他の視差画像の視点位置よりも左側で、最も左側である図3の視差画像1101参照)を提示させる視差配置制御部とを備える立体映像表示装置である。
 なお、例えば、本立体映像表示装置は、視聴人数nについて、n+1の個数の視差画像を用いて、検出された頭部位置に応じて、表示パネル上の視差画像の表示位置を制御することで、3人以上の視聴者の場合でも、逆視がない立体映像を観察することができる立体映像表示を提供するものでもよい。
 また、本立体映像表示装置では、各視差画像が提示される所定の位置の間隔を、眼間距離よりも細分化してもよい。そして、その細分化数mに応じて、n×m+1の個数n視差画像を用い、検出された頭部位置に応じて、表示パネル上の視差画像の表示位置を制御することで、3人以上の複数視聴者に対しても、逆視がなく、立体映像が観察できるとともに、所定の位置の間で発生するクロストーク領域も削減することができてもよい。
 また、本立体映像表示装置では、左眼画像Lと右眼画像Rのみを用意し、視聴人数に応じて、2つのLR視差画像を補間して、複数の視差画像を生成し、用いることで、視聴人数に応じて、視差画像を改めて準備することなく、3人以上の複数視聴者に対しても、逆視がなく、立体映像が観察できてもよい。
 3人以上の複数観察者(複数視聴者)が同時に観察(視聴)した場合でも、逆視を発生させることがなく、立体映像を観察することができる立体映像表示装置を提供できる。しかも、観察者の人数が変化した後でも、その変化の後の人数の観察者のうちの何れの観察者の予め定められた方の目(例えば右眼)の位置でもない位置(位置1134参照)が特定されるなどだけで済んで、処理が簡単にできる。しかも、複雑な構成(図23Bのテーブル参照)が必要にならず、構成が簡単にできる。
 また、各視差画像を提示する間隔を、眼間距離よりも細分化し、頭部位置における視差画像表示制御と組み合せることで、逆視発生を抑えるとともに、クロストークの発生する領域も減少させることができる。
 さらに、左眼用画像Lと右眼用画像Rとから、補間で視差画像を生成することを組み合わせることで、最大視聴人数に応じて、改めて視差画像を用意する必要がないという利点がある。
図1は、本発明における第1の発明である立体映像表示装置の構成を示す図である。 図2は、本発明における第1の発明である立体映像表示装置の視差配置制御手段の処理(視聴者3人の場合)を模式的に示す図である。 図3は、本発明における第1の発明である立体映像表示装置の視差配置制御手段の処理(視聴者4人の場合)を模式的に示す図である。 図4は、本発明における第1の発明である立体映像表示装置の視差配置制御手段の処理(視聴者n人の場合)を模式的に示す図である。 図5は、本発明における第1の発明である立体映像表示装置の位置検出手段の構成を示す図である。 図6は、本発明における第1の発明である立体映像表示装置の頭部検出手段の構成を示す図である。 図7は、本発明における第1の発明である立体映像表示装置の位置検出手段の処理を模式的に示す図である。 図8は、本発明における第1の発明である立体映像表示装置の頭部検出手段のパターンマッチング部の処理を模式的に示す図である。 図9は、本発明における第2の発明である立体映像表示装置の構成を示す図である。 図10Aは、本発明における第2の発明である立体映像表示装置の表示間隔制御部の動作を模式的に示す図である。 図10Bは、本発明における第2の発明である立体映像表示装置の表示間隔制御部を模式的に示す図である。 図11は、本発明における第2の発明である立体映像表示装置の視差制御手段の処理(視聴者2人、細分化数m=2の場合)を模式的に示す図である。 図12は、本発明における第2の発明である立体映像表示装置の視差制御手段の処理(視聴者3人、細分化数m=2の場合)を模式的に示す図である。 図13は、本発明における第2の発明である立体映像表示装置の視差制御手段の処理(視聴者3人、細分化数mの場合)を模式的に示す図である。 図14は、本発明における第3の発明である立体映像表示装置の構成を示す図である。 図15は、本発明における第3の発明である立体映像表示装置の視差画像生成手段の構成を示すブロック図である。 図16Aは、本発明における第3の発明である立体映像表示装置の視差画像生成の手順を示す図である。 図16Bは、本発明における第3の発明である立体映像表示装置の視差画像生成の手順を示す図である。 図17は、本立体映像表示装置の動作を示す図である。 図18は、本立体映像表示装置の動作を示す図である。 図19は、本立体映像表示装置の動作を示す図である。 図20は、本立体映像表示装置の動作を示す図である。 図21は、従来の2視差を用いたバリア制御による立体映像表示装置の構成を示す図である。 図22は、従来の複数視差(4視差)を用いたバリア制御による立体映像表示装置の構成を示す図である。 図23Aは、2人の視聴者に対して3視差画像を用いた従来の画素表示方式における模式図である。 図23Bは、図23Aの方式での動作の表を示す図である。 図24は、レンチキュラー板が用いられた構成を示す図である。
 以下、本発明の最良の形態としての第1~第3実施形態について、図面を参照して説明する。
 実施形態の立体映像表示装置は、複数の視差画像(例えば図3の画像1101~1105)を表示して、同時に複数の観察者(視聴者114a~114d)に、特殊なメガネを用いず、立体視(立体映像)を観察させる立体映像表示装置100s(図1など)であって、多視点(複数の視点位置)からの複数の視差画像のうちのそれぞれの視差画像(例えば画像1103)について、複数の画素列(a~dの画素列)から画素列(aの画素列)を選択して、その選択画像(画像1103)を、選択された画素列(aの画素列)で表示する2次元表示部100と、複数の画素列からの、それぞれの画像(画像1101~1105)の光が含まれてなる光(光101L)を、それぞれの視差画像(図3の画像1103)が、その視差画像に対応する所定位置(位置1136)に提示されるように、それぞれの視差画像の光(図2の光101Lp参照)へと分離する分離部(バリア形成部101)と、立体視を観察する観察者114の位置を検出する位置検出部102と、検出された位置に応じて、それぞれの視差画像の表示制御を行い、検出された位置にいる観察者(視聴者114a、114b…)の左眼および右眼のうちの予め定められた方の眼(右眼)がない位置(位置1134)を特定して、特定された位置(位置1134)に、複数の視差画像のうちの予め定められた視差画像(視点位置が最も左側である画像1101)を提示させる視差配置制御部103とを備える。
 第1実施形態では、視聴人数+1の数だけの個数の視差画像を用いて、検出された、視聴者の頭部位置に応じて、表示パネル上の視差画像の表示位置を制御して立体映像表示を行う方法について説明する。
 第2実施形態では、各視差画像が提示される所定の位置間隔を、眼間距離よりも短い間隔へと細分化する。その細分化数mに応じて、視聴人数×m+1の視差画像を用い、検出された頭部位置に応じて、表示パネル上の、視差画像の表示位置を制御して、立体映像表示を行う方法について説明する。
 第3実施形態では、第1または第2の発明において、左眼画像Lと右眼画像Rのみを用意し、視聴人数に応じて、2つのLR視差画像を補間して、複数の視差画像を生成し、用いる方法を導入して、立体映像表示を行う方法ついて説明する。
 [第1実施形態]
 図1から図8を用いて、本発明の第1実施形態として、視聴人数+1の個数の視差画像を用いて、検出された頭部位置に応じて、表示パネル上の視差画像の表示位置を制御して、立体映像表示を行う装置について説明する。
 図1には、本発明の第1実施形態である立体映像表示装置の構成を示す。また、図2には、視聴者nがn=3の場合の視差画像配置制御の例を示し、図3には、視聴者nがn=3の場合の視差画像配置制御の例を示し、図4には、より一般化した、視聴者nの場合の視差画像配置制御の例を示す。なお、ここで、視差画像が提示される位置の間隔PLenは、眼間距離Leyeと同じであるとする。図5には、本発明の第1の実施形態例である立体映像表示装置内の位置検出部の構成を示し、図6には、位置検出部内の頭部検出部の構成を示す。そして、図7には、位置検出部の処理概要を示し、図8には頭部検出部180におけるパターンマッチング例を示す。
 これらの図に従い、本発明の第1実施形態である立体映像表示装置について説明する。
 図1は、立体映像表示装置100sの構成を示す図である。
 図1に示されるように、立体映像表示装置100sは、カメラ104などの各構成要素を備える。
 カメラ104は、視聴者100x(視聴者100x1など)の存在する領域(領域100R)の画像(画像104I)を撮影する。
 位置検出部102は、撮影された画像104Iを基に、視聴者100xの位置変動を検出する。
 初期調整部105は、立体映像表示装置100sが、住宅の居間等に(初めて)設置された時点などでの、位置検出部102による位置検出のための、その位置検出で用いられるパラメータの調整や、表示デバイス、視差バリア等の調整を行う。
 2次元表示部100は、2次元の視差画像を表示する。
 表示回路108は、2次元表示部100に表示をさせるための表示回路であり、例えば、2次元表示部100の動作を制御する制御回路でもよい。
 そして、バリア形成部(分離部:パララックスバリア、視差バリアなど)101は、2次元表示部100からの画像の光101Lを、開口して、通過させたり、遮蔽をしたりする。
 これにより、所定の位置(図2の位置113)に、光101Lのうちの、その位置へと提示される視差画像(画像110)の光の部分が入射する。これにより、その位置に、その視差画像が提示される。これにより、その位置に、視聴者114の眼(左眼または右眼)があるときには、その眼により、その位置に提示される画像が見られる。
 バリア制御回路106は、バリア形成部101の動作を制御する。
 視差配置制御部103は、位置検出部102の結果(位置検出部102により出力される情報102I)を基に、2次元表示部100が表示させる視差画像の配置(画像1101が提示される位置113など)を最適化制御する。
 記憶部107sは、例えばRAM(Random Access Memory)などであり、2次元表示部100が表示させる複数の視差画像107を記憶して、記憶された複数の視差画像107を表示させる。
 なお、パララックスバリア(視差バリア)101が、薄いフィルム膜で構成されているような場合、固定バリアとなる。このため、この場合には、初期調整部105で、バリア位置や、ピッチ調整は実施されないものとする。なお、その場合、バリア制御回路106では、フィルム全面で、透過にするか、バリア(開口と遮蔽を実施)を有効にするかの制御を行うこととなる。
 なお、説明の便宜上、適宜、2次元表示部100と、バリア形成部101とが含まれてなる全体は、表示部100hと呼ばれる。
 なお、立体映像表示装置100sは、例えば、テレビなどでもよい。つまり、立体映像表示装置100sは、信号を受信して、受信された信号により表わされる、放送される映像である立体映像の複数の視差画像107を、上述の表示部100hにより表示してもよい。立体映像表示装置100sは、これにより、受信された立体映像を、視聴者114に知覚させて、視聴者114に対して立体映像を表示してもよい。
 まず、カメラ104で撮影された画像(画像104I)と、位置検出部102の結果(情報102I)とを基に、居間等の部屋に初めて設置された時点での、位置検出のためのパラメータ調整や、表示デバイス、視差バリア等の調整を、初期調整部105が実施する。
 なお、この場合、TFT液晶パネル等によるアクティブ視差バリアを用いる場合には、所定の最適視聴距離における、バリアのピッチ幅やバリア位置の調整が実施される(開口部分と遮蔽部分の位置の制御が、画素もしくはサブピクセル画素単位で実施される)。
 図5は、位置検出部102の構成を示す図である。
 図6は、位置検出部102が備える頭部検出部180(図5参照)の構成を示す図である。
 位置検出に関するパラメータの調整の処理としては、例えば、次の処理がされてもよい。その処理では、所定距離の、正面を向いた人物を撮影したカメラ画像を用いる。そして、その処理では、そのカメラ画像における顔部分の抽出ができるように、撮影画像内の輝度分布/色分布調整や、後述のパターンマッチング内の閾値パラメータ調整を実施する。さらに、その処理では、複数の視聴者の間の距離を算出するための基準値調整として、以下で詳しく説明されるように、画像データベース(テンプレート記憶メモリ)188(図6)内の基準顔画像の大きさFLEN(図7)と、抽出された正面顔画像の大きさlenとの間の相対比量RFaceを求めることも実施する。
 図7は、位置検出部102の処理を模式的に示す図である。
 上述された動作と合わせて、最適視聴距離からの画像であるテスト画像を用いた立体映像視認評価を行う。そして、その立体映像視認評価から特定された、見易さや、ぼけ/融像程度を基に、表示回路108での、階調特性のチューニングや、代表LR視差画像内の視差量制御(線形係数での強弱制御や水平方向シフト量調整)を実施する。図7における基準点(星印で示される点104s)での基準視差画像Aの視聴が可能になるように調整することに相当する。
 先述の調整を実施するために、特に、位置検出精度を上げるために、実施される位置検出処理としては、図7のような処理が実施される。
 まず、カメラ104で、視聴者の居ると思われる領域(例えば、図1の領域100Rの一部または全部など)の画像が撮影される。
 なお、カメラ104は、そのような、視聴者が居ると推定される領域(例えば、居間の場合には、TV(television)から、視野角100度、視聴距離は1.5mから6,7m以内である領域など)が撮影できるような画角を有するとの条件を満たすカメラである必要である。
 撮影された画像を基に、頭部検出部180(図5、図6)が、その画像内の、人物頭部(頭部の領域)を抽出する(図7の処理Sa1:(a)欄)。
 それに対して、基準点設定部182(図5)は、その画像内で、相対的な大きさを検出する際の基準点(点104s)を設定する(処理Sa2:図7の(b)欄)。
 次に、図7の(c)欄(処理Sa3)で示されるように、視聴者位置検出部181(図5)が、A・Bの2人の視聴者(複数の視聴者)のそれぞれの頭部検出を行い、視聴者Aと視聴者Bとの間の距離Len_AB、視聴者Aと基準点との間の距離Len_A、および、視聴者Bと基準点との間の距離Len_Bをそれぞれ求める。
 この場合、(c)欄に示されるように、画像データベース188内に保持された基本顔画像の大きさFLENと、次の値とを比較する。その値とは、抽出された、人物Aの頭部の領域の大きさslen_A、および、人物Bの頭部の領域の大きさslne_Bの代表値である。FLENと、この代表値とを比較して、相対比量RFaceを求める。
 そして、その値(求められた相対比量RFace)を、画像内で得られた、slen_AB,slen_A,slen_Bへの係数として用いて、下記の(数式1)のように、算出をする。
Figure JPOXMLDOC01-appb-M000001
 ここで、例えば、FLENと比較する、抽出された、人物の頭部の領域の大きさ(slen_A、slne_B)の値としては、予め用意された基準顔画像Aを用いた場合には、次の値を用いてもよい。つまり、その場合には、その基準顔画像Aに対応する、抽出された人物Aの領域での大きさであるslen_Aを、FLENとの比較に用いてもよい。また、slen_Aと、slen_Bとの平均値を、FLENと比較してもよい。
 最後に、位置移動判断部183(図5)が、所定の時刻前の、視聴者AとBとの位置情報であるLen_AB,Len_A,Len_Bの変化量dLenAB,dLenA,dLenBを基に、動いたかどうかの判断をする。
 この場合、視差画像間距離が、眼間距離Leyeであることから、クロストークが発生し難い大きさとして、しきい値を、Leye/2に設定した。
 つまり、変化量dLenAB,dLenA,dLenBのうちの2つ以上が、Leye/2より大きい場合には、位置移動があったとの判断を行い、その視聴者位置情報(Len_ABとLen_A,Len_B)と、そのような、位置移動があったときに適する視差画像配置制御の実施を指示する信号を、位置検出部102が出力するのである。
 頭部検出部180(図5)の細部は、例えば、図6に示すように構成される。
 なお、図6に示すように、テンプレート記憶メモリ188は、頭部検出部180外の外部メモリにより構成されるものであってもよい。一方で、テンプレート記憶メモリ188は、頭部検出部180内に含まれるものなどであってもよい。
 輪郭検出部185では、入力されたカラー画像信号(画像データ)から、輪郭情報が取得される。
 この輪郭検出部185での処理について、以下、詳細に説明する。
 輪郭検出部185では、下記の(数式2)で示される、3×3の大きさをもつ2次元フィルタによる2次元フィルタ処理により、下記の(数式3)により、画像内の各画素(i,j)の微分ベクトルvd(i,j)(xd(i,j),yd(i,j))を求める。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 また、微分ベクトルvd(i,j)の大きさstv(i,j)を、次の式
  stv(i,j) = ( xd(i,j)×xd(i,j) + yd(i,j)×yd(i,j) )^0.5
により求める。
 輪郭検出部185では、各画素( i,j )における上述のstv( i,j )を、所定のしきい値TH2を使って、このTH2と、下記の(数式4)のように、比較することで、輪郭画素抽出を行う。
 なお、下記の(数式4)は、カラー画像信号により形成される画像上の画素が、輪郭に含まれる画素であるか否かを示すための2値化を行うものであり、E( i,j )=1は、画素( i,j )が輪郭に含まれる画素であることを表している。
Figure JPOXMLDOC01-appb-M000004
 このようにして、輪郭検出部185により求められた輪郭情報E(i,j)(以下では、単に「輪郭情報Ei」と表記することもある。)は、特徴量抽出部186(図6)へ出力される。
 一方、色度合い検出部184(図6)では、色分布で、クラスタ分類された後、各クラスタ内画素の肌色度合いを計算する。
 そして、この肌色度合いの高い画素が多く含まれるクラスタ領域ほど、出力1.0となるように、変換した情報を求める。
 特徴量抽出部186へは、この色度合い情報も渡され、輪郭情報と、肌色度合い量からの特徴量とを基に、人物らしさ度合いFHi(i,j)を求める。
 なお、その算出は、2つの特徴量の線形結合での算出であってもよいし、非線形変換での算出などであってもよい。
 また、輪郭情報Eiで、肌色度の高いところにおいては、そのまま、Eiを、人物らしさ度合いFHi(i,j)とする一方で、肌色度の低いところでは、輪郭情報Eiを弱める係数を乗算して、乗算されて、弱められた後の値を、人物らしさ度合いFHi(i,j)として出力するなどしてもよい。
 また、肌色度合いを用いずに、輪郭情報Eiのみで、人物らしさ度合いFHi(i,j)を求めてもよい。
 パターンマッチング部187では、特徴量抽出部186により得られた、人物らしさ度合いFHiから特定される領域の形状を、予め用意された、テンプレート記憶メモリ188内の、対象領域の形状データの形状と、パターンマッチング処理して、対象領域抽出を行う。
 対象領域抽出を行う対象領域としては、たとえば、顔領域や、人物領域(上半身、全身)や、目・鼻・口のような顔パーツ領域等が挙げられる。
 なお、対象領域を、顔領域とする場合、テンプレート記憶メモリ188には、顔領域の標準形状データ(複数であってもよい。また、複数の方向での形状データであってもよい。)を保持しておく。
 また、対象領域を人物領域とする場合、テンプレート記憶メモリ188には、人物領域の標準形状データ(複数であってもよい。また複数の方向の形状データであってもよい。また、上半身でも全身でもよい。)を保持しておく。
 また、対象領域を、目・鼻・口のパーツ領域とする場合、テンプレート記憶メモリ188には、各パーツ領域の標準形状データを保持しておく。
 このように、テンプレート記憶メモリ188で保持する形状データTp[ k, s ]( p = 1,…, Pnum )( k = 0,1,…, Wp-1 )( s=0,1,…, Hp-1 )と、各画素( i, j )の特徴量情報FH(i,j)のパターンマッチング処理を行うことで、パターンマッチング部187により、該当領域(対象領域情報:図6の情報187I)が抽出される。
 なお、Pnumは、テンプレート数であり、Wp、Hp は、それぞれ、矩形テンプレートの水平画素数、垂直画素数である。
 図8は、パターンマッチ法の一例を説明するための模式図である。
 パターンマッチング部187(図6参照)で実行されるパターンマッチング処理の手法としては、多くの方法があるが、簡易な方法としては、例えば、図8に示すような方法がある。パターンマッチング部187により、その方法を実行する処理187qが実行される。
 以下で、この方法について説明する。
 テンプレート188P に対して、画素( i,j )を中心とした、水平幅 Wp、垂直幅 Hp をもつ矩形領域候補SR[ i, j, Wp, Hp ]を設定する。
 そして、設定された矩形領域候補 SR[ i, j, Wp, Hp ]内の輪郭情報 E( i,j )と、テンプレート記憶メモリ188に保持されている、テンプレート188Pの形状を特定する形状データTp[ k, s ](図8のデータ188a: ( k = 0,.., Wp-1 ) ( s = 0,1,…,Hp-1 ) )を基に、下記の(数式5)のような、評価関数 R( i, j, p )を求める。
Figure JPOXMLDOC01-appb-M000005
 次に、下記の(数式6)に示されるように、テンプレート188P、および画素( i, j )に対して、最大の評価関数 R( i, j, p )となるMRを求める。
 なお、(数式6)において、MAXは、画素( i, j)及びテンプレート188Pに対して、R( i, j, p )の最大値を求めることを示す。
 そして、その最大値 MRが、所定のしきい値THMR以上であれば、最大値 MRに該当する矩形領域候補 SR[ i, j, Wp, Hp ]を、求める対象領域情報 BestSR[ i,j, W, H ]として抽出する。
Figure JPOXMLDOC01-appb-M000006
 このように、所定のしきい値THMRと比較することで、ノイズ等へのマッチングが生じてしまうことを抑えることができる。
 なお、しきい値THMRよりも、最大値MRが小さい場合には、対象領域がないものとして、対象領域情報BestSR[ i, j, W, H ]として、入力画像の情報[ width/2, height/2, width, height ]が出力される。
 なお、ここで、width は、入力画像の水平画素数を示し、heightは、入力画像の垂直画素数を示す。
 以上のようにして、パターンマッチング部187により取得された対象領域情報BestSR[ i, j, W, H ]は、対象領域情報(図6の187I)として、頭部検出部180より出力される。
 位置検出部102により、位置移動が発生したと判断したことを示す信号(図5の情報102I参照)が出力された場合、視差配置制御部103(図1)では、2次元表示部100により表示される視差画像の最適配置の処理を実施する。
 図2、図3、図4のそれぞれは、その処理の1例を示したものである。
 図2では、視聴者の数nについて、n=3の場合における視差画像配置制御の例を示し、図3では、視聴者の数nについて、n=4の場合における視差画像配置制御の例を示す。そして、図4では、一般化された、視聴者数がn人の場合の視差画像配置制御を示す。
 図2は、n=3の場合における視差画像配置制御の例を示す図である。
 まず、視聴者n=3の場合の1例について、図2を基に説明する。
 図2(および、後で説明される図3、4のそれぞれ)では、画像(2次元の視差画像)を表示するパネル(2次元表示部)100が示される。
 また、そのパネル100上に表示される複数の視差画像110が示される。
 また、それぞれの視差画像(画像110:例えば画像1101)からの光101Lpを、開口または遮蔽することで、所定の視聴位置(位置1132)に提示するための視差バリア(バリア形成部)101が示される。
 また、パネル100から所定の距離にある直線113L上の視聴位置113(視聴位置1131、1132など)が示される。
 また、視聴者114(例えば第1の視聴者114a)の左眼の位置(位置1132)と、右眼の位置(位置1133)との2つの位置の組み合わせ118(組み合わせ118a)が示される。
 また、それぞれの位置113で観察される視差画像115(視差画像110)の視差画像番号(1、2…)が示される。
 また、提示する視差画像115の配置設定を行う際における設定単位116が示さされている。なお、設定単位116は、2個以上の個数(図2の例では5個)の位置が属する単位である。
 ここで、互いに隣り合う2つの位置113に提示される2つの画像(視差画像)115が提示される2つの位置(位置1131、1132)の間の間隔PLenがある。この間隔PLenは、視聴者114の左眼と右眼の間の距離である眼間距離Leyeと同じである。例えば、これにより、視聴者114(例えば、第1の視聴者114a)における、左眼の位置と右眼の位置との2つの位置(位置1132、1133)は、互いに隣り同士にある2つの視差画像(例えば、位置1132の画像1101、および、位置1133の画像1102)の位置に一致することとなる。
 図2における、視聴者114が示される箇所は、その視聴者114がいる位置を示し、ひいては、その視聴者114の位置が、その位置である際における、その視聴者114の2つの眼の位置を示している。
 つまり、図2においては、例えば、第1の視聴者114aの2つの眼のうちで左眼の位置(位置1132)は、視差画像1101の提示位置にあり、右眼の位置(位置1133)は、視差画像1102の提示位置に存在することが示される。
 先述のように、互いに隣り合う2つの視差画像115(視差画像110)の位置(例えば、位置1132、1133)の間の距離PLenが、視聴者114の左前と右眼との間の距離である眼間距離Leyeになっている。
 このため、3人の視聴者(第1~第3の視聴者114a~114c)がいる場合、視差画像115の配置制御をするのに必要な視差画像の個数NumPは、NumP = (視聴者数n+1)=4となる(第1~第4の視差画像1101~1104を参照)。
 つまり、パネル100上の画素列位置(a,b,c,d,a)に表示される視差画像110は、4枚の視差画像(第1~第4の視差画像1101~1104)の集合OG4={j|j∈(1,2,3,4)}から選択配置されることとなる。
 ここで、視聴者114の左眼に入射する視差画像の視差画像番号よりも、右眼(位置)に入射する視差画像の視差画像番号の方が小さい場合に、逆視が発生するものと考える。
 この場合、提示する視差画像配置の設定を行う際に用いられる単位116は、図2に示されるように、直線113L内(直線113L上)にある(a,d,c,d,a)の5つの位置113で構成される。例えば、単位116の1つである単位1161は、5つの位置1131~1135で構成される。
 なお、このようにして、4つの位置ではなく、5つの位置で構成されるのは、dとaの組合せも考慮するする必要があるためである。
 設定単位116(単位1161)内にある、位置1131、1132、1133、1134、135は、各々、視差aの提示される位置、視差bの提示される位置、視差cの提示される位置、視差dの提示される位置、2度目の視差aの提示される位置を示す。
 この単位116内で、3人の視聴者114a~114cの眼の位置がある各位置のうちの先頭の位置である先頭視差位置(位置1132)と、眼の位置がある、最終の視差位置である最終視差位置(位置1135)との間の視差数NSPを算出すると、NSP=4となる。
 この値を、必要とする視差画像の数NumP=4と比較すると、NSP=NumPとなる。
 ここで、NumPは配置制御の基準値になり、図2等で示されるようにTh_NSPとしても定義した。
 このような場合、複数の視聴者の眼の位置のうちで、最も先頭にある先頭視差位置(位置1132)と最終視差位置(位置1135)との間では、すべての位置に、眼が配置されていることとなる。
 そこで、先頭の眼の位置(位置1132)に、視差画像集合OG4内の最も先頭にある視差画像1101を配置して、そこから、より右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てるようにする。
 このことで、単位116内の、2度目の視差位置a(位置1135)までは、逆視のない視差画像配置になる。
 同様に、単位116の右端にある、aの位置(位置1131)は、単位116内の先頭に折り返されるので、先頭にある視差位置a(位置1131)には、2度目の視差位置aに設定された視差画像番号と同じ番号を割り当てる。
 このことで、この場合にも、逆視のないような配置をすることが可能となる。
 なお、図2における、丸印で示される位置103pは、視差画像集合OG4内で、最も先頭にある、視差画像1101を配置する視差位置番号の位置を示す。
 図3は、視聴者nがn=4の場合の、視差画像の最適配置制御例を示す図である。
 必要視差画像数NumPは、NumP=(視聴者数n+1)=5となり、パネル100上の画素列位置(a,d,c,d,e,a)に表示される視差画像110は、5枚の視差画像集合OG5={k|k∈(1,2,3,4,5)}から選択配置される。
 提示する視差画像配置の設定を行う単位116は、eとaの組み合わせも考慮する必要がある。このため、視聴位置113内にある(a,d,c,d,e,a)の6つの位置で構成される。
 設定単位116に含まれる、位置1131、1132、1133、1134、1135、1136は、各々、視差aの提示される位置、視差bの提示される位置、視差cの提示される位置、視差dの提示される位置、視差eの提示される位置、2度目の視差aの提示される位置を示す。
 この設定単位116内で、4人の視聴者114a~114dの眼の位置のうちの、先頭の位置である先頭視差位置(位置1131)と、眼の位置がある最終視差位置1136の間の視差数NSPは、NSP = 6となる。
 このNSPを、必要とする視差画像数NumP=5と比較すると、この値よりも大きいので、4人の視聴者の眼の位置がある先頭視差位置と、眼の位置がある最終視差位置の間に、眼の配置されない空間部分があることを示す。
 図2の場合とは異なり、複数の視聴者114の眼の位置のうちでの先頭視差位置(位置1131)と、最終視差位置(位置1136)との間で、空白領域があるということは、その空白領域(空白部分)で、視差画像番号が途切れることを意味する。
 そして、その空白部分の後の視差位置(位置1134)に、視差画像集合OG5に含まれる各画像110のうちで、最も先頭にある視差画像1101が配置され、そこから右の視差位置にいくにつれて、視差番号を、1ずつ加算したものが割り当てられる。
 こうすることで、単位116内の2度目の視差位置a(位置1136)まででは、逆視のない、視差画像配置になる。
 一方、単位116の右端にあるa(位置1136)では、設定単位116内の先頭の位置(位置1131)に折り返されるので、先頭にある視差位置a(位置1131)に、2度目の視差位置a(位置1136)に設定された視差画像番号(3)と同じ番号(3)を割り振り、そのあとの位置1132から、眼の配置されない領域の左部分(位置1133)までのそれぞれの位置に、視差番号を順次、加算して割り当てることで、設定単位116における設定単位の先頭部分でも、逆視のないような配置をすることが可能となる。
 丸印のある位置103pである位置1134が、視差画像集合OG5内で、最も先頭にある視差画像1(画像1101)を配置する視差位置番号の位置になる。
 図4は、一般化された視聴者nの場合の視差画像の最適配置制御の1例を示す図である。
 互いに隣り合う2つの視差画像110の間の距離が、眼間距離Leyeになっており、視聴者nの視差配置制御をするのに必要な視差画像数NumPは、次の(数式7)のようになる。まず、図4では、複数視聴者が同じ位置(v1,v2,…,vn,vn+1)にいない場合を示す。
Figure JPOXMLDOC01-appb-M000007
 この時、パネル100上の画素列位置(v1,v2,v3,…,vn,vn+1 )のそれぞれに表示される視差画像110は、(n+1)枚の視差画像集合OGn={k|k∈(1,2,3,4,5,6,7,…,n+1)}から選択配置されることとなる。
 提示する視差画像の配置の設定を行う単位(設定単位)116は、図4で示されるように、視聴位置113内にある(v1,v2,v3,v4,…,vn, vn+1, v1 )の( n + 2 )個の位置で構成される。
 まず、n人の視聴者の眼の位置がある先頭視差位置と、眼の位置がある最終視差位置の間の視差数NSPを求め、必要とする視差画像数NumP = n+1と比較する。
 図4のように、NSP>NumPの場合には、図3の例と同様に、複数の視聴者の眼の位置の先頭視差位置と、最終視差位置との間で、空白領域があり、視差画像番号が途切れることを意味する。
 このため、その空白部分の後の視差位置(位置103p)に、視差画像集合OGn内の最も先頭にある視差画像1(画像1101)を配置する。
 そして、そこ(位置103p)から、より右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てる。
 一方、設定単位116の右端にあるv1の視差番号を、先頭にある視差位置v1にも割り振り、そのあとのv2から、眼の配置されない領域の左位置まで、視差番号を加算して、割り当てることとなる。
 また、NSP=NumP の場合には、図2の例と同様にすればよい。
 つまり、複数の視聴者の眼の位置の先頭視差位置と、最終視差位置との間は全て、眼が配置されている。
 このため、先頭の眼の位置に、視差画像集合OGn内の、最も先頭にある視差画像1を配置して、そこから右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てる。
 そして、単位116の右端にある視差位置v1は、設定単位116内の先頭に折り返されるので、先頭にある視差位置v1に、2度目の視差位置v1に設定された視差画像番号と同じ番号を割り当て、複数の視聴者の眼の位置の先頭視差位置まで、順に加算して、視差番号を割り当てる。このことで、最適配置が可能となる。
 一方、複数視聴者がいた場合でも、1人目の視差提示位置に対して、繰り返し出てきた同じ視差提示位置に、異なる視聴者が存在する場合が発生する(例えば、図4の設定単位で、vnが複数視聴者の眼の位置の最終視差位置になった場合など)。
 この場合、NSP>NumPのときには、前述の複数視聴者位置が重ならない場合の検討と同じようになる。
 一方、NSP≦NumPとなる場合、複数視聴者の眼の位置の先頭視差位置と、最終視差位置との間には、設定単位で見れば、複数視聴者の眼の位置が重なる。このため、眼の配置されない空白部分が存在するが、図2の例と同様に、先頭の眼の位置に、視差画像集合OGn内の最も先頭にある視差画像1を配置して、そこから右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てる方法を用いることで対応ができる。
 図17、図18は視聴者が3人の場合を示す。
 図17、図18のような場合、複数視聴者の眼の位置のうちの先頭視差位置と、最終視差位置との間においては、設定単位で見れば、複数視聴者の眼の位置が重なる。
 このため、単位116内において、眼の配置されない空白部分が2つ以上存在している。
 しかし、この場合でも、前述のような考え方で、画像を配置することで、逆視を改善できる。
 例えば図17の場合、NSP=NumPとなり、図2の例と同様に、先頭の眼の位置に、視差画像集合OGn内のもっとも先頭にある視差画像1を配置して、そこから、より右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てる方法を用いることで対応ができる。
 また、図18の場合、NSP>NumPとなり、図3の例と同様に、複数視聴者の眼の位置のうちの先頭視差位置と、最終視差位置との間で、空白領域があり、視差画像番号が途切れることを意味する。
 そこで、その空白部分の後の視差位置から、視差画像集合OGn内の、先頭にある視差画像1を配置する。そして、そこから右の視差位置にいくにつれて、視差番号を、1ずつ加算したものを割り当てる。一方、設定単位116の右端にあるv1の視差番号を先頭にある視差位置v1にも割り振り、その後のv2から、眼の配置されない領域の左位置まで視差番号を加算して割り当てることとなる。
 一方、複数視聴者がいた場合でも、1人目の視差提示位置に対して、繰り返し出てきた同じ視差提示位置に、1人目の視聴者とは異なる2人目の視聴者が存在する場合が発生する(例えば、図4の設定単位で、v7が、複数視聴者の眼の位置の最終視差位置になった場合)。
 この場合、NSP>NumPのときには、前述の検討と同じようになる。NSP<NumPとなる場合、複数の視聴者の眼の位置の先頭視差位置と、最終視差位置との間には、設定単位で見れば、複数の視聴者の眼の位置が重なるため、眼の配置されない空白部分が存在するが、図2の例と同様に、先頭の眼の位置に、視差画像集合OGn内の最も先頭にある視差画像1を配置して、そこから、より右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てる方法を用いることで対応ができる。
 こうすることで、例えば、vn+1から視差番号1を割り当てて、左端に折り返した場合に、vnとvn+1にも視聴者がいる場合に発生する逆視を抑えることが可能となるのである。
 以上のことから、(1)NSP≦NumPの場合には、先頭の眼の位置に、視差画像集合OG4内の最も先頭にある視差画像1を配置して、そこから右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てる。先頭にある視差位置v1に、2度目の視差位置v1に設定された視差画像番号と同じ番号を割り当て、複数視聴者の眼の位置の先頭視差位置まで順に加算して視差番号を割り当てる(2)NSP>NumPの場合には、空白部分の後の視差位置から視差画像集合OGn内の最も先頭にある視差画像1を配置する。そして、そこから右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てる。
 一方、設定単位116の右端にあるv1の視差番号を、先頭にある視差位置v1にも割り振り、そのあとのv2から、眼の配置されない領域の左位置まで、視差番号を加算して割り当てることとなる。
 このように、視聴者数nに対して(視聴者数+1)の視差画像を用意し、設定単位内で定義された複数の視聴者の眼の位置の先頭視差位置と最終視差位置の間の視差位置数を、必要とする視差画像数と比較して配置制御することで、3人以上の複数視聴者が同時に視聴した場合でも、逆視を発生させることがなく、立体映像を観察することができる立体映像表示装置を提供できる。
 なお、図2から図4では、特定の位置に、視聴者の眼の位置がある場合についてのみ示したが、図2から図4での視聴者数で取りえる視差位置に複数の視聴者の眼の位置があっても、同様の手順で、逆視の発生しない視差画像配置が可能となる。
 また、前述したが、n人の視聴者が視差画像数NumP=(n+1)の場合に、全員異なる眼の位置に配置できるような場合ではなく、重なった視差位置に、複数の視聴者の眼の位置が存在するような場合であっても、同様の手順で、視差画像の配置制御が可能である。
 つまり、最大視聴者数nmaxに対して、(nmax+1)の視差画像を用意しておき、頭部検出の結果、位置移動が判定された段階で、前述のようなルールに従い視差画像を表示する際の配置制御を行う。
 このことで、視差画像が眼間距離間隔で提示される場合に、3人以上、nmax人以下の複数の視聴者が同時に視聴している場合であっても、逆視が発生せずに、立体映像を観察することができる効果をもつことを示している。
 なお、複数視聴者が同じ位置(v1,v2,…,vn,vn+1)にいない場合には、次のようにしても、前述の場合と同じよう結果となる。
 まず、単位116の先頭から探索して、複数視聴者の眼の位置のうちの先頭視差位置と、最終視差位置との間で空白領域がある位置を調べる。
 この位置で、視差画像番号が途切れることを意味する。
 このため、その空白部分の後の視差位置に、視差画像集合OGn内の最も先頭にある視差画像1を配置する。
 そして、そこから、より右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てる。
 一方で、設定単位116の右端にあるv1の視差番号を、先頭にある視差位置v1にも割り振り、その後のv2から、眼の配置されない領域の左位置まで、視差番号を順に加算して割り当てるのである。
 これに対して、1人目の視差提示位置に対して、繰り返し出てきた同じ視差提示位置に、異なる視聴者が存在する図17や図18のような場合、複数の空白領域が発生する。
 前述の方法では、図17の場合には、先頭の眼の位置に、視差画像集合OGn内の最も先頭にある視差画像1を配置して、そこから、より右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てる。
 しかし、図19のように、最初の空白領域の後の視差位置から、視差画像集合OGn内の最も先頭にある視差画像1を配置する方法でも、対応が可能である。
 また、図18の場合、前述の方法では、その空白部分の後の視差位置から、視差画像集合OGn内の最も先頭にある視差画像1を配置したが、図20のように配置することでも、対応が可能である。
 よって、単位116の先頭から探索して、複数視聴者の眼の位置のうちの先頭視差位置と、最終視差位置との間で、空白領域がある位置を調べる。
 この位置で、視差画像番号が途切れることを意味する。
 そこで、その空白部分の後の視差位置から、視差画像集合OGn内の最も先頭にある視差画像1を配置する。
 そして、そこから、より右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てる。
 一方で、設定単位116の右端にあるv1の視差番号を、先頭にある視差位置v1にも割り振り、その後のv2から、眼の配置されない領域の左位置まで、視差番号を順に加算して割り当てる方式を用いてもよい。
 さらに、本発明では、最も左にある視差画像の開始地点を決定して、そこから、より右方向にある視差画像を、順番に配置して、逆視を抑制していた。
 一方で、最も右にある最終視差画像の開始地点を決定して、そこから、左方向にある視差画像を、順番に配置することでもよい。
 この場合、前述の2つの方法で定義した、最も左にある視差画像の開始地点に対して、1つ左隣の視差位置に、最も右にある視差画像の開始位置が設定される。つまり、この場合には、最も番号の大きい視差画像が、この位置に割り振られ、そこから、より左の視差位置にいくにつれて、視差番号を1ずつ減算したものを割り当てる。そして、単位116の右端にある視差番号には、先頭にある視差位置v1の視差番号を割り振るのである。こうすることでも、適切な処理を実現することは可能である。
 なお、頭部検出手法として、これ以外の特徴量を用いることも可能であるし、パターンマッチング手法も、他の手法が可能である。例えば、ニューラルネットワーク等の学習手法で得られた、テンプレート記憶メモリのデータとの2乗誤差値を、マッチング時の評価関数に用いることも可能である。
 なお、立体映像表示装置100sは、例えば、テレビでもよい。また、パソコンが表示させる立体映像を表示するディスプレイ等でもよい。また、ゲームの画面である立体映像を表示するゲーム機でもよい。また、広告である立体映像を表示する広告表示装置でもよいし、その他の種類の装置等でもよい。
 [第2実施形態]
 図9から図13を用いて、本発明の第2実施形態として、各視差画像が提示される所定の位置間隔を、眼間距離よりも細分化する例が説明される。
 その細分化数nに応じて、視聴人数×n+1の視差画像を用い、検出された頭部位置に応じて、表示パネル上の、視差画像の表示位置を制御して、立体映像表示を行う装置について説明する。
 図9では、本発明の第2の実施形態である立体映像表示装置の構成を示す。図10では、視差画像の提示される間隔を制御する表示間隔制御部201の処理を示す。また、図11では、視聴者nがn=2で、細分化数mがm=2の場合の視差画像配置制御の例を示し、図12では、視聴者nがn=3で、細分化数m=2の場合の視差画像配置制御の例を示し、図13では、視聴者nがn=3で、細分化数mの場合の視差画像配置制御の例を示す。表示間隔制御部201と細分視差配置制御部202以外は、第1の実施例と同様な処理を実施する。
 図9は、立体映像表示装置の構成を示す図である。
 表示間隔制御部201では、予め設定された、視差画像間の距離PLenを制御する処理を実施する。
 図22や、第1の実施例で示したように、複数の視差画像は、パネルから、所定の奥行き距離位置の空間に、所定のPLenの間隔で提示される。
 通常、2つの視差画像が、人間の左眼と右眼にそれぞれ入射することから、通常、これらの2つの視差画像の間の間隔PLenは、人間の眼間距離Leyeに設定される。
 この眼間距離としては、個人差や大人と子供の差はあるが、大体Leye=60(mm)から70(mm)の値が用いられている。
 図10Aは、通常の配置を示す図である。
 図10Bは、Leye/2での配置を示す図である。
 つまり、上述された通常の配置では、図10Aのように、各位置で観察される視差画像が配置されることとなる(4視差画像の場合を示すものであり、Dの右横には、また視差画像Aが配置され、B,C,Dと続く。視差画像Aの左横に関しても、同様にA,B,C,Dの順番に繰り返し配置されている)。
 左眼が、この4つの位置にあり、右眼が、その右にある視差画像の位置にある場合には、左眼と右眼のある位置に対応する2つの視差画像の両眼視差により、立体映像を知覚することができる。
 しかし、例えば、図10AのAとBの間に、左眼が移動した場合、左眼には、視差画像Aと視差画像Bの混合した映像が見えることとなる。
 同様に、右眼も、左眼に応じて、BとCの間に移動することとなり、右眼には、視差画像Bと視差画像Cの混合した映像が見えることとなる。
 その結果、どちらの眼も、混合した映像が入射されることで、立体映像を知覚できないか、歪んだ映像を感じる、クロストーク現象が発生することとなる。
 この問題を低減させるために、図10Bのように、提示される視差画像間距離PLenを細分化することが考えられる。この場合、PLenは、次の(数式8)のようになる。
Figure JPOXMLDOC01-appb-M000008
 図11は、第2実施形態での処理(視聴者2人、細分化数m=2の場合)を模式的に示す図である。
 図12は、第2実施形態での処理(視聴者3人、細分化数m=2の場合)を模式的に示す図である。
 図13は、第2実施形態での処理(視聴者3人、細分化数mの場合)を模式的に示す図である。
 ここで、図11では、2つに細分化した例(細分化数m=2)を示しており、PLen = Leye/2となる。
 視差画像A'が、AとBの中間位置に提示され、視差画像B',C'が、各々、BとCの中間位置、および、CとDの中間位置に提示されることとなる。
 この場合、細分視差配置制御部202では、位置検出部102の結果に応じて、2次元表示部100上の視差画像配置制御を実施するのである。
 細分視差配置制御部202では、位置検出部102で、視聴者位置の移動があると判断された場合に、図11、図12、図13で示されるように、視差画像配置の最適化を実施してもよいし、所定の時間タイミングにおける、位置検出部102の位置検出結果(視聴者位置情報)を基に、視差画像配置の最適化を行ってもよい。
 また、位置検出部102で、視聴者位置の移動があると判断されたかどうかと、所定の時間タイミングとの両方を基に、視差画像配置の最適化を行ってもよい。
 細分視差配置制御部202の処理概要は、図11、12、13に示すようになる。
 まず、視聴者n=2、細分化数m=2の場合の1例について、図11を基に説明する。
 図11の定義構成は、第1の実施例で説明した図2、3、4の場合と同様である。ただ、視差画像の提示される間隔PLenが、図2のケースと比べて半分になっている。このため、視聴者213aと、視聴者213bにおける左眼と右眼の間には、1つ視差画像が入るような組み合わせになる。符号214は、各視聴者の眼の位置を示しており、視聴者213aの左眼位置は、視差画像bの提示位置になり、右眼位置は、視差画像dの提示位置に存在することを示す(214a)。
 そして、2つの視差画像の間の距離が、眼間距離Leyeの半分になっている。このため、必要視差画像数NumPは、NumP=(視聴者数n×2+1)=5となり、パネル100上の画素列位置(a,d,c,d,e)に表示される視差画像110も、5枚の視差画像集合PG5={k|k∈(1,2,3,4,5)}から選択配置されることとなる。
 ここで、第1の実施例の場合と同様に、左眼に入射する視差画像番号よりも、右眼に入射する視差画像番号の方が小さい場合に、逆視が発生するものとする。
 提示する視差画像配置の設定を行う単位212は、図11に示されるように、視聴位置210内にある(a,d,c,d,e,a,b)の7つの位置で構成される。
 これは、dとaの組合せだけでなく、eとbの組み合わせが考えられることを考慮したものである。
 設定単位212内において、211a、211b、211c、211d、211e、211f、211gは各々、視差aの提示される位置、視差bの提示される位置、視差cの提示される位置、視差dの提示される位置、視差eの提示される位置、2度目の視差aの提示される位置、2度目の視差bの提示される位置を示す。
 なお、説明の便宜上、この図11などでは、符号211aなどの、位置を示すそれぞれの符号が、図における比較的下部に図示される。
 この単位212内で、2人の視聴者の眼の位置があるうちの、先頭視差位置(位置211b)と、眼の位置がある最終視差位置(位置211g)の間の視差数NSPを算出する。
 図11の場合には、NSP=6となる。
 この値を、必要とする視差画像数NumPと比較する。
 そして、NumP値より、設定単位内における複数視聴者の眼の位置の先頭視差位置と、最終視差位置の差に相当するNSPが大きいということは、この間がつながっていない、つまり眼の配置されない空間部分があることを示す。
 そして、複数視聴者の眼の位置の先頭視差位置と、最終視差位置の間で、上述された空間部分(空白領域)があるということは、その部分で、視差画像番号が途切れることを意味する。
 そこで、その空白領域の後(直後)の視差位置(位置211e)から、視差画像集合PG内のもっとも先頭にある視差画像1を配置する。
 そして、そこ(位置211e)から、より右の視差位置にいくにつれて、視差番号を順に、1ずつ加算したものを割り当てるようにすることで、単位212内の最終視差位置b(位置211g)までは、逆視のない視差画像配置になる。
 単位212の右端にあるa(位置211f)、b(位置211g)は、単位212内の先頭に折り返されるので、先頭にある視差位置a(位置211a)とb(位置211b)に、最終位置(位置211f、211g)に設定された視差画像番号(2および3)と同じ番号(2および3)を割り振り、そのあとの位置(位置211c)から、眼の配置されない領域(位置211dから位置211eの領域)の左領域(位置211d)まで、視差番号を順に加算して、割り当てる。このことで、単位212における先頭部分でも、逆視のないような配置をすることが可能となる。
 図11では、その様子を示しており、丸印が付された位置103pは、視差画像集合PG内の、最も先頭にある視差画像1(画像1101:先述)を配置する視差位置番号の位置を示す。
 またNSP≦NumPの場合には、複数視聴者の眼の位置のうちの先頭視差位置と、最終視差位置との間には、すべの位置で、眼が配置されていることとなる。
 その場合には、先頭の眼の位置に、視差画像集合PG5内の、最も先頭にある視差画像1を配置して、そこから、右の視差位置にいくにつれて、視差番号を、1ずつ加算したものを割り当てるようにする。
 このことで、単位212内の最終視差位置b(211g)までは、逆視のない視差画像配置になる。
 同様に、単位212の右端にあるa(位置211f)、b(位置211g)は、単位212内の先頭に折り返されるので、先頭にある視差位置a(位置211a)とb(位置211b)に、最終位置(位置211f、211g)に設定された視差画像番号(2および3)と同じ番号(2および3)を割り振り、複数視聴者の眼の位置の先頭視差位置(位置211e)の前まで、視差番号を順に加算して、割り当てる。
 このことで、この場合にも、逆視のないような配置をすることが可能となる。
 図12では、視聴者nがn=3人で、細分化数mがm=2の場合の、視差画像の最適配置制御例が示される。
 この場合にも、互いに異なり合う2つの視差画像の間の距離が、眼間距離Leyeの半分になっており、必要視差画像数NumPは、NumP=(視聴者数n×2+1)=7となり、パネル100上の画素列位置(a,d,c,d,e,f,g)に表示される視差画像110も、7枚の視差画像集合PG7={k|k∈(1,2,3,4,5,6,7)}から選択配置されることとなる。
 提示する視差画像配置の設定を行う単位212は、図11に示されるように、視聴位置210内にある(a,d,c,d,e,f,g,a,b)の9つの位置で構成される。
 これは、fとaの組合せだけでなく、gとbの組み合わせが考えられることを考慮したものである。
 設定単位212内において、211a、211b、211c、211d、211e、211f、211g、211h、211iは、各々、視差aの提示される位置、視差bの提示される位置、視差cの提示される位置、視差dの提示される位置、視差eの提示される位置、視差fの提示される位置、視差gの提示される位置、2度目の視差aの提示される位置、2度目の視差bの提示される位置を示す。
 この単位212内で、3人の視聴者の眼の位置があるうちの、先頭視差位置(位置211a)と、眼の位置がある最終視差位置(位置211h)の間の視差数NSPは、8となる。
 このNSPを、必要とする視差画像数NumP=7と比較すると、この値よりも大きいので、この間に、眼の配置されない空間部分があることを示す。
 図11と同様に、複数視聴者の眼の位置のうちの、先頭視差位置(位置211a)と、最終視差位置(211h)との間で、空白領域があるということは、その部分で、視差画像番号が途切れることを意味する。そこで、その空白の部分の後の視差位置(位置211d)に、視差画像集合PG内の最も先頭にある視差画像1を配置する。
 そして、そこ(位置211d)から、より右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てるようにする。
 このことで、単位212内の最終視差位置b(位置211i)までは、逆視のない視差画像配置になる。
 単位212の右端にあるa(位置211h)、b(位置211i)は、単位212内の先頭に折り返されるので、先頭にある視差位置a(位置211a)とb(位置211b)に、最終位置(位置211h、211i)に設定された視差画像番号(5および6)と同じ番号(5および6)を割り振り、その後の位置(位置211c)に、211bのbに割り振られた視差番号(6)に対して1を加算した7を割り当てる。
 このことで、212の設定端以内で、逆視のないような配置をすることが可能となる。
 丸印で示される位置203pは、視差画像集合PG内の、最も先頭にある視差画像1を配置する視差位置番号の位置を示す。
 図13は、視聴者nについてn=3で、細分化数がmの場合の、視差画像の最適配置制御例を示す。
 互いに異なり合う2つの視差画像の間の距離が、眼間距離Leye/mになっており、必要視差画像数NumPは、NumP=(視聴者数3×m+1)となり、パネル100上の画素列位置(a1,a2,…,am,b1,b2,…,bm,c1,c2,…,cm,d)に表示される視差画像110は、(3m+1)枚の視差画像集合PGm={k|k∈(1,2,3,4,5,6,7,…,3m+1)}から選択配置されることとなる。
 提示する視差画像配置の設定を行う単位212は、図12に示されるように、視聴位置210内にある(a1,a2,…,am,b1,b2,…,bm,c1,c2,…,cm,d)の、(3m+m+1)個の位置で構成される。
 この単位212内で、3人の視聴者の眼の位置がある先頭視差位置(位置211a)と、眼の位置がある最終視差位置(位置211j)の間の視差数NSPを求め、必要とする視差画像数NumP=3m+1と比較する。
 図13の場合、NSP>NumPであるため、複数視聴者の眼の位置の先頭視差位置と最終視差位置の間で、空白領域があり、視差画像番号が途切れることを意味する。そこで、その空白の後の視差位置(位置211i)から、視差画像集合PG内の最も先頭にある視差画像1を配置する。
 そして、そこから、より右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てるようにする。
 このことで、単位212内の最終視差位置am(211k)までは、逆視のない視差画像配置になる。
 単位212の右端にあるa1~amの視差番号を、先頭にある視差位置a1~amにも割り振り、そのあとのb1(位置211e)からbm(位置211h)まで、図10、11と同様に、順に加算して、視差番号を割り当てる。
 このことで、単位212の設定端以内で、逆視のないような配置をすることが可能となる。
 なお、第1の実施例と同様に、図11から図13ともに、特定の位置に、視聴者の眼がある場合について示したが、取りえるどの視差位置にあっても、同じような手順で視差画像の配置制御が可能である。
 また、視差画像提示パターンは繰り返されるので、3人視聴者がいた場合でも、1度目の視差提示位置と、2度目の同じ視差提示位置に異なる視聴者が存在する場合が発生する(例えば、図12で1度目のaとcに視聴者213aがいて、2度目のaとcに視聴者213cがいるような場合)。
 この場合、第1の実施例の検討と同様に、複数視聴者の眼の位置のうちの、先頭視差位置と最終視差位置との間には、設定単位で見れば、複数視聴者の眼の位置が重なるため、眼の配置されない空白部分が存在するが、NSP<NumPとなる。
 この場合にも、先頭の眼の位置に、視差画像集合PG7内の最も先頭にある視差画像1を配置して、そこから、より右の視差位置にいくにつれて、視差番号を1ずつ加算したものを割り当てる方法を用いることで、対応が可能である。
 こうすることで、例えば、視差位置gから、視差番号1を割り当てて、左端に折り返した場合に、視差位置f(位置211f)と2度目の視差位置a(位置221h)にも視聴者がいる場合や、視差位置e(位置211e)と視差位置g(位置211g)に視聴者がいる場合に発生する逆視を抑えることが可能となるのである。
 さらに、ここでは示していないが、視聴者nが、n≧4であっても、ここで示した手順は拡張して成立する。
 以上のことから、視聴者n、細分化数mの場合の、パネル100上の画素列位置に表示される視差画像110の最適配置制御のルールは次のようになる。
 (手順1)視聴者の眼の位置を示す、提示する視差画像配置設定単位212の設定をする。その際、複数視聴者の眼の位置の組み合わせ214を設定する。
 視聴者の眼の位置のうちの先頭視差位置と、眼の位置がある最終視差位置との間の視差数NSPを算出する。
 また、視聴者数nと細分化数mを基に、(数式9)より、Th_NSPを計算する。
 なお、ここで、nは、視聴者数を示し、mは、細分化数を示す。なお、この値Th_NSPは、必要な視差画像数NumPと同じ値になるが、配置制御の基準値として、改めて定義したものである。
Figure JPOXMLDOC01-appb-M000009
 (手順2)NSP≦Th_NSPの場合には、複数視聴者の眼の位置の先頭視差位置と、最終視差位置との間には、全て、眼が配置されおり、眼の先頭視差位置に、視差画像集合PGにおける1を設定し、そこから、1つずつ加算した番号を、視差画像位置に設定する。
 なお、a1..,amまでについては、単位内の先頭にも、同じ視差が提示される位置があり、これらについては、同じ視差画像番号を割り当てるものとする。
 その後には、複数視聴者の眼の位置のうちの先頭視差位置の前まで、視差番号を加算して割り当てる。
 (手順3)NSP>Th_NSPの場合には、複数視聴者の眼の位置のうちの先頭視差位置と、最終視差位置との間でつながっていない、つまり、眼の配置されない空間部分がある。
 よって、最初の空白部分の後ろがある視差画像位置(位置103p)に、視差画像集合PGにおける1を設定し、そこから、1つずつ加算した番号を、視差画像位置に設定する。
 なお、a1..,amまでについては、単位内の先頭にも、同じ視差が提示される位置があり、これらについては、同じ視差画像番号を割り当てるものとする。その後には、眼の配置されない位置の左領域まで、視差番号を加算して割り当てる。
 このような処理を行うことで、互いに隣り合う2つの視差画像を提示する間隔を、眼間距離よりも細分化することで、クロストークの発生する領域を減少させることができる。
 そのうえ、表示部上での視差画像配置の最適化を行うことで、視聴者の人数がn人の場合で、視差画像の提示間隔を、眼間距離の1/mにした場合でも、逆視発生を抑えることができる。
 そして、このルールでは、第1の実施例の検討と同様に、複数の視聴者の眼の位置における先頭視差位置と、最終視差位置との間には、設定単位で見れば、複数の視聴者の眼の位置が重なる場合にも適用できる。
 つまり、最大視聴者数nmaxに対して、視差画像を提示する間隔を、眼間距離より1/mより細分化した場合、(nmax×m+1)の視差画像を用意しておく。そして、頭部検出の結果、位置移動が判定された段階で、前述のようなルールに従い、視差画像を表示する際の配置制御を行うことで、視差画像の提示間隔が、mに細分化され、3人以上nmax人以下の複数の視聴者が同時に視聴している場合であっても、逆視が発生せず、立体映像を観察することができる効果をもつことを示している。
 なお、第1の実施例は、第2の実施例で細分化数mを、1にした場合に相当する。
 また、ここでの視差画像配置の制御ルールであるが、予めLUTテーブル化することで、より高速な処理が実現できる。
 また、所定の変換関数化をして、CPUやGPU等を用いて、処理を行うことも可能である。
 なお、第1の実施例は、第2の実施例で細分化数mを1にした場合に相当するが、m=1である場合には、本発明の第1の実施例と同じになる。このため、単位212の先頭から探索して、複数視聴者の眼の位置のうちの先頭視差位置と、最終視差位置との間で、空白領域がある位置を調べ、その空白部分の後の視差位置から、視差画像集合内の最も先頭にある視差画像1を配置する方法を用いることができる。
 しかし、mが1でない場合には、単位212の先頭から探索して、複数視聴者の眼の位置のうちの先頭視差位置と、最終視差位置との間で、空白領域がある位置を調べ、その空白部分の後の視差位置から、視差画像集合内の最も先頭にある視差画像1を配置する方法は、用いることができない。
 つまり、例えば、この簡単な方法を用いると、図11では、212において、5、1、2、3、4、5、1のように、視差画像が配置され、視聴者213bの左眼には、視差画像4が提示され、右眼には、視差画像1が提示されてしまい、逆視が発生してしまう。
 さらに、本発明の第1の実施例の場合と同様に、最も右にある最終視差画像の開始地点を決定して、そこから、より左方向にある視差画像を順番に配置する処理が行われてもよい。この場合、最も左にある視差画像の開始地点に対して、1つ左隣の視差位置に、最も右にある視差画像の開始位置が設定される。つまり、最も番号の大きい視差画像が、この位置に割り振られ、そこから、より左の視差位置にいくにつれて、視差番号を1ずつ減算したものを、割り当てる。単位212の右端にある視差番号には、先頭にある視差位置の視差番号を割り振ることでも、実現可能である。
 また、ここでの視差画像配置の制御ルールであるが、予めLUTテーブル化することでより、高速な処理が実現できる。また、所定の変換関数化をして、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等を用いて行うことも可能である。
 [第3実施形態]
 図14から図16を用いて、本発明の第3実施形態として、左眼画像Lと、右眼画像Rのみを用意し、視聴人数に応じて、2つのLR視差画像を補間して、複数の視差画像を生成し、用いる方法を導入して、立体映像表示を行う装置について説明する。
 図14に、本発明の第3実施形態である立体映像表示装置の構成を示す。また、図15には、第3の実施形態である立体映像表示装置内の視差画像生成部301の構成を示す。図14に示されるように、本実施例では、第1の実施例において、複数視差画像を入力とする代わりに、LR視差画像を入力として、視差画像生成部301が、所定の視差画像を生成する要素を、加えたものである。
 よって、この要素301は、第2の実施例にも適用することが可能である。それ以外の構成要素に関しては、第1または第2の実施例の場合と同様である。
 この発明の特徴は、視聴人数に応じた複数視差画像を予め用意する必要がなく、両眼視差の可能な左眼用視差画像Lと、右眼用視差画像Rを使って、所定の必要な視差画像を補間生成することで、必要な視差画像を確保することにある。
 この処理を、図15の視差画像生成部301が実施する。
 図15は、視差画像生成部301の構成を示す図である。
 視差画像生成部301は、図15に示されるように、補間処理選択部310、画像内挿生成部311、画像外挿生成部312、視差数確認部313より構成される。
 図16A、図16Bのそれぞれは、補間による視差画像生成の様子を模式的に示す図である。
 図16Aが、第1の実施例との組み合わせの際の補間生成例を示し、図16 bが、第2の実施例との組み合わせの際の補間生成例を示す。
 まず、補間処理選択部310では、その時点での視差画像を基に、外挿補間を用いて、新たな視差画像を生成するか、内挿補間を用いて、新たな視差画像を生成するかを決定する。
 例えば、図16Aや、(数式7)のように、(視聴数n+1)=NumPの視差画像を必要とする第1の実施例の場合には、LR視差画像(画像301a、301b)の次に、新たな視差画像(例えば画像301c)を生成する場合には、外挿補間(処理301q)が選択され、画像外挿生成部312で、1つの視差画像(画像301c)が、外挿補間により、画像外挿生成部312において生成される(視差画像1(画像301c))。
 そして、視差数確認部313で、視差画像数が必要数NumPだけあるかどうかの判定を行い、必要数ある場合には、この視差画像生成部301での処理を完了する。
 一方、必要数がない場合には、補間処理選択部310での、決定の処理に戻って、補間処理の選択を始める。
 例えば、視聴数nが3人の場合には、図16 aの場合には、NumP=4となり、視差画像1(画像301c)だけでなく、さらに、外挿補間により、視差画像4(画像301d)が生成されるのである。
 なお、補間された視差画像の変化が小さく、立体映像の平坦化やぼけ等を回避して、効果をより持たせる意味で、外挿補間生成する例を示した。
 一方、図16Bや(数式9)で示されるように、(視聴数n×2+1)=NumPの視差画像を必要とする第2の実施例との組み合わせの場合には、まず外挿補間での生成が、2つの視差画像生成(画像301g、301kの生成)のそれぞれについて、選択される(処理301t、301xを参照)。
 その後、追加される視差画像は、その時点での4つの視差画像(4つの画像301a、301b、301t、301x)からの内挿補間により、3つまで(画像301i、301h、301j)が、補間生成される(処理301u、301w)。
 さらに視差画像が必要な場合には、改めて、外挿補間により、2つまでの視差画像が生成され、その後には、2度の内挿補間が選択される。
 例えば、図16Bのように、視聴者がn=3の場合においては、NumP=7の視差画像を必要とする。
 そして、LR視差画像(画像301a、301b)からの外挿補間により、視差画像1(画像301g)と視差画像7(画像301k)がそれぞれ生成される。
 次に、視差画像1,7と、用意されたLR視差画像(視差3,視差5)を用いた内挿補間により、3つの視差画像2,4,5(画像301i、301h、301j)が生成される過程をとる。
 図16Bの場合、クロストークを抑えるために、視差画像は、互いに隣り合う2つの視差画像の間の間隔が、眼間距離Leye=60mm~70mmの1/2になる位置に提示されていることとなり、その効果を保持するために、外挿補間を比較的少なくするために、外挿補間と内挿補間を組合せるような方式を示した。
 こうすることで、必要な視差画像を用意することができ、予め、視聴者数nに応じて、多くの視差画像を用意する必要がなく、最低限のLR視差画像だけを用意すればよいこととなる。これにより、行われる処理が、より簡単にできる。
 第2の実施例との組み合わせの場合として、図16Bで、互いに隣り合う2つの視差画像の間の間隔が、眼間距離Leye=60mm~70mmの1/2になる位置に提示される場合を示したが、これは、細分化数mが、m=2の場合に相当する。
 細分化数mの場合には、前述の第2実施例のように、視差画像間隔を、m細分化して、クロストーク低減する場合に相当し、NumP=(視聴数n×細分化数m+1)の視差画像が必要となる。
 そして、その場合、NumP-2だけ視差画像生成部301で、視差画像補間生成の処理が実施される。
 通常、多くの視差画像を用意するためには、両眼用に、2つのレンズが平行に並んだカメラでも撮影することは困難であり、まして、視差数分だけ、2よりも更に多い個数のレンズを平行に並べた、特殊な撮影構成を用いる必要があると、そのような撮影構成を用いることは、著しく困難である。
 それ以外には、LR視差画像の両方もしくは片方から、距離推定を実施し、その結果を基に、任意の視差方向の画像を生成するか、カメラ位置・カメラ角度・焦点位置を設定し、CG(Computer Graphics)ツールにより作成された視差画像を用いるぐらいの対応が考えられるが、本発明によれば、そのような追加処理の削減を実現することができる。
 なお、図16Aの、(視聴者数n+1)の視差画像が必要な場合には、常に、外挿補間により生成する例を示したが、これ以外にも、内挿補間のみを用いることや、図16Bのように、外挿補間と、内挿補間とを組合せて、何れの補間の処理も用いることも可能である。同様に、図16Bの場合にも、これ以外の補間の組み合わせとして、内挿補間のみや、外挿補間のみで構成することも可能である。
 また、補間する場合においても、予め用意された変換関数を用いて、視差画像補間をすることも可能である。また、その時点で得られている視差画像を、多変量解析や、線形近似等の統計的分析して、変換関数を推定してもよい。そして、その推定において推定された変換関数を用いて、新たな視差画像生成をすることも可能である。この場合、変換関数推定に必要な、所定数の視差画像が揃うまで、図16Bなどで説明したような、内挿補間と外挿補間とを組合せて、視差画像補間生成をする処理を用いればよいと考える。
 なお、視聴者の人数が増加するのに応じて、視差画像数が、補間により比較的多くなった(大きく変化した)場合、初期調整部105に働きかけて、視差バリア間ピッチや、レンチキュラーのレンズの中心の間ピッチ等のパラメータ修正することが好ましい。しかし、生じた増加が、1、2枚程度の視差画像の増加であれば、その増加で必要になる、ピッチの変化の幅等は非常に小さいものと考え、その場合には、ピッチ等を変化させないことで、対応することも可能である。
 [その他]
 上記実施形態において説明した本発明の立体映像表示装置では、視差画像を表示する2次元表示部100は、バックライト光源を用いる液晶パネルなどでもよいし、自発光する、PDPや有機ELパネルなどでもよい。つまり、2次元表示部100としては、視差画像の画素列を表示できる表示部であれば、適用可能である。
 頭部検出部180において、カメラ画像1枚を用いた例を説明したが、2つ以上の複数のカメラ画像を用いて、ステレオ計測することも可能であり、そうすることで、位置検出精度が、より向上することとなる。
 また、頭部検出部180で用いられる手法としては、例えば、画像を用いる手法以外に、LED光源のような、照明光を対象物体(視聴者、立体映像を観察する観察者)に照射して、戻ってくるまでの時間TOF(Time Of Flight)を計測することで、距離を測定するTOF法や、電磁力等を用いて3次元位置測定を行う、有線接続された手法などを用いることも可能である。
 また、所定のテストパターンを、常に、視聴者における、撮影がされる領域内に表わさせて、表わされたテストパターンを、視聴者が撮影された画像に含めるように、上述の領域へと表わさせるテストパターンを表示して、そのテストパターンの部分の大きさや、画素値のモアレ変化等を基に、幾何学測量をする手法を用いることも可能である。
 また、位置検出する際に、人物頭部の検出を前提としたが、位置検出の前提の処理は、人物全体像の検出の処理などであってもよいし、瞳孔や眼領域の抽出の処理を行い、その結果を、位置検出において用いてもよい。
 頭部位置に応じて、複数視差画像の画素列配置を制御する際に、CPUや、GPU等を用いて、リアルタイム算出制御することも可能であるし、また、予め用意されたLUTテーブルより選択して、制御することも可能である。
 また、ここでは、バリア形成位置や、ピッチ間隔は、初期調整以外においては、固定であるものとして説明した。一方、頭部位置に応じて、バリア位置や、バリアピッチをアクティブに変化させてもよい。この場合、電圧等をかけることで、遮蔽と開口(光の透過率)を変化することができるようなデバイス(例えばTFT液晶パネルなど)を、バリアとして用いることとなる。そして、この場合には、複数視聴者の奥行き方向が、同時に変化した場合にも、対応が可能となる。
 また、本発明によるパネルを、視聴される居間などの空間にセッティングする時点の調整時にも、固定のバリア位置や、バリアピッチを用いる時にも、本技術の適用が可能である。
 さらに、前記複数の画像列からの光を、所定位置で視聴できるように分離するバリアによる実施例を示したが、シリンドリカルレンズを配列したレンチキュラー板(図24のレンチキュラー板82)を用いて、そのレンズについて、屈折角度を制御することで、所定の位置に、各視差画像を提示するレンチキュラー形成部を用いても、同じ効果を実現することができる。
 この場合、初期調整部105では、レンチキュラー位置の微調整や、レンチキュラーによる視差画像の屈折率の調整が実施される。そして、バリア制御回路106としては、レンチキュラー制御回路が設けられ、バリア形成部101としては、レンチキュラー形成部が設けられる。
 なお、本発明は、装置、システム、集積回路などとして実現できるだけでなく、その装置を構成する処理手段をステップとする方法として実現したり、それらステップをコンピュータに実行させるプログラムとして実現したり、そのプログラムを記録したコンピュータ読み取り可能なCD-ROMなどの記録媒体として実現したり、そのプログラムを示す情報、データ又は信号として実現したりすることもできる。そして、それらプログラム、情報、データ及び信号は、インターネット等の通信ネットワークを介して配信してもよい。
 本発明によれば、3人以上の複数視聴者が同時に視聴した場合でも、逆視を発生させることがなく、立体映像を観察することができる立体映像表示装置を提供できる。
 また、各視差画像を提示する間隔を、眼間距離よりも細分化して、本発明と組合せることで、逆視の発生を抑えるとともに、クロストークの発生する領域も、減少させることができる。さらに、左眼用画像Lと、右眼用画像Rから、補間で、視差画像を生成して、本発明と組合せることで、最大視聴人数に応じて、改めて視差画像を用意する必要がないという利点がある。
 9L 視差画像の見える位置
 9La 視差画像Aの見える位置
 9Lb 視差画像Bの見える位置
 9Lc 視差画像Cの見える位置
 9Ld 視差画像Dの見える位置
 91 映像表示パネル
 92 パララックスバリア
 92a 開口部
 92b 遮光部
 93L 左眼用映像
 93R 右眼用映像
 94 視聴者位置
 94L 左眼位置
 94R 右眼位置
 99a 視差画像
 99b 視差画像
 99c 視差画像
 99d 視差画像
 100 2次元表示部
 100s 立体映像表示装置
 101 バリア形成部
 101L 光
 101Lp 光
 102 位置検出部
 103 視差配置制御部
 103p 位置
 104 カメラ
 105 初期調整部
 106 バリア制御回路
 107 複数の視差画像
 108 表示回路
 114、114a~114d 観察者
 115 視差画像
 180 頭部検出部
 181 視聴者位置検出部
 182 基準点設定部
 183 位置移動判断部
 184 色度合い検出部
 185 輪郭検出部
 186 特徴量抽出部
 187 パターンマッチング部
 188 テンプレート記憶メモリ
 201 表示間隔制御部
 202 細分視差配置制御部
 300 LR視差画像
 301 視差画像生成部
 310 補間処理選択部
 311 画像内挿生成部
 312 画像外挿生成部
 313 視差数確認部
 110、1101~1105 視差画像
 113、1131~1139 位置
 113r、113r1、113r2 範囲

Claims (11)

  1.  複数の視差画像を表示して、同時に複数の観察者が、特殊なメガネを用いず、立体視を観察する立体映像表示装置であって、
     多視点からの複数の前記視差画像のうちのそれぞれの前記視差画像について、複数の画素列から画素列を選択して、その視差画像を、選択された前記画素列で表示する2次元表示部と、
     前記複数の画素列からの光を、それぞれの前記視差画像が、その視差画像に対応する所定位置に提示されるように、分離する分離部と、
     立体視を観察する観察者の位置を検出する位置検出部と、
     検出された前記位置に応じて、それぞれの前記視差画像の表示制御を行い、
     検出された前記位置にいる前記観察者の左眼および右眼のうちの予め定められた方の眼がない位置を特定して、特定された前記位置に、複数の前記視差画像のうちの予め定められた前記視差画像を提示させる視差配置制御部とを備える立体映像表示装置。
  2.  複数の前記視差画像に含まれる、前記視差画像の個数は、「前記観察者の人数+1」の個数である請求項1記載の立体映像表示装置。
  3.  2つの前記視差画像が提示される2つの前記所定位置の間隔を細分化する表示間隔制御部を更に備え、
     前記視差配置制御部は、前記表示間隔制御部での細分化数を用いて、検出された前記位置に応じて、「前記観察者の人数×前記細分化数+1」の個数の前記視差画像の表示制御を行う請求項1記載の立体映像表示装置。
  4.  右眼用画像と左眼用画像との2つの前記視差画像から、必要とする、多視点からの複数の前記視差画像のうちの、2つの前記視差画像以外の前記視差画像を補間生成する視差画像生成部を更に備える請求項1記載の立体映像表示装置。
  5.  前記分離部は、それぞれの前記視差画像が、その視差画像が提示される前記所定位置に提示されるように、バリアを形成するバリア形成部である請求項1から4のいずれか1項に記載の立体映像表示装置。
  6.  前記分離部は、レンチキュラー板に配列されたシリンドリカルレンズの屈折角度を制御することで、それぞれの前記視差画像を、その視差画像が提示される前記所定位置に提示するレンチキュラー形成部である請求項1から4のいずれか1項に記載の立体映像表示装置。
  7.  前記シリンドリカルレンズは、液晶レンズである請求項6記載の立体映像表示装置。
  8.  前記観察者の人数nは、n≧3である請求項1から7のいずれか1項に記載の立体映像表示装置。
  9.  テレビである請求項1記載の立体映像表示装置。
  10.  前記位置検出部は、前記観察者の人数を検出し、
     複数の前記視差画像に含まれる前記視差画像の個数は、第1の前記人数が検出された場合には、第1の個数であり、第2の前記人数が検出された場合には、前記第1の個数とは異なる第2の個数であり、
     前記分離部は、前記第1の人数が検出された場合には、前記第1の個数の前記視差画像を、前記第1の個数の前記所定位置に提示し、前記第2の人数が検出された場合、前記第2の個数の前記視差画像を、前記第2の個数の前記所定位置に提示する請求項1記載の立体映像表示装置。
  11.  複数の視差画像を表示して、同時に複数の観察者に、特殊なメガネを用いず、立体視を観察させる立体映像表示方法であって、
     多視点からの複数の前記視差画像のうちのそれぞれの前記視差画像について、複数の画素列から前記画素列を選択して、その視差画像を、選択された前記画素列で表示する2次元表示ステップと、
     前記複数の画素列からの光を、それぞれの前記視差画像が、その視差画像に対応する所定位置に提示されるように、分離する分離ステップと、
     立体視を観察する観察者の位置を検出する位置検出ステップと、
     検出された前記位置に応じて、それぞれの前記視差画像の表示制御を行い、
     検出された前記位置にいる前記観察者の左眼および右眼のうちの予め定められた方の眼がない位置を特定して、特定された前記位置に、複数の前記視差画像のうちの予め定められた前記視差画像を提示させる視差配置制御ステップとを含む立体映像表示方法。
PCT/JP2011/002327 2010-04-21 2011-04-21 立体映像表示装置、立体映像表示方法 WO2011132422A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011541018A JP5631329B2 (ja) 2010-04-21 2011-04-21 立体映像表示装置、立体映像表示方法
EP11770989.9A EP2562581A4 (en) 2010-04-21 2011-04-21 3D VIDEO DISPLAY AND 3D VIDEO DISPLAY
CN201180002194.3A CN102449534B (zh) 2010-04-21 2011-04-21 立体影像显示装置、立体影像显示方法
US13/284,038 US9215452B2 (en) 2010-04-21 2011-10-28 Stereoscopic video display apparatus and stereoscopic video display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-098310 2010-04-21
JP2010098310 2010-04-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/284,038 Continuation US9215452B2 (en) 2010-04-21 2011-10-28 Stereoscopic video display apparatus and stereoscopic video display method

Publications (1)

Publication Number Publication Date
WO2011132422A1 true WO2011132422A1 (ja) 2011-10-27

Family

ID=44833963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002327 WO2011132422A1 (ja) 2010-04-21 2011-04-21 立体映像表示装置、立体映像表示方法

Country Status (5)

Country Link
US (1) US9215452B2 (ja)
EP (1) EP2562581A4 (ja)
JP (1) JP5631329B2 (ja)
CN (1) CN102449534B (ja)
WO (1) WO2011132422A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497563A (zh) * 2011-12-02 2012-06-13 深圳超多维光电子有限公司 跟踪式裸眼立体显示控制方法、显示控制装置和显示系统
CN102497570A (zh) * 2011-12-23 2012-06-13 天马微电子股份有限公司 跟踪式立体显示装置及其显示方法
CN102547348A (zh) * 2012-01-20 2012-07-04 深圳超多维光电子有限公司 一种裸眼立体显示调整方法、调整装置及相应设备、系统
CN102572484A (zh) * 2012-01-20 2012-07-11 深圳超多维光电子有限公司 立体显示控制方法、立体显示控制装置和立体显示系统
CN102630027A (zh) * 2012-02-21 2012-08-08 京东方科技集团股份有限公司 裸眼3d显示方法和装置
JP2013123094A (ja) * 2011-12-09 2013-06-20 Toshiba Corp 映像処理装置および映像処理方法ならびに記憶媒体
WO2013091201A1 (zh) * 2011-12-21 2013-06-27 青岛海信信芯科技有限公司 视区调整的方法和装置、能实现立体显示视频信号的设备
JP2013182209A (ja) * 2012-03-02 2013-09-12 Toshiba Corp 立体画像表示装置、立体画像表示方法、および制御装置
JP2015069210A (ja) * 2013-09-27 2015-04-13 三星電子株式会社Samsung Electronics Co.,Ltd. 多視点映像を提供するディスプレイ装置及び方法
JP2015519772A (ja) * 2012-03-27 2015-07-09 コーニンクレッカ フィリップス エヌ ヴェ 複数の観視者用の3dディスプレイ
JP2017038367A (ja) * 2015-08-07 2017-02-16 三星電子株式会社Samsung Electronics Co.,Ltd. 複数のユーザのためのレンダリング方法及び装置
JP2018180508A (ja) * 2017-04-06 2018-11-15 日本電信電話株式会社 表示装置及び表示方法
US11979549B2 (en) 2019-04-22 2024-05-07 Japan Display Inc. Display device

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5284731B2 (ja) * 2008-09-02 2013-09-11 オリンパスメディカルシステムズ株式会社 立体画像撮影表示システム
DE102010009737A1 (de) * 2010-03-01 2011-09-01 Institut für Rundfunktechnik GmbH Verfahren und Anordnung zur Wiedergabe von 3D-Bildinhalten
CN101984670B (zh) * 2010-11-16 2013-01-23 深圳超多维光电子有限公司 一种立体显示方法、跟踪式立体显示器及图像处理装置
US9420268B2 (en) 2011-06-23 2016-08-16 Lg Electronics Inc. Apparatus and method for displaying 3-dimensional image
KR101883375B1 (ko) * 2011-11-17 2018-08-30 엘지전자 주식회사 이동 단말기
KR101890622B1 (ko) * 2011-11-22 2018-08-22 엘지전자 주식회사 입체영상 처리 장치 및 입체영상 처리 장치의 칼리브레이션 방법
JP2015038532A (ja) * 2011-12-15 2015-02-26 シャープ株式会社 表示装置
JP2015038531A (ja) * 2011-12-15 2015-02-26 シャープ株式会社 表示装置
JP5818674B2 (ja) * 2011-12-21 2015-11-18 株式会社東芝 画像処理装置、方法、及びプログラム、並びに、画像表示装置
WO2013094211A1 (ja) * 2011-12-21 2013-06-27 パナソニック株式会社 表示装置
JP5762998B2 (ja) * 2012-03-07 2015-08-12 株式会社ジャパンディスプレイ 表示装置および電子機器
KR101924058B1 (ko) * 2012-04-03 2018-11-30 엘지전자 주식회사 영상표시장치 및 그 동작방법
KR101973463B1 (ko) * 2012-05-21 2019-08-26 엘지전자 주식회사 입체 영상 디스플레이 장치
JP6099892B2 (ja) * 2012-07-09 2017-03-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 映像表示装置
US9509970B2 (en) 2012-07-18 2016-11-29 Qualcomm Incorporated Crosstalk reduction with location-based adjustment in multiview video processing
US9083948B2 (en) 2012-07-18 2015-07-14 Qualcomm Incorporated Crosstalk reduction in multiview video processing
JP6380881B2 (ja) * 2012-07-31 2018-08-29 Tianma Japan株式会社 立体画像表示装置、画像処理装置及び立体画像処理方法
CN102802014B (zh) * 2012-08-01 2015-03-11 冠捷显示科技(厦门)有限公司 一种多人跟踪功能的裸眼立体显示器
JP6222711B2 (ja) * 2012-08-10 2017-11-01 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー 3以上の異なる映像の同時再生のためのオートステレオスコピックスクリーンおよび方法、並びにその使用
KR20140043264A (ko) * 2012-09-26 2014-04-09 삼성전자주식회사 다시점 영상 처리 장치 및 방법
CN104104934B (zh) * 2012-10-04 2019-02-19 陈笛 无眼镜多观众三维显示的组件与方法
US9584797B2 (en) * 2012-10-31 2017-02-28 Elwha Llc Systems and methods to confirm that an autostereoscopic display is accurately aimed
KR101996655B1 (ko) * 2012-12-26 2019-07-05 엘지디스플레이 주식회사 홀로그램 표시 장치
CN103246076B (zh) * 2013-04-16 2015-08-05 深圳超多维光电子有限公司 多人观看立体显示装置及立体显示方法
JP2015012560A (ja) * 2013-07-02 2015-01-19 ソニー株式会社 表示処理装置、表示装置および画像処理方法
EP2854403A1 (en) 2013-09-30 2015-04-01 Samsung Electronics Co., Ltd Image generating apparatus and display device for layered display scheme based on location of eye of user
CN103747236A (zh) * 2013-12-30 2014-04-23 中航华东光电有限公司 结合人眼跟踪的立体视频处理系统及方法
CN103747228B (zh) * 2014-01-24 2015-09-23 冠捷显示科技(厦门)有限公司 一种可减缓死角的裸眼立体图像合成系统及其合成方法
JP6410167B2 (ja) * 2014-05-12 2018-10-24 パナソニックIpマネジメント株式会社 表示装置及びその表示方法
US9967518B2 (en) * 2014-05-29 2018-05-08 Sharp Kabushiki Kaisha Video conference system
KR102214355B1 (ko) 2014-06-16 2021-02-09 삼성디스플레이 주식회사 입체 영상 표시 장치
US9830739B2 (en) 2014-06-17 2017-11-28 Google Inc. Automultiscopic display with viewpoint tracking and scalability for multiple views
JP2016014747A (ja) * 2014-07-01 2016-01-28 Nltテクノロジー株式会社 立体画像表示装置
CN104155767A (zh) * 2014-07-09 2014-11-19 深圳市亿思达显示科技有限公司 自适应追踪式立体显示装置及其显示方法
US9716879B2 (en) * 2014-07-15 2017-07-25 Shenzhen China Star Optoelectronics Technology Co., Ltd Image display method and device for multi-view stereoscopic display
CN104363435A (zh) * 2014-09-26 2015-02-18 深圳超多维光电子有限公司 跟踪状态指示方法及显示装置
CN105572883B (zh) * 2014-10-11 2018-01-30 深圳超多维光电子有限公司 立体显示装置的校正系统及其校正方法
DE112015006086B4 (de) * 2015-01-30 2022-09-08 Mitsubishi Electric Corporation Bildverarbeitungsvorrichtung, Bildanzeigevorrichtung und Bildverarbeitungsverfahren
US10419737B2 (en) 2015-04-15 2019-09-17 Google Llc Data structures and delivery methods for expediting virtual reality playback
US10440407B2 (en) 2017-05-09 2019-10-08 Google Llc Adaptive control for immersive experience delivery
US10444931B2 (en) 2017-05-09 2019-10-15 Google Llc Vantage generation and interactive playback
US10546424B2 (en) 2015-04-15 2020-01-28 Google Llc Layered content delivery for virtual and augmented reality experiences
US10412373B2 (en) 2015-04-15 2019-09-10 Google Llc Image capture for virtual reality displays
US10469873B2 (en) 2015-04-15 2019-11-05 Google Llc Encoding and decoding virtual reality video
US10540818B2 (en) * 2015-04-15 2020-01-21 Google Llc Stereo image generation and interactive playback
US10567464B2 (en) 2015-04-15 2020-02-18 Google Llc Video compression with adaptive view-dependent lighting removal
CN105100783B (zh) * 2015-08-19 2018-03-23 京东方科技集团股份有限公司 3d显示装置及3d显示方法
TWI574547B (zh) * 2015-11-18 2017-03-11 緯創資通股份有限公司 立體影像的無線傳輸系統、方法及其裝置
CN108307185B (zh) * 2016-08-09 2024-01-12 擎中科技(上海)有限公司 裸眼3d显示设备及其显示方法
CN106791769A (zh) * 2016-12-16 2017-05-31 广东威创视讯科技股份有限公司 虚拟现实实现方法及系统
US10474227B2 (en) 2017-05-09 2019-11-12 Google Llc Generation of virtual reality with 6 degrees of freedom from limited viewer data
NL2020217B1 (en) * 2017-12-30 2019-07-08 Zhangjiagang Kangde Xin Optronics Mat Co Ltd Method for reducing moire patterns on an autostereoscopic display
CN108540791B (zh) * 2018-04-25 2020-01-24 京东方科技集团股份有限公司 一种双视显示方法和装置
JP2020098291A (ja) * 2018-12-19 2020-06-25 カシオ計算機株式会社 表示装置、表示方法およびプログラム
EP3840374B1 (en) * 2019-09-30 2023-07-19 Kyocera Corporation Three-dimensional display device, three-dimensional display system, head-up display, and mobile body
CN113138734A (zh) * 2020-01-20 2021-07-20 北京芯海视界三维科技有限公司 用于显示的方法、装置和产品
US11190754B2 (en) * 2020-01-22 2021-11-30 3D Media Ltd. 3D display device having a processor for correcting pseudostereoscopic effect
JP7475191B2 (ja) * 2020-04-28 2024-04-26 京セラ株式会社 眼間距離測定方法および較正方法
EP4270946A1 (en) * 2022-02-18 2023-11-01 Innolux Corporation Display device with three-dimensional image display function and three-dimensional image display method
CN117939106B (zh) * 2024-03-19 2024-05-24 成都工业学院 一种用于立体显示的视点规划组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330243B2 (ja) 1983-12-21 1991-04-26
JP2003169351A (ja) * 2001-09-21 2003-06-13 Sanyo Electric Co Ltd 立体画像表示方法および立体画像表示装置
JP2004212666A (ja) * 2002-12-27 2004-07-29 Toshiba Corp 3次元画像表示装置、この表示装置に視差画像を配分する方法及びこの表示装置に3次元画像を表示する方法
JP2005091447A (ja) * 2003-09-12 2005-04-07 Canon Inc 立体表示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311389A (ja) 1994-05-18 1995-11-28 Casio Comput Co Ltd アクティブマトリックス液晶表示装置
MY114271A (en) 1994-05-12 2002-09-30 Casio Computer Co Ltd Reflection type color liquid crystal display device
JP3030243B2 (ja) 1995-02-22 2000-04-10 三洋電機株式会社 立体映像表示装置
JP2001145129A (ja) * 1999-11-17 2001-05-25 Mixed Reality Systems Laboratory Inc 立体画像表示装置
US7277121B2 (en) 2001-08-29 2007-10-02 Sanyo Electric Co., Ltd. Stereoscopic image processing and display system
US7425951B2 (en) 2002-12-27 2008-09-16 Kabushiki Kaisha Toshiba Three-dimensional image display apparatus, method of distributing elemental images to the display apparatus, and method of displaying three-dimensional image on the display apparatus
JP4649219B2 (ja) * 2005-02-01 2011-03-09 キヤノン株式会社 立体画像生成装置
US8305488B2 (en) * 2006-05-10 2012-11-06 Universal City Studios Llc Time-sliced multiplexed image display
US8115877B2 (en) * 2008-01-04 2012-02-14 International Business Machines Corporation System and method of adjusting viewing angle for display based on viewer positions and lighting conditions
US20090282429A1 (en) * 2008-05-07 2009-11-12 Sony Ericsson Mobile Communications Ab Viewer tracking for displaying three dimensional views
US20110157322A1 (en) * 2009-12-31 2011-06-30 Broadcom Corporation Controlling a pixel array to support an adaptable light manipulator
US8823782B2 (en) * 2009-12-31 2014-09-02 Broadcom Corporation Remote control with integrated position, viewer identification and optical and audio test

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330243B2 (ja) 1983-12-21 1991-04-26
JP2003169351A (ja) * 2001-09-21 2003-06-13 Sanyo Electric Co Ltd 立体画像表示方法および立体画像表示装置
JP2004212666A (ja) * 2002-12-27 2004-07-29 Toshiba Corp 3次元画像表示装置、この表示装置に視差画像を配分する方法及びこの表示装置に3次元画像を表示する方法
JP2005091447A (ja) * 2003-09-12 2005-04-07 Canon Inc 立体表示装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAO YUE, THE JOURNAL OF THE INSTITUTE OF IMAGE ELECTRONICS ENGINEERS OF JAPAN, vol. 32, no. 5, 2003, pages 667 - 673
See also references of EP2562581A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497563A (zh) * 2011-12-02 2012-06-13 深圳超多维光电子有限公司 跟踪式裸眼立体显示控制方法、显示控制装置和显示系统
CN102497563B (zh) * 2011-12-02 2014-08-13 深圳超多维光电子有限公司 跟踪式裸眼立体显示控制方法、显示控制装置和显示系统
JP2013123094A (ja) * 2011-12-09 2013-06-20 Toshiba Corp 映像処理装置および映像処理方法ならびに記憶媒体
US9838673B2 (en) 2011-12-21 2017-12-05 Hisense Electric Co., Ltd. Method and apparatus for adjusting viewing area, and device capable of three-dimension displaying video signal
WO2013091201A1 (zh) * 2011-12-21 2013-06-27 青岛海信信芯科技有限公司 视区调整的方法和装置、能实现立体显示视频信号的设备
CN103392342A (zh) * 2011-12-21 2013-11-13 青岛海信电器股份有限公司 视区调整的方法和装置、能实现立体显示视频信号的设备
CN102497570A (zh) * 2011-12-23 2012-06-13 天马微电子股份有限公司 跟踪式立体显示装置及其显示方法
CN102572484B (zh) * 2012-01-20 2014-04-09 深圳超多维光电子有限公司 立体显示控制方法、立体显示控制装置和立体显示系统
CN102547348A (zh) * 2012-01-20 2012-07-04 深圳超多维光电子有限公司 一种裸眼立体显示调整方法、调整装置及相应设备、系统
CN102572484A (zh) * 2012-01-20 2012-07-11 深圳超多维光电子有限公司 立体显示控制方法、立体显示控制装置和立体显示系统
CN102630027B (zh) * 2012-02-21 2015-04-08 京东方科技集团股份有限公司 裸眼3d显示方法和装置
WO2013123801A1 (zh) * 2012-02-21 2013-08-29 京东方科技集团股份有限公司 裸眼3d显示方法和裸眼3d显示装置
CN102630027A (zh) * 2012-02-21 2012-08-08 京东方科技集团股份有限公司 裸眼3d显示方法和装置
JP2013182209A (ja) * 2012-03-02 2013-09-12 Toshiba Corp 立体画像表示装置、立体画像表示方法、および制御装置
JP2015519772A (ja) * 2012-03-27 2015-07-09 コーニンクレッカ フィリップス エヌ ヴェ 複数の観視者用の3dディスプレイ
JP2015069210A (ja) * 2013-09-27 2015-04-13 三星電子株式会社Samsung Electronics Co.,Ltd. 多視点映像を提供するディスプレイ装置及び方法
JP2017038367A (ja) * 2015-08-07 2017-02-16 三星電子株式会社Samsung Electronics Co.,Ltd. 複数のユーザのためのレンダリング方法及び装置
JP2018180508A (ja) * 2017-04-06 2018-11-15 日本電信電話株式会社 表示装置及び表示方法
US11979549B2 (en) 2019-04-22 2024-05-07 Japan Display Inc. Display device

Also Published As

Publication number Publication date
CN102449534A (zh) 2012-05-09
EP2562581A4 (en) 2014-11-12
CN102449534B (zh) 2014-07-02
US20120044330A1 (en) 2012-02-23
US9215452B2 (en) 2015-12-15
JP5631329B2 (ja) 2014-11-26
EP2562581A1 (en) 2013-02-27
JPWO2011132422A1 (ja) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5631329B2 (ja) 立体映像表示装置、立体映像表示方法
JP5704893B2 (ja) アクティブサブピクセルレンダリング方式に基づく高密度多視点映像表示システムおよび方法
KR102185130B1 (ko) 다시점 영상 디스플레이 장치 및 그 제어 방법
TWI507013B (zh) A stereoscopic image display device, a stereoscopic image display method, and a stereoscopic image determining device
CN102124749B (zh) 立体图像显示装置
TWI519129B (zh) 顯示器與其控制方法
EP2693758A2 (en) Stereoscopic image display device, image processing device, and stereoscopic image processing method
JP6060329B2 (ja) 3dディスプレイ装置で3次元映像を視覚化する方法および3dディスプレイ装置
US20100171811A1 (en) Method and device for the creation of pseudo-holographic images
JP2008527456A (ja) マルチビューディスプレイ装置
WO2015132828A1 (ja) 映像表示方法、及び、映像表示装置
JPWO2012176443A1 (ja) 映像表示装置および映像表示方法
KR20140073584A (ko) 화상 처리 장치, 입체 화상 표시 장치, 화상 처리 방법 및 화상 처리 프로그램
US20140071237A1 (en) Image processing device and method thereof, and program
KR20150121386A (ko) 입체 영상 표시 장치 및 영상 처리 방법
JP4892205B2 (ja) 立体画像表示装置及び立体画像表示方法
US20170257614A1 (en) Three-dimensional auto-focusing display method and system thereof
KR20160006546A (ko) 다시점 영상 디스플레이 장치 및 그 다시점 영상 디스플레이 방법
KR102279816B1 (ko) 무안경 입체영상표시장치
KR101192121B1 (ko) 양안시차 및 깊이 정보를 이용한 애너그리프 영상 생성 방법 및 장치
KR20160051404A (ko) 무안경 입체영상표시장치 및 그 구동방법
KR102232462B1 (ko) 무안경 입체영상표시장치
de la Barré et al. A new design and algorithm for lenticular lenses display
JP6179282B2 (ja) 3次元画像表示装置及び3次元画像表示方法
EP2763419A1 (en) View supply for autostereoscopic display

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002194.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011541018

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011770989

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11770989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE