CN101819845A - 用于高功率微波源聚焦与回旋电子装置的超导磁体系统 - Google Patents

用于高功率微波源聚焦与回旋电子装置的超导磁体系统 Download PDF

Info

Publication number
CN101819845A
CN101819845A CN201010152524.4A CN201010152524A CN101819845A CN 101819845 A CN101819845 A CN 101819845A CN 201010152524 A CN201010152524 A CN 201010152524A CN 101819845 A CN101819845 A CN 101819845A
Authority
CN
China
Prior art keywords
superconducting
coil
superconducting magnet
main coil
superconduction main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010152524.4A
Other languages
English (en)
Other versions
CN101819845B (zh
Inventor
王秋良
胡新宁
严陆光
戴银明
王晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Original Assignee
Institute of Electrical Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS filed Critical Institute of Electrical Engineering of CAS
Priority to CN201010152524.4A priority Critical patent/CN101819845B/zh
Priority to US13/515,220 priority patent/US8694066B2/en
Priority to PCT/CN2010/001063 priority patent/WO2011127632A1/zh
Publication of CN101819845A publication Critical patent/CN101819845A/zh
Application granted granted Critical
Publication of CN101819845B publication Critical patent/CN101819845B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits
    • H05H2007/081Sources
    • H05H2007/082Ion sources, e.g. ECR, duoplasmatron, PIG, laser sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Particle Accelerators (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

一种用于高功率微波源聚焦与回旋电子装置的超导磁体系统,其超导磁体(15)包括内层超导主线圈(1)、外层超导主线圈(2)、两个端部补偿线圈、调节线圈(4)和中心调节线圈(5)。线圈由Nb3Sn/Cu超导线绕制形成。通过制冷机(11)与高压氮气形成的固态氮使得超导磁体(15)可以脱机运行。超导磁体(15)与超导开关(18)构成的闭合回路实现磁场稳定,不受外界电磁干扰。超导磁体系统能够提供具有特殊空间分布的高稳定性的磁场。

