WO2011126045A1 - ピラジン誘導体の製造方法 - Google Patents

ピラジン誘導体の製造方法 Download PDF

Info

Publication number
WO2011126045A1
WO2011126045A1 PCT/JP2011/058701 JP2011058701W WO2011126045A1 WO 2011126045 A1 WO2011126045 A1 WO 2011126045A1 JP 2011058701 W JP2011058701 W JP 2011058701W WO 2011126045 A1 WO2011126045 A1 WO 2011126045A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
formula
optically active
compound represented
Prior art date
Application number
PCT/JP2011/058701
Other languages
English (en)
French (fr)
Inventor
大輔 間山
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Publication of WO2011126045A1 publication Critical patent/WO2011126045A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6568Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms
    • C07F9/65683Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms the ring phosphorus atom being part of a phosphine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5036Phosphines containing the structure -C(=X)-P or NC-P
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6509Six-membered rings
    • C07F9/650952Six-membered rings having the nitrogen atoms in the positions 1 and 4

Definitions

  • the present invention relates to a method for producing a pyrazine derivative.
  • the present invention relates to a ligand of a metal complex used as an asymmetric catalyst in an asymmetric synthesis reaction, a ligand source of a transition metal complex used as an anticancer agent, etc.
  • the present invention relates to a method for producing a bisphosphinopyrazine derivative.
  • Patent Document 1 describes an optically active 2,3-bis (dialkylphosphino) pyrazine derivative capable of providing a metal complex exhibiting excellent catalytic performance and a method for producing the same.
  • Patent Document 1 The production method described in Patent Document 1 includes a step of obtaining dialkyl-phosphine borane from dialkyl (benzoyloxymethyl) phosphine-borane using potassium persulfate and ruthenium trichloride. Potassium persulfate is a potentially explosive compound. Ruthenium trichloride is an expensive compound and its use is economically disadvantageous.
  • optically active 2,3-bis (dialkylphosphino) pyrazine derivatives have three types of (R, R), (S, S) and (R, S) isomers due to the asymmetry of phosphorus atoms. Is present.
  • an optically active 2,3-bis (dialkylphosphino) pyrazine derivative it is required that only a desired one of these isomers can be easily obtained.
  • an object of the present invention is to provide a method for producing an optically active 2,3-bisphosphinopyrazine derivative, which is industrially advantageous and can easily produce any isomer.
  • the present invention provides a method for producing an optically active 2,3-bisphosphinopyrazine derivative represented by the following general formula (A), comprising the following steps I, II and III:
  • the object has been achieved by providing a manufacturing method.
  • Step III An optically active hydrogen-phosphine borane compound represented by the general formula (1 ′) obtained in the step II, and a general formula (4) (Wherein R 4 and R 5 represent a hydrogen atom or an alkyl group, and may be the same group or different groups, and may be bonded to each other to form a saturated or unsaturated ring.
  • the saturated or unsaturated ring may have a substituent, and X represents a halogen atom.
  • 2,3-dihalogenopyrazine represented by the general formula (5) Is reacted with 2,3-dihalogenopyrazine represented by the general formula (5) (In the formula, R 1 , R 2 , R 4 and R 5 and * are as defined above.)
  • an optically active bis (phosphine-borane) pyrazine compound represented by general formula (A) In the formula, R 1 , R 2 , R 4 and R 5 and * are as defined above.
  • the method for producing an optically active 2,3-bisphosphinopyrazine derivative of the present invention is industrially advantageous in that no explosive compound or expensive compound is used.
  • any isomer of the optically active 2,3-bisphosphinopyrazine derivative can be easily produced.
  • step I will be described.
  • groups represented by R 1 and R 2 will be described below.
  • R 1 and R 2 each represent a hydrogen atom, a hydrocarbon group or a substituted hydrocarbon group.
  • R 1 and R 2 may be independent from each other or may be linked by crosslinking.
  • the hydrocarbon group is not particularly limited, and examples thereof include an alkyl group, an aralkyl group, and an aryl group.
  • the alkyl group may be linear, branched or cyclic.
  • Examples of the linear or branched alkyl group include a linear or branched alkyl group having 1 to 8 carbon atoms, and specifically include a methyl group, an ethyl group, an n-propyl group, and a 2-propyl group.
  • cyclic alkyl group examples include cycloalkyl groups having 3 to 16 carbon atoms, and specifically include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, 2-methylcyclopentyl group, 3-methyl group. Examples thereof include a cyclopentyl group, a cycloheptyl group, a 2-methylcyclohexyl group, a 3-methylcyclohexyl group, and a 4-methylcyclohexyl group.
  • the cyclic alkyl group includes a polycyclic alkyl group, and examples of the polycyclic alkyl group include a menthyl group, a bornyl group, a norbornyl group, an adamantyl group, and the like.
  • Examples of the aralkyl group include an aralkyl group having 7 to 12 carbon atoms, and specifically include a benzyl group, a 2-phenylethyl group, a 1-phenylpropyl group, a 2-phenylpropyl group, a 3-phenylpropyl group, 1-phenylbutyl group, 2-phenylbutyl group, 3-phenylbutyl group, 4-phenylbutyl group, 1-phenylpentyl group, 2-phenylpentyl group, 3-phenylpentyl group, 4-phenylpentyl group, 5- Examples include phenylpentyl group, 1-phenylhexyl group, 2-phenylhexyl group, 3-phenylhexyl group, 4-phenylhexyl group, 5-phenylhexyl group, 6-phenylhexyl group and the like.
  • aryl group examples include aryl groups having 6 to 20 carbon atoms, and specific examples include phenyl, naphthyl, anthryl, biphenyl, and binaphthyl groups.
  • the substituted hydrocarbon group includes a hydrocarbon group in which at least one hydrogen atom of the hydrocarbon group is substituted with a substituent such as a hydrocarbon group, an alkoxy group, a halogen atom, an amino group, or an amino group having a protecting group. Or a group in which at least one carbon atom of the hydrocarbon group is substituted with a heteroatom such as oxygen, nitrogen, sulfur, or phosphorus.
  • the substituted hydrocarbon group includes a heterocyclic group, and in this case, it may be an aliphatic heterocyclic group or an aromatic heterocyclic group.
  • the aliphatic heterocyclic group include a 5-membered or 6-membered aliphatic heterocyclic group, and specific examples include a pyrrolidyl-2-one group, a piperidino group, a piperazinyl group, a morpholino group, a tetrahydrofuryl group, a tetrahydrofuryl group, and the like.
  • a pyranyl group etc. are mentioned.
  • aromatic heterocyclic group examples include a 5-membered or 6-membered aromatic heterocyclic group, and specific examples include, for example, a pyridyl group, an imidazolyl group, a thiazolyl group, a furfuryl group, a pyranyl group, a furyl group, and a benzofuryl group. And thienyl group.
  • a combination in which the steric bulk is greatly different in R 1 and R 2 is preferable in order to exhibit the effect of asymmetry higher.
  • the portion constituting the asymmetry in R 1 or R 2 is a phosphorus atom in order to exhibit the asymmetry effect higher.
  • R 1 and R 2 are connected by a bridge, and a group including a phosphorus atom is 2,5-dimethylphosphorane or 2,5-diethylphosphorane. Cases.
  • R 3 represents an asymmetric hydrocarbon group or a substituted asymmetric hydrocarbon group.
  • the asymmetric hydrocarbon group is not particularly limited, and specific examples include (S) -1-phenylethyl group, (R) -1-phenylethyl group, (S) -1- (p-toluyl) ethyl group.
  • the substituted asymmetric hydrocarbon group includes a substituent such as an amino group in which at least one hydrogen atom of the asymmetric hydrocarbon group has a hydrocarbon group, an alkoxy group, a halogen atom, an amino group, a nitro group, or a protective group. Or a group in which at least one carbon atom of the asymmetric hydrocarbon group is substituted with a heteroatom such as oxygen, nitrogen, sulfur, or phosphorus.
  • step I the hydrogen-phosphine borane compound represented by the general formula (1) and the optically active isocyanate compound represented by the general formula (2) are mixed in a reaction vessel, and the coupling reaction proceeds. In that case, it is preferable to promote the reaction by adding a base to the reaction system. By this coupling reaction, the phosphine borane compound represented by the general formula (3) is generated.
  • the hydrogen-phosphine borane compound represented by the general formula (1) a mixture of an S form and an R form (for example, a racemic form) can be used.
  • the phosphine borane compound represented by the general formula (3) generated by the coupling reaction is represented by Sp.
  • the Sp form means a compound in which the configuration of the asymmetric phosphorus atom is S
  • the Rp form means the compound in which the configuration of the asymmetric phosphorus atom is R).
  • the phosphine borane compound represented by the general formula (3 ′) has an asymmetric part having an asymmetric surface on the phosphorus atom or the phosphorus atom as an asymmetric surface, and an optically active carbamoyl group, Is a diastereomer having two points.
  • an optically active isocyanate compound represented by the general formula (2) is one in which R 3 is an (S) -asymmetric hydrocarbon group or an (S) -substituted asymmetric hydrocarbon group
  • an optical component is obtained by crystallization.
  • the phosphine borane compound represented by the general formula (3 ′) of the Sp isomer is easily crystallized.
  • the optically active isocyanate compound represented by the general formula (2) is one in which R 3 is an (R) -asymmetric hydrocarbon group or an (R) -substituted asymmetric hydrocarbon group
  • the optically active isocyanate compound represented by the general formula (2) is one in which R 3 is an (R) -asymmetric hydrocarbon group or an (R) -substituted asymmetric hydrocarbon group
  • the optical resolution is performed, the phosphine borane compound represented by the general formula (3 ′) of the Rp body is easily crystallized.
  • the hydrogen-phosphine borane compound represented by the general formula (1) a commercially available product can be used, for example, available from Nippon Chemical Industry Co., Ltd. Commercially available products can also be used as the optically active isocyanate compound represented by the general formula (3). For example, Tokyo Chemical Industry Co., Ltd. Is available from
  • a solvent is appropriately used.
  • a solvent that does not decompose the reaction substrate is used.
  • Specific examples include toluene, hexane, tetrahydrofuran (THF), diethyl ether, dioxane, acetone, ethyl acetate, chlorobenzene, dimethylformamide (DMF), acetonitrile, methanol. , Ethanol, water and the like, preferably toluene or THF.
  • the amount of the solvent added during the reaction can be appropriately set in consideration of the fluidity of the reaction mixture during the reaction and the effect of the solvent on the reaction.
  • the amount of raw material charged during the reaction is preferably a hydrogen-phosphine borane compound represented by the general formula (1) based on the optically active isocyanate compound represented by the general formula (2). 1.5 equivalents and the optimum value is 1 equivalent.
  • the base used here is not particularly limited.
  • pyridine triethylamine, tributylamine, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.
  • Organic bases such as nonene-5 (DBN) and 4- (N, N-dimethylamino) pyridine (DMAP), inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate, n-butyllithium And organic metals such as sec-butyllithium, tert-butyllithium, lithium diisopropylamide, isopropylmagnesium chloride, and methylmagnesium bromide. Preferred is n-butyllithium.
  • the amount of the base charged can be appropriately set according to the required degree of acceleration of the reaction, but is usually 0.1 mol with respect to the optically active isocyanate compound represented by the general formula (2). % To 150 mol%, preferably 1 mol% to 10 mol%. The order of preparation is not particularly important and can be arbitrarily determined according to workability and the like.
  • the reaction temperature is usually ⁇ 80 to 50 ° C., preferably 0 to 30 ° C. where the reaction is promoted and side reactions and racemization are suppressed.
