WO2011127632A1 - 用于高功率微波源聚焦与回旋电子装置的超导磁体系统 - Google Patents
用于高功率微波源聚焦与回旋电子装置的超导磁体系统 Download PDFInfo
- Publication number
- WO2011127632A1 WO2011127632A1 PCT/CN2010/001063 CN2010001063W WO2011127632A1 WO 2011127632 A1 WO2011127632 A1 WO 2011127632A1 CN 2010001063 W CN2010001063 W CN 2010001063W WO 2011127632 A1 WO2011127632 A1 WO 2011127632A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- superconducting
- magnet
- superconducting magnet
- coil
- switch
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/04—Magnet systems, e.g. undulators, wigglers; Energisation thereof
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/08—Arrangements for injecting particles into orbits
- H05H2007/081—Sources
- H05H2007/082—Ion sources, e.g. ECR, duoplasmatron, PIG, laser sources
Definitions
- the present invention relates to a superconducting magnet system, and more particularly to a superconducting magnet system for a high power microwave source focusing and rotating electronic device. Background technique
- the high power gyrotron can output megawatts of peak power continuous wave energy and spectrum.
- a strong focus is produced, and a special superconducting magnet is required to satisfy the magnetic field required for the cyclotron frequency.
- the magnet system has a specific magnetic field distribution and a high stable magnetic field. Magnets need to be operated in a special environment, so the magnetic system is required to be small, lightweight, mobile, and easy to operate and operate.
- the conventional technology In order to develop a very high magnetic field to achieve a specific spatial distribution and time stability, the conventional technology has many technical problems, and the common electromagnetic structure magnet has disadvantages such as high loss and large volume. Therefore, conventional systems are no longer able to adapt to the needs of special equipment.
- the cooling of the conventional superconducting magnet requires low-temperature liquid immersion to bring about inconvenience to the operation and movement of the superconducting magnet system.
- the use of traditional superconducting magnet systems in motion systems can lead to more difficulties in use and maintenance.
- the single-wire superconducting magnet structure has the advantages of a structural unit, easy construction, convenient use, etc., but the magnetic field generated cannot meet the special complex shape of the magnetic field.
- a new type of superconducting magnet with electromagnetic focusing and electron cyclotron is needed.
- the new electromagnetic structure and cooling superconducting magnet system can meet the actual requirements of high-power microwave sources, and the realization of microwave devices in the fields of microwave special equipment and microwave industrial processing. Use demand.
- the high-power microwave source focusing and gyroscopic superconducting magnet system is suitable for super-gravity, fast-moving and rotating special electron cyclotron and focusing devices. It can operate in the wild environment with very harsh temperature and humidity, with high magnetic field stability and The advantage of resisting external electromagnetic interference. Summary of the invention
- the present invention proposes a superconducting magnet system having a specific spatial magnetic field distribution.
- the invention adopts a liquid-free helium superconducting magnet system which is directly cooled by a refrigerator, does not need any cryogenic liquid, reduces the weight and volume of the magnet system, is convenient to operate, and has mobility.
- the present invention can achieve the magnetic fields and operating modes required for its high power microwave source.
- the superconducting magnet of the present invention is formed by a combination of a plurality of superconducting wires, which mainly comprises two superconducting main wires ⁇ , a plurality of small superconducting wires ⁇ at different positions, and a certain magnetic field ratio B r /B is generated at a special point in space.
- B r is the magnetic induction intensity along the radial direction of the magnet
- B z is the magnetic induction intensity along the axial direction of the magnet to satisfy the electron focus and the higher cyclotron frequency.
- the superconducting magnet system of the present invention comprises an inner superconducting main coil, an outer superconducting main coil, two end compensation coils, an end regulating coil and a central adjusting coil comprising a total of six superconducting turns.
- the inner and outer two superconducting main wires generate a background magnetic field of 4.5 T
- the compensation line ⁇ is used to ensure the uniformity of the magnetic fields of the two uniform regions.
- the two adjustment lines are used to compensate the magnetic field uniformity of the main line ⁇ on the axis and to adjust the ratio of the axial and radial magnetic field strengths of the space special points A, B, C, D, E and F, ie the magnetic field Compression ratio: Bz/Br.
- the six superconducting wires are coaxial, and the inner superconducting main wire is externally superconducting main coil, and the outer surface of the outer superconducting main wire is end compensation coil, adjusting wire and center adjusting wire in order from the magnet end.
- the magnet of the invention has a good low temperature thermal connection with the refrigeration system, and the superconducting magnet
- the six superconducting wires use the same skeleton, and in order to reduce the eddy current, the skeleton is provided with slits.
- the outer superconducting main coil After winding the inner superconducting main wire on the skeleton, the outer superconducting main coil is wound, and the surface of the outer superconducting main coil is wound with an epoxy glass ribbon, and then cured by a low temperature epoxy resin. After the low temperature epoxy resin is cured, the surface is polished by mechanical processing, and the ends are wound on a smooth surface to compensate the turns.