Description

用于高功率微波源聚焦与回旋电子装置的超导磁体系统
技术领域
本发明涉及一种超导磁体系统,特别涉及一种用于高功率微波源聚焦与回旋电子装置的超导磁体系统。
背景技术
高功率回旋管器可以输出兆瓦级峰值功率连续波能量与频谱。为实现回旋管器的功能,产生较强的聚焦,需要特殊的超导磁体以满足回旋频率所要求的磁场。该磁体系统具有特定磁场分布和高稳定磁场。磁体需要运行在特殊的环境,因此要求磁体系统体积小、重量轻、可移动性好,运行和操作方便。
为研制极高磁场以达到具有特定空间分布和时间稳定性,使用传统的技术存在居多的技术难题,普通电磁结构磁体具有损耗较高,体积较大等缺点。因此,常规系统已经不能适应特殊装备的需要。而传统超导磁体的冷却需要低温液体浸泡来实现,给超导磁体系统的运行操作和移动带来诸多不便。并且在运动系统中使用传统超导磁体系统会带来更多的使用和维护困难。
单一线圈的超导磁体结构具有结构简单,建造容易,使用方便等优点,但所产生的磁场不能满足系统运行需求的特殊复杂位形的磁场。为了适应特种电工装备的应用需求,提高装备功能性和使用性,实现高功率微波源的运行参数达到所要求的输出频谱和带宽的要求,需要一种新型的电磁聚焦与电子回旋的超导磁体,从而达到回旋管器的磁场稳定性和磁场的空间分布特性。采用新型电磁结构和冷却方式超导磁体系统可以达到高功率微波源实际要求,实现微波器件在微波特种装备、微波工业加工等领域的应用需求。
高功率微波源聚焦与回旋电子装置的超导磁体系统适合于超重力、快速移动和旋转特种电子回旋和聚焦装置,可以运行在具有十分苛刻的温度和湿度的野外环境,具有磁场高稳定度和抗外电磁干扰的优点。
发明内容
为克服现有技术的缺点,本发明提出了具有特定空间磁场分布的超导磁体系统。本发明采用制冷机直接冷却的无液氦超导磁体系统,无需任何低温液体,减小了磁体系统的重量和体积,运行操作方便,具备可移动性。本发明可以实现其高功率微波源所需要的磁场和运行模态。
本发明的超导磁体是由多个超导线圈组合形成的,它主要包括两个超导主线圈、多个不同位置的小型超导线圈,在空间特殊点产生具有一定磁场比率Br/Bz,其中Br是沿磁体半径方向的磁感应强度,Bz是沿磁体轴向磁感应强度,以满足电子聚焦与较高的回旋频率。
本发明超导磁体系统包括内层超导主线圈、外层超导主线圈、两个端部补偿线圈、端部调节线圈和中心调节线圈共六个超导线圈组成。其中,内层和外层两个超导主线圈产生4.5T的中心磁场提供背景磁场,补偿线圈用于保证两个均匀区的磁场均匀度。两个调节线圈用来补偿主线圈在轴线上的磁场均匀度和调节所述的空间特殊点A、B、C、D、E和F的轴向和径向磁场强度的比值,即磁场压缩比:Bz/Br。六个超导线圈同轴,内层超导主线圈外面是外层超导主线圈,在外层超导主线圈外表面从磁体端部依次是端部补偿线圈、调节线圈和中心调节线圈。
本发明磁体与制冷系统具有较好的低温热连接,超导磁体的所述六个超导线圈使用同一骨架,为减小涡流,骨架上开有狭缝。在骨架上首先绕制内层超导主线圈后,再绕制外层超导主线圈,使用环氧玻璃丝带绕制在外层超导主线圈的表面,然后加入低温环氧树脂固化。当低温环氧树脂固化完成之后,采用机械加工方法抛光表面,再在光滑表面上绕制端部补偿线圈。端部补偿线圈由两个补偿线圈组成,对称分布在外层超导主线圈的端部,再在端部补偿线圈的两个补偿线圈之间,从左到右布置调节线圈和中心调节线圈。
本发明采用超导开关连接所有超导线圈,形成具有闭环稳恒电流,从而产生较高稳定度的磁场。超导线圈与超导开关通过超导接头连接,超导接头电阻小于10-12Ω。超导开关的特征是由连接磁体的法兰实现与磁体之间的热连接。支撑杆用于控制开关在打开条件下阻止热流流向磁体,关闭条件下作为热桥将开关恢复到超导态。开关触发加热器和超导开关线圈的导线并在一起双绕在铜骨架上。开关的运行使用外界电源来加以控制,实现磁体的闭环运行。
本发明超导线圈采用具有较高临界参量的铌三锡/铜(Nb3Sn/Cu)材料,以高热容的固态氮、热开关和制冷机共同作用,可以实现磁体脱机运行。
本发明以超导磁体系统几何中心即超导磁体的磁场中心点作为坐标原点,建立轴向和径向坐标系坐标(z,r),在所述的空间中六个特殊点的坐标为A(-245mm,40mm)、B(-230mm,36mm)、C(-115mm,20mm)、D(115mm,20mm)、E(155mm,22mm)、F(180mm,23mm)。其磁场分布的要求是C点和D点在同一磁力线上,同时,经过这两点的磁力线不高于A、B、E、F点。在给定的磁场点满足Br(D)/Bz(D)≤3%,Br(E)/Bz(E)≤7%,Br(F)/Bz(F)≤11%,C点和D点在轴向上距离Z小于180mm,磁体轴线上的磁场压缩比Bz/Br大于88%,即Bz(180mm)/4.5>88%。上述式中,Br是沿磁体半径方向的磁感应强度,Bz是沿磁体轴向磁感应强度。