  • the reaction time is usually 1 minute to 24 hours, preferably 30 minutes to 4 hours, which is sufficient time for the reaction to be completed.
  • the purification method performed at this time is not particularly limited as long as optical resolution is possible, and examples include separation washing, crystallization, distillation, sublimation, column chromatography, and the like, but preferably industrially. This is an advantageous crystallization.
  • phosphine borane compound represented by the general formula (3 ') include the following compounds, but are merely examples, and the scope of application of the present invention is not limited thereto.
  • Step II In a reaction vessel, the phosphine borane compound represented by the general formula (3 ′) obtained in Step I and a base are mixed to decompose the phosphine borane compound. It is preferable to add alcohol to promote the decomposition reaction. After the reaction, the by-product is removed to obtain the optically active hydrogen-phosphine borane compound represented by the general formula (1 ′).
  • a solvent is appropriately used.
  • a solvent that does not decompose the reaction substrate is used.
  • Specific examples include toluene, hexane, tetrahydrofuran (THF), diethyl ether, dioxane, acetone, ethyl acetate, chlorobenzene, dimethylformamide (DMF), acetonitrile, methanol. , Ethanol, water and the like, preferably DMF or acetonitrile.
  • the amount of the solvent added during the reaction can be appropriately set in consideration of the fluidity of the reaction mixture during the reaction and the effect of the solvent on the reaction.
  • the base is not particularly limited, and examples thereof include pyridine, triethylamine, tributylamine, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0].
  • examples thereof include organic bases such as nonene-5 (DBN) and 4- (N, N-dimethylamino) pyridine (DMAP), and inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate.
  • DBN nonene-5
  • DMAP 4- (N, N-dimethylamino) pyridine
  • inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate.
  • These bases are preferably supplied as a solution for reaction in a homogeneous system or a liquid-liquid two-phase system.
  • potassium hydroxide is used as the base, it is preferably used as a 1 to 70% potassium hydroxide aqueous solution or a methanol solution,
  • the amount of the base charged can be appropriately set according to the required degree of acceleration of the reaction, but is usually 0.01 equivalent to the phosphine borane compound represented by the general formula (3 ′). Is about 10 equivalents, preferably 0.1 equivalents to 5 equivalents.
  • the order of preparation is not particularly important and can be arbitrarily determined according to workability and the like.
  • Alcohol is added to promote the reaction, and the alcohol used here is not particularly limited, but examples thereof include methanol and ethanol, preferably methanol.
  • the reaction temperature is usually ⁇ 80 to 50 ° C., preferably 0 to 30 ° C. where the reaction is promoted and side reactions and racemization are suppressed.
  • the reaction time is usually 1 minute to 24 hours, and preferably 3 hours to 20 hours, which is sufficient time for the reaction to be completed.
  • step III After the reaction, the product obtained is subjected to step III after a simple purification operation such as only removal of by-product salts.
  • a simple purification operation such as only removal of by-product salts.
  • only the optically active hydrogen-phosphine borane compound represented by the general formula (1 ′) was isolated by purification operations such as liquid separation washing, crystallization, distillation, sublimation, and column chromatography. It can also be subjected to step III later.
  • examples of the halogen atom represented by X include fluorine, chlorine, bromine, and iodine.
  • R 4 and R 5 represent a hydrogen atom or an alkyl group.
  • R 4 and R 5 may be the same or different.
  • the alkyl group represented by R 4 and R 5 may be linear, branched or cyclic. Examples of the linear or branched alkyl group include a linear or branched alkyl group having 1 to 6 carbon atoms, and specifically include an ethyl group, isopropyl group, n-propyl group, isobutyl group, n -Butyl group, sec-butyl group, tert-butyl group, isoheptyl group, n-heptyl group, isohexyl group, n-hexyl group and the like.
  • cyclic alkyl group examples include a cyclic alkyl group having 3 to 6 carbon atoms, and specific examples include a cyclopentyl group and a cyclohexyl group. These groups may be appropriately substituted with at least one monovalent substituent.
  • R 4 and R 5 may be bonded to each other to form a saturated or unsaturated ring.
  • the ring formed by combining R 4 and R 5 include a saturated or unsaturated 5-membered ring or 6-membered ring.
  • a benzene ring, a cyclohexane ring, a cyclopentane ring, etc. are mentioned. These rings may be appropriately substituted with at least one monovalent substituent.
  • Examples of the substituent of R 4 and R an alkyl group represented by 5, or may monovalent be substituted ring R 4 and R 5 are formed by bonding is not particularly limited.
  • Examples of the substituent include a halogen atom.
  • R 4 and R 5 is a case where both are bonded to each other to form a benzene ring which may be substituted with at least one monovalent substituent.
  • 2,3-dihalogenopyrazine derivative represented by the general formula (4) a commercially available product can be used.
  • 2,3-dichloroquinoxaline is available from Tokyo Chemical Industry Co., Ltd.
  • the optically active hydrogen-phosphine borane compound represented by the general formula (1 ′) obtained in the step II and the 2,3-dihalogenopyrazine derivative represented by the general formula (4) The reaction with is carried out, for example, by reacting in an inert solvent at ⁇ 78 to 30 ° C. for 1 to 24 hours in the presence of a base. By this reaction, a bis (phosphine-borane) pyrazine compound represented by the general formula (5) is obtained.
  • the amount of the raw material charged during the reaction is based on the 2,3-dihalogenopyrazine derivative represented by the general formula (4) as an optically active hydrogen-phosphine borane represented by the general formula (1 ′).
  • the compound is preferably 2 to 10 equivalents, more preferably 2 to 3 equivalents.
  • inert solvent examples include tetrahydrofuran, N, N-dimethylformamide, diethyl ether, dibutyl ether, dioxane, hexane, toluene and the like, with tetrahydrofuran being preferred.
  • the amount of the inert solvent added during the reaction can be appropriately set in consideration of the fluidity of the reaction mixture during the reaction and the effect of the solvent on the reaction.
  • Examples of the base include n-butyllithium, methylmagnesium bromide, t-butoxypotassium, potassium hydroxide, sodium hydroxide, and the like, preferably n-butyllithium.
  • the amount of the base charged can be appropriately set according to the required degree of acceleration of the reaction, but for the 2,3-dihalogenopyrazine derivative represented by the general formula (4), Usually 2 to 10 equivalents, preferably 2 to 3 equivalents.
  • the order of preparation is not particularly important and can be arbitrarily determined according to workability and the like.
  • the reaction system containing the bis (phosphine-borane) pyrazine compound obtained by the reaction is desorbed.
  • the reaction is carried out by adding a borane agent and reacting at 0 to 100 ° C. for 10 minutes to 3 hours.
  • an optically active 2,3-bisphosphinopyrazine derivative represented by the general formula (A) which is an object of the present invention, is obtained.
  • Examples of the deboronating agent include N, N, N ′, N ′,-tetramethylethylenediamine (TMEDA), triethylenediamine (DABCO), triethylamine, etc., preferably TMEDA.
  • the amount of the deboronating agent charged is 2,3-dibenzene represented by the general formula (4) used in obtaining the bis (phosphine-borane) pyrazine compound represented by the general formula (5).
  • the amount is usually 2 to 20 equivalents, preferably 2 to 10 equivalents, based on the halogenopyrazine derivative.
  • optically active 2,3-bisphosphinopyrazine derivative represented by the general formula (A) produced by the deboraneation reaction may be subjected to separation washing, crystallization, distillation, sublimation, column chromatography, etc. as necessary. It may be subjected to purification work.
  • 2,3-bis (dialkylphosphino) pyrazine derivative represented by the general formula (A) include (R, R) -2,3-bis (tert-butylmethylphosphino) Quinoxaline, (S, S) -2,3-bis (tert-butylmethylphosphino) quinoxaline, (R, S) -2,3-bis (tert-butylmethylphosphino) quinoxaline; (R, R)- 2,3-bis (adamantylmethylphosphino) quinoxaline, (S, S) -2,3-bis (adamantylmethylphosphino) quinoxaline, (R, S) -2,3-bis (adamantylmethylphosphino) quinoxaline (R, R) -2,3-bis (adamantylmethylphosphino) quinoxaline (R, R) -2,3-bis (tert-butylmethylphosphino) pyrazine,
  • the optically active 2,3-bisphosphinopyrazine derivative represented by the general formula (A) obtained by the production method of the present invention is, for example, a coordination of a metal complex used as an asymmetric catalyst in an asymmetric synthesis reaction. Useful as a child.
  • a metal atom which comprises this metal complex transition metals, such as rhodium, ruthenium, iridium, palladium, nickel, iron, are mentioned, for example.
  • optically active 2,3-bisphosphinopyrazine derivative represented by the general formula (A) obtained by the production method of the present invention is also useful as a ligand source for a transition metal complex used as an anticancer agent.
  • a transition metal complex used as an anticancer agent.
  • Gold, copper, or silver is mentioned as a metal atom which comprises this transition metal complex.
  • NMR spectrum measurement was performed with a JEOL ( 1 H; 300 MHz, 13 C; 75.4 MHz, 31 P; 121.4 MHz) NMR apparatus. Tetramethylsilane ( 1 H) was used as an internal standard. The specific rotation was measured with a specific rotation meter SEPA-300 manufactured by Horiba.
  • the obtained colorless powder had a yield of 118.6 g (447 mmol), a yield of 37% (from isocyanate), and a diastereomeric excess> 97% de.
  • the diastereomeric excess was determined from the area ratio of the specific portion protons of SP and RP in 1 H-NMR.
  • Step III Optically active 2,3-bisphosphinopyrazine derivative [(S, S) -2,3 -Bis (tert-butylmethylphosphino) quinoxaline (abbreviation: (S, S) -QuinoxP * )]
  • (S, S) -QuinoxP * Optically active 2,3-bisphosphinopyrazine derivative
  • (R) -tert-butylmethylphosphine-borane obtained in Step II (25.5 mmol) was dissolved in 25 cc of dehydrated THF and cooled to -78 ° C.
  • the reaction was stopped by adding 1M hydrochloric acid, and hexane was added to extract organic components.
  • the organic layer was washed with 1M hydrochloric acid and then with saturated brine, and dried over anhydrous sodium sulfate.
  • the yield was 2,149 mg (6.427 mmol), and the yield was 75%.
  • the analysis results of the obtained title compound are shown below.
  • Step II> Production of optically active hydrogen-phosphine borane compound [(S) -tert-butylmethylphosphine-borane] (S P ) -tert-butyl (methyl) [N-((S) -1-phenylethyl) Carbamoyl] phosphine-borane (R P ) -ter obtained in Step I instead of 10.03 g
  • a colorless powder was obtained in the same procedure as in Step II of Example 1, except that 10.03 g of t-butyl (methyl) [N-((R) -1-phenylethyl) carbamoyl] phosphine-borane was used. .
  • the colorless powder obtained was identified as the title compound by NMR analysis. The NMR analysis results are shown below.
  • the obtained colorless powder had a yield of 3.01 g (25.5 mmol) and a yield of 67%.
  • Step III Optically active 2,3-bisphosphinopyrazine derivative [(R, R) -2,3 -Bis (tert-butylmethylphosphino) quinoxaline (abbreviation: (R, R) -QuinoxP * )] (R) -tert-butylmethylphosphine-borane 3.01 g (25.5 mmol) and 2,3- 1,703 mg of dichloroquinoxaline was replaced with 236 mg (2.0 mmol) of (S) -tert-butylmethylphosphine-borane obtained in Step II and 133 mg (0.67 mmol) of 2,3-dichloroquinoxaline.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 工業的に有利であり、異性体のいずれをも容易に製造し得る光学活性な2,3-ビスホスフィノピラジン誘導体の製造方法であり、下記工程I、II及びIIIにより、一般式(A)で表される光学活性な2,3-ビスホスフィノピラジン誘導体を製造する。下記式中、R1及びR2は、それらが存在することによりリン原子上に不斉を発現させるか又はリン原子が不斉面の一点をなす一対の基であり、それぞれ水素原子、炭化水素基又は置換炭化水素基を示し、R3は不斉炭化水素基又は置換不斉炭化水素基を示し、R4及びR5は、水素原子又はアルキル基を示し、互いに結合して飽和又は不飽和の環を形成していてもよく、Xはハロゲン原子を示す。

Description

ピラジン誘導体の製造方法
 本発明は、ピラジン誘導体の製造方法の製造方法に関する。さらに詳細には、本発明は、不斉合成反応において不斉触媒として用いられる金属錯体の配位子、抗がん剤として用いられる遷移金属錯体の配位子源等として有用な2,3-ビスホスフィノピラジン誘導体の製造方法に関する。
 光学活性なホスフィン配位子を有する金属錯体を触媒とする有機合成反応は古くから知られており、極めて有用であることから、多くの研究成果が報告されている。近年では、リン原子そのものが不斉である配位子が開発されている。例えば特許文献1には、優れた触媒性能を発揮する金属錯体を提供することができる光学活性な2,3-ビス(ジアルキルホスフィノ)ピラジン誘導体及びその製造方法が記載されている。
 特許文献1に記載の製造方法は、ジアルキル(ベンゾイルオキシメチル)ホスフィン-ボランから、過硫酸カリウム及び三塩化ルテニウムを用いて、ジアルキル-ホスフィンボランを得る工程を含んでいる。過硫酸カリウムは爆発のおそれのある化合物である。三塩化ルテニウムは高価な化合物であり、その使用は経済的に不利である。
 また、光学活性な2,3-ビス(ジアルキルホスフィノ)ピラジン誘導体には、リン原子の不斉によって、(R,R)体、(S,S)体及び(R,S)体の3種の異性体が存在する。光学活性な2,3-ビス(ジアルキルホスフィノ)ピラジン誘導体の製造においては、これらの異性体のうち、所望のもののみが容易に得られることも求められる。
特開2007-56007号公報
 従って、本発明の目的は、工業的に有利であり、異性体のいずれをも容易に製造し得る、光学活性な2,3-ビスホスフィノピラジン誘導体の製造方法を提供することにある。
 本発明は、下記一般式(A)で表される光学活性な2,3-ビスホスフィノピラジン誘導体の製造方法であって、下記工程I、II及びIIIを含むことを特徴とするピラジン誘導
体の製造方法を提供することにより、前記目的を達成したものである。
〔工程I〕
 一般式(1)
Figure JPOXMLDOC01-appb-C000009
(式中、R1及びR2は、それらが存在することによりリン原子上に不斉を発現させるか又
はリン原子が不斉面の一点をなす一対の基であり、それぞれ水素原子、炭化水素基又は置換炭化水素基を示す。)
で表される水素-ホスフィンボラン化合物と、一般式(2)
Figure JPOXMLDOC01-appb-C000010
(式中、R3は不斉炭化水素基又は置換不斉炭化水素基を示す。)
で表される光学活性イソシアネート化合物とをカップリング反応に付して、一般式(3)
Figure JPOXMLDOC01-appb-C000011
(式中、R1、R2及びR3は、前記と同義である。)
で表されるホスフィンボラン化合物を得た後、得られた一般式(3)で表されるホスフィンボラン化合物を光学分割により精製して、一般式(3’)
Figure JPOXMLDOC01-appb-C000012
(式中、R1、R2及びR3は、前記と同義であり、*は不斉を示す。)
で表される光学活性なホスフィンボラン化合物を得る。
〔工程II〕
 前記工程Iで得られた一般式(3’)で表されるホスフィンボラン化合物を分解反応に
付して、一般式(1’)
Figure JPOXMLDOC01-appb-C000013
(式中、R1及びR2並びに*は、前記と同義である。)
で表される光学活性な水素-ホスフィンボラン化合物を得る。
〔工程III〕
 前記工程IIで得られた一般式(1’)で表される光学活性な水素-ホスフィンボラン化合物と、一般式(4)
Figure JPOXMLDOC01-appb-C000014
(式中、R4及びR5は、水素原子又はアルキル基を示し、同一の基であっても異なる基であってもよく、互いに結合して飽和又は不飽和の環を形成していてもよく、該飽和又は不飽和の環は、置換基を有してもよく、Xはハロゲン原子を示す。)
で表される2,3-ジハロゲノピラジンとを反応させて、一般式(5)
Figure JPOXMLDOC01-appb-C000015
(式中、R1、R2、R4及びR5並びに*は、前記と同義である。)
で表される光学活性なビス(ホスフィン-ボラン)ピラジン化合物を得た後、該ビス(ホスフィン-ボラン)ピラジン化合物の脱ボラン化反応を行って、一般式(A)
Figure JPOXMLDOC01-appb-C000016
(式中、R1、R2、R4及びR5並びに*は、前記と同義である。)
で表される光学活性な2,3-ビスホスフィノピラジン誘導体を得る。
 本発明の光学活性な2,3-ビスホスフィノピラジン誘導体の製造方法は、爆発のおそれのある化合物や高価な化合物を使用することがない点で、工業的に有利である。また、本発明の製造方法によれば、光学活性な2,3-ビスホスフィノピラジン誘導体のいずれの異性体も、容易に製造することができる。
 先ず、前記工程Iについて説明する。
 前記一般式(1)、(3)、(3’)において、R1、R2で示される基について以下に説明する。
 R1とR2は、それぞれ水素原子、炭化水素基又は置換炭化水素基を示す。R1とR2は、互いに独立していてもよく或いは架橋により連結していてもよい。
 前記炭化水素基としては、特に制限はないが、例えばアルキル基、アラルキル基、アリール基等が挙げられる。
 前記アルキル基は、直鎖状でも分岐状でも環状でもよい。直鎖状又は分岐状のアルキル
基としては、例えば炭素数1~8の直鎖状又は分岐状アルキル基が挙げられ、具体的にはメチル基、エチル基、n-プロピル基、2-プロピル基、n-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、2-ペンチル基、tert-ペンチル基、2-メチルブチル基、3-メチルブチル基、2,2-ジメチルプロピル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、tert-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、5-メチルペンチル基等が挙げられる。環状アルキル基としては、例えば炭素数3~16のシクロアルキル基が挙げられ、具体的にはシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、2-メチルシクロペンチル基、3-メチルシクロペンチル基、シクロヘプチル基、2-メチルシクロヘキシル基、3-メチルシクロヘキシル基、4-メチルシクロヘキシル基が挙げられる。環状アルキル基には多環アルキル基も含まれ、多環アルキル基としては、メンチル基、ボルニル基、ノルボルニル基、アダマンチル基等が挙げられる。
 前記アラルキル基としては、例えば炭素数7~12のアラルキル基が挙げられ、具体的にはベンジル基、2-フェニルエチル基、1-フェニルプロピル基、2-フェニルプロピル基、3-フェニルプロピル基、1-フェニルブチル基、2-フェニルブチル基、3-フェニルブチル基、4-フェニルブチル基、1-フェニルペンチル基、2-フェニルペンチル基、3-フェニルペンチル基、4-フェニルペンチル基、5-フェニルペンチル基、1-フェニルヘキシル基、2-フェニルヘキシル基、3-フェニルヘキシル基、4-フェニルヘキシル基、5-フェニルヘキシル基、6-フェニルヘキシル基等が挙げられる。
 前記アリール基としては、例えば炭素数6~20のアリール基が挙げられ、具体的にはフェニル基、ナフチル基、アントリル基、ビフェニル基、ビナフチル基等が挙げられる。
 前記置換炭化水素基としては、前記炭化水素基の少なくとも1個の水素原子が炭化水素基、アルコキシ基、ハロゲン原子、アミノ基、保護基を有するアミノ基等の置換基で置換された炭化水素基、又は前記炭化水素基の少なくとも1個の炭素原子が酸素、窒素、硫黄、リン等のヘテロ原子で置換した基等が挙げられる。
 前記置換炭化水素基には複素環基も含まれ、この場合は脂肪族複素環基でも芳香族複素環基でもよい。脂肪族複素環基としては、例えば5員もしくは6員の脂肪族複素環基が挙げられ、具体例としては、ピロリジル-2-オン基、ピペリジノ基、ピペラジニル基、モルホリノ基、テトラヒドロフリル基、テトラヒドロピラニル基等が挙げられる。芳香族複素環基としては、例えば5員もしくは6員の芳香族複素環基が挙げられ、具体例としては、例えばピリジル基、イミダゾリル基、チアゾリル基、フルフリル基、ピラニル基、フリル基、ベンゾフリル基、チエニル基等が挙げられる。
 本発明において、リン原子上に不斉を発現させる場合は、不斉の効果をより高く発揮させるためには、R1とR2において立体的な嵩高さが大きく異なる組み合わせが好ましく、具体例としては、メチル基とtert-ブチル基との組み合わせ、メチル基とアダマンチル基との組み合わせ等が挙げられる。
 本発明において、リン原子が軸不斉の対称面の一点を構成する場合は、不斉の効果をより高く発揮させるためには、R1又はR2にある不斉を構成する部分がリン原子にできるだけ近いことが好ましく、具体例としては、R1とR2が架橋により連結し、それらとリン原子を含めた一団が、2,5-ジメチルホスホラン又は2,5-ジエチルホスホランである
場合等が挙げられる。
 前記一般式(2)、(3)、(3’)において、R3で示される基について説明する。
 R3は、不斉炭化水素基又は置換不斉炭化水素基を示す。不斉炭化水素基としては特に
限定はなく、具体例としては、(S)-1-フェニルエチル基、(R)-1-フェニルエチル基、(S)-1-(p-トルイル)エチル基、(R)-1-(p-トルイル)エチル基、(S)-1-(1-ナフチル)エチル基、(R)-1-(1-ナフチル)エチル基、(S)-1-シクロヘキシルエチル基、(R)-1-シクロヘキシルエチル基、(S)-2-(4-メチルフェニル)-1-フェニルエチル基、(R)-2-(4-メチルフェニル)-1-フェニルエチル基等が挙げられ、これらの中でも、工業的に安価に利用できる(S)-1-フェニルエチル基、(R)-1-フェニルエチル基が好ましい。
 前記置換不斉炭化水素基としては、前記不斉炭化水素基の少なくとも1個の水素原子が炭化水素基、アルコキシ基、ハロゲン原子、アミノ基、ニトロ基、保護基を有するアミノ基等の置換基で置換された炭化水素基、又は前記不斉炭化水素基の少なくとも1個の炭素原子が酸素、窒素、硫黄、リン等のヘテロ原子で置換した基等が挙げられる。
 工程Iにおいては、反応容器中で前記一般式(1)で表される水素-ホスフィンボラン化合物と前記一般式(2)で表される光学活性イソシアネート化合物を混合し、カップリング反応を進行させる。その際、反応系に塩基を加えて反応を促進させることが好ましい。このカップリング反応により、前記一般式(3)で表されるホスフィンボラン化合物が生成する。前記一般式(1)で表される水素-ホスフィンボラン化合物としては、S体とR体との混合物(例えばラセミ体)を用いることができる。前記一般式(1)で表される水素-ホスフィンボラン化合物としてS体とR体との混合物を用いると、カップリング反応により生成する前記一般式(3)で表されるホスフィンボラン化合物は、Sp体とRp体との混合物となる(尚、Sp体は不斉リン原子の立体配置がSである化合物を意味し、Rp体は不斉リン原子の立体配置がRである化合物を意味する)。
 カップリング反応後に、副生塩を除去し、前記一般式(3)で表されるホスフィンボラン化合物の対掌体(Sp体とRp体)の片側のみを得るための精製(光学分割)を行なうと、前記一般式(3’)で表される光学活性なホスフィンボラン化合物を得ることができる。前記一般式(3’)で表されるホスフィンボラン化合物は、リン原子上又はリン原子を不斉面の一点とする不斉部分、及び光学活性カルバモイル基を有することを特徴とする、不斉点を2点有するジアステレオマーである。
 一般式(1)で表される水素-ホスフィンボラン化合物に、一般式(2)で表される光学活性イソシアネート化合物を付加させるとき、該イソシアネート化合物における基R3
としてS体のものを用いるか、それともR体のものを用いるかは、一般式(3’)で表されるホスフィンボラン化合物のジアステレオマーの光学分割のしやすさに応じて適宜決定すればよい。例えばR1とR2とがメチル基とtert-ブチル基との組み合わせである場合については、以下のことが言える。
 前記一般式(2)で表される光学活性イソシアネート化合物として、R3が(S)-不
斉炭化水素基又は(S)-置換不斉炭化水素基であるものを用いると、晶析により光学分割を行う場合に、Sp体の一般式(3’)で表されるホスフィンボラン化合物が晶析しやすい。一方、前記一般式(2)で表される光学活性イソシアネート化合物として、R3
(R)-不斉炭化水素基又は(R)-置換不斉炭化水素基であるものを用いると、晶析により光学分割を行う場合に、Rp体の一般式(3’)で表されるホスフィンボラン化合物が晶析しやすい。
 前記一般式(1)で表される水素-ホスフィンボラン化合物は、市販品を使用することができ、例えば日本化学工業(株)から入手可能である。前記一般式(3)で表される光学活性イソシアネート化合物も、市販品を使用することができ、例えば東京化成工業(株)
から入手可能である。
 前記カップリング反応時には、適宜溶媒が使用される。該溶媒としては、反応基質を分解しない溶媒が使用され、具体例としては、トルエン、ヘキサン、テトラヒドロフラン(THF)、ジエチルエーテル、ジオキサン、アセトン、酢酸エチル、クロロベンゼン、ジメチルホルムアミド(DMF)、アセトニトリル、メタノール、エタノール、水等が挙げられるが、好ましくはトルエン又はTHFである。
 反応時の前記溶媒の添加量は、反応時における反応混合物の流動性及び溶媒の反応に与える効果を考慮して、適宜に設定することができる。
 反応時の原料の仕込み量としては、前記一般式(2)で表される光学活性イソシアネート化合物を基準として、前記一般式(1)で表される水素-ホスフィンボラン化合物が好ましくは0.4~1.5当量であり、最適値は1当量である。
 反応時に塩基を加えると反応が促進する。ここで用いる塩基としては特に限定はないが、例えば、ピリジン、トリエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、4-(N,N-ジメチルアミノ)ピリジン(DMAP)等の有機塩基、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等の無機塩基、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、リチウムジイソプロピルアミド、イソプロピルマグネシウムクロリド、メチルマグネシウムブロミド等の有機金属が挙げられる。好ましくはn-ブチルリチウムである。
 前記塩基の仕込量としては、必要とされる反応の促進の度合いに応じて適宜に設定することができるが、前記一般式(2)で表される光学活性イソシアネート化合物に対し、通常0.1mol%~150mol%であり、好ましくは1mol%~10mol%である。仕込む順序は特に重要ではなく、作業性等に応じて任意に決定できる。
 反応温度は、通常-80~50℃であり、好ましくは反応が促進され且つ副反応及びラセミ化が抑制される0~30℃である。
 反応時間は、通常1分~24時間であり、好ましくは反応が完結するのに十分な時間である30分~4時間である。
 カップリング反応後、副生塩等の副生物を除き、次いで、精製により光学分割すれば、対掌体の片側のみ、即ち前記一般式(3’)で表されるホスフィンボラン化合物を得ることができる。この際行なわれる精製の方法としては、光学分割が可能であれば特に制限されるものではなく、分液洗浄、晶析、蒸留、昇華、カラムクロマトグラフィー等が挙げられるが、好ましくは工業的に有利な晶析である。
 前記一般式(3’)で表されるホスフィンボラン化合物としては、具体的には次のような化合物が挙げられるが、あくまで例示であって、本発明の適用範囲はこれらに限定されない。
 リン原子上に不斉を導入する場合の構造式を例示する。
Figure JPOXMLDOC01-appb-C000017
 (a)(SP)-tert-ブチル(メチル)[N-((S)-1-フェニルエチル)
カルバモイル]ホスフィンボラン、又は(RP)-tert-ブチル(メチル)[N-(
(S)-1-フェニルエチル)カルバモイル]ホスフィンボラン
 (b)(SP)-アダマンチル(メチル)[N-((S)-1-フェニルエチル)カル
バモイル]ホスフィンボラン、又は(RP)-アダマンチル(メチル)[N-((S)-
1-フェニルエチル)カルバモイル]ホスフィンボラン
 リン原子が軸不斉の対称面の一点を構成する場合の構造式を例示する。
Figure JPOXMLDOC01-appb-C000018
 (c)(R,R)-2,5-ジメチル-1-[N-((S)-1-(1-ナフチル)エチル)カルバモイル]ホスホランボラン
 次に、前記工程IIについて説明する。
 反応容器中で、前記工程Iで得られた一般式(3’)で表されるホスフィンボラン化合物と塩基を混合し、該ホスフィンボラン化合物を分解する。分解反応促進のためにアルコールを添加することが好ましい。反応後、副生物を除去し、前記一般式(1’)で表される光学活性な水素-ホスフィンボラン化合物を得る。
 反応時には適宜溶媒が使用される。該溶媒としては、反応基質を分解しない溶媒が使用され、具体例としては、トルエン、ヘキサン、テトラヒドロフラン(THF)、ジエチルエーテル、ジオキサン、アセトン、酢酸エチル、クロロベンゼン、ジメチルホルムアミド(DMF)、アセトニトリル、メタノール、エタノール、水等が挙げられるが、好ましくはDMF又はアセトニトリルである。
 反応時の溶媒の添加量は、反応時における反応混合物の流動性及び溶媒の反応に与える効果を考慮して、適宜に設定することができる。
 前記塩基としては特に限定はないが、例えば、ピリジン、トリエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、4-(N,N-ジメチルアミノ)ピリジン(DMAP)等の有機塩基、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等の無機塩基が挙げられる。これらの塩基は、均一系又は液-液の2相系で反応させるため溶液として供給されることが好ましい。例えば塩基として水酸化カリウムを用いる場合は、1~70%水酸化カリウム水溶液又はメタノール溶液として用いることが好ましく、より具体的には50%水酸化カリウム水溶液が好適に用いられる。
 前記塩基の仕込量は、必要とされる反応の促進の度合いに応じて適宜に設定することができるが、前記一般式(3’)で表されるホスフィンボラン化合物に対し、通常0.01当量~10当量であり、好ましくは0.1当量~5当量である。仕込む順序は特に重要ではなく、作業性等に応じて任意に決定できる。
 反応を促進する為にアルコールを加えるが、ここで用いるアルコールとしては特に限定はないが、例えばメタノール、エタノールが挙げられ、好ましくはメタノールである。
 反応温度は、通常-80~50℃であり、好ましくは反応が促進され且つ副反応及びラセミ化が抑制される0~30℃である。
 反応時間は、通常1分~24時間であり、好ましくは反応が完結するのに十分な時間である3時間~20時間である。
 反応後、得られた生成物は、副生塩の除去のみといった簡単な精製作業の後に工程III
に供することもできるし、分液洗浄、晶析、蒸留、昇華、カラムクロマトグラフィーといった精製作業により、前記一般式(1’)で表される光学活性な水素-ホスフィンボラン化合物のみを単離した後に工程IIIに供することもできる。
 次に、前記工程IIIについて説明する。
 前記一般式(4)において、Xで表されるハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
 前記一般式(4)において、R4及びR5は、水素原子又はアルキル基を示す。R4とR5は、同一でもよく或いは異なっていてもよい。R4及びR5で示されるアルキル基は、直鎖状でも分岐状でも環状でもよい。直鎖状又は分岐状のアルキル基としては、例えば炭素数1~6の直鎖状又は分岐状アルキル基が挙げられ、具体的にはエチル基、イソプロピル基、n-プロピル基、イソブチル基、n-ブチル基、sec-ブチル基、tert-ブチル基、イソヘプチル基、n-ヘプチル基、イソヘキシル基、n-ヘキシル基等が挙げられる。環状のアルキル基としては、例えば炭素数3~6の環状アルキル基が挙げられ、具体的にはシクロペンチル基、シクロヘキシル基等が挙げられる。これらの基は、少なくとも一個の一価の置換基で適宜置換されていてもよい。
 またR4及びR5は、互いに結合して飽和又は不飽和の環を形成していてもよい。R4
びR5が結合して形成された環としては、飽和又は不飽和の五員環又は六員環が挙げられ
る。例えばベンゼン環、シクロヘキサン環、シクロペンタン環等が挙げられる。これらの環は、少なくとも一個の一価の置換基で適宜置換されていてもよい。
 R4及びR5で示されるアルキル基、又はR4及びR5が結合して形成された環を置換してもよい一価の置換基としては、特に制限はない。該置換基としては、例えばハロゲン原子が挙げられる。
 R4及びR5として特に好ましいのは、両者が互いに結合して、少なくとも一個の一価の置換基で置換されていてもよいベンゼン環を形成している場合である。
 前記一般式(4)で表される2,3-ジハロゲノピラジン誘導体は、市販品を使用することができ、例えば2,3-ジクロロキノキサリンは東京化成工業(株)から入手可能である。
 前記工程IIIにおいて、前記工程IIで得られた一般式(1’)で表される光学活性な水
素-ホスフィンボラン化合物と、前記一般式(4)で表される2,3-ジハロゲノピラジン誘導体との反応は、例えば、塩基の存在下、不活性溶媒中、-78~30℃で、1~24時間反応させることにより行なわれる。この反応により、前記一般式(5)で表されるビス(ホスフィン-ボラン)ピラジン化合物が得られる。
 反応時の原料の仕込み量としては、前記一般式(4)で表される2,3-ジハロゲノピラジン誘導体を基準として、前記一般式(1’)で表される光学活性な水素-ホスフィンボラン化合物が好ましくは2~10当量であり、さらに好ましくは2~3当量である。
 前記不活性溶媒としては、テトラヒドロフラン、N,N-ジメチルホルムアミド、ジエチルエーテル、ジブチルエーテル、ジオキサン、ヘキサン、トルエン等が挙げられるが、好ましくはテトラヒドロフランである。反応時の前記不活性溶媒の添加量は、反応時における反応混合物の流動性及び溶媒の反応に与える効果を考慮して、適宜に設定することができる。
 前記塩基としては、n-ブチルリチウム、メチルマグネシウムブロミド、t-ブトキシカリウム、水酸化カリウム、水酸化ナトリム等が挙げられるが、好ましくはn-ブチルリチウムである。前記塩基の仕込量としては、必要とされる反応の促進の度合いに応じて適宜に設定することができるが、前記一般式(4)で表される2,3-ジハロゲノピラジン誘導体に対し、通常2~10当量であり、好ましくは2~3当量である。仕込む順序は特に重要ではなく、作業性等に応じて任意に決定できる。
 前記一般式(5)で表されるビス(ホスフィン-ボラン)ピラジン化合物の脱ボラン化反応は、例えば、前記反応により得られた該ビス(ホスフィン-ボラン)ピラジン化合物を含有する反応系に、脱ボラン化剤を添加し、0~100℃で、10分~3時間反応させることにより行なわれる。この脱ボラン化反応により、本発明の目的物である前記一般式(A)で表される光学活性な2,3-ビスホスフィノピラジン誘導体が得られる。
 前記脱ボラン化剤としては、N,N,N’,N’,-テトラメチルエチレンジアミン(TMEDA)、トリエチレンジアミン(DABCO)、トリエチルアミン等が挙げられるが、好ましくはTMEDAである。前記脱ボラン化剤の仕込量としては、前記一般式(5)で表されるビス(ホスフィン-ボラン)ピラジン化合物を得る際に用いた前記一般式(4)で表される2,3-ジハロゲノピラジン誘導体に対し、通常2~20当量であり、好ましくは2~10当量である。
 脱ボラン化反応により生成した前記一般式(A)で表される光学活性な2,3-ビスホスフィノピラジン誘導体は、必要に応じて分液洗浄、晶析、蒸留、昇華、カラムクロマトグラフィーといった精製作業に付してもよい。
 前記一般式(A)で表される2,3-ビス(ジアルキルホスフィノ)ピラジン誘導体の具体的な化合物を例示すると、(R,R)-2,3-ビス(tert-ブチルメチルホスフィノ)キノキサリン、(S,S)-2,3-ビス(tert-ブチルメチルホスフィノ)キノキサリン、(R,S)-2,3-ビス(tert-ブチルメチルホスフィノ)キノキサリン;(R,R)-2,3-ビス(アダマンチルメチルホスフィノ)キノキサリン、(S,S)-2,3-ビス(アダマンチルメチルホスフィノ)キノキサリン、(R,S)-2,3-ビス(アダマンチルメチルホスフィノ)キノキサリン;(R,R)-2,3-ビス(tert-ブチルメチルホスフィノ)ピラジン、(S,S)-2,3-ビス(tert-ブチルメチルホスフィノ)ピラジン、(R,S)-2,3-ビス(tert-ブチルメチルホスフィノ)ピラジン;(R,R)-2,3-ビス(アダマンチルメチルホスフィノ)ピラジン、(S,S)-2,3-ビス(アダマンチルメチルホスフィノ)ピラジン
、(R,S)-2,3-ビス(アダマンチルメチルホスフィノ)ピラジン等が挙げられる。
 本発明の製造方法により得られる前記一般式(A)で表される光学活性な2,3-ビスホスフィノピラジン誘導体は、例えば、不斉合成反応において不斉触媒として用いられる金属錯体の配位子として有用である。該金属錯体を構成する金属原子としては、例えば、ロジウム、ルテニウム、イリジウム、パラジウム、ニッケル、鉄等の遷移金属が挙げられる。
 本発明の製造方法により得られる前記一般式(A)で表される光学活性な2,3-ビスホスフィノピラジン誘導体は、抗がん剤として用いられる遷移金属錯体の配位子源としても有用である(例えば特開2007-320909号公報参照)。該遷移金属錯体を構成する金属原子としては、金、銅又は銀が挙げられる。
 以下に実施例を挙げて本発明を具体的に説明するが、あくまで例示であって、本発明の適用範囲はこれらに限定されない。
 すべての合成操作は、よく乾燥させたガラス容器を使って行なった。反応は窒素雰囲気下で行なった。原料試薬及び溶媒は、一般の試薬を使用した。ラセミのtert-ブチルメチルホスフィンボランは、日本化学工業(株)製のものを使用した。
 NMRスペクトル測定は、JEOL製(1H;300MHz、13C;75.4MHz、31P;121.4MHz)NMR装置で行なった。内部標準としてテトラメチルシラン(1H)を使用した。比旋光度測定は、堀場製作所製比旋光度計SEPA-300で行なった。
〔実施例1〕
<工程I> (S P )-tert-ブチル(メチル)[N-((S)-1-フェニルエチ
ル)カルバモイル]ホスフィン-ボランの製造
 3L四つ口フラスコに、機械撹拌シール、温度計、等圧滴下ろうと及び排気部を備えた。そこへ、ラセミ-tert-ブチルメチルホスフィンボラン141.8g(1202mmol)及びTHF600ccを入れ、ラセミ-tert-ブチルメチルホスフィンボランを溶解させ、10℃以下に保持しながら1.59mol/Lのn-ブチルリチウム-ヘキサン溶液75cc(119mmol)を滴下した。続いて、同温度にて(S)-(-)-α-メチルベンジルイソシアネート176.8g(1201mmol)を滴下した。その後室温に戻し、一晩撹拌熟成した。5重量%塩酸90g加えて反応を停止した後、ヘキサン240cc及び水240ccを加えて2層に分画した。水層を除去し、有機層を2.5重量%重曹水240g、続いて水240ccで洗い、濃縮して、粗生物(白色フレーク状固体)として、一般式(3)で表されるホスフィンボラン化合物を得た(348.3g)。粗生物を酢酸エチル240cc+ヘキサン1800ccで晶析し、ろ過、乾燥して無色粉末を得た。NMR分析により、得られた無色粉末は表題化合物と同定された。NMR分析結果を以下に示す。また、得られた無色粉末は、収量118.6g(447mmol)、収率37%(イソシアネートから)、ジアステレオマー過剰率>97%deであった。尚、ジアステレオマー過剰率は、1H-NMRのSPおよびRPの特定部プロトンの面
積比から決定した。
(NMR分析結果)
1H-NMR(CDCl3);
(SP)-体(目的物);-0.5-1(3H,m),1.14(9H,d,14.7H
z),1.45(3H,d,10.5Hz),1.53(3H,d,6.9Hz),5.15(1H,pent,6.9Hz),7.2-7.4(6H,m).
(RP)-体;-0.5-1(3H,m),1.25(9H,d,14.7Hz),1.
42(3H,d,10.5Hz),1.53(3H,d,6.9Hz),5.15(1H,pent,6.9Hz),7.2-7.4(6H,m).
<工程II> 光学活性水素-ホスフィンボラン化合物〔(R)-tert-ブチルメチルホスフィン-ボラン〕の製造
 200cc四つ口フラスコに、機械撹拌シール、温度計及び排気部を備え、そこへ、工程Iで得られた(SP)-tert-ブチル(メチル)[N-((S)-1-フェニルエ
チル)カルバモイル]ホスフィン-ボラン10.03g(37.8mmol)及びDMF100ccを入れ、ホスフィン-ボランを溶解させた後、氷水浴にて10℃以下とした。ここに50重量%水酸化カリウム水溶液21.26g(189mmol)とメタノール25ccを添加した。次に、氷水浴をはずして18時間撹拌熟成した。次いで、500cc三角フラスコに冷水100ccと石油エーテル100ccを入れ、ここに反応液を分散させることで反応を停止した。水層と有機層とを分離し、水層を石油エーテル100ccで再抽出し、先に分離した有機層と合わせた後、水50ccで2回洗い、無水硫酸ナトリウムにて乾燥した。シリカゲルカラムクロマトグラフィー(ワコーゲルC200)にて精製し、無色粉末を得た。NMR分析により、得られた無色粉末は表題化合物と同定された。NMR分析結果を以下に示す。また、得られた無色粉末は、収量3.01g(25.5mmol)、収率67%であった。
(NMR分析結果)
1H-NMR(CDCl3);
-0.5-1(3H,m),1.22(9H,d,14.7Hz),1.32(3H,dd,10.5Hz,6.0Hz),4.4(1H,dm,355Hz).
<工程III> 光学活性な2,3-ビスホスフィノピラジン誘導体〔(S,S)-2,3
-ビス(tert-ブチルメチルホスフィノ)キノキサリン(略称:(S,S)-QuinoxP * )〕の製造
 フラスコにて、工程IIで得られた(R)-tert-ブチルメチルホスフィン-ボラン3.01g(25.5mmol)を脱水THF25ccに溶解し、-78℃に冷却した。ここに1.65mol/Lのn-ブチルリチウム-ヘキサン溶液15.5cc(25.6mmol)を滴下して加え、同温度で15分撹拌熟成した。続いて2,3-ジクロロキノキサリン1,703mg(8.56mmol)をよく撹拌しながら一度に加えた。添加後、1時間かけて室温に戻し、3時間撹拌した。続いてテトラメチルエチレンジアミン10.07g(87mmol)を添加し、室温(25℃)で2時間撹拌熟成した。1M塩酸を加えて反応停止し、ヘキサンを加えて有機成分を抽出した。有機層を1M塩酸、続いて飽和食塩水で分液洗浄し、無水硫酸ナトリウム上で乾燥した。溶媒を減圧留去し、残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=30/1)で精製し、表題化合物を橙色粉末として得た。さらに熱メタノールから再結晶精製して橙色立方晶の結晶を得た。収量は2,149mg(6.427mmol)、収率は75%であった。得られた表題化合物の分析結果を以下に示す。
(分析結果)
1H-NMR(CDCl3);
1.02(18H,t,6.0Hz),1.4(6H,t,3.2Hz),7.68-7.75(2H,m),8.07-8.14(2H,m).
13C-NMR(CDCl3);
4.8(d),27.6(t),31.9(t),129.6(d),141.6,16
5.1(d),165.2(d).
31P-NMR(CDCl3);
-16.6.
比旋光度;+53.5°([α]D 22(c=1,CHCl3);尚、(R,R)-QuinoxP*は比旋光度-54.3°であることが既知である)
融点;102-103℃
〔実施例2〕
<工程I> (R P )-tert-ブチル(メチル)[N-((R)-1-フェニルエチ
ル)カルバモイル]ホスフィン-ボランの製造
 (S)-(-)-α-メチルベンジルイソシアネート176.8gを(R)-(+)-α-メチルベンジルイソシアネート17.7gに代え、これに対応して反応スケールを調整した以外は、実施例1の工程Iと同様の手順で、無色粉末を得た。
 得られた無色粉末は、NMR分析が実施例1の工程Iに示した(RP)-体の結果と同
様の結果を示したことから、表題化合物と同定された。また、得られた無色粉末は、収量11.9g(44.7mmol)、収率37%(イソシアネートから)、ジアステレオマー過剰率>97%deであった。
<工程II> 光学活性水素-ホスフィンボラン化合物[(S)-tert-ブチルメチルホスフィン-ボラン]の製造
 (SP)-tert-ブチル(メチル)[N-((S)-1-フェニルエチル)カルバ
モイル]ホスフィン-ボラン10.03gに代えて、工程Iで得られた(RP)-ter
t-ブチル(メチル)[N-((R)-1-フェニルエチル)カルバモイル]ホスフィン-ボラン10.03gを使用した以外は、実施例1の工程IIと同様の手順で、無色粉末を得た。
 NMR分析により、得られた無色粉末は表題化合物と同定された。NMR分析結果を以下に示す。また、得られた無色粉末は、収量3.01g(25.5mmol)、収率67%であった。
(分析結果)
1H-NMR(CDCl3);
-0.5-1(3H,m),1.22(9H,d,14.7Hz),1.32(3H,dd,10.5Hz,6.0Hz),4.4(1H,dm,355Hz).
<工程III> 光学活性な2,3-ビスホスフィノピラジン誘導体〔(R,R)-2,3
-ビス(tert-ブチルメチルホスフィノ)キノキサリン(略称:(R,R)-QuinoxP * )〕の製造
 (R)-tert-ブチルメチルホスフィン-ボラン3.01g(25.5mmol)及び2,3-ジクロロキノキサリン1,703mgを、工程IIで得られた(S)-tert-ブチルメチルホスフィン-ボラン236mg(2.0mmol)及び2,3-ジクロロキノキサリン133mg(0.67mmol)に代え、これに対応して反応スケールを調整した以外は、実施例1の工程IIIと同様の手順で、橙色立方晶の結晶を得た。得られ
た橙色立方晶の結晶は、収量179mg(0.535mmol)、収率80%であった。得られた橙色立方晶の結晶は、分析の結果、表題化合物であると同定された。分析結果を以下に示す。
(分析結果)
1H-NMR(CDCl3);
1.02(18H,t,6.0Hz),1.4(6H,t,3.2Hz),7.68-7.75(2H,m),8.07-8.14(2H,m).
13C-NMR(CDCl3);
4.8(d),27.6(t),31.9(t),129.6(d),141.6,165.1(d),165.2(d).
31P-NMR(CDCl3);
-16.6.
比旋光度;-54.3°([α]D 22(c=1,CHCl3
融点;102-103℃

Claims (4)

  1.  下記一般式(A)で表される光学活性な2,3-ビスホスフィノピラジン誘導体の製造方法であって、下記工程I、II及びIIIを含むことを特徴とするピラジン誘導体の製造方
    法。
    〔工程I〕
     一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2は、それらが存在することによりリン原子上に不斉を発現させるか又はリン原子が不斉面の一点をなす一対の基であり、それぞれ水素原子、炭化水素基又は置換炭化水素基を示す。)
    で表される水素-ホスフィンボラン化合物と、一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3は不斉炭化水素基又は置換不斉炭化水素基を示す。)
    で表される光学活性イソシアネート化合物とをカップリング反応に付して、一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1、R2及びR3は、前記と同義である。)
    で表されるホスフィンボラン化合物を得た後、得られた一般式(3)で表されるホスフィンボラン化合物を光学分割により精製して、一般式(3’)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1、R2及びR3は、前記と同義であり、*は不斉を示す。)
    で表される光学活性なホスフィンボラン化合物を得る。
    〔工程II〕
     前記工程Iで得られた一般式(3’)で表されるホスフィンボラン化合物を分解反応に
    付して、一般式(1’)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R1及びR2並びに*は、前記と同義である。)
    で表される光学活性な水素-ホスフィンボラン化合物を得る。
    〔工程III〕
     前記工程IIで得られた一般式(1’)で表される光学活性な水素-ホスフィンボラン化合物と、一般式(4)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R4及びR5は、水素原子又はアルキル基を示し、同一の基であっても異なる基であってもよく、互いに結合して飽和又は不飽和の環を形成していてもよく、該飽和又は不飽和の環は、置換基を有してもよく、Xはハロゲン原子を示す。)
    で表される2,3-ジハロゲノピラジンとを反応させて、一般式(5)
    Figure JPOXMLDOC01-appb-C000007
    (式中、R1、R2、R4及びR5並びに*は、前記と同義である。)
    で表される光学活性なビス(ホスフィン-ボラン)ピラジン化合物を得た後、該ビス(ホスフィン-ボラン)ピラジン化合物の脱ボラン化反応を行って、一般式(A)
    Figure JPOXMLDOC01-appb-C000008
    (式中、R1、R2、R4及びR5並びに*は、前記と同義である。)
    で表される光学活性な2,3-ビスホスフィノピラジン誘導体を得る。
  2.  R1がtert-ブチル基又はアダマンチル基であり、R2がメチル基である請求項1記載のピラジン誘導体の製造方法。
  3.  R3が(S)-1-フェニルエチル基又は(R)-1-フェニルエチル基である請求項
    1又は2記載のピラジン誘導体の製造方法。
  4.  R4及びR5が互いに結合して、置換基を有していてもよいベンゼン環を形成している請
    求項1~3のいずれかに記載のピラジン誘導体の製造方法。
PCT/JP2011/058701 2010-04-09 2011-04-06 ピラジン誘導体の製造方法 WO2011126045A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-090058 2010-04-09
JP2010090058A JP5465584B2 (ja) 2010-04-09 2010-04-09 ピラジン誘導体の製造方法

Publications (1)

Publication Number Publication Date
WO2011126045A1 true WO2011126045A1 (ja) 2011-10-13

Family

ID=44762980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058701 WO2011126045A1 (ja) 2010-04-09 2011-04-06 ピラジン誘導体の製造方法

Country Status (2)

Country Link
JP (1) JP5465584B2 (ja)
WO (1) WO2011126045A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176830A1 (ja) * 2011-06-23 2012-12-27 日本化学工業株式会社 1,2-ビス(ジアルキルホスフィノ)-4,5-(メチレンジオキシ)ベンゼン誘導体、その製造方法及び該1,2-ビス(ジアルキルホスフィノ)-4,5-(メチレンジオキシ)ベンゼン誘導体を配位子とする金属錯体並びに不斉水素化方法
WO2015078116A1 (en) * 2013-11-26 2015-06-04 Wanhua Chemical (Ningbo) Co., Ltd. Process for preparing isocyanate homopolymers containing uretdione groups
WO2019012918A1 (ja) * 2017-07-11 2019-01-17 日本化学工業株式会社 光学活性な2,3-ビスホスフィノピラジン誘導体の製造方法及び光学活性なホスフィン遷移金属錯体の製造方法
CN111032668A (zh) * 2017-10-06 2020-04-17 日本化学工业株式会社 具有光学活性的2,3-双膦基吡嗪衍生物、其制造方法、过渡金属配合物和有机硼化合物的制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6641328B2 (ja) 2017-08-08 2020-02-05 日本化学工業株式会社 2,3−ビスホスフィノピラジン誘導体の製造方法及びホスフィン遷移金属錯体の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300988A (ja) * 2002-04-08 2003-10-21 Nippon Chem Ind Co Ltd 光学活性第2級ホスフィンボラン誘導体及びその中間体の製造方法
JP2007056007A (ja) * 2005-07-25 2007-03-08 Chiba Univ 2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体及びその製造方法、並びに該誘導体を配位子とする金属錯体
JP2010138136A (ja) * 2008-12-15 2010-06-24 Nippon Chem Ind Co Ltd 新規ホスフィンボラン化合物及びその製造方法並びに水素−ホスフィンボラン化合物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300988A (ja) * 2002-04-08 2003-10-21 Nippon Chem Ind Co Ltd 光学活性第2級ホスフィンボラン誘導体及びその中間体の製造方法
JP2007056007A (ja) * 2005-07-25 2007-03-08 Chiba Univ 2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体及びその製造方法、並びに該誘導体を配位子とする金属錯体
JP2010138136A (ja) * 2008-12-15 2010-06-24 Nippon Chem Ind Co Ltd 新規ホスフィンボラン化合物及びその製造方法並びに水素−ホスフィンボラン化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IMAMOTO, T. ET AL.: "Improved synthetic routes to methylene-bridged P-chiral diphosphine ligands via secondary phosphine-boranes", TETRAHEDRON: ASYMMETRY, vol. 21, no. 11-12, 2010, pages 1522 - 1528, XP027185373 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176830A1 (ja) * 2011-06-23 2012-12-27 日本化学工業株式会社 1,2-ビス(ジアルキルホスフィノ)-4,5-(メチレンジオキシ)ベンゼン誘導体、その製造方法及び該1,2-ビス(ジアルキルホスフィノ)-4,5-(メチレンジオキシ)ベンゼン誘導体を配位子とする金属錯体並びに不斉水素化方法
JP2013006787A (ja) * 2011-06-23 2013-01-10 Nippon Chem Ind Co Ltd 1,2−ビス(ジアルキルホスフィノ)−4,5−(メチレンジオキシ)ベンゼン誘導体、その製造方法及び該1,2−ビス(ジアルキルホスフィノ)−4,5−(メチレンジオキシ)ベンゼン誘導体を配位子とする金属錯体並びに不斉水素化方法
US9029571B2 (en) 2011-06-23 2015-05-12 Nippon Chemical Industrial Co., Ltd. Device and method for evaluating organic material for organic solar cell
WO2015078116A1 (en) * 2013-11-26 2015-06-04 Wanhua Chemical (Ningbo) Co., Ltd. Process for preparing isocyanate homopolymers containing uretdione groups
US9518142B2 (en) 2013-11-26 2016-12-13 Wanhua Chemical Group Co., Ltd. Process for preparing isocyanate homopolymers containing uretdione groups
WO2019012918A1 (ja) * 2017-07-11 2019-01-17 日本化学工業株式会社 光学活性な2,3-ビスホスフィノピラジン誘導体の製造方法及び光学活性なホスフィン遷移金属錯体の製造方法
US11773120B2 (en) 2017-07-11 2023-10-03 Nippon Chemical Industrial Co., Ltd. Method for producing optically active 2, 3-bisphosphinopyrazine derivative and method for producing optically active phosphine transition metal complex
CN111032668A (zh) * 2017-10-06 2020-04-17 日本化学工业株式会社 具有光学活性的2,3-双膦基吡嗪衍生物、其制造方法、过渡金属配合物和有机硼化合物的制造方法
CN111032668B (zh) * 2017-10-06 2022-10-14 日本化学工业株式会社 具有光学活性的2,3-双膦基吡嗪衍生物、其制造方法、过渡金属配合物和有机硼化合物的制造方法

Also Published As

Publication number Publication date
JP5465584B2 (ja) 2014-04-09
JP2011219413A (ja) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5465584B2 (ja) ピラジン誘導体の製造方法
JP5350767B2 (ja) 新規ホスフィンボラン化合物及びその製造方法並びに水素−ホスフィンボラン化合物の製造方法
EP2258707B1 (en) Ruthenium silyl-arene complexes, and method for production thereof
JP6547087B1 (ja) 光学活性な2,3−ビスホスフィノピラジン誘導体、その製造方法、遷移金属錯体及び有機ホウ素化合物の製造方法
Zhou et al. Stereoselective Synthesis of 1‐Aminocyclopropanecarboxylic Acid Derivatives via Ylide Cyclopropanation of Dehydroamino Acid Derivatives
JPWO2015122502A1 (ja) 光学活性化合物の製造方法、及び新規な金属−ジアミン錯体
CN111655708B (zh) 2,3-双膦基吡嗪衍生物、其制造方法、配位化合物和催化剂、有机硼化合物的制造方法
JP5283867B2 (ja) 光学活性β−ヒドロキシカルボン酸誘導体の製造方法
JP7041092B2 (ja) ビアリールホスフィンの製造方法
US8076480B2 (en) Process of preparing optically active allyl compound
US11021500B2 (en) Process for preparing optically active 2,3-bisphosphino-substituted quinoxalines
JP6286755B2 (ja) 新規なジアミン化合物および金属錯体、並びに光学活性化合物の製造方法
US11773120B2 (en) Method for producing optically active 2, 3-bisphosphinopyrazine derivative and method for producing optically active phosphine transition metal complex
JP2009046469A (ja) 光学活性アリル化合物類の製造方法
US8222433B2 (en) Axially asymmetric phosphorus compound and production method thereof
US20090299076A1 (en) Axially asymmetric ester compound and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765945

Country of ref document: EP

Kind code of ref document: A1