- the end compensation line ⁇ is composed of two compensation lines ⁇ symmetrically distributed at the end of the outer superconducting main line ,, and between the two compensation coils of the end compensation line ,, the adjustment line ⁇ and the center are arranged from left to right. Adjust the line ⁇ .
- the present invention uses a superconducting switch to connect all of the superconducting turns to form a magnetic field having a closed loop steady current, thereby producing a higher stability.
- the superconducting wire is connected to the superconducting switch through a superconducting joint, and the superconducting joint resistance is less than 10 ⁇ 12 ⁇ .
- the superconducting switch is characterized by a thermal connection to the magnet by a flange connecting the magnets.
- the support rod is used to control the switch to prevent heat flow to the magnet under open conditions, and to restore the switch to the superconducting state as a thermal bridge in the closed condition.
- the switch triggers the wires of the heater and the superconducting switch coil and is wound together on the copper skeleton. The operation of the switch is controlled using an external power source to achieve closed-loop operation of the magnet.
- the superconducting wire of the invention adopts a tritium tin/copper (Nb 3 Sn/Cu) material with a high critical parameter, and the high-heat capacity solid nitrogen, the thermal switch and the refrigerator cooperate to realize the offline operation of the magnet.
- the invention uses the geometric center of the superconducting magnet system, that is, the magnetic field center point of the superconducting magnet as the coordinate origin, and establishes the axial and radial coordinate system coordinates (z, r), and the coordinates of the six special points in the space are A. (-245mm, 40mm), B (-230mm, 36mm), C (-115mm, 20mm), D (115mm, 20mm) ⁇ E (155mm, 22mm), F (180mm, 23mm).
- the magnetic field distribution requirements are Point C and point D are on the same magnetic line, and at the same time, the magnetic lines of force passing through these two points are not higher than points A, B, E, and F.
- B r (D) / B z (D) ⁇ 3%, B r (E) / B 2 (E) ⁇ 7%, B r (F) / B z (F) ⁇ 11 % , point C and point D are less than 180 mm in the axial direction, on the axis of the magnet
- the magnetic field compression ratio Bz/Br is greater than 88%, ie Bz (180 mm) / 4.5 > 88%.
- Br is the magnetic induction intensity in the radial direction of the magnet
- Bz is the magnetic induction intensity in the axial direction of the magnet.
- the area occupied by the superconducting coil and the aperture range of the magnet, the length of the coil, and the equivalent current are distributed on the surface of the cylinder having an average radius of R, and the effective distributed magnetic field range of the coil is based on the distribution of the focused magnetic field of the convolution.
- the linear equation of magnetic induction and current, AI B, where matrix is the matrix of magnetic field coefficients, W is the matrix of magnetic induction on the axis.
- the invention adopts the genetic simulated annealing mixing algorithm to optimize the line cross section: taking the obtained current position and amplitude as the initial parameters, and minimizing the difference square function of the weight magnetic field as the optimization target, the genetic simulated annealing mixing algorithm is used to optimize the line cross section.
- the superconducting wire ⁇ uses Nb 3 Sn/Cu with a supercritical material having a high critical parameter, wherein Nb 3 Sn has a critical temperature of 18 K.
- the surface of the superconducting magnet is wound with a heat exchanger, and the heat exchanger is connected with a high pressure nitrogen container; the refrigerator cools the superconducting magnet and the high pressure nitrogen container; all of the superconducting wires are connected to the superconducting switch through a superconducting joint to form Has a closed loop steady current.
- a heat exchanger is used in the periphery of the superconducting wire.
- the high-pressure nitrogen container there is a solid nitrogen having a high heat capacity after cooling, so that the temperature of the superconducting magnet is extremely slow after the magnet is charged and after the refrigerator is stopped.
- the overall operating temperature of the system can operate normally from 4.2K to 12K.
- the superconducting magnet system of the invention can provide the requirements of strong magnetic focusing and swirling system, is suitable for operation under special conditions in the field, greatly reduces the operating cost of the system, and is more convenient, stable and reliable to use.
- 1 is a schematic view of a combination of superconducting wires of the present invention, wherein: 1 inner superconducting main wire 2, 2 outer superconducting main wire ⁇ , 3 end compensation wire ⁇ , 4 adjusting wire ⁇ , 5 center adjusting wire ⁇ ;
- 2 is a superconducting switch structure of the present invention, in which: 6 flanges, 7 switch support rods, 8 switch bobbins, 9 switch trigger heaters, 10 superconducting switch coils;
- Figure 3 is a low-temperature structure of the superconducting magnet of the present invention.
- Figure 1 shows a superconducting coil used in the magnet system of the present invention.
- the inner superconducting main line ⁇ 1 is placed in a higher magnetic field region and operates at a low current density state.
- the outer superconducting main line ⁇ 2 is located outside the inner superconducting main coil 1 and operates at a high current density.
- the inner superconducting main line ⁇ 1 and the outer superconducting main coil 2 cooperate to generate a main magnetic field of the magnet system, and the outer superconducting main coil 2 is coaxial with the inner superconducting main line ⁇ 1, and is directly wound into the inner layer superconducting
- the outer surface of the main line ⁇ 1 has the same length as the inner superconducting main coil 1.
- the end compensation line ⁇ 3 compensates for the uniformity distribution characteristic of the magnetic field
- the end compensation coil 3 is composed of two compensation coils, symmetrically distributed at the end of the outer superconducting main coil 2, and then at the end compensation coil 3
- the adjustment line ⁇ 4 and the center adjustment line ⁇ 5 are arranged from left to right.
- the adjustment coil 4 and the center adjustment coil 5 are used to adjust the magnetic field distribution of the magnet at various points in space.
- the magnetic field of the superconducting magnet realizes B r (D) / B z (D) ⁇ 3%, B r (E) / B z (E) ⁇ 7%, B r (F) / B z (F) ⁇ 11%, in the range of Z ⁇ 180mm, the magnetic field compression ratio on the axis of the magnet is greater than 88%, Bz (180mm) / 4.5 > 88%.
- FIG. 2 shows the structure of the superconducting switch of the present invention. Used to achieve the closing of the magnet current
- the ring-operated superconducting switch 18 includes a flange 6 that connects the magnets, a support rod 7, a switch-trigger heater 9, and a superconducting switch coil 10.
- the superconducting switch 18 achieves a thermal connection between the superconducting switch 18 and the superconducting magnet by a flange 6 that connects the magnets.
- the support rod 7 controls the superconducting switch 18 to prevent heat flow to the superconducting magnet under open conditions, and returns the superconducting switch to the superconducting state as a thermal bridge under closed conditions.
- the switch trigger heater 9 and the superconducting switch coil 10 are wound on the switch bobbin 8. The operation of the superconducting switch 18 is controlled using an external power source to achieve closed loop operation of the superconducting magnet.
- FIG. 3 shows the cryogenic system that ensures proper operation of the superconducting magnet.
- the low-temperature cooling amount is supplied from the refrigerator 11, and the degree of vacuum in the vacuum vessel 12 is less than 1 (T 5 Pa.
- the superconducting magnet 15 is supported by the support rod 13 in the vacuum vessel 12.
- the refrigerator 11 is exchanged by heat
- the superconducting body 15 cools the superconducting magnet 15, and the cold conducting structure at both ends of the superconducting magnet 15 is connected to the secondary cold head of the refrigerator 11.
- the surface of the superconducting magnet 15 is surrounded by a heat exchanger 14, a heat exchanger 14 and a high pressure nitrogen pressure vessel.
- the high pressure nitrogen pressure vessel 17 is wrapped outside the superconducting magnet 15, so that there is a very high thermal conductivity between the high pressure nitrogen pressure vessel 17 and the superconducting magnet 15.
- the refrigerator 11 cools the high pressure nitrogen container 17.
- the heat radiation screen 16 and The primary cold head of the refrigerator 11 is connected to ensure that the heat radiation screen 16 has a temperature of 40 K to prevent external heat radiation of 300 K.
- All superconducting wires of the superconducting magnet 15 are connected and closed with the superconducting switch 18. Current loop to ensure the stability of the magnetic field.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Particle Accelerators (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Description
用于高功率微波源聚焦与
回旋电子装置的超导磁体系统 技术领域
本发明涉及一种超导磁体系统,特别涉及一种用于高功率微 波源聚焦与回旋电子装置的超导磁体系统。 背景技术
高功率回旋管器可以输出兆瓦级峰值功率连续波能量与频 谱。 为实现回旋管器的功能, 产生较强的聚焦, 需要特殊的超导 磁体以满足回旋频率所要求的磁场。 该磁体系统具有特定磁场分 布和高稳定磁场。 磁体需要运行在特殊的环境, 因此要求磁体系 统体积小、 重量轻、 可移动性好, 运行和操作方便。
为研制极高磁场以达到具有特定空间分布和时间稳定性,使 用传统的技术存在居多的技术难题, 普通电磁结构磁体具有损耗 较高, 体积较大等缺点。 因此, 常规系统已经不能适应特殊装备 的需要。 而传统超导磁体的冷却需要低温液体浸泡来实现, 给超 导磁体系统的运行操作和移动带来诸多不便。 并且在运动系统中 使用传统超导磁体系统会带来更多的使用和维护困难。
单一线圏的超导磁体结构具有结构筒单, 建造容易, 使用方 便等优点, 但所产生的磁场不能满足系统运行需求的特殊复杂位 形的磁场。 为了适应特种电工装备的应用需求, 提高装备功能性 和使用性, 实现高功率微波源的运行参数达到所要求的输出频谱 和带宽的要求,需要一种新型的电磁聚焦与电子回旋的超导磁体, 从而达到回旋管器的磁场稳定性和磁场的空间分布特性。 采用新 型电磁结构和冷却方式超导磁体系统可以达到高功率微波源实际 要求, 实现微波器件在微波特种装备、 微波工业加工等领域的应
用需求。
高功率微波源聚焦与回旋电子装置的超导磁体系统适合于 超重力、 快速移动和旋转特种电子回旋和聚焦装置, 可以运行在 具有十分苛刻的温度和湿度的野外环境, 具有磁场高稳定度和抗 外电磁干扰的优点。 发明内容
为克服现有技术的缺点,本发明提出了具有特定空间磁场分 布的超导磁体系统。 本发明采用制冷机直接冷却的无液氦超导磁 体系统, 无需任何低温液体, 减小了磁体系统的重量和体积, 运 行操作方便, 具备可移动性。 本发明可以实现其高功率微波源所 需要的磁场和运行模态。
本发明的超导磁体是由多个超导线圏组合形成的, 它主要包 括两个超导主线圏、 多个不同位置的小型超导线圏, 在空间特殊 点产生具有一定磁场比率 Br/Bz, 其中 Br 是沿磁体半径方向的磁 感应强度, Bz是沿磁体轴向磁感应强度, 以满足电子聚焦与较高 的回旋频率。
本发明超导磁体系统包括内层超导主线圈、 外层超导主线 圈、 两个端部补偿线圈、 端部调节线圈和中心调节线圈共六个超 导线圏组成。 其中, 内层和外层两个超导主线圏产生 4.5 T的中 心磁场提供背景磁场, 补偿线圏用于保证两个均匀区的磁场均匀 度。 两个调节线圏用来补偿主线圏在轴线上的磁场均勾度和调节 所述的空间特殊点 A、 B、 C、 D、 E和 F的轴向和径向磁场强度 的比值, 即磁场压缩比: Bz/Br。 六个超导线圏同轴, 内层超导主 线圏外面是外层超导主线圈, 在外层超导主线圏外表面从磁体端 部依次是端部补偿线圈、 调节线圏和中心调节线圏。
本发明磁体与制冷系统具有较好的低温热连接,超导磁体的
所述六个超导线圏使用同一骨架, 为减小涡流, 骨架上开有狭 缝。 在骨架上首先绕制内层超导主线圏后, 再绕制外层超导主线 圈, 使用环氧玻璃丝带绕制在外层超导主线圈的表面, 然后加入 低温环氧树脂固化。 当低温环氧树脂固化完成之后, 釆用机械加 工方法抛光表面, 再在光滑表面上绕制端部补偿线圏。 端部补偿 线圏由两个补偿线圏组成, 对称分布在外层超导主线圏的端部, 再在端部补偿线圏的两个补偿线圈之间, 从左到右布置调节线圏 和中心调节线圏。
本发明采用超导开关连接所有超导线圏,形成具有闭环稳恒 电流, 从而产生较高稳定度的磁场。 超导线圏与超导开关通过超 导接头连接, 超导接头电阻小于 10·12Ω。 超导开关的特征是由连 接磁体的法兰实现与磁体之间的热连接。 支撑杆用于控制开关在 打开条件下阻止热流流向磁体, 关闭条件下作为热桥将开关恢复 到超导态。 开关触发加热器和超导开关线圏的导线并在一起双绕 在铜骨架上。 开关的运行使用外界电源来加以控制, 实现磁体的 闭环运行。
本发明超导线圏采用具有较高临界参量的铌三锡 /铜 ( Nb3Sn/Cu )材料, 以高热容的固态氮、 热开关和制冷机共同作 用, 可以实现磁体脱机运行。
本发明以超导磁体系统几何中心即超导磁体的磁场中心点 作为坐标原点, 建立轴向和径向坐标系坐标 (z,r), 在所述的空间 中六个特殊点的坐标为 A(-245mm, 40mm), B(-230mm, 36mm), C(-115mm, 20mm)、 D(115mm, 20mm) ^ E(155mm, 22mm)、 F(180mm, 23mm). 其磁场分布的要求是 C点和 D点在同一磁力 线上, 同时, 经过这两点的磁力线不高于 A、 B、 E、 F点。 在给 定的磁场点满足 Br(D)/Bz(D)<3%, Br(E)/B2(E)≤7% , Br(F)/Bz(F)≤ 11% , C点和 D点在轴向上距离 Z小于 180mm,磁体轴线上的
磁场压缩比 Bz/Br大于 88 %, 即 Bz(180mm)/4.5 > 88%。 上述 式中, Br是沿磁体半径方向的磁感应强度, Bz是沿磁体轴向磁 感应强度。
由超导线圈所占据的区域和磁体的孔径范围、 线圈的长度, 将等效电流分布在平均半径为 R,的圆柱表面上,线圏的有效分布 磁场范围是 , 根据回旋聚焦磁场分布, 建立磁感应强度和电流 的线性方程, AI=B, 其中矩阵 是磁场系数矩阵, W是轴线上磁 感应强度矩阵, 引入正则化处理方法之后, 将病态方程 转 化为一般方程( ^+oL1^ ) /= T ,其中 是单位矩阵, α是正则 化因子。 然后求解一般方程( T i+aL ) Ι=ΑτΒ得到线圈电流 /, 从而确定线圈电流 /的空间分布。
本发明采用遗传模拟退火混和算法优化线圏截面:将获得的 电流位置、 幅值作为初始参数, 以最小化权重磁场之差平方函数 作为优化目标, 采用遗传模拟退火混和算法优化线圏截面。
本发明为了实现超导磁体的快速冷却和系统可以脱机运行, 超导线圏使用高临界参数的超导材料组成 Nb3Sn/Cu, 其中, Nb3Sn具有 18 K的临界温度。超导磁体的表面绕有热交换器, 热 交换器和高压氮气容器相连接; 制冷机冷却超导磁体和高压氮气 容器; 所有所述的超导线圏通过超导接头与超导开关连接, 形成 具有闭环稳恒电流。 超导线圏外围使用热交换器, 在高压氮气容 器内部有冷却后的高热容的固态氮, 使磁体在充电和在制冷机停 止后超导磁体的温度回升速度极为緩慢。 系统整体运行温度可以 在 4.2K到 12K范围内正常运行。
本发明的超导磁体系统能够提供强磁聚焦与回旋系统需要, 适合于野外特殊条件下运行, 极大减小系统运行费用, 使用更为 方便稳定可靠。
附图说明
图 1为本发明超导线圏组合方式示意图, 图中: 1内层超导 主线圏、 2外层超导主线圏、 3端部补偿线圏、 4调节线圏、 5中 心调节线圏;
图 2为本发明的超导开关结构, 图中: 6法兰、 7开关支撑 杆、 8开关骨架、 9开关触发加热器、 10超导开关线圏;
图 3为本发明超导磁体低温结构; 图中: 11制冷机、 12真 空容器、 13支撑杆、 14热交换器、 15超导磁体、 16 热辐射屏、 17高压氮气容器、 18超导开关。 具体实施方式
下面结合附图和实施例对本发明进一步说明。
图 1所示为本发明磁体系统中使用的超导线圈。 内层超导主 线圏 1放置在较高的磁场区域, 运行在低电流密度状态下。 外层 超导主线圏 2位于内层超导主线圈 1外, 运行在高电流密度下。 内层超导主线圏 1和外层超导主线圈 2共同作用产生磁体系统的 主磁场, 外层超导主线圈 2与内层超导主线圏 1同轴, 直接绕制 在内层超导主线圏 1的外表面, 并与内层超导主线圈 1具有相同 的长度。 端部补偿线圏 3补偿磁场的均勾度分布特性, 端部补偿 线團 3由两个补偿线圈组成, 对称分布在外层超导主线圈 2的端 部, 再在端部补偿线圈 3的两个补偿线圏之间, 从左到右布置调 节线圏 4和中心调节线圏 5。 调节线圈 4和中心调节线圏 5用于 调节磁体在空间各点的磁场分布。 所述的超导磁体的磁场实现 Br(D)/Bz(D)<3%, Br(E)/Bz(E)≤7%, Br(F)/Bz(F) ≤ 11%, 在 Z < 180mm 范围内, 磁体轴线上的磁场压缩比 Bz/Br 大于 88 % , Bz(180mm)/4.5 > 88%。
图 2所示是本发明超导开关的结构。用于实现磁体电流的闭
环运行的超导开关 18 包括连接磁体的法兰 6、 支撑杆 7、 开关 触发加热器 9和超导开关线圈 10。 超导开关 18通过连接磁体的 法兰 6实现超导开关 18与超导磁体之间的热连接。支撑杆 7控制 超导开关 18在打开条件下阻止热流流向超导磁体,在关闭条件下 作为热桥将超导开关恢复到超导态。 开关触发加热器 9和超导开 关线圏 10绕制在开关骨架 8上。 超导开关 18的运行使用外界电 源来加以控制, 实现超导磁体的闭环运行。
图 3所示为保证超导磁体正常运行的低温系统。如图 3所示, 由制冷机 11提供低温冷量,真空容器 12内的真空度小于 l(T5Pa。 超导磁体 15由支撑杆 13支撑在真空容器 12内。 制冷机 11通过 热交换器 14冷却超导磁体 15, 超导磁体 15两端的导冷结构与制 冷机 11的二级冷头连接。 超导磁体 15的表面绕有热交换器 14, 热交换器 14和高压氮气压力容器 17连接, 高压氮气压力容器 17 包裹在超导磁体 15外, 使高压氮气压力容器 17与超导磁体 15 之间具有极高的热导。 制冷机 11冷却高压氮气容器 17。 热辐射 屏 16和制冷机 11的一级冷头连接, 保证热辐射屏 16具有 40K 的温度, 以阻止外界 300 K温度的热辐射。超导磁体 15所有的超 导线圏连接起来,再和超导开关 18組成闭合电流回路,从而保证 磁场的稳定性。
Claims
1、 一种用于高功率微波源聚焦与回旋电子装置的超导磁体 系统, 包括制冷机(11) 、 真空容器 (12) 、 支撑杆(13) 、 热 辐射屏 (16) 、 低温系统和超导磁体(15) , 其特征在于, 所述 的超导磁体系统中, 超导磁体包括内层超导主线圈(1)、 外层超 导主线圏 (2) 、 端部补偿线圈 (3) 、 调节线圏 (4)和中心调节 线圏(5); 所述的内层超导主线圈(1)、 外层超导主线圏(2)、 端部补偿线圈 (3) 、 调节线圈 (4)和中心调节线圏 (5) 同轴布 置; 内层超导主线圏(1)运行在低电流密度状态下; 外层超导主 线圈 (2)位于内层超导主线圏 (1) 外, 运行在高电流密度下; 内层超导主线圏 (1) 和外层超导主线圏 (2)共同作用产生磁体 系统的主磁场; 外层超导主线圈(2)绕制在内层超导主线圏 (1) 的外表面, 并与内层超导主线圏(1)具有相同的长度; 在外层超导 主线圈 (2) 的外表面从磁体端部起依次是端部补偿线圏 (3) 、 调节线圈 (4) 和中心调节线圏 (5) ; 超导磁体(15) 的表面绕 有热交换器 (14) , 热交换器 (14) 和高压氮气容器 (17)相连 接; 制冷机(11) 冷却超导磁体 (15)和高压氮气容器 (17) ; 所有所述的超导线圏通过超导接头与超导开关 (18) 连接, 形成 闭环稳恒电流。
2、 根据权利要求 1 所述的用于高功率微波源聚焦与回旋电 子装置的超导磁体系统, 其特征在于所述的端部补偿线圏(3)由 两个补偿线圏组成,两个补偿线圈对称分布在外层超导主线圈(2) 的端部,在所述的两个补偿线圈之间,从左到右布置调节线圈(4) 和中心调节线圏 (5) 。
3> 按照权利要求 1 所述的用于高功率微波源聚焦与回旋电 子装置的超导磁体系统, 其特征在于所述的超导开关 (18) 由连 接超导磁体 (15) 的法兰 (6) 实现超导开关 (18) 与超导磁体 (15)之间的热连接, 开关支撑杆(7)控制超导开关(18)在打 开条件下阻止热流流向超导磁体(15) , 在关闭条件下作为热桥 将超导开关(18)恢复到超导态; 开关触发加热器(9)和超导开 关线圏 (10) 的导线并在一起双绕在超导开关 (18) 的骨架 (8) 上。
4、 按照权利要求 1 所述的用于高功率微波源聚焦与回旋电 子装置的超导磁体系统, 其特征在于以所述的超导磁体(15) 的 磁场中心点作为坐标原点, 建立轴向和径向坐标系坐标 (z, r), 在 空间中建立六个特殊点, 所述的六个空间特殊点的坐标为 A(-245mm, 40mm)、 B(-230mm, 36mm)、 C(-115mm, 20mm)、 D(115mm, 20mm), E(155mm, 22mm), F(180mm, 23mm); C点 和 D点在同一磁力线上,经过 C点和 D点的磁力线不高于 A、 B、 E、 F点;在给定的磁场点满足 Br(D)/Bz(D)≤3%,Br(E)/Bz(E)≤7%, Br(F)/Bz(F) < 11%, C点和 D点在轴向上距离 Z小于 180mm, 磁体轴线上的磁场压缩比 Bz/Br大于 88%, 即 Bz(180mm)/4.5 > 88%; 上述式中, Br是沿磁体半径方向的磁感应强度, Bz是沿 磁体轴向磁感应强度。
5、 按照权利要求 1 所述的用于高功率微波源聚焦与回旋电 子装置的超导磁体系统, 其特征在于所述的超导磁体(15) 的所 有线圏采用高临界参数的 Nb3Sn/Cu超导线材绕制。
6、 按照权利要求 1 所述的用于高功率微波源聚焦与回旋电 子装置的超导磁体系统, 其特征在于所述的超导磁体 (15) 的所 述内层超导主线圈 (1) 、 外层超导主线图 (2) 、 端部补偿线囷
(3) 、 调节线圏 (4)和中心调节线圏 (5)使用同一骨架, 骨架 上开有狭缝; 在骨架上首先绕制内层超导主线圈(1), 再绕制外 层超导主线圏(2), 再使用环氧玻璃丝带绕制在外层超导主线圏 (2) 的表面, 然后加入低温环氧树脂固化; 低温环氧树脂固化 完成之后, 釆用机械加工方法抛光表面, 再在光滑表面上绕制端 部补偿线圏 (3) 、 调节线圏 (4) 和中心调节线圏 (5) 。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/515,220 US8694066B2 (en) | 2010-04-16 | 2010-07-14 | Superconducting magnet system for high power microwave source focusing and cyclotron electronic apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010152524.4 | 2010-04-16 | ||
CN201010152524.4A CN101819845B (zh) | 2010-04-16 | 2010-04-16 | 用于高功率微波源聚焦与回旋电子装置的超导磁体系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011127632A1 true WO2011127632A1 (zh) | 2011-10-20 |
Family
ID=42654888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/001063 WO2011127632A1 (zh) | 2010-04-16 | 2010-07-14 | 用于高功率微波源聚焦与回旋电子装置的超导磁体系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8694066B2 (zh) |
CN (1) | CN101819845B (zh) |
WO (1) | WO2011127632A1 (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102136337B (zh) * | 2010-12-08 | 2012-03-28 | 中国科学院电工研究所 | 高磁场高均匀度核磁共振超导磁体系统 |
JP5665721B2 (ja) * | 2011-02-28 | 2015-02-04 | 三菱電機株式会社 | 円形加速器および円形加速器の運転方法 |
CN102226953B (zh) * | 2011-03-30 | 2013-01-30 | 中国科学院电工研究所 | 一种用于空间超导磁体的拉杆 |
CN103077797B (zh) * | 2013-01-06 | 2016-03-30 | 中国科学院电工研究所 | 用于头部成像的超导磁体系统 |
CN103228093A (zh) * | 2013-04-20 | 2013-07-31 | 胡明建 | 一种超导体聚焦同步回旋加速器的设计方法 |
US8791656B1 (en) * | 2013-05-31 | 2014-07-29 | Mevion Medical Systems, Inc. | Active return system |
US9711314B2 (en) | 2014-09-11 | 2017-07-18 | Larry R. Barnett | Compact magnet system for a high-power millimeter-wave gyrotron |
CN104599805B (zh) * | 2015-01-30 | 2017-01-25 | 中国科学院电工研究所 | 一种太赫兹源的强磁聚焦磁体系统 |
CN105139993B (zh) * | 2015-09-23 | 2017-08-04 | 奥泰医疗系统有限责任公司 | 一种超导磁体的悬吊装置 |
CN107204226B (zh) | 2016-03-18 | 2020-06-02 | 上海联影医疗科技有限公司 | 一种超导磁体的低温容器 |
CN106637416B (zh) * | 2016-12-28 | 2018-11-20 | 厦门大学 | 矢量强磁场下分子束外延及其原位表征装置 |
CN108525847A (zh) * | 2018-05-14 | 2018-09-14 | 北矿机电科技有限责任公司 | 一种周期交替式超导磁分离机 |
CN109080173B (zh) * | 2018-10-15 | 2020-08-04 | 南京航空航天大学 | 一种复合材料微波加热加压成型装置 |
CN112038035B (zh) * | 2020-09-18 | 2022-03-25 | 中国科学院合肥物质科学研究院 | 一种基于层间叠片整体热传导的密绕型超导磁体制冷装置 |
CN112420313B (zh) * | 2020-10-19 | 2022-05-17 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | 一种高温超导磁体杜瓦装置 |
CN112837883B (zh) * | 2020-12-31 | 2022-10-18 | 江西联创光电超导应用有限公司 | 一种超导磁体系统 |
JP2022110323A (ja) * | 2021-01-18 | 2022-07-29 | 住友重機械工業株式会社 | 超伝導磁石装置 |
CN113391248A (zh) * | 2021-06-08 | 2021-09-14 | 南京光启仪器设备有限公司 | 一种用于无液氦超导低温系统测量磁电物性的样品旋转杆 |
CN113903541B (zh) * | 2021-11-04 | 2022-06-28 | 中国原子能科学研究院 | 一种基于小型制冷机的大型高温超导磁体系统和温控方法 |
CN115831527B (zh) * | 2022-11-21 | 2023-09-12 | 苏州八匹马超导科技有限公司 | 一种超导磁体骨架顶杆机构 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1508298A (zh) * | 1998-02-17 | 2004-06-30 | ��֥��ʽ���� | 拉晶装置用的超导磁体装置 |
CN1745856A (zh) * | 2004-09-09 | 2006-03-15 | 中国科学院电工研究所 | 用于介入治疗立体定位的超导磁体系统 |
CN1959874A (zh) * | 2006-09-30 | 2007-05-09 | 中国科学院电工研究所 | 用于回旋管的传导冷却超导磁体系统 |
JP2008140905A (ja) * | 2006-11-30 | 2008-06-19 | Sumitomo Electric Ind Ltd | 超電導コイル |
CN101499351A (zh) * | 2008-10-29 | 2009-08-05 | 中国科学院电工研究所 | 一种用于快速脉冲超导磁体绕组结构的线圈 |
CN101552077A (zh) * | 2008-12-11 | 2009-10-07 | 中国科学院电工研究所 | 一种用于产生高磁场高均匀度的超导磁体系统 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3245945A1 (de) * | 1982-12-11 | 1984-06-14 | Bruker Analytische Meßtechnik GmbH, 7512 Rheinstetten | Elektromagnet fuer die nmr-tomographie |
US4868707A (en) * | 1987-06-23 | 1989-09-19 | Mitsubishi Denki Kabushiki Kaisha | Superconducting electromagnet apparatus |
US5136273A (en) * | 1988-10-17 | 1992-08-04 | Kabushiki Kaisha Toshiba | Magnet apparatus for use in a magnetic resonance imaging system |
US5448214A (en) * | 1994-06-15 | 1995-09-05 | General Electric Company | Open MRI magnet with superconductive shielding |
JP4227228B2 (ja) * | 1998-11-20 | 2009-02-18 | 株式会社神戸製鋼所 | 超電導磁石装置 |
DE102004058006B3 (de) * | 2004-12-01 | 2006-06-08 | Siemens Ag | Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter |
US8338979B2 (en) * | 2011-06-30 | 2012-12-25 | General Electric Company | Method and apparatus for a superconducting direct current generator driven by a wind turbine |
US8482369B2 (en) * | 2011-10-31 | 2013-07-09 | General Electric Company | Single switch dump resistor ladder network for magnet quench protection |
-
2010
- 2010-04-16 CN CN201010152524.4A patent/CN101819845B/zh active Active
- 2010-07-14 WO PCT/CN2010/001063 patent/WO2011127632A1/zh active Application Filing
- 2010-07-14 US US13/515,220 patent/US8694066B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1508298A (zh) * | 1998-02-17 | 2004-06-30 | ��֥��ʽ���� | 拉晶装置用的超导磁体装置 |
CN1745856A (zh) * | 2004-09-09 | 2006-03-15 | 中国科学院电工研究所 | 用于介入治疗立体定位的超导磁体系统 |
CN1959874A (zh) * | 2006-09-30 | 2007-05-09 | 中国科学院电工研究所 | 用于回旋管的传导冷却超导磁体系统 |
JP2008140905A (ja) * | 2006-11-30 | 2008-06-19 | Sumitomo Electric Ind Ltd | 超電導コイル |
CN101499351A (zh) * | 2008-10-29 | 2009-08-05 | 中国科学院电工研究所 | 一种用于快速脉冲超导磁体绕组结构的线圈 |
CN101552077A (zh) * | 2008-12-11 | 2009-10-07 | 中国科学院电工研究所 | 一种用于产生高磁场高均匀度的超导磁体系统 |
Also Published As
Publication number | Publication date |
---|---|
CN101819845B (zh) | 2012-07-04 |
CN101819845A (zh) | 2010-09-01 |
US20120289406A1 (en) | 2012-11-15 |
US8694066B2 (en) | 2014-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011127632A1 (zh) | 用于高功率微波源聚焦与回旋电子装置的超导磁体系统 | |
CN100495597C (zh) | 用于回旋管的传导冷却超导磁体系统 | |
WO2012075663A1 (zh) | 高磁场高均匀度核磁共振超导磁体系统 | |
WO2016119589A1 (zh) | 一种太赫兹源的强磁聚焦磁体系统 | |
CN105206375A (zh) | 主动屏蔽式低温超导磁体系统的实验装置 | |
Wang et al. | Development of high magnetic field superconducting magnet technology and applications in China | |
CN217405325U (zh) | 一种用于高温超导磁体的热控式超导开关 | |
CN116779375A (zh) | 一种用于高温超导磁体的热控式超导开关 | |
KR101877118B1 (ko) | 자기장 변위를 이용한 초전도 직류 유도가열 장치 | |
Guo et al. | Modular design of 3 MJ/2 MW toroidal magnet and analysis of dynamic temperature rise | |
Wang et al. | Magnetic and cryogenic design of MICE coupling solenoid magnet system | |
Wang et al. | Superconducting magnet technology and applications | |
JPH09102413A (ja) | 超電導マグネット装置 | |
CN104078188A (zh) | 超导磁体系统 | |
JPH11176630A (ja) | 単結晶育成用超電導磁石システム | |
Liu et al. | Research on the high temperature superconducting controllable reactor | |
Kim et al. | Design of conduction cooling system for a high current HTS DC reactor | |
KR102189812B1 (ko) | 공심형 고온초전도 사극자석의 능동형 자기장 보정 장치 | |
Semba et al. | Design and manufacture of superconducting magnet for the wiggler in SAGA-LS | |
JP2010258376A (ja) | 超電導マグネット装置 | |
Wang et al. | Design of a test cryomodule for IMP ADS-Injector II | |
Wu et al. | STRUCTURAL DESIGN AND ANALYSIS FOR A DOUBLE‐BAND COLD MASS SUPPORT OF MICE COUPLING MAGNET | |
JP2024525315A (ja) | 超伝導磁石用超伝導スイッチ | |
Bromberg et al. | Superconducting magnets for ultra light magnetically shielded, variable beam energy compact cyclotrons for medical applications | |
Han et al. | Design and Fabrication of a Hybrid HTS Magnet for 150 kJ SMES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10849642 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13515220 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10849642 Country of ref document: EP Kind code of ref document: A1 |