由超导线圈所占据的区域和磁体的孔径范围、线圈的长度,等效将电流分布在平均半径为R1的圆柱表面上,线圈的有效分布磁场范围是L1,根据回旋聚焦磁场分布,建立磁感应强度和电流的线性方程,AI=B,其中矩阵A是磁场系数矩阵,B是轴线上磁感应强度矩阵,引入正则化之后将病态方程转化为(ATA+αLTL)I=ATBz,决定线圈电流的空间分布,其中L是单位矩阵。
本发明采用遗传模拟退火混和算法优化线圈截面:将获得的电流位置、幅值作为初始参数,以最小化权重磁场之差平方函数作为优化目标,采用遗传模拟退火混和算法优化线圈截面。
本发明为了实现超导磁体的快速冷却和系统可以脱机运行,超导线圈使用高临界参数的超导材料组成Nb3Sn/Cu,其中,Nb3Sn具有18K的临界温度。超导磁体的表面绕有热交换器,热交换器和高压氮气容器相连接;制冷机冷却超导磁体和高压氮气容器;所有所述的超导线圈通过超导接头与超导开关连接,形成具有闭环稳恒电流。超导线圈外围使用热交换器,在高压氮气容器内部有冷却后的高热容的固态氮,使磁体在充电和在制冷机停止后超导磁体的温度回升速度极为缓慢。系统整体运行温度可以在4.2K到12K范围内正常运行。
本发明的超导磁体系统能够提供强磁聚焦与回旋系统需要,适合于野外特殊条件下运行,极大减小系统运行费用,使用更为方便稳定可靠。
附图说明
图1为本发明超导线圈组合方式示意图,图中:1内层超导主线圈、2外层超导主线圈、3端部补偿线圈、4调节线圈、5中心调节线圈;
图2为本发明的超导开关结构,图中:6法兰、7开关支撑杆、8开关骨架、9开关触发加热器、10超导开关线圈;
图3为本发明超导磁体低温结构;图中:11制冷机、12真空容器、13支撑杆、14热交换器、15超导磁体、16热辐射屏、17高压氮气容器、18超导开关。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
图1所示为本发明磁体系统中使用的超导线圈。内层超导主线圈1放置在较高的磁场区域,运行在低电流密度状态下。外层超导主线圈2位于内层超导主线圈1外,运行在高电流密度下。内层超导主线圈1和外层超导主线圈2共同作用产生磁体系统的主磁场,外层超导主线圈2与内层超导主线圈1同轴,直接绕制在内层超导主线圈1的外表面,并与内层超导主线圈1具有相同的长度。端部补偿线圈3补偿磁场的均匀度分布特性,端部补偿线圈3由两个补偿线圈组成,对称分布在外层超导主线圈2的端部,再在端部补偿线圈3的两个补偿线圈之间,从左到右布置调节线圈4和中心调节线圈5。调节线圈4和中心调节线圈5用于调节磁体在空间各点的磁场分布。所述的超导磁体的磁场实现Br(D)/Bz(D)≤3%,Br(E)/Bz(E)≤7%,Br(F)/Bz(F)≤11%,在Z<180mm范围内,磁体轴线上的磁场压缩比Bz/Br大于88%,Bz(180mm)/4.5>88%。
图2所示是本发明超导开关的结构。用于实现磁体电流的闭环运行超导开关18包括连接磁体的法兰6、支撑杆7、开关触发加热器9和超导开关线圈10。超导开关18通过连接磁体的法兰6实现超导开关18与超导磁体之间的热连接。支撑杆7控制超导开关18在打开条件下阻止热流流向超导磁体,在关闭条件下作为热桥将超导开关恢复到超导态。开关触发加热器9和超导开关线圈10绕制在开关骨架8上。超导开关18的运行使用外界电源来加以控制,实现超导磁体的闭环运行。
图3所示为保证超导磁体正常运行的低温系统。如图3所示,由制冷机11提供低温冷量,真空容器12内的真空度小于10-5Pa。超导磁体15由支撑杆13支撑在真空容器12内。制冷机11通过热交换器14冷却超导磁体15,超导磁体15两端的导冷结构与制冷机11的二级冷头连接。超导磁体15的表面绕有热交换器14,热交换器14和高压氮气压力容器17连接,高压氮气压力容器17包裹在超导磁体15外,使高压氮气压力容器17与超导磁体15之间具有极高的热导。制冷机11冷却高压氮气容器17.热辐射屏16和制冷机11的一级冷头连接,保证热辐射屏16具有40K的温度,以阻止外界300K温度的热辐射。超导磁体15所有的超导线圈连接起来,再和超导开关18组成闭合电流回路,从而保证磁场的稳定性。

Claims (5)

1.一种用于高功率微波源聚焦与回旋电子装置的超导磁体系统,包括制冷机(11)、真空容器(12)、支撑杆(13)、热辐射屏(16)、低温系统和超导磁体(15),其特征在于,所述的超导磁体系统中,超导磁体包括内层超导主线圈(1)、外层超导主线圈(2)、端部补偿线圈(3)、调节线圈(4)和中心调节线圈(5);所述的内层超导主线圈(1)、外层超导主线圈(2)、端部补偿线圈(3)、调节线圈(4)和中心调节线圈(5)同轴布置;内层超导主线圈(1)运行在低电流密度状态下;外层超导主线圈(2)位于内层超导主线圈(1)外,运行在高电流密度下;内层超导主线圈(1)和外层超导主线圈(2)共同作用产生磁体系统的主磁场;外层超导主线圈(2)绕制在内层超导主线圈(1)的外表面,并与内层超导主线圈(1)具有相同的长度;在外层超导主线圈(2)的外表面从磁体端部起依次是端部补偿线圈(3)、调节线圈(4)和中心调节线圈(5);超导磁体(15)的表面绕有热交换器(14),热交换器(14)和高压氮气容器(17)相连接;制冷机(11)冷却超导磁体(15)和高压氮气容器(17);所有所述的超导线圈通过超导接头与超导开关(18)连接,形成具有闭环稳恒电流。
2.根据权利要求1所述的用于高功率微波源聚焦与回旋电子装置的超导磁体系统,其特征在于所述的端部补偿线圈(3)由两个补偿线圈组成,两个补偿线圈对称分布在外层超导主线圈(2)的端部,在所述的两个补偿线圈之间,从左到右布置调节线圈(4)和中心调节线圈(5)。
3.按照权利要求1所述的用于高功率微波源聚焦与回旋电子装置的超导磁体系统,其特征在于所述的超导开关(18)由连接超导磁体(15)的法兰(6)实现超导开关(18)与超导磁体(15)之间的热连接,开关支撑杆(7)控制超导开关(18)在打开条件下阻止热流流向超导磁体(15),在关闭条件下作为热桥将超导开关(18)恢复到超导态;开关触发加热器(9)和超导开关线圈(10)的导线并在一起双绕在超导开关(18)的骨架(8)上。
3、按照权利要求1所述的用于高功率微波源聚焦与回旋电子装置的超导磁体系统,其特征在于以所述的超导磁体(15)的磁场中心点作为坐标原点,建立轴向和径向坐标系坐标(z,r),在空间中建立六个特殊点,所述的六个空间特殊点的坐标为A(-245mm,40mm)、B(-230mm,36mm)、C(-115mm,20mm)、D(115mm,20mm)、E(155mm,22mm)、F(180mm,23mm);C点和D点在同一磁力线上,经过C点和D点的磁力线不高于A、B、E、F点;在给定的磁场点满足Br(D)/Bz(D)≤3%,Br(E)/Bz(E)≤7%,Br(F)/Bz(F)≤11%,C点和D点在轴向上距离Z小于180mm,磁体轴线上的磁场压缩比Bz/Br大于88%,即Bz(180mm)/4.5>88%;上述式中,Br是沿磁体半径方向的磁感应强度,Bz是沿磁体轴向磁感应强度。
4.按照权利要求1所述的用于高功率微波源聚焦与回旋电子装置的超导磁体系统,其特征在于所述的超导磁体(15)的所有线圈采用高临界参数的Nb3Sn/Cu超导线材绕制。
5.按照权利要求1所述的用于高功率微波源聚焦与回旋电子装置的超导磁体系统,其特征在于所述的超导磁体(15)的所述内层超导主线圈(1)、外层超导主线圈(2)、端部补偿线圈(3)、调节线圈(4)和中心调节线圈(5)使用同一骨架,骨架上开有狭缝;在骨架上首先绕制内层超导主线圈(1),再绕制外层超导主线圈(2),再使用环氧玻璃丝带绕制在外层超导主线圈(2)的表面,然后加入低温环氧树脂固化;低温环氧树脂固化完成之后,采用机械加工方法抛光表面,再在光滑表面上绕制端部补偿线圈(3)、调节线圈(4)和中心调节线圈(5)。
CN201010152524.4A 2010-04-16 2010-04-16 用于高功率微波源聚焦与回旋电子装置的超导磁体系统 Active CN101819845B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201010152524.4A CN101819845B (zh) 2010-04-16 2010-04-16 用于高功率微波源聚焦与回旋电子装置的超导磁体系统
US13/515,220 US8694066B2 (en) 2010-04-16 2010-07-14 Superconducting magnet system for high power microwave source focusing and cyclotron electronic apparatus
PCT/CN2010/001063 WO2011127632A1 (zh) 2010-04-16 2010-07-14 用于高功率微波源聚焦与回旋电子装置的超导磁体系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010152524.4A CN101819845B (zh) 2010-04-16 2010-04-16 用于高功率微波源聚焦与回旋电子装置的超导磁体系统

Publications (2)

Publication Number Publication Date
CN101819845A true CN101819845A (zh) 2010-09-01
CN101819845B CN101819845B (zh) 2012-07-04

Family

ID=42654888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010152524.4A Active CN101819845B (zh) 2010-04-16 2010-04-16 用于高功率微波源聚焦与回旋电子装置的超导磁体系统

Country Status (3)

Country Link
US (1) US8694066B2 (zh)
CN (1) CN101819845B (zh)
WO (1) WO2011127632A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136337A (zh) * 2010-12-08 2011-07-27 中国科学院电工研究所 高磁场高均匀度核磁共振超导磁体系统
CN102226953A (zh) * 2011-03-30 2011-10-26 中国科学院电工研究所 一种用于空间超导磁体的拉杆
CN102651942A (zh) * 2011-02-28 2012-08-29 三菱电机株式会社 圆形加速器以及圆形加速器的运转方法
CN103228093A (zh) * 2013-04-20 2013-07-31 胡明建 一种超导体聚焦同步回旋加速器的设计方法
CN104219866A (zh) * 2013-05-31 2014-12-17 梅维昂医疗系统股份有限公司 主动返回系统
CN104599805A (zh) * 2015-01-30 2015-05-06 中国科学院电工研究所 一种太赫兹源的强磁聚焦磁体系统
CN105139993A (zh) * 2015-09-23 2015-12-09 奥泰医疗系统有限责任公司 一种超导磁体的悬吊装置
CN107204226A (zh) * 2016-03-18 2017-09-26 上海联影医疗科技有限公司 一种超导磁体的低温容器
CN108525847A (zh) * 2018-05-14 2018-09-14 北矿机电科技有限责任公司 一种周期交替式超导磁分离机
CN109080173A (zh) * 2018-10-15 2018-12-25 南京航空航天大学 一种复合材料微波加热加压成型装置
CN112038035A (zh) * 2020-09-18 2020-12-04 中国科学院合肥物质科学研究院 一种基于层间叠片整体热传导的密绕型超导磁体制冷装置
CN112420313A (zh) * 2020-10-19 2021-02-26 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种高温超导磁体杜瓦装置
CN112837883A (zh) * 2020-12-31 2021-05-25 江西联创光电超导应用有限公司 一种超导磁体系统
CN113391248A (zh) * 2021-06-08 2021-09-14 南京光启仪器设备有限公司 一种用于无液氦超导低温系统测量磁电物性的样品旋转杆
CN115831527A (zh) * 2022-11-21 2023-03-21 苏州八匹马超导科技有限公司 一种超导磁体骨架顶杆机构

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077797B (zh) * 2013-01-06 2016-03-30 中国科学院电工研究所 用于头部成像的超导磁体系统
US9711314B2 (en) 2014-09-11 2017-07-18 Larry R. Barnett Compact magnet system for a high-power millimeter-wave gyrotron
CN106637416B (zh) * 2016-12-28 2018-11-20 厦门大学 矢量强磁场下分子束外延及其原位表征装置
JP2022110323A (ja) * 2021-01-18 2022-07-29 住友重機械工業株式会社 超伝導磁石装置
CN113903541B (zh) * 2021-11-04 2022-06-28 中国原子能科学研究院 一种基于小型制冷机的大型高温超导磁体系统和温控方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156316A (ja) * 1998-11-20 2000-06-06 Kobe Steel Ltd 超電導磁石装置
CN1797804A (zh) * 2004-12-01 2006-07-05 西门子公司 具有低温系统和超导开关的超导装置
CN1959874A (zh) * 2006-09-30 2007-05-09 中国科学院电工研究所 用于回旋管的传导冷却超导磁体系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3245945A1 (de) * 1982-12-11 1984-06-14 Bruker Analytische Meßtechnik GmbH, 7512 Rheinstetten Elektromagnet fuer die nmr-tomographie
JPS64715A (en) * 1987-06-23 1989-01-05 Mitsubishi Electric Corp Superconducting electromagnet device
US5136273A (en) * 1988-10-17 1992-08-04 Kabushiki Kaisha Toshiba Magnet apparatus for use in a magnetic resonance imaging system
US5448214A (en) * 1994-06-15 1995-09-05 General Electric Company Open MRI magnet with superconductive shielding
JP3824412B2 (ja) 1998-02-17 2006-09-20 株式会社東芝 結晶引上装置用超電導磁石装置
CN100509077C (zh) * 2004-09-09 2009-07-08 中国科学院电工研究所 用于介入治疗立体定位的超导磁体系统
JP4752744B2 (ja) * 2006-11-30 2011-08-17 住友電気工業株式会社 超電導コイル
CN101499351B (zh) * 2008-10-29 2010-04-21 中国科学院电工研究所 一种用于快速脉冲超导磁体绕组结构的线圈
CN101552077B (zh) 2008-12-11 2010-10-27 中国科学院电工研究所 一种用于产生高磁场高均匀度的超导磁体系统
US8338979B2 (en) * 2011-06-30 2012-12-25 General Electric Company Method and apparatus for a superconducting direct current generator driven by a wind turbine
US8482369B2 (en) * 2011-10-31 2013-07-09 General Electric Company Single switch dump resistor ladder network for magnet quench protection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156316A (ja) * 1998-11-20 2000-06-06 Kobe Steel Ltd 超電導磁石装置
CN1797804A (zh) * 2004-12-01 2006-07-05 西门子公司 具有低温系统和超导开关的超导装置
CN1959874A (zh) * 2006-09-30 2007-05-09 中国科学院电工研究所 用于回旋管的传导冷却超导磁体系统

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136337B (zh) * 2010-12-08 2012-03-28 中国科学院电工研究所 高磁场高均匀度核磁共振超导磁体系统
CN102136337A (zh) * 2010-12-08 2011-07-27 中国科学院电工研究所 高磁场高均匀度核磁共振超导磁体系统
CN102651942A (zh) * 2011-02-28 2012-08-29 三菱电机株式会社 圆形加速器以及圆形加速器的运转方法
CN102651942B (zh) * 2011-02-28 2015-02-11 三菱电机株式会社 圆形加速器以及圆形加速器的运转方法
CN102226953A (zh) * 2011-03-30 2011-10-26 中国科学院电工研究所 一种用于空间超导磁体的拉杆
CN103228093A (zh) * 2013-04-20 2013-07-31 胡明建 一种超导体聚焦同步回旋加速器的设计方法
CN104219866A (zh) * 2013-05-31 2014-12-17 梅维昂医疗系统股份有限公司 主动返回系统
US10062487B2 (en) 2015-01-30 2018-08-28 Institute Of Electrical Engineering, Chinese Academy Of Sciences Strong-magnetic-focused magnet system with terahertz source
CN104599805A (zh) * 2015-01-30 2015-05-06 中国科学院电工研究所 一种太赫兹源的强磁聚焦磁体系统
WO2016119589A1 (zh) * 2015-01-30 2016-08-04 中国科学院电工研究所 一种太赫兹源的强磁聚焦磁体系统
CN105139993A (zh) * 2015-09-23 2015-12-09 奥泰医疗系统有限责任公司 一种超导磁体的悬吊装置
CN107204226A (zh) * 2016-03-18 2017-09-26 上海联影医疗科技有限公司 一种超导磁体的低温容器
CN107204226B (zh) * 2016-03-18 2020-06-02 上海联影医疗科技有限公司 一种超导磁体的低温容器
CN108525847A (zh) * 2018-05-14 2018-09-14 北矿机电科技有限责任公司 一种周期交替式超导磁分离机
CN109080173A (zh) * 2018-10-15 2018-12-25 南京航空航天大学 一种复合材料微波加热加压成型装置
CN109080173B (zh) * 2018-10-15 2020-08-04 南京航空航天大学 一种复合材料微波加热加压成型装置
CN112038035A (zh) * 2020-09-18 2020-12-04 中国科学院合肥物质科学研究院 一种基于层间叠片整体热传导的密绕型超导磁体制冷装置
CN112038035B (zh) * 2020-09-18 2022-03-25 中国科学院合肥物质科学研究院 一种基于层间叠片整体热传导的密绕型超导磁体制冷装置
CN112420313A (zh) * 2020-10-19 2021-02-26 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种高温超导磁体杜瓦装置
CN112837883A (zh) * 2020-12-31 2021-05-25 江西联创光电超导应用有限公司 一种超导磁体系统
CN113391248A (zh) * 2021-06-08 2021-09-14 南京光启仪器设备有限公司 一种用于无液氦超导低温系统测量磁电物性的样品旋转杆
CN115831527A (zh) * 2022-11-21 2023-03-21 苏州八匹马超导科技有限公司 一种超导磁体骨架顶杆机构
CN115831527B (zh) * 2022-11-21 2023-09-12 苏州八匹马超导科技有限公司 一种超导磁体骨架顶杆机构

Also Published As

Publication number Publication date
US8694066B2 (en) 2014-04-08
US20120289406A1 (en) 2012-11-15
CN101819845B (zh) 2012-07-04
WO2011127632A1 (zh) 2011-10-20

Similar Documents

Publication Publication Date Title
CN101819845B (zh) 用于高功率微波源聚焦与回旋电子装置的超导磁体系统
CN100495597C (zh) 用于回旋管的传导冷却超导磁体系统
CN102903473B (zh) 超导磁体系统
Patel et al. Rational design of MgB2 conductors toward practical applications
US11646138B2 (en) Superconducting magnet
JP6636405B2 (ja) Lts部分とhts部分を有するマグネット装置を備えるクライオスタット
CN105206375A (zh) 主动屏蔽式低温超导磁体系统的实验装置
GB2562385A (en) Superconducting magnet for producing part of a substantially toroidal field
Calzolaio et al. Design of a superconducting longitudinal gradient bend magnet for the SLS upgrade
Wang et al. Development of high magnetic field superconducting magnet technology and applications in China
CN217405325U (zh) 一种用于高温超导磁体的热控式超导开关
Dai et al. Design of a 1 MJ/0.5 MVA HTS magnet for SMES
CN102623128B (zh) 用于产生最小b磁场的超导混合磁体装置
Guo et al. Modular design of 3 MJ/2 MW toroidal magnet and analysis of dynamic temperature rise
Wang et al. Conduction-cooled superconducting magnet with persistent current switch for gyrotron application
Wang et al. Magnetic and cryogenic design of MICE coupling solenoid magnet system
CN104078188A (zh) 超导磁体系统
Zizek et al. End-winding region configuration of an HTS transformer
CN113169658A (zh) 带有用于在持续电流模式中运行的超导的绕组的转子
Sabbi Future of high field superconducting magnets
Seong et al. Current status of SMES in Korea
Liu et al. Research on the high temperature superconducting controllable reactor
CN116779375A (zh) 一种用于高温超导磁体的热控式超导开关
Kim et al. Design of conduction cooling system for a high current HTS DC reactor
CN116779275A (zh) 一种用于磁悬浮电磁推进的高温超导磁体及磁悬浮列车

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant