WO2011130915A1 - 芴类共聚物,其制备方法及其应用 - Google Patents

芴类共聚物,其制备方法及其应用 Download PDF

Info

Publication number
WO2011130915A1
WO2011130915A1 PCT/CN2010/072097 CN2010072097W WO2011130915A1 WO 2011130915 A1 WO2011130915 A1 WO 2011130915A1 CN 2010072097 W CN2010072097 W CN 2010072097W WO 2011130915 A1 WO2011130915 A1 WO 2011130915A1
Authority
WO
WIPO (PCT)
Prior art keywords
thiophene
organic
pyrazine
group
compound
Prior art date
Application number
PCT/CN2010/072097
Other languages
English (en)
French (fr)
Inventor
周明杰
黄杰
刘辉
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to JP2013505296A priority Critical patent/JP5612757B2/ja
Priority to CN201080063098.5A priority patent/CN102753599B/zh
Priority to US13/635,342 priority patent/US8779204B2/en
Priority to EP10850049.7A priority patent/EP2562198A4/en
Priority to PCT/CN2010/072097 priority patent/WO2011130915A1/zh
Publication of WO2011130915A1 publication Critical patent/WO2011130915A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3242Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more oxygen atoms as the only heteroatom, e.g. benzofuran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/526Luminescence used as active layer in lasers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of organic materials, and particularly relates to a quinone copolymer containing a thiophenazine unit, a method for producing the same, and an application thereof.
  • Organic materials have always been one of the hotspots of human research, especially with the wide range of current polymer materials.
  • a sulfonium-based copolymer containing a thiophene pyrazine unit having a wide range of light transmission response and high stability, and a method for producing a quinone-based copolymer containing a thiophene pyrazine unit having a simple synthesis route and low cost are provided.
  • Embodiments of the present invention also provide the use of the above thiophene pyrazine-containing oxime copolymer.
  • a quinone-containing copolymer containing a thiophene pyrazine unit which comprises the copolymer represented by the following structural formula (I):
  • R 2 , R 5 , R 6 , R 7 , R 8 are selected from the alkyl group of H and CC;
  • R 3 and R 4 are selected from the group consisting of H, C Cso, and C C20; 3 ⁇ 4
  • x + y 1 , ⁇ 0, ⁇ 0;
  • an integer of 1-200, ⁇ ! is a group containing a thiophene unit.
  • a method for producing a quinone-based copolymer containing a thiophene pyrazine unit comprising the steps of:
  • R 5 , R 6 , R 7 , R 8 are selected from the alkyl group of H, dC ⁇ o;
  • R 3 an alkyl group selected from H, dC ⁇ o, an alkoxy group of d-Czo, a phenyl group or a phenoxy group,
  • Ari is a group containing a thiophene unit;
  • the thiophene unit structure has a thiophene unit structure, and the thiophene unit has a five-membered ring structure, conforms to the shock rule, has a moderate band gap, and has a wide spectral response range. Thermal stability and environmental stability.
  • both the mercapto unit and the thio unit are very excellent donor materials, and the thiophene-thenylpyrazine unit in the copolymer is a very excellent acceptor material
  • the polymer composed of these units can form a strong donor-acceptor structure, which on the one hand is beneficial to improve the stability of the material, on the other hand, it is beneficial to reduce the energy band gap of the material, thereby expanding the solar absorption range. , improve photoelectric conversion efficiency.
  • a relatively simple synthetic route is employed, thereby reducing the manufacturing cost.
  • Fig. 1 is a view showing the structural formula of a quinone-containing copolymer containing a thiophene pyrazine unit according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing a method for producing a quinone-based copolymer containing a thiophene pyrazine unit according to an embodiment of the present invention.
  • Fig. 3 is a schematic view showing the structure of a solar cell device using a thiophenepyrazine unit-containing fluorene copolymer according to an embodiment of the present invention.
  • Fig. 4 is a view showing the structure of an organic electroluminescence device using a quinone-based copolymer of a thiophene pyrazine unit according to an embodiment of the present invention.
  • Fig. 5 is a view showing the structure of an organic field effect transistor in which a thiophenepyrazine unit-containing anthracene copolymer according to an embodiment of the present invention is used. detailed description
  • a thiophene pyrazine-containing oxime copolymer according to an embodiment of the present invention, which comprises a copolymer represented by the following structural formula (I):
  • R, R 2 , R 5 , R 6 , R 7 and R 8 are selected from the group consisting of H and C r C 2 .
  • R 2 and R 2 are preferably the same alkyl group
  • R 3 and R 4 are preferably the same alkyl group
  • R 5 and R 6 are preferably the same fluorenyl group
  • R 7 and R 8 are preferably the same alkyl group. More preferably, R 5 , R 6 , R 7 are the same alkyl group.
  • R 2 , R 6 and R 7 are preferably an alkyl group, and may be, for example, an alkyl group of C 8 or more.
  • R 3 is preferably alkyl, alkoxy, phenyl or phenoxy, for example, may be a (: alkyl group having 8 or more, (more than 38 alkoxy Thus, in the copolymer by introducing an alkoxy.
  • Alkyl, alkoxy, phenyl or phenoxy to increase the solubility and molecular weight of the copolymer to achieve spin-coatable polymers or spin-coated oligomers n is preferably an integer of from 5 to 100.
  • a in the copolymer is preferably a group selected from the following structural formulae (1) to (7):
  • the above thiophene pyrazine-containing oxime copolymer comprises a thiophene unit (A) having a moderate band gap, a wide optical response range, and good thermal stability and environmental stability. Moreover, since the above copolymer has a mercapto unit, both the mercapto unit and the thiophene unit are very excellent donor materials, and the thiazol-thiophenazine compound in the copolymer is a very excellent acceptor material, The polymer composed of these units can form a strong donor-acceptor structure, which on the one hand is beneficial to improve the stability of the material, on the other hand, it is beneficial to reduce the energy band gap of the material, thereby expanding the solar absorption range. , improve photoelectric conversion efficiency.
  • thieno[3,4-b]pyrazine has an excellent planar structure, is a receptor unit containing a five-membered ring and a six-membered ring skeleton, and has intramolecular charge transfer properties, excellent electrochemical reduction It has a stronger electron-withdrawing ability than the commonly used units such as quinoxaline.
  • the thieno[3,4-b]pyrazine unit also has strong modification property, and the electron-donating group and the electron-accepting group can be introduced by a simple method to adjust the electron-withdrawing property, and the sulfhydryl group is introduced in this embodiment.
  • Unit and thiophene unit is a simple method to adjust the electron-withdrawing property.
  • this example introduces a thieno[3,4-b]pyrazine unit into the copolymer.
  • ceren unit which can effectively improve the conjugate of the molecule, exhibit better thermal stability and environmental stability, and help to broaden the spectral response of the polymer. Range, to better match the solar emission language.
  • the optical response band of this embodiment ranges from about 300 to 700 nm, covering the visible light band.
  • the method for producing the thiophene pyrazine unit-containing oxime copolymer comprises the following steps:
  • R 2 , R 5 , R 6 , R 7 , R 8 are selected from H,
  • An alkyl group of CrC ⁇ o; R 3 an alkyl group selected from H, dC ⁇ , an alkoxy group of dC ⁇ , a phenyl group or a phenoxy group, and Ari is a group containing a thiophene unit;
  • step S10 the compounds A, B, and C can be directly obtained from the market or prepared by an existing synthesis method.
  • the structures of the compounds A, B, and C are copolymerized with the above-mentioned anthracene containing a thiophenazine moiety
  • the compounds A, B, and C were each provided by the following production methods.
  • Compound A can be provided by the following steps: Adding an alkyllithium solution to 2,7-dibromo-9,9-dialkylfluorene (A,) and an organic solvent under anaerobic conditions, stirring for 0.5-4 hours Then, 2-isopropoxy-4,4,5,5-tetradecyl-1,3,2-dioxaborolane was added dropwise, and the reaction was resumed to room temperature, and stirring was continued for 24-48 hours to obtain Compound A. Under anaerobic conditions, it may be in a protective environment of nitrogen or an inert gas or a vacuum environment.
  • the alkyl lithium may be, but not limited to, n-butyl lithium, methyl lithium or other -C4 lithium compound, preferably but not limited to tetrahydrofuran.
  • Ethanol, methanol, dichloromethane, chloroform, ethyl acetate, dimethyl hydrazide, benzene or acetone, and the like are preferably tetrahydrofuran, and the reaction temperature is preferably -78 ° C to - 25 ° C.
  • the above preparation reaction is as follows:
  • reaction product is purified and purified to obtain a relatively pure compound A.
  • the reaction product is extracted with diethyl ether, dried over anhydrous magnesium sulfate, and then evaporated to give a compound A.
  • Compound B can be provided by the following steps: In a water bath, protected from light, a brominating agent is added in portions to the A monomer (B,) and an organic solvent, and stirred for 4 to 48 hours to obtain a compound B.
  • the brominating agent may be, but not limited to, N-bromosuccinimide (NBS), Br 2 , HBr or PBr 3 , etc., preferably NBS.
  • the organic solvent may be, but not limited to, chloroform, tetrahydrofuran, dimercaptophthalamide (DMF), carbon tetrachloride, dichlorodecane or acetonitrile, preferably DMF.
  • the above preparation reaction is as follows:
  • the product is purified and purified to obtain a relatively pure compound B, as follows:
  • the reaction solution is poured into ice water and quenched, extracted with dichloromethane, dried over anhydrous magnesium sulfate, and then evaporated. Recrystallization or column chromatography separates to give the purer compound B.
  • Compound C can be provided by the following steps: The brominating agent is added in portions to 5,7-bis(3,4-dialkylphen-2-yl)-2,3-diphenothiophene in the dark. [3, 4-b]pyrazine (C) and an organic solvent are reacted for 12 to 48 hours to obtain a compound C.
  • the brominating agent may be, but not limited to, N-bromosuccinimide (NBS), Br 2 , HBr or PBr 3 , etc., preferably NBS.
  • the organic solvent may be, but not limited to, chloroform, tetrahydrofuran, dimethylformamide (DMF), carbon tetrachloride, dichloromethane or acetonitrile, preferably DMF, and the reaction temperature is room temperature (rt), for example, at 20-25.
  • rt room temperature
  • the product is purified and separated to obtain a relatively pure compound C, as follows: The reaction solution is poured into water and quenched, extracted with dichloromethane, dried with anhydrous barium sulfate, rotary-steamed, recrystallized. Or column chromatography to obtain a solid product, that is, a relatively pure compound c.
  • step S20 the Suzuki polymerization reaction is as follows:
  • the Suzuki polymerization reaction specifically comprises the following steps: mixing the compounds A, B, C in a molar ratio of 1.0: a: b under an anaerobic condition, adding a catalyst, an alkali solution and an organic solvent, and heating to 50-150 ° C
  • the anaerobic conditions are substantially the same as those used for the preparation of the compound A; the catalyst is preferably in a molar amount of 0.1-20%; and the organic palladium catalyst is preferably Pd 2 (dba) 3 /P(o-Tol) 3 , Pd ( At least one of PPh 3 ) 4 , Pd(PPh 3 ) 2 Cl 2 .
  • the catalyst is a mixture of an organic palladium catalyst and an organophosphine ligand
  • the molar ratio of the organic palladium catalyst to the organophosphine ligand is from 1:2 to 20.
  • the alkali solution is an aqueous solution of a metal hydroxide or a metal carbonate, an aqueous solution of an alkyl ammonium hydroxide, and the alkali solution is used in an amount of 1 to 10 times the molar amount of the compound A;
  • the metal hydroxide may be selected from a sodium hydroxide solution,
  • the potassium hydroxide solution, the metal carbonate solution may be selected from the group consisting of sodium carbonate solution, carbonic acid clock solution, etc., preferably sodium carbonate solution.
  • the alkyl ammonium hydroxide may be, but not limited to, tetradecylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutyl, and may be, for example but not limited to, tetrahydrofuran, dichlorodecane, and ethylene.
  • the glyceryl ether, benzene or toluene or the like is preferably fluorene.
  • the organic solvent is used in an amount sufficient to dissolve and sufficiently react the respective reactants.
  • the product of the Suzuki polymerization may be further subjected to the following purification step: At the end of the Suzuki polymerization, the product is precipitated several times with decyl alcohol, suction filtered, and dried in vacuo to give a solid product.
  • the synthesis routes of the three monomers of the compounds A, B and C are relatively simple and mature, thereby reducing the process flow and reducing the manufacturing cost.
  • the Suzuki polymerization reaction is a mature polymerization reaction having high yield, mild conditions, easy control, and the like, and it is easy to increase the solubility of the product by introducing an alkyl group or an alkoxy group.
  • the thiophene pyrazine-containing quinone copolymer of the present embodiment can be applied to various photoelectric or semiconductor devices, for example, for organic photoelectric materials, solar cell devices, organic field effect transistors, organic electroluminescent devices, organic light. Storage devices, organic nonlinear materials, and organic laser devices.
  • the organic photoelectric material includes the above-mentioned ruthenium-containing and benzoselenadiazole-based copolymers for use as an electron donor material and/or a photoelectric conversion material and the like.
  • a solar cell device, an organic field effect transistor, and an organic electroluminescence device will be described as an example.
  • the thiophene pyrazine-containing fluorene-based copolymer of the present embodiment is used as an optical storage material, a nonlinear material, a laser material or a semiconductor material.
  • FIG. 3 there is shown a solar cell device using the fluorene-based copolymer containing a p-phenathione unit in the above embodiment, which comprises a glass base layer 11, a transparent anode 12, an intermediate auxiliary layer 13, and an active layer 14 which are sequentially laminated.
  • the cathode 15 and the intermediate auxiliary layer 13 are made of polyethylene dioxythiophene: polystyrene-sulfonic acid composite (abbreviated as PEDOT:PSS), and the active layer 14 comprises an electron donor material and an electron acceptor material, an electron donor.
  • PEDOT polystyrene-sulfonic acid composite
  • the active layer 14 comprises an electron donor material and an electron acceptor material, an electron donor.
  • the material adopts the above quinone copolymer containing a thiophene pyrazine unit, and the electron acceptor material may be
  • the transparent anode 12 may be made of indium tin oxide (abbreviated as ITO), preferably indium tin oxide having a sheet resistance of 10-20 ⁇ /.
  • the cathode 15 may be an aluminum electrode, but is not limited thereto. Wherein, the glass base layer 11 can be used as a bottom layer.
  • an ITO electrode When fabricated, an ITO electrode is first deposited on the glass base layer 11, and an intermediate-assisted layer 13 is formed on the ITO electrode by an oxygen-plasma treatment process, and The ruthenium-based copolymer and the electron acceptor material of the thiophene pyrazine unit are deposited on the intermediate auxiliary layer 13 by a vacuum evaporation technique to form the active layer 14, and then the cathode 15 is deposited on the active layer 14 by a vacuum evaporation technique.
  • Solar cell device When fabricated, an ITO electrode is first deposited on the glass base layer 11, and an intermediate-assisted layer 13 is formed on the ITO electrode by an oxygen-plasma treatment process, and The ruthenium-based copolymer and the electron acceptor material of the thiophene pyrazine unit are deposited on the intermediate auxiliary layer 13 by a vacuum evaporation technique to form the active layer 14, and then the cathode 15 is deposited on the active layer 14 by a vacuum
  • the thiophene pyrimidine unit-containing quinone copolymer in the active layer 14 absorbs light energy and generates excitons, which are then migrated to At the interface of the electron donor/acceptor material, and transferring electrons to an electron acceptor material, such as PCBM, the charge is separated to form free carriers, ie free electrons and holes. These free electrons are transferred to the metal cathode along the electron acceptor material and collected by the cathode. Free holes are transported along the electron donor material to the ITO anode and collected by the anode, thereby forming photocurrent and photovoltage for photoelectric conversion, external connection. When the load is 16, it can be powered.
  • the thiophene pyrazine-containing fluorene-based copolymer can more fully utilize light energy due to its wide-spread optical response range, thereby achieving higher photoelectric conversion efficiency and increasing solar cell device production. Electrical ability.
  • the organic material can also reduce the weight of the solar cell device and can be fabricated by techniques such as vacuum evaporation, which facilitates mass production.
  • an organic electroluminescent device using the thiophenepyrazine unit-containing fluorene-based copolymer in the above embodiment which comprises a glass base layer 21, a transparent anode 22, and a light-emitting layer which are sequentially laminated. 23. Buffer layer 24 and cathode 25.
  • the transparent anode 22 may be indium tin oxide (abbreviated as ITO), preferably indium tin oxide having a sheet resistance of 10-20 ⁇ /.
  • the light-emitting layer 23 contains the quinone-containing copolymer containing a thiophene pyrazine unit in the above embodiment.
  • the buffer layer 24 may be LiF or the like, but is not limited thereto.
  • the cathode 25 may be, but not limited to, metal A1 or Ca, Ba, etc., but is not limited thereto.
  • the organic electroluminescent device structure is represented by: ITO/thiophene pyrazine-containing fluorene-based copolymer/LiF/Al.
  • Each layer can be formed by an existing method, and a quinone-containing copolymer containing a thiophenazine unit can be formed on ITO by a vacuum evaporation technique.
  • an organic field effect transistor comprising the quinone-containing copolymer of the thiophene pyrazine unit in the above embodiment is shown, which comprises a substrate 31, an insulating layer 32, a modifying layer 33, and an organic semiconductor layer 34 which are sequentially stacked. And a source electrode 35 and a drain electrode 36 provided on the organic semiconductor layer 34.
  • the substrate 31 may be, but not limited to, a highly doped silicon wafer (Si), and the insulating layer 32 may be, but not limited to, micro-nano (eg, 450 nm) thick SiO 2 .
  • the organic semiconductor layer 34 is a ruthenium-based copolymer containing a thiophenepyrazine unit as described above.
  • Both the source electrode 35 and the drain electrode 36 may be, but not limited to, gold.
  • the modifying layer 33 can be, but is not limited to, octadecyltrichlorosilane.
  • the substrate 31, the insulating layer 32, the modifying layer 33, and the source electrode 35 and the drain electrode 36 can be formed by a conventional method.
  • the organic semiconductor layer 34 may be an oxide layer 32 containing a thiophenepyrazine unit-containing copolymer in the above embodiment, which is deposited on the insulating layer 32 modified by the modification layer 33 at a vacuum degree close to 1 (T 4 Pa).
  • the thiophene pyrazine-containing oxime copolymer of the first embodiment has a mercapto group.
  • the alkyl group is the same, and R 3 to R 1Q are both H.
  • the copolymer is made of a lighter material and has a higher yield in the preparation process. Moreover, the copolymer has such a relatively uniform structure, so that the fluorene-containing copolymer containing the pheniazine unit has relatively good light absorption properties and photoelectric properties.
  • the preparation steps of the copolymer are as follows:
  • the specific preparation process is as follows: 30.00 mL (2.00 M) n-butyllithium solution is added to contain 8.80 g of 2,7-dibromo-9,9-diindenylhydrazine and 100 at -78 ° C under nitrogen. In a reactor of mL tetrahydrofuran, after stirring for 2 hours, 13.00 mL of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane was slowly added dropwise. Return to room temperature and continue stirring for 25 hours. After completion of the reaction, the reaction mixture was poured into water, extracted with diethyl ether, dried over anhydrous succinic acid, and evaporated to give a solid product. The test results are: MALDI-TOF-MS (m/z): 446.3 (M+).
  • the specific preparation process is as follows: 3.96 g of NBS is added to hold 3.00 g of 5,7-bis(thiophen-2-yl)thieno[3,4-b]pyrazine and 50 mL of DMF at room temperature and protected from light. In the reactor, stir at room temperature for 25 hours. After completion of the reaction, the reaction mixture was extracted with dichloromethane, dried over anhydrous sodium sulfate, and evaporated to give crystals. The test results were: MALDI-TOF-MS (m/z): 458.2 (M+).
  • the specific preparation process is as follows: Under nitrogen protection, it contains 0.446 g of 2,7-bis(4,4,5,5-tetradecyl-1,3,2-dioxaborolanyl)- 9, 9 - dimethyl hydrazine, 0.0298 g of 2, 5-dibromothiophene [3, 2-b] thiophene, 0.412 g of 5, 7-bis(5-bromothien-2-yl)thieno[3,4-b ] Pyrazine, 0.208 g Pd(PPh 3 ) 4 reactor was charged with 8 mL of 20 wt% aqueous tetraethylammonium hydroxide solution and toluene (20 mL).
  • R 2 , R 9 and R 1 are fluorenyl groups, and all of them are 11, and the structural formula is as follows:
  • the thiophene pyrimidine unit-containing oxime copolymers of Examples 1 and 2 have substantially similar structures, except that the A units are different, and therefore, the thiophene pyrazine-containing oxime copolymer of Example 2 has a similar The properties and effects of the copolymer of Example 1.
  • the preparation steps of the thiophenepyrazine unit-containing oxime copolymers of Examples 1 and 2 are also substantially the same, except that the compound B and the final copolymer are produced.
  • the preparation process of Compound B of this example is as follows:
  • step 1) is: 6.00 g of 3,6-dibromo-thieno[3,2-b]thiophene and 66 mg (1, fluorene-bis(diphenylphosphino)ferrocene) Palladium(II) chloride was added to a 100 mL tubular glass vessel equipped with a stir bar, sealed and purged with nitrogen. 15 mL of tetrahydrofuran and 25 mL of decylzinc bromide (1.0 M in tetrahydrofuran solution) were added, stirred at room temperature for 10 minutes, and heated in a micro-processor at 140 ° C for 50 minutes.
  • step 2) is: adding 16.00 g of NBS in batches to 6.72 g of 3,6-dimethylthieno[3,2-b]thiophene and 200 mL in an ice bath and protected from light. In a DMF reactor, stir at room temperature for 24 hours. After completion of the reaction, the reaction mixture was poured into ice water and evaporated, evaporated, evaporated. The test results were: MALDI-TOF-MS (m/z): 326.1 (M + ).
  • the preparation process of the copolymer of this example is as follows: Under nitrogen protection, it contains 0.893 g of 2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane. -9,9-dimercaptopurine, 0.293 g of 2,5-dibromo-3,6-dimethylthieno[3,2-b]thiophene, 0.0458 g of 5,7-di(5-bromo) Thiophen-2-yl)thieno[3,4-b]pyridyl
  • a reactor of 0.126 g of Pd(PPh 3 ) 4 was charged with 15 mL of a 20% by weight aqueous solution of tetraethylammonium hydroxide and toluene (40 mL).
  • the structures of the thiophene pyrazine-containing oxime copolymers of Examples 1 and 3 are substantially similar, except that R and D 4 of the present Example 3 are sulfhydryl groups, and therefore, the thiophenepyrazine containing unit of Example 3
  • the oxime copolymer has properties and effects similar to those of the copolymer of Example 1. In addition, since the sum is a methyl group, the solubility is further enhanced.
  • the preparation steps of the thiophenepyrazine unit-containing oxime copolymers of Examples 1 and 2 are also substantially the same, except that the preparation processes of the compound C and the final copolymer are different, and therefore, the preparation processes of the compounds A and B are not described herein. .
  • step 1) The specific implementation process of step 1) is as follows: 2.78 g of 2,5-bis(2-thienyl)-3,4-diaminothiophene is dissolved in 50 mL of ethanol under nitrogen, and heated to 70 ° C. A solution of 1.20 g of 2,3-butanedione and 20 mL of ethanol was added dropwise, and the reaction was continued for 10 hours. After the reaction was completed, the temperature was returned to room temperature, and the solvent was removed under reduced pressure. The column chromatography was separated and recrystallized to give a solid product.
  • MALDI-TOF-MS (m/z): 328.5 (M + ).
  • step 2 The specific implementation procedure of step 2) is: 3.76 g of NBS is added in portions to 3.29 g of 2,3-dimethyl-5,7-dithiophen-2-yl-thiophene at room temperature and protected from light [ In a 3,4-b]pyrazine and 100 mL DMF reactor, stir for 22 hours. After completion of the reaction, the reaction mixture was poured into ice water and quenched, extracted with dichloromethane, dried over anhydrous magnesium sulfate, and evaporated. The test results are:
  • the preparation process of the copolymer of this example is as follows:
  • R 2 , R 3 , R 4 , R 9 and R are both C 8 H 17 , and R 5 to R 8 are both H, and the structural formula is as follows: Shown as follows:
  • the thiophene pyrazine-containing oxime copolymer of Example 4 has a plurality of C 8 H 17 groups, and therefore, in addition to the properties and effects described in the above examples, the copolymer can be improved.
  • the solubility and molecular weight make it easy to achieve spin-coatable polymers or spin-coated oligomers.
  • the specific preparation process was as follows: 23.00 mL (2.00 M) n-butyllithium solution was added to a 11.00 g of 2,7-dibromo-9,9-dioctylhydrazine by a syringe at -78 ° C under nitrogen. In a two-necked flask of 100.00 mL of tetrahydrofuran, after stirring for 2 hours, 9.80 mL of 2-isopropoxy-4,4,5,5-tetradecyl-1,3,2-dioxaborolane was slowly added dropwise. , return to room temperature and continue to stir for 25 hours.
  • the specific preparation process is as follows: 2.00 g of 3,6-dibromo-thieno[3,2-b]thiophene and 22 mg of (1, fluorenyl-bis(diphenylphosphino)ferrocene) palladium chloride ( II) Add to a 50 mL tubular glass bottle equipped with a stir bar, seal, and purge with nitrogen. 15 mL of tetrahydrofuran and 19 mL of octylzinc bromide (1.0 M in tetrahydrofuran) were added, stirred at room temperature for 15 minutes, and heated in a microwave reactor at 150 ° C for 40 minutes.
  • the specific preparation process was as follows: 1.97 g of NBS was added in portions to a reactor containing 2.02 g of 3,6-dioctylthieno[3,2-b]thiophene and 60 mL of DMF in a water bath and protected from light. Stir at room temperature for 15 hours. After completion of the reaction, the reaction mixture was poured into water and quenched, extracted with dichloromethane, dried over anhydrous magnesium sulfate, and then evaporated. The test result is: MALDI-TOF-MS (m/z): 522.5
  • the specific preparation process is as follows: 5.56 g of 2,5-bis(2-thia)-3,4-diaminothiophene is dissolved in 80 mL of ethanol under nitrogen, heated to 70 ° C, and added dropwise to 6.77 g. A solution of octadecane-9, 10-dione and 50 mL of ethanol was continued for 16 hours. After completion of the reaction, the mixture was returned to room temperature, and the solvent was evaporated under reduced pressure. The test results were: MALDI-TOF-MS (m/z): 524.9 (M + ).
  • the specific preparation process is as follows: 3.96 g of NBS is added in batches at room temperature and protected from light. 5.25 g of 2,3-dimercapto-5,7-dithiophen-2-yl-thiophene [3,4-b]pyrazine and 80 mL of DMF were stirred for 24 hours. After the reaction was completed, the reaction mixture was poured into ice water and evaporated, evaporated, evaporated, evaporated MALDI-TOF-MS (m/z): 682.6 (M + ).
  • R 2 , R 3 , R 4 , R 5 , R 9 and R 1Q are all C 2 .
  • H 41 , R 6 and R 7 are both H, and their structural formulas are as follows:
  • the thiophene pyrazine-containing fluorene-based copolymer of Example 5 has a plurality of C 2 . H 41 group, therefore, in addition to the properties and effects described in the above examples, the solubility and molecular weight of the copolymer are greatly improved, and the spin-coated polymer or spin-coated oligomer is more easily realized. .
  • the specific preparation process is as follows: 3.02 g of 3,6-dibromo-thieno[3,2-b]thiophene and 33 mg of (1, fluorenyl-bis(diphenylphosphino)ferrocene) palladium chloride ( ⁇ ) Add to a 50 mL vial filled with a stir bar, sealed, and purged with nitrogen. 50 mL of tetrahydrofuran and 25 mL of eicosylzinc bromide (1.0 M in tetrahydrofuran) were added, stirred at room temperature for 18 minutes, and heated in a microwave reactor at 140 ° C for 45 minutes.
  • the specific preparation process is as follows: 8.39 g of 2,5-bis(3-icosylthia-5-yl)-3,4-diaminothiophene is dissolved in 100 mL of ethanol under nitrogen, heated to 80 At ° C, a solution of 8.05 g of tetradodecane-21,22-dione and 50 mL of ethanol was added dropwise, and the reaction was continued for 18 hours. The reaction was completed, the temperature was returned to room temperature, the solvent was removed under reduced pressure, and the residue was purified by column chromatography to give a solid product.
  • the test results are:
  • the specific preparation process is as follows: 3.88 g of NBS is added in portions to 1.42 g of 2,3-di-eicosyl-5,7-bis(3-ephthylthiophene)thiophene at room temperature and protected from light. In a [3,4-b]pyrazine and 50 mL DMF reactor, stir for 25 hours. After completion of the reaction, the reaction mixture was poured into water and quenched, extracted with methylene chloride, dried over anhydrous magnesium sulfate, and evaporated. The test results were: MALDI-TOF-MS (m/z): 1580.3 (M + ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

芴类共聚物, 其制备方法及其应用
技术领域
本发明属于有机材料技术领域, 具体涉及一种含噻吩吡嗪单元的芴类共聚 物、 其制造方法和应用。 说
背景技术
有机材料一直是人类研究热点之一, 尤其是随着目前聚合物材料的广泛应 书
用, 其研究和开发更是倍受青睐。 聚合物材料作为光电材料或半导体材料逐渐 成为能源领域研究的热点之一, 典型的应用例如太阳能电池。
利用廉价材料制备低成本、 高效能的太阳能电池一直是光伏领域的研究热 点和难点。 太阳能电池直接把太阳光能转化成电能, 是利用太阳能切实可行的 有效方法。 然而, 目前商品化的太阳能电池还局限于硅基等无机太阳能电池, 但它们的价格过于昂贵, 超出了目前人们普遍可以接受的程度, 这大大限制了 它们的使用范围。 为了降低电池成本, 拓展应用范围, 长期以来, 人们逐渐转 向有机太阳能电池, 相对于无机半导体材料来源有限、 价格昂贵、 有毒、 制备 工艺复杂、 成本太高等而言, 它具有无机太阳能电池无法比拟的一些优点, 如 材料来源广泛、 结构多样性和可调控性、 成本低廉、 安全环保、 制作工艺简单、 产品重量轻、 可大面积柔性制备等等, 可以广泛应用在建筑、 照明和发电等多 种领域, 具有重要的发展和应用前景。 因此, 国内外众多的研究机构和企业等 都给予了相当的关注和投入。
然而, 到目前为止, 有机太阳能电池的光电转换效率比无机太阳能电池还 是要低很多。 因此, 开发新型的有机光电材料对于提高有机太阳能电池及其它 半导体器件的效率具有重要意义。 发明内容
有鉴于此, 提供一种光傳响应范围宽、 稳定性高的含噻吩吡嗪单元的芴类 共聚物, 以及一种合成路线简单、 成本低的含噻吩吡嗪单元的芴类共聚物制造 方法。
本发明实施例还提供上述含噻吩吡嗪单元的芴类共聚物的应用。
一种含噻吩吡嗪单元的芴类共聚物,其包含以下结构式( I )表示的共聚物:
Figure imgf000003_0001
式中: 、 R2、 R5、 R6、 R7、 R8选自 H、 C C 的烷基; R3、 R4选自 H、 C Cso的坑基、 C C20的; ¾|L^、笨基或笨 IL^; x + y = 1 , χ≠0, γ≠0; η = 1-200 的整数, Αΐ!为含噻吩单元的基团。
一种含噻吩吡嗪单元的芴类共聚物制造方法, 其包括如下步骤:
分别提供如下结构式表示的化合物 A、 B、 C,
Figure imgf000003_0002
5、 R6、 R7、 R8选自 H、 d-C^o的烷基; R3、 选自 H、 d-C^o的烷基、 d-Czo的烷氧基、苯基或苯氧基, Ari为含噻吩单元的基团;
在催化剂、 碱溶液和有机溶剂的条件下, 将化合物 A、 B、 C进行 Suzuki 合反应, 获得如下结构式(I )表示的共聚物:
Figure imgf000004_0001
( I ), 式中, x + y = 1 , χ≠0 , γ≠0; η = 1-200的整数。
以及, 上述含噻吩吡嗪单元的芴类共聚物在有机光电材料、 太阳能电池器 件、 有机场效应晶体管、 有机电致发光器件、 有机光存储器件、 有机非线性材 料或有机激光器件中的应用。
在上述含噻吩吡嗪单元的芴类共聚物中, 其具有噻吩单元结构, 由于噻吩 单元是五元环结构, 符合休克儿规则, 具有适中的能带隙, 较宽的光谱响应范 围, 较好的热稳定性和环境稳定性。 而且, 由于上述共聚物具有芴基单元, 芴 基单元和噻分单元都是非常优异的给体材料, 而共聚物中的噻吩-噻吩吡嗪类单 元是一种非常优异的受体材料, 由这些单元构成的聚合物能够形成一种很强的 给体 -受体结构, 一方面有利于提高了材料的稳定性, 另一方面有利于降低材料 的能带隙, 从而扩大对太阳光吸收范围, 提高光电转化效率。 上述含噻吩吡嗪 单元的芴类共聚物制造方法中, 采用较简单的合成路线, 从而降低制造成本。 上述含噻吩吡嗪单元的芴类共聚物应用于有机光电材料、 太阳能电池器件、 有 机场效应晶体管、 有机电致发光器件、 有机光存储器件、 有机非线性材料或有 机激光器件中时, 可提高其光电或半导体相关性能, 并能减轻器件的重量, 且 便于大批量的生产。 附图说明
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1示出本发明实施例的含噻吩吡嗪单元的芴类共聚物的结构式。
图 2是本发明实施例的含噻吩吡嗪单元的芴类共聚物制造方法流程图。 图 3是采用本发明实施例的含噻吩吡嗪单元的芴类共聚物的太阳能电池器 件结构示意图。
图 4是采用本发明实施例的含噻吩吡嗪单元的芴类共聚物的有机电致发光 器件的结构示意图。
图 5是釆用本发明实施例的含噻吩吡嗪单元的芴类共聚物的有机场效应晶 体管的结构示意图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
请参阅图 1 , 显示本发明实施例的含噻吩吡嗪单元的芴类共聚物, 其包含 如下结构式 (I )表示的共聚物:
Figure imgf000005_0001
式中: R 、 R2、 R5、 R6、 R7、 R8选自 H、 CrC2。的烷基; R3、 R4选自 H、
Figure imgf000005_0002
x + y = 1 , x≠0, y≠0; n = 1-200 的整数, Ar为含塞喻单元的基团。
上述共聚物中, 和 R2优选为相同的烷基, R3、 R4优选为相同的烷基, R5、 R6优选为相同的垸基, R7、 R8优选为相同的烷基, 更优选地, R5、 R6、 R7、 为相同的烷基。 R2、 、 R6、 R7、 优选为烷基, 例如可以是 C8以上 的烷基。 R3、 R4优选为烷基、 烷氧基、 苯基或苯氧基, 例如可以是 (:8以上的烷 基、 (38以上的烷氧基。 这样, 通过在共聚物中引入烷基、 烷氧基、 苯基或苯氧 基, 可提高共聚物的溶解性和分子量, 以实现可旋涂的聚合物或可旋涂的寡聚 n优选为 5-100的整数。
共聚物中的 A 优选为选自下列结构式( 1 ) - ( 7 )表示的基团:
Figure imgf000006_0001
的烷基, R15、 R16、 R17、 R18、 R19选自 CH^o的烷基; m是重复单元数, m = 1-10 的整数。 其中, R9、 。、 Ru、 R12、 R13、 R14优选为烷基, 例如可以是 C8以上 的烷基。
上述含噻吩吡嗪单元的芴类共聚物包含噻吩单元 ( A ), 其具有适中的能 带隙, 较宽的光 ϊ普响应范围, 较好的热稳定性和环境稳定性。 而且, 由于上述 共聚物具有芴基单元, 芴基单元和噻吩单元都是非常优异的给体材料, 而共聚 物中的噻吟 -噻吩吡嗪类单元是一种非常优异的受体材料, 由这些单元构成的聚 合物能够形成一种很强的给体 -受体结构, 一方面有利于提高了材料的稳定性, 另一方面有利于降低材料的能带隙, 从而扩大对太阳光吸收范围, 提高光电转 化效率。 具体地, 噻吩并 [3,4-b]吡嗪具有优良的平面结构, 是一个含有一个五 元环和六元环骨架的受体单元, 并且具有分子内电荷转移性质, 优异的电化学 还原性质, 并且相比常用的喹喔啉等单元而言, 具有更强的吸电子能力。 噻吩 并 [3, 4-b]吡嗪单元还具有较强的可修饰性, 可以利用简便的方法引入供电子基 团和受电子基团, 调节其吸电子性能, 本实施例即引入芴基单元和噻吩单元。
因此, 总的来说, 本实施例通过在共聚物中引入噻吩并 [3, 4-b]吡嗪单元, 来调节带隙和还原电势, 同时我们还引入"塞吩单元, 能够有效地提高分子的共 轭性, 表现出较好的热稳定性和环境稳定性, 有助于加宽聚合物的光谱响应范 围 , 以更好的匹配太阳发射光语。 本实施例的光语响应波段范围大约在 300-700 nm, 基本涵盖可见光波段。
请参阅图 2, 上述含噻吩吡嗪单元的芴类共聚物的制造方法包括如下步骤:
S 10: 分别提供如下结构式表示的化合物 A、 B、 C,
Figure imgf000007_0001
式中: 、 R2、 R5、 R6、 R7、 R8选自 H、
CrC^o的烷基; R3、 选自 H、 d-C^的烷基、 d-C^的烷氧基、 苯基或苯氧基, Ari为含噻吩单元的基团;
S20:在催化剂、碱溶液和有机溶剂的条件下,将化合物 A、 B、 C进行 Suzuki 聚合反应, 获得如下结构式(I )表示的共聚物:
Figure imgf000007_0002
( I ), 式中, x + y = 1 , x≠0 , y≠0; n = 1-200的整数。
在步骤 S10 中, 化合物 A、 B、 C可直接从市场上购得或者通过现有的合 成方法制备。 其中, 化合物 A、 B、 C结构与上面对含噻吩吡嗪单元的芴类共聚 本实施例中, 化合物 A、 B、 C分别采用如下制备方法提供。
化合物 A可通过以下步骤提供: 在无氧条件下, 将烷基锂溶液加入到 2, 7- 二溴—9, 9-二烷基芴 (A,)和有机溶剂中,搅拌 0.5-4小时后滴加 2-异丙氧基 -4, 4, 5, 5-四曱基 -1, 3, 2-二杂氧戊硼烷, 发生反应, 恢复至室温, 继续搅拌 24-48小时, 得到化合物 A。 无氧条件下可以是在氮气或惰性气体的保护环境或真空环境, 烷基锂可以是但不限于正丁基锂、 甲基锂或其它 -C4的锂化合物, 优选为正 但不限于四氢呋喃、 乙醇、 甲醇、 二氯曱烷、 三氯甲烷、 乙酸乙酯、 二曱基曱 酰胺、 曱苯或丙酮等, 优选为四氢呋喃, 反应温度优选为 -78°C〜- 25 °C。 上述制 备反应如下式所示:
Figure imgf000008_0001
进一步, 在反应结束后对产物进行提纯分离, 得到较纯化合物 A, 具体如 下: 将反应产物用乙醚萃取, 用无水硫酸镁干燥, 旋蒸, 柱层析分离, 得到较 纯的化合物 A。
化合物 B可通过以下步骤提供: 在水浴、 避光条件下, 将溴化剂分批加入 至 A 单体 (B,)和有机溶剂中, 搅拌 4-48小时, 得到化合物 B。 溴化剂可以是 但不限于 N-溴代丁二酰亚胺(NBS ) 、 Br2、 HBr或 PBr3等, 优选为 NBS。 有 机溶剂可以是但不限于氯仿、 四氢呋喃、 二曱基曱酰胺(DMF ) 、 四氯化碳、 二氯曱烷或乙腈, 优选为 DMF。 上述制备反应如下式所示:
NBS, DMF, 0°C
Ar1 ► Br、 Ar-- Br
B' B
进一步, 在反应结束后对产物进行提纯分离, 得到较纯化合物 B, 具体如 下: 将反应液倒入冰水中淬灭, 用二氯曱烷萃取, 用无水硫酸镁干燥, 旋蒸, 重结晶或柱层析分离, 得到较纯的化合物 B。
化合物 C可通过以下步骤提供: 在避光条件下, 将溴化剂分批加入至 5, 7- 二 ( 3, 4-二烷基 吩-2-基 ) -2, 3-二坑基噻吩 [3, 4-b]吡嗪 ( C ) 和有机溶剂中 , 反应 12-48 小时, 得到化合物 C。 溴化剂可以是但不限于 N-溴代丁二酖亚胺 ( NBS ) 、 Br2、 HBr或 PBr3等, 优选为 NBS。 有机溶剂可以是但不限于氯仿、 四氢呋喃、 二甲基甲酰胺(DMF )、 四氯化碳、 二氯甲烷或乙腈, 优选为 DMF, 反应温度为室温 (rt ) , 例如在 20-25。C。 上述制备反应如下式所示:
Figure imgf000009_0001
进一步, 在反应结束后对产物进行提纯分离, 得到较纯化合物 C, 具体如 下: 将反应液倒入水水中淬灭, 用二氯曱烷萃取, 用无水硫酸锬干燥, 旋蒸, 重结晶或柱层析分离得到固体产物, 即较纯的化合物 c。
步骤 S20中, Suzuki聚合反应如下式所示:
Figure imgf000009_0002
Suzuki 聚合反应具体包括如下步骤: 在无氧条件下, 将化合物 A、 B、 C 按照摩尔比 1.0: a: b混合, 加入催化剂、 碱溶液和有机溶剂, 加热至 50-150°C 进行反应 2-7天, 再加入溴苯反应 12-24 小时后, 加入苯硼酸继续反应 12-24 小时, 其中 a > 0, b > 0, a + b = 1.0。
其中, 无氧条件与化合物 A的制备采用的条件基本相同; 催化剂优选为有 摩尔用量的 0.1-20%; 有机钯催化剂优选为 Pd2(dba)3/P(o-Tol)3、 Pd(PPh3)4、 Pd(PPh3)2Cl2中的至少一种。 当催化剂是有机钯催化剂与有机膦配体的混合物 时,该有机钯催化剂与有机膦配体的摩尔比为 1 :2 ~ 20。碱溶液为金属氢氧化物 或金属碳酸盐的水溶液、 烷基氢氧化铵的水溶液, 碱溶液的用量为化合物 A摩 尔用量的 1-10倍; 金属氢氧化物可选自氢氧化钠溶液、 氢氧化钾溶液, 金属碳 酸盐溶液可选自碳酸钠溶液、 碳酸钟溶液等, 优选为碳酸钠溶液。 烷基氢氧化 铵可以是但不限于四曱基氢氧化铵、 四乙基氢氧化铵、 四丙基氢氧化铵、 四丁 剂, 例如可以是但不限于四氢呋喃、 二氯曱烷、 乙二醇二甲醚、 苯或曱苯等, 优选为曱苯。 有机溶剂的用量足量, 以使各反应物溶解并充分反应。
另外, 还可进一步对 Suzuki聚合反应的产物进行如下提纯步骤: 在 Suzuki 聚合反应结束, 取产物用曱醇沉降多次, 抽滤, 真空干燥, 得到固体产物。
在上述含瘗吩吡嗪单元的芴类共聚物的制备方法中, 化合物 A、 B、 C三种 单体的合成路线比较简单且成熟, 从而减少工艺流程, 降低制造成本。 而且 Suzuki聚合反应是一种成熟的聚合反应, 具有产率高、 条件温和、 易于控制等 特点, 且易通过引入烷基或烷氧基提高产物的溶解性。
本实施例的含噻吩吡嗪单元的芴类共聚物可应用于各种光电或半导体器件 中, 例如, 可用于有机光电材料、 太阳能电池器件、 有机场效应晶体管、 有机 电致发光器件、 有机光存储器件、 有机非线性材料和有机激光器件等。 其中, 有机光电材料包括上述含蒽和苯并硒二唑类共聚物, 以用作电子给体材料和 / 或光电转换材料等。 下面以太阳能电池器件、 有机场效应晶体管, 有机电致发 光器件为例进行说明。 其它如有机光存储器件, 有机非线性材料和有机激光器 件与下面类似, 都是以本实施例的含噻吩吡嗪单元的芴类共聚物作为其的光存 储材料、 非线性材料、 激光材料或半导体材料等。
请参阅图 3 , 显示采用上述实施例中的含 p塞吩吡嗪单元的芴类共聚物的太 阳能电池器件, 其包括依次层叠的玻璃基层 11、 透明阳极 12、 中间辅助层 13、 活性层 14、 阴极 15, 中间辅助层 13釆用聚乙烯二氧基噻吩: 聚苯乙烯-磺酸复 合材料(简称为 PEDOT:PSS ), 活性层 14包括电子给体材料和电子受体材料, 电子给体材料采用上述含噻吩吡嗪单元的芴类共聚物, 电子受体材料可以是
[6,6]苯基 -C61-丁酸甲酯(简称为 PCBM ) 。 透明阳极 12可釆用氧化铟锡(简称 为 ITO ) , 优选为方块电阻为 10-20 Ω/ 的氧化铟锡。 阴极 15可采用铝电极, 但不限于此。 其中, 玻璃基层 11可作为底层, 制作时, 先将 ITO电极沉积于 玻璃基层 11 , 再用氧 -等离子喷涂(氧 -Plasma )处理工艺, 将中间辅助层 13形 成于 ITO电极上, 以及将含噻吩吡嗪单元的芴类共聚物和电子受体材料通过真 空蒸镀技术沉积于中间辅助层 13上, 形成活性层 14, 然后再通过真空蒸镀技 术在活性层 14上沉积阴极 15, 获得上述太阳能电池器件。
如图所示, 在光照下, 光透过玻璃基层 11和 ITO电极 12, 活性层 14中的 含噻吩吡嗪单元的芴类共聚物吸收光能, 并产生激子, 这些激子再迁移到电子 给体 /受体材料的界面处, 并将电子转移给电子受体材料, 如 PCBM, 实现电荷 的分离, 从而形成自由的载流子, 即自由的电子和空穴。 这些自由的电子沿电 子受体材料向金属阴极传递并被阴极所收集, 自由的空穴沿电子给体材料向 ITO 阳极传递并被阳极所收集, 从而形成光电流和光电压, 实现光电转换, 外 接负载 16时, 可对其进行供电。 在此过程中, 含噻吩吡嗪单元的芴类共聚物由 于其具有艮宽的光 ϊ普响应范围, 能够更充分地利用光能, 以获得更高的光电转 换效率, 增加太阳能电池器件的产电能力。 而且这种有机材料还能减轻太阳能 电池器件的重量, 并通过真空蒸镀等技术即可制作, 便于大批量的制备。
请参阅图 4, 显示釆用上述实施例中的含噻吩吡嗪单元的芴类共聚物的有 机电致发光器件, 其包括依次层叠设置的玻璃基层 21、 透明阳极 22、 发光层 23、 緩冲层 24、 阴极 25。 透明阳极 22可采用氧化铟锡(简称为 ITO ) , 优选 为方块电阻为 10-20 Ω/ 的氧化铟锡。 发光层 23包含上述实施例中的含噻吩吡 嗪单元的芴类共聚物。 緩冲层 24可采用 LiF等, 但不限于此。 阴极 25可以是 但不限于金属 A1或 Ca, Ba等, 但不限于此。 因而, 在一个具体实施例中, 有 机电致发光器件结构表示为: ITO/含噻吩吡嗪单元的芴类共聚物 /LiF/Al。 各层 可采用现有方法形成, 而含噻吩吡嗪单元的芴类共聚物可通过真空蒸镀技术形 成于 ITO上。
请参阅图 5 , 显示采用上述实施例中的含噻吩吡嗪单元的芴类共聚物的有 机场效应晶体管, 其包括依次层叠设置的村底 31、 绝缘层 32、 修饰层 33、 有 机半导体层 34以及设于有机半导体层 34上的源电极 35和漏电极 36。 其中, 衬底 31可以是但不限于高掺杂的硅片 (Si ) , 绝缘层 32可以是但不限于微纳 米 (如 450 nm )厚的 SiO2。 有机半导体层 34釆用上述描述的含噻吩吡嗪单元 的芴类共聚物。 源电极 35和漏电极 36均可采用但不限于金。修饰层 33可以是 但不限于十八烷基三氯硅烷。 衬底 31、 绝缘层 32、 修饰层 33 以及源电极 35 和漏电极 36都可釆用现有的方法形成。 有机半导体层 34可以是在真空度接近 l(T4Pa下, 将上述实施例中的含噻吩吡嗪单元的芴类共聚物蒸镀于由修饰层 33 修饰的绝缘层 32上。
以下通过具体实施例来举例说明含噻吩吡嗪单元的芴类共聚物制备方法以 及其性能等方面。
实施例 1
本实施例 1的含噻吩吡嗪单元的芴类共聚物中, 和 为甲基, R3到 R10 都为 H, 其结构式如下所示:
Figure imgf000012_0001
由该结构式可知, 本实施例 1的含噻吩吡嗪单元的芴类共聚物中, 芴基单 元的烷基相同, R3到 R1Q都为 H, 这种共聚物制成的材料重量较轻, 并且, 在 制备各个过程中, 具有较高的产率。 而且, 此共聚物具有此种较为均勾对称的 结构, 使得含塞吩吡嗪单元的芴类共聚物相对具有较好的吸光性能和光电性能 等。
该共聚物的制备步骤具体如下:
一、 2, 7-双(4, 4, 5, 5-四甲基 -1, 3, 2-二杂氧戊硼烷基) - 9, 9-二甲基芴 (即 化合物 A的一个实例) 的制备, 该化合物结构式如下:
Figure imgf000013_0001
具体制备过程如下: 在 -78°C、 氮气条件下, 将 30.00 mL ( 2.00 M )正丁基 锂溶液加入至盛有 8.80 g 2, 7-二溴 -9, 9-二曱基芴和 100 mL四氢呋喃的反应器 中 , 搅拌 2小时后慢慢滴加 13.00 mL的 2-异丙氧基 -4, 4, 5, 5-四甲基 -1, 3, 2-二 杂氧戊硼烷, 恢复至室温, 继续搅拌 25小时。反应结束后,将反应液倒入水中, 用乙醚萃取, 用无水石克酸镇干燥, 旋蒸, 柱层析分离得到固体产物。 测试结果 为: MALDI-TOF-MS (m/z): 446.3 (M+)。
二、 2, 5-二溴噻吩 [3, 2-b]并噻吩(即化合物 B的一个实例) 的制备, 该化 合物结构式如下:
Figure imgf000013_0002
具体制备过程如下: 在水浴、 避光条件下, 将 7.83 g NBS分批加入至盛有 2.80 g噻吩 [3, 2-b]并噻吩和 60 mL DMF的反应器中, 室温搅拌 12小时。 反应 结束, 将反应液倒入;水水中淬灭, 用二氯甲烷萃取, 用无水硫酸镁干燥, 旋蒸, 柱层析分离得到固体产物。 测试结果为: MALDI-TOF-MS (m/z): 298.0 (M+)。
三、 5, 7-二(5-溴噻吩 -2-基)噻吩并 [3, 4-b]吡嗪(即化合物 C的一个实例) 的制备, 该化合物结构式如下:
Figure imgf000014_0001
具体制备过程如下: 在室温、 避光条件下, 将 3.96 g NBS加入至盛有 3.00 g 5, 7-二(噻吩 -2-基)噻吩并 [3,4-b]吡嗪和 50 mL DMF的反应器中, 室温搅拌 25 小时。 反应结束后, 将反应液用二氯曱烷萃取, 用无水硫酸娱干燥, 旋蒸, 重 结晶得到固体产物。 测试结果为: MALDI-TOF-MS (m/z): 458.2 (M+)。
四、 芴类共聚物的制备
具体制备过程如下: 在氮气保护下, 往含有 0.446 g 2, 7-双( 4, 4, 5, 5-四曱 基 -1, 3, 2-二杂氧戊硼烷基 ) - 9, 9-二甲基芴、 0.0298 g 2, 5-二溴噻吩 [3, 2-b]并噻 吩、 0.412 g 5, 7-二 ( 5-溴噻吩 -2-基 )噻吩并 [3,4-b]吡嗪、 0.208 g Pd(PPh3)4的反 应器中加入 8 mL 20 wt%的四乙基氢氧化铵水溶液和甲苯 (20 mL)。 氮气置换 1 小时后, 加热至 100°C, 反应 55小时。 加入 1.1 mL溴苯反应 14小时后, 加入 0.011 g苯硼酸继续反应 14小时。 反应结束, 曱醇沉降三次, 抽滤, 真空干燥 得到固体产物。 产率约为 65%测试结果为: GPC: Mn = 4967 , PDI = 1.7。
实施例 2
本实施例 2的含瘗吩吡嗪单元的芴类共聚物中, R2、 R9、 R1()为曱基, 到 都为 11, 其结构式如下所示:
Figure imgf000014_0002
由该结构式可知, 实施例 1和 2的含噻吩吡嗪单元的芴类共聚物结构基本 类似, 不同在于 A 单元不同, 因此, 实施例 2的含噻吩吡嗪单元的芴类共聚 物具有类似于实施例 1的共聚物的性能和效果。 实施例 1和 2的含噻吩吡嗪单 元的芴类共聚物的制备步骤也基本相同, 不同在于化合物 B和最终共聚物的制 本实施例的化合物 B制备过程如下:
1) 3, 6-二曱基基噻吩并 [3, 2-b]噻吩的制备, 此化合物的结构式如下:
Figure imgf000015_0001
步骤 1)的具体实施过程为: 将 6.00 g 3, 6-二溴代-噻吩并 [3, 2-b]噻吩和 66 mg (1, Γ-双 (二苯基膦基)二茂铁)氯化钯( II )加入至装有搅拌棒的 100 mL管形 玻璃容器中,密封,氮气吹洗。添加 15 mL四氢呋喃和 25 mL曱基溴化锌(1.0 M 四氢呋喃溶液中), 室温搅拌 10分钟,在 140 °C下的微^^应器中加热 50分钟。 冷却, 用 MTBE (甲基叔丁基瞇)稀释, 并分别用稀 HC1溶液、 盐水洗涤, 无 水硫酸钠干燥, 抽滤, 旋蒸。 柱层析分离, 重结晶得到产物。 测试结果为: MALDI-TOF-MS (m/z): 168.3 (M+)。
2) 2, 5-二溴 -3, 6-二甲基噻吩并 [3, 2-b]噻吩的制备, 此化合物即为本实施例 的化合物 B, 结构式如下:
Figure imgf000015_0002
步骤 2)的具体实施过程为: 在冰浴、 避光条件下, 将 16.00 g NBS分批加入 至盛有 6.72 g 3, 6-二甲基噻吩并 [3, 2-b]噻吩和 200 mL DMF的反应器中, 室温搅 拌 24小时。 反应结束, 将反应液倒入冰水中淬灭, 用二氯甲烷萃取, 用无水硫 酸镁干燥,旋蒸,柱层析分离得到固体产物。测试结果为: MALDI-TOF-MS (m/z): 326.1 (M+)。
本实施例的共聚物的制备过程如下: 在氮气保护下, 往含有 0.893 g 2, 7-双 ( 4, 4, 5, 5-四甲基 -1, 3, 2-二杂氧戊硼烷基 ) - 9, 9-二曱基芴、 0.293 g 2, 5-二溴 -3, 6-二甲基噻吩并 [3, 2-b]噻吩、 0.0458 g 5, 7-二( 5-溴噻吩 -2-基)噻吩并 [3,4-b]吡 嗪、 0.126 g Pd(PPh3)4的反应器中加入 15 mL 20wt%的四乙基氢氧化铵水溶液和 甲苯 (40 mL)。 氮气置换 1小时后, 加热至 90°C, 反应 49小时。 加入 2.0 mL溴苯 反应 16小时后, 加入 0.020 g苯硼酸继续反应 16小时。 反应结束, 曱醇沉降三次, 抽滤, 真空干燥得到固体产物。 产率约为 68%。 测试结果为: GPC: Mn = 16904, PDI = 1.5。
实施例 3
本实施例 3的含噻吩吡嗪单元的芴类共聚物中, 和 为曱基, 和 R 为甲基, 到 。都为 其结构式如下所示:
Figure imgf000016_0001
由该结构式可知, 实施例 1和 3的含噻吩吡嗪单元的芴类共聚物结构基本 类似, 不同在于本实施例 3的 和 R4为曱基, 因此, 实施例 3的含噻吩吡嗪 单元的芴类共聚物具有类似于实施例 1的共聚物的性能和效果。 此外, 由于 和 为甲基, 进一步增强溶解性。 实施例 1和 2的含噻吩吡嗪单元的芴类共聚 物的制备步骤也基本相同, 不同在于化合物 C和最终共聚物的制备过程不同, 因此, 化合物 A和 B的制备过程在此不再赘述。
本实施例的化合物 C制备过程如下:
1) 2, 3-二甲基 -5, 7-二噻吟 -2-基 -噻吩 [3, 4-b]吡嗪的制备, 此化合物的结构 式如
Figure imgf000016_0002
步驟 1)的具体实施过程为: 在氮气条件下, 将 2.78 g 2, 5-双(2-噻吩基) -3, 4-二氨基噻吩溶解在 50 mL乙醇中, 加热至 70°C , 逐滴加入 1.20 g 2, 3-丁二酮和 20 mL乙醇的溶液, 继续反应 10小时。 反应结束, 恢复至室温, 减压除去溶剂, 柱层析分离后重结晶得到固体产物。 MALDI-TOF-MS (m/z): 328.5 (M+)。
2) 5, 7-双 ( 5-溴噻吩 -2-基 ) -2, 3-二甲基 -噻吩 [3, 4-b]吡嗪的制备, 此化合物 即为本实施例的化合物 C, 结构式如下:
Figure imgf000017_0001
步骤 2)的具体实施过程为: 在室温、 避光条件下, 将 3.76 g NBS分批加入至 盛有 3.29 g 2, 3-二甲基 -5, 7-二噻吩 -2-基 -噻吩 [3, 4-b]吡嗪和 100 mL DMF的反应 器中, 搅拌 22个小时。 反应结束, 将反应液倒入冰水中淬灭, 二氯曱烷萃取, 无水硫酸镁干燥, 旋蒸, 柱层析分离得到固体产物。 测试结果为:
MALDI-TOF-MS (m/z): 486.3 (M十)。
本实施例的共聚物的制备过程如下:
在氮气保护下, 往含有 0.446 g 2, 7-双(4, 4, 5, 5-四甲基 -1, 3, 2-二杂氧戊硼 烷基 ) - 9, 9-二甲基芴、 0.150 g 2, 5-二溴噻吩 [3, 2-b]并噻吩、 0.243 g 5, 7-双( 5- 溴噻吩 -2-基 ) -2, 3-二甲基 -噻吩 [3, 4-b]吡嗪、 0.147 g Pd(PPh3)4的反应器中加入 7mL 20wt%的四乙基氢氧化铵水溶液和曱苯 (30 mL)。 氮气置换 2小时后, 加热 至 120°C, 反应 49小时。 力口入 1.1 mL溴苯反应 14小时后, 加入 0.011 g苯硼 酸继续反应 14小时。反应结束, 甲醇沉降三次,抽滤,真空干燥得到固体产物, 产率约为 61%。 测试结果为: GPC: Mn = 20168, PDI = 1.5。
实施例 4
本实施例 4的含噻吩吡嗪单元的芴类共聚物中, R2、 R3、 R4、 R9和 R: 都为 C8H17, R5到 R8都为 H, 其结构式如下所示:
Figure imgf000018_0001
由该结构式可知,实施例 4的含噻吩吡嗪单元的芴类共聚物具有多个 C8H17 基团, 因此, 除了具有以上实施例描述的性能和效果之外, 还能提高了共聚物 的溶解性和分子量, 易于实现可旋涂的聚合物或可旋涂的寡聚物。
本实施例的共聚物制备过程如下:
一、 2, 7-双 ( 4, 4, 5, 5-四曱基 -1, 3, 2-二杂氧戊硼烷基) - 9, 9-二辛基芴的制 备, 该化合物结构式如下:
Figure imgf000018_0002
具体制备过程如下: 在 -78°C、 氮气条件下, 用注射器将 23.00 mL ( 2.00 M ) 正丁基锂溶液加入至盛有 11.00 g 2, 7-二溴 -9, 9-二辛基芴和 100.00 mL四氢呋喃 的两口烧瓶中,搅拌 2小时后慢慢滴加 9.80 mL 2-异丙氧基 -4, 4, 5, 5-四曱基 -1, 3, 2-二杂氧戊硼烷, 恢复至室温, 继续搅拌 25小时。 反应结束, 将反应液倒入水 中, 乙醚萃取, 无水石克酸镇干燥, 旋蒸, 柱层析分离得到固体产物。 测试结果 为: MALDI-TOF-MS (m/z): 642.6 (M+)。
二、 3, 6-二辛基噻 并 [3, 2-b]噻吩的制备, 该化合物结构式如下:
Figure imgf000018_0003
具体制备过程如下:将 2.00 g 3, 6-二溴代-噻吩并 [3, 2-b]噻吩和 22 mg (1, Γ- 双 (二苯基膦基)二茂铁)氯化钯(II )加入至装有搅拌棒的 50 mL管形玻璃瓶中, 密封, 氮气吹洗。 添加 15 mL四氢呋喃和 19 mL辛基溴化锌 (1.0 M四氢呋喃溶 液中), 室温搅拌 15分钟, 在 150°C下的微波反应器中加热 40分钟。 冷却, 用 MTBE稀释, 并分别用稀 HC1溶液、 盐水洗涤, 无水硫酸钠干燥, 抽滤, 旋蒸。 柱层析分离,重结晶得到产物。测试结果为: MALDI-TOF-MS (m/z): 364.7 (M+)。
三、 2, 5-二溴 -3, 6-二辛基噻吩并 [3, 2-b]噻吩的制备, 该化合物结构式如下:
Figure imgf000019_0001
具体制备过程如下: 在水浴、 避光条件下, 将 1.97 g NBS分批加入至盛有 2.02 g 3, 6-二辛基噻吩并 [3, 2-b]噻吩和 60 mL DMF的反应器中, 室温搅拌 15小 时。 反应结束, 将反应液倒入水水中淬灭, 二氯曱烷萃取, 无水硫酸镁干燥, 旋蒸, 柱层析分离得到固体产物。 测试结果为: MALDI-TOF-MS (m/z): 522.5
(M十)。
四、 2, 3-二辛基 -5, 7-二噻吩 -2-基 -噻吩 [3, 4-b]吡嗪的制备, 该化合物结构式 ^口下
Figure imgf000019_0002
具体制备过程如下: 在氮气条件下, 将 5.56 g 2, 5-双(2-噻 基) -3, 4-二 氨基噻吩溶解在 80 mL乙醇中, 加热至 70°C, 逐滴加入 6.77 g 十八烷 -9, 10-二酮 和 50 mL乙醇的溶液, 继续反应 16小时。 反应结束, 恢复至室温, 减压除去溶 剂, 柱层析分离后重结晶得到固体产物。 测试结果为: MALDI-TOF-MS (m/z): 524.9 (M+)。
五、 5, 7-双(5-溴噻吩 -2-基) -2, 3-二辛基 -噻吩 [3, 4-b]吡嗪的制备, 该化合 物结构式如下:
Figure imgf000019_0003
具体制备过程如下: 在室温、 避光条件下, 将 3.69 g NBS分批加入至盛有 5.25 g 2, 3-二曱基 -5, 7-二噻吩 -2-基 -噻吩 [3, 4-b]吡嗪和 80 mL DMF的反应器中, 搅拌 24个小时。 反应结束, 将反应液倒入冰水中淬灭, 二氯甲烷萃取, 无水硫 酸镁干燥,旋蒸,柱层析分离得到固体产物。 MALDI-TOF-MS (m/z) : 682.6 (M+)。
六、 本实施例的芴类共聚物的制备
具体过程如下:在氮气保护下,往含有 0.645 g 2, 7-双(4, 4, 5, 5-四曱基 -1, 3, 2-二杂氧戊硼烷基 ) - 9, 9-二辛基芴、 0.262 g 2, 5-二溴 -3, 6-二辛基噻吩并 [3, 2-b] 噻吩、 0.342 g 5, 7-双 ( 5-溴噻吩 -2-基) -2, 3-二辛基 -噻吩 [3, 4-b]吡嗪、 0.0986 g Pd(PPh3)4的反应器中加入 5mL 20% Wt四乙基氢氧化铵水溶液和曱苯 (30 mL)。 氮气置换 2小时后, 加热至 50°C, 反应 72小时。 加入 0.9 mL溴苯反应 16小时后, 加入 0.0090 g苯硼酸继续反应 16小时。 反应结束, 甲醇沉降三次, 抽滤, 真空干 燥得到固体产物, 产率约为 66%。 测试结果为: GPC: Mn = 66735 , PDI = 1.8。
实施例 5
本实施例 5的含噻吩吡嗪单元的芴类共聚物中, R2、 R3、 R4、 R5、 、 R9和 R1Q都为 C2。H41 , R6和 R7都为 H, 其结构式如下所示:
Figure imgf000020_0001
由该结构式可知,实施例 5的含噻吩吡嗪单元的芴类共聚物具有多个 C2。H41 基团, 因此, 除了具有以上实施例描述的性能和效果之外, 还极大提高了共聚 物的溶解性和分子量, 更易于实现可旋涂的聚合物或可旋涂的寡聚物。
本实施例的共聚物制备过程如下:
一、 2, 7-双( 4, 4, 5, 5-四曱基 -1, 3, 2-二杂氧戊硼烷基 ) - 9, 9-双二十烷基芴 的制备, 该化合物结构式如下:
Figure imgf000021_0001
具体制备过程如下: 在 -78°C、 氮气条件下, 将 16.50 mL ( 2.00 M )正丁基 锂溶液加入至盛有 8.87g 2, 7-二溴 -9, 9-双二十烷基芴和 150 mL四氢呋喃的反应 器中 , 搅拌 2小时后慢慢滴加 5.50 mL 2-异丙氧基 -4, 4, 5, 5-四曱基 -1, 3, 2-二杂 氧戊硼烷, 恢复至室温, 继续搅拌 44小时。 反应结束, 将反应液倒入水中, 乙 醚萃取, 无水硫酸镁干燥, 旋蒸, 柱层析分离得到固体产物。 测试结果为: MALDI-TOF-MS (m/z): 979.2 (M十)。
二、 3, 6-双二十烷基噻吩并 [3, 2-b]噻吩的制备, 该化合物结构式如下:
Figure imgf000021_0002
具体制备过程如下:将 3.02 g 3, 6-二溴代-噻吩并 [3, 2-b]噻吩和 33 mg (1, Γ- 双 (二苯基膦基)二茂铁)氯化钯(Π )加入至装有搅拌棒的 50 mL管形玻璃瓶中, 密封, 氮气吹洗。 添加 50 mL四氢呋喃和 25 mL二十烷基溴化锌(1.0 M四氢呋 喃溶液中), 室温搅拌 18分钟, 在 140°C下的微波反应器中加热 45分钟。 冷却, 用 MTBE稀释, 并分别用稀 HC1溶液、 盐水洗涤, 无水硫酸钠干燥, 抽滤, 旋 蒸。 柱层析分离, 重结晶得到产物。 测试结果为: MALDI-TOF-MS (m/z): 701.3 (M+)。
三、 2, 5-二溴 -3, 6-二十烷基噻吩并 [3, 2-b]噻吩的制备, 该化合物结构式如 下:
Figure imgf000021_0003
具体制备过程如下: 在水浴、 避光条件下, 将 3.77 g NBS分批加入至盛有 6.98 g 3, 6-双二十烷基噻吩并 [3, 2-b]噻吩和 70 mL DMF的反应器中, 室温搅拌 18小时。 反应结束, 将反应液倒入冰水中淬灭, 二氯甲烷萃取, 无水硫酸镁干 燥,旋蒸,柱层析分离得到固体产物。测试结果为: MALDI-TOF-MS (m/z): 859.1
(M十)。
四、 2, 3-双二十烷基 -5, 7-双( 3-二十烷基噻吩 )噻吩 [3, 比嗪的制备, 该化
Figure imgf000022_0001
具体制备过程如下: 在氮气条件下, 将 8.39 g 2, 5-双(3-二十烷基噻分 -5- 基)—3, 4-二氨基噻吩溶解在 100 mL乙醇中, 加热至 80°C, 逐滴加入 8.05 g 四十 二烷 -21, 22-二酮和 50 mL乙醇的溶液, 继续反应 18小时。 反应结束, 恢复至室 温, 减压除去溶剂, 柱层析分离后重结晶得到固体产物。 测试结果为:
MALDI-TOF-MS (m/z): 1422.6 (Μ+)。
五、 2, 3-双二十烷基 -5, 7-双( 2-溴 -3-二十烷基噻吩 )噻吩 [3, 4-b]吡嗪的制 备, 该化合物结构式如下:
Figure imgf000022_0002
具体制备过程如下: 在室温、 避光条件下, 将 3.88 g NBS分批加入至盛有 1.42 g 2, 3-双二十烷基 -5, 7-双( 3-二十烷基噻吩 )噻吩 [3, 4-b]吡嗪和 50 mL DMF 的反应器中, 搅拌 25个小时。 反应结束, 将反应液倒入水水中淬灭, 二氯甲烷 萃取, 无水硫酸镁干燥, 旋蒸, 柱层析分离得到固体产物。 测试结果为: MALDI-TOF-MS (m/z): 1580.3 (M+)。
六、 本实施例的芴类共聚物的制备 具体过程如下:在氮气保护下,往含有 0.980 g 2, 7-双(4, 4, 5, 5-四曱基 -1, 3, 2-二杂氧戊硼烷基 ) - 9, 9-双二十烷基芴、 0.429 g 2, 5-二溴 -3, 6-二十烷基噻吩并 [3, 2-b]噻吩、 0.790 g 2, 3-双二十烷基 -5, 7-双( 2-溴 -3-二十烷基噻吩)噻吩 [3, 4-b] 吡嗪、 0.0569 g Pd(PPh3)4的反应器中加入 20 mL Na2C03 ( 2 M )水溶液和曱苯 (30 mL)。 氮气置换 1小时后, 加热至 150°C, 反应 50小时。 加入 1.2 mL溴苯反应 12 小时后, 加入 0.015 g苯硼酸继续反应 12小时。 反应结束, 甲醇沉降三次, 抽滤, 真空干燥得到固体产物, 产率约为 58%。 测试结果为: GPC: Mn = 127930, PDI 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求 书 种含噻吩吡嗪单元的芴类共聚物, 其包含以下结构式(I )表示的共
Figure imgf000024_0001
式中: 、 R2、 R5、 R6、 R7、 R8选自 H、 - o的烷基; R3、 选自 H、 d-C^o的焼基、 d-C^o的; ¾氧基、笨基或笨 IL^; x + y = 1 , x≠0 , y≠0; n = 1 -200 的整数, Al!为含噻吩单元的基团。
2、如权利要求 1所述的含噻吩吡嗪单元的芴类共聚物, 其特征在于, 所述 和 R2为相同的烷基, 、 为相同的烷基, R5、 R6为相同的烷基, R7、 R8 为相同的烷基。
3、如权利要求 1所述的含噻吩吡嗪单元的芴类共聚物, 其特征在于, 所述 R 、 R2、 R5、 R6、 R7、 为 C8以上的烷基, R3和 R4是 C8以上的坑基、 Cs以 上的烷氧基、 苯基或苯氧基。
4、如权利要求 1所述的含噻吩吡嗪单元的芴类共聚物, 其特征在于, 所述 A 选自下列结构式表示的基团:
Figure imgf000024_0002
式中: R9、 R10、 Ru、 R12、 R13、 R14选自 H、 C广 C2o的; ¾基' 5、 Ri6、 R17、 R18、 R19选自 d-Cso的烷基; m是重复单元数, m= 1-10的整数。
5、 一种含噻吩吡嗪单元的芴类共聚物制造方法, 其包括如下步驟:
分别提供如下结构式表示的化合物 A、 B、 C,
Figure imgf000025_0001
、 R6、 R7、 R8选自 H、
CrC^o的烷基; R3、 选自 H、 d-C^的烷基、 d-C^的烷氧基、 苯基或苯氧基, Ari为含噻吩单元的基团;
在催化剂、 碱溶液和有机溶剂的条件下, 将化合物 A、 B、 C进行 Suzuki 聚合反应, 获得如下结构式(I)表示的共聚物:
Figure imgf000025_0002
(I), 式中, x + y= 1, χ≠0, γ≠0; n= 1-200的整数。
6、如权利要求 5所述的含噻吩吡嗪单元的芴类共聚物制造方法, 其特征在 于, 所述 Suzuki聚合反应包括如下步骤: 在无氧条件下, 将化合物 A、 B、 C 按照摩尔比例 1.0: a: b混合,加入催化剂、碱溶液和有机溶剂,加热至 50-150°C 进行反应 2-7天, 再加入溴苯反应 12-24 小时后, 加入苯硼酸继续反应 12-24 小时, 其中 a>0, b>0, a + b= 1.0。
7、如权利要求 5所述的含噻吩吡嗪单元的芴类共聚物制造方法, 其特征在 于,进一步对 Suzuki聚合反应的产物进行如下提纯步骤: 在 Suzuki聚合反应结 束, 取产物用甲醇沉降多次, 抽滤, 真空干燥, 得到固体产物。
8、如权利要求 5所述的含噻吩吡嗪单元的芴类共聚物制造方法, 其特征在 于, 所述化合物 A通过以下步骤提供: 在无氧条件下, 将烷基锂溶液加入到 2, 7-二溴 -9, 9-二烷基芴和有机溶剂中,搅拌 0.5-4小时后滴加 2-异丙氧基 -4, 4, 5, 5- 四甲基 -1, 3, 2-二杂氧戊硼烷, 发生反应, 恢复至室温, 继续搅拌 24-48小时, 得到化合物 A。
9、如权利要求 5所述的含噻吩吡嗪单元的芴类共聚物制造方法, 其特征在 于, 所述化合物 B通过以下步驟提供: 在水浴、 避光条件下, 将溴化剂分批加 入至 Ar!单体和有机溶剂中 , 搅拌 4-48小时 , 得到化合物 B。
10、 如权利要求 5所述的含噻吩吡嗪单元的芴类共聚物制造方法, 其特征 在于, 所述化合物 C通过以下步 提供: 在避光条件下, 将溴化剂分批加入至 5, 7-二(3, 4-二烷基噻吩 -2-基) -2, 3-二烷基噻吩 [3, 4-b]吡嗪和有机溶剂中, 反 应 12-48小时, 得到化合物 C„
11、 如权利要求 5所述的含噻吩吡嗪单元的芴类共聚物制造方法, 其特征 在于, 所述 Suzuki聚合反应釆用的催化剂为有机钯催化剂或有机钯催化剂与有 机膦配体的混合物, 催化剂的用量为化合物 A摩尔用量的 0.1-20%; 所述碱溶 液为金属氢氧化物或金属碳酸盐的水溶液、 烷基氢氧化铵的水溶液, 所述碱溶 液的用量为化合物 A摩尔用量的 1-10倍;所述有机溶剂为弱极性或极性非质子 性有机溶剂或其混合溶剂。
12、 如权利要求 1-4任一项所述的含噻吩吡嗪单元的芴类共聚物在有机光 电材料、 太阳能电池器件、 有机场效应晶体管、 有机电致发光器件、 有机光存 储器件、 有机非线性材料或有机激光器件中的应用。
PCT/CN2010/072097 2010-04-23 2010-04-23 芴类共聚物,其制备方法及其应用 WO2011130915A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013505296A JP5612757B2 (ja) 2010-04-23 2010-04-23 フルオレン類共重合体及びその製造方法並びにその使用
CN201080063098.5A CN102753599B (zh) 2010-04-23 2010-04-23 芴类共聚物、其制备方法及其应用
US13/635,342 US8779204B2 (en) 2010-04-23 2010-04-23 Fluorene copolymer, method for preparation and use thereof
EP10850049.7A EP2562198A4 (en) 2010-04-23 2010-04-23 Fluorene copolymer, method for preparation and use thereof
PCT/CN2010/072097 WO2011130915A1 (zh) 2010-04-23 2010-04-23 芴类共聚物,其制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/072097 WO2011130915A1 (zh) 2010-04-23 2010-04-23 芴类共聚物,其制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2011130915A1 true WO2011130915A1 (zh) 2011-10-27

Family

ID=44833641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072097 WO2011130915A1 (zh) 2010-04-23 2010-04-23 芴类共聚物,其制备方法及其应用

Country Status (5)

Country Link
US (1) US8779204B2 (zh)
EP (1) EP2562198A4 (zh)
JP (1) JP5612757B2 (zh)
CN (1) CN102753599B (zh)
WO (1) WO2011130915A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120232238A1 (en) * 2009-08-03 2012-09-13 The Johns Hopkins University Ladder-type oligo-p-phenylene-containing copolymers with high open-circuit voltages and ambient photovoltaic activity
TW201245359A (en) * 2011-03-17 2012-11-16 Sumitomo Chemical Co Metal complex composition and its mixture
CN111925506B (zh) * 2020-07-10 2022-06-28 华南理工大学 三苯胺-芴-苯并咪唑低带隙三元共聚物、电存储器件及其制备
CN113817090B (zh) * 2021-08-06 2022-10-25 青岛科技大学 一种基于三联吡啶的过渡金属离子荧光化学传感器及其制备方法
CN113831515B (zh) * 2021-10-13 2022-07-08 福州大学 悬挂芴基小分子受体的聚合物半导体及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139339A1 (ja) * 2008-05-12 2009-11-19 東レ株式会社 カーボンナノチューブ複合体、有機半導体コンポジットならびに電界効果型トランジスタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7714098B2 (en) * 2004-05-18 2010-05-11 Merck Patent Gmbh Mono-, oligo- and polythieno[3,2-b]thiophenes
US20080262183A1 (en) * 2007-04-17 2008-10-23 Lutz Uwe Lehmann Dithienopyrrole-containing copolymers
CN101255336B (zh) * 2007-11-06 2011-04-27 华南理工大学 电致发光光谱稳定的蓝色芴类聚合物及其制备方法与应用
JP2009215349A (ja) * 2008-03-07 2009-09-24 Sumitomo Chemical Co Ltd 高分子化合物およびそれを用いた有機光電変換素子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139339A1 (ja) * 2008-05-12 2009-11-19 東レ株式会社 カーボンナノチューブ複合体、有機半導体コンポジットならびに電界効果型トランジスタ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ADMASSIE, SHIMELIS ET AL.: "Electrochemical and Optical Studies of the Band Gaps of Alternating.", SYNTHETIC METALS., vol. 156, no. 7-8, 2006, pages 614 - 623, XP027940285 *
JANIETZ, SILVIA ET AL.: "Tailoring of Low Bandgap Polymer and its Performance Analysis in Organic Solar Cells.", MACROMOLECULAR CHEMISTRY AND PHYSICS., vol. 210, no. 18, 2009, pages 1493 - 1503, XP008166439 *
See also references of EP2562198A4 *

Also Published As

Publication number Publication date
CN102753599B (zh) 2014-04-30
JP2013525523A (ja) 2013-06-20
US8779204B2 (en) 2014-07-15
EP2562198A1 (en) 2013-02-27
CN102753599A (zh) 2012-10-24
US20130005932A1 (en) 2013-01-03
JP5612757B2 (ja) 2014-10-22
EP2562198A4 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP5746226B2 (ja) シクロペンタジエンジチオフェン−キノキサリン共重合体、及びその製造方法、並びその応用
WO2011143825A1 (zh) 含二噻吩并吡咯喹喔啉类共轭聚合物及其制备方法和应用
EP2562197B1 (en) Copolymer comprising anthracene and benzoselenadiazole, preparing method and uses thereof
WO2011147067A1 (zh) 含稠环噻吩单元喹喔啉共轭聚合物及其制备方法和应用
JP5546070B2 (ja) フルオレニルポルフィリン−アントラセンを含むコポリマー、その製造方法およびその応用
WO2011160302A1 (zh) 基于苯唑二噻吩和噻吩并吡嗪的共轭聚合物及其制备方法和应用
WO2014082305A1 (zh) 含噻吩并[3,4-b]噻吩单元的苯并二噻吩类共聚物及其制备方法与应用
WO2011091609A1 (zh) 含杂环醌型噻吩有机光电材料、其制备方法和应用
WO2011130915A1 (zh) 芴类共聚物,其制备方法及其应用
WO2012088698A1 (zh) 一种光伏聚合物材料、其制备方法和应用
US20120312374A1 (en) Conjugated fluorene polymer, preparing method thereof and solar cell device
WO2014082310A1 (zh) 含噻吩并吡咯二酮单元的苯并二噻吩类共聚物及其制备方法与应用
US8546512B2 (en) Copolymer containing fluorenylporphyrin-benzene, preparation method and use thereof
US20130225782A1 (en) Organic semiconductor material, preparation methods and uses thereof
WO2011143806A1 (zh) 含喹喔啉单元卟啉共聚物及其制备方法和应用
JP5443655B2 (ja) チエノチアジアゾール単位を含むポルフィリン共重合体、該共重合体の製造方法及びその応用
US8481754B2 (en) Quinoid silafluorene organic semiconductor material, preparation method and use thereof
CN102206330B (zh) 含二噻吩噻咯类共轭聚合物及其制备方法和应用
CN102276799B (zh) 含喹喔啉单元芴类共聚物及其制备方法和应用
WO2012083510A1 (zh) 有机半导体材料及其制备方法和应用
EP2530132B1 (en) Quinoid thiophene organic photoelectric material, method for its preparation and application thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063098.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850049

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010850049

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13635342

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013505296

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE