WO2011125738A1 - 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 - Google Patents

加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 Download PDF

Info

Publication number
WO2011125738A1
WO2011125738A1 PCT/JP2011/058007 JP2011058007W WO2011125738A1 WO 2011125738 A1 WO2011125738 A1 WO 2011125738A1 JP 2011058007 W JP2011058007 W JP 2011058007W WO 2011125738 A1 WO2011125738 A1 WO 2011125738A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
galvanized steel
hot
temperature
Prior art date
Application number
PCT/JP2011/058007
Other languages
English (en)
French (fr)
Inventor
濱田 和幸
浅井 達也
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US13/635,768 priority Critical patent/US9040169B2/en
Priority to GB1218559.1A priority patent/GB2499689A/en
Priority to CN201180016239.2A priority patent/CN102844454B/zh
Priority to KR1020127025372A priority patent/KR101470721B1/ko
Publication of WO2011125738A1 publication Critical patent/WO2011125738A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet (hereinafter, may be represented by a galvanized steel sheet) excellent in workability, high yield ratio, and yield without particularly reducing workability.
  • the ratio relates to a high strength plated steel sheet having a tensile strength of 980 MPa or more.
  • the plated steel sheet of the present invention is, for example, a structural member for automobiles that requires high yieldability and high yield strength (for example, body skeleton members such as pillars, members, and reinforcements; bumpers, door guard bars, seat parts, undercarriages, etc. (Strength members such as parts) and household appliance members.
  • Patent Document 1 discloses that the average grain size of ferrite is 5.0 ⁇ m or less and the average grain size of the hard second phase is 5.0 ⁇ m or less.
  • a high-tensile hot-dip galvanized steel sheet having a strength of 780 MPa or more, excellent elongation, and a yield ratio of 60 to 80% is disclosed.
  • precipitation strengthening elements of Ti and Nb are added to enhance precipitation strengthening and microstructure refinement.
  • a large amount of Ti and Nb needs to be added, there is a problem from the viewpoint of cost. There is.
  • high-strength hot-dip galvanized steel sheets for vehicle body frames are required to have energy absorbability at the time of collision as well as workability, and a technique for manufacturing a steel sheet having a high yield strength, that is, a high yield ratio, at low cost is required.
  • the DP steel sheet exhibits a low yield ratio and does not achieve both a high yield ratio and high workability.
  • Patent Document 1 discloses a steel sheet having both a high yield ratio and workability, but there is a problem in terms of manufacturing cost. Therefore, realization of a technology capable of producing a high-strength plated steel sheet having a high yield ratio and excellent workability at low cost is desired.
  • the present invention has been made by paying attention to the above-described circumstances, and its purpose is to have a tensile strength of 980 MPa or more, a high yield ratio, and workability (specifically, TS-EL balance, Furthermore, another object is to provide a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet excellent in TS- ⁇ balance.
  • the plated steel sheet according to the present invention that has solved the above problems is a plated steel sheet having a hot dip galvanized layer or an alloyed hot dip galvanized layer on the surface of the steel sheet, and C: 0.12 to 0.3% (Mean% means the same for chemical composition) Si: 0.1% or less (excluding 0%), Mn: 2.0 to 3.5%, P: 0.05% or less (0% S: 0.05% or less (not including 0%), Al: 0.005 to 0.1%, and N: 0.015% or less (not including 0%), the balance Is iron and inevitable impurities, and the metal structure has bainite as a parent phase structure, and the ratio of the ferrite area ratio: 3 to 20% and the martensite area ratio: 10 to The tensile strength is 980 MPa, having the gist of satisfying 35% High yield ratio and excellent in workability on high strength plated steel sheet.
  • the plated steel sheet further includes Cr: 1.0% or less (not including 0%), Mo: 1.0% or less (not including 0%), and B: 0.0. It contains one or more elements selected from the group consisting of 01% or less (not including 0%).
  • a material containing Ti: 0.3% or less (not including 0%) and / or V: 0.3% or less (not including 0%) is also a preferred embodiment.
  • the high-strength plated steel sheet according to the present invention has a bainite matrix structure and appropriately controls the fraction of ferrite and martensite, which are the second phase structures.
  • the ratio (particularly 65% or more) is exhibited and the processability is excellent.
  • the above “excellent workability” means that the tensile strength is 980 MPa or more, and the TSEL balance (and further the TS- ⁇ balance) is excellent. Specifically, it means satisfying [tensile strength (TS: MPa) ⁇ elongation (EL:%) / 100] ⁇ 130 in the high strength region.
  • the TS ⁇ EL / 100 is preferably 140 or more.
  • TS tensile strength
  • hole expansion rate
  • FIG. 1 is a schematic view showing a heat pattern in the case of manufacturing the steel plate of the present invention.
  • FIG. 2 is a schematic view showing a modification of the heat pattern when manufacturing the steel sheet of the present invention.
  • FIG. 3 is a schematic view showing another modified example of the heat pattern when the steel plate of the present invention is manufactured.
  • FIG. 4 is a diagram showing the structural fraction of the steel sheet obtained in the example.
  • FIG. 5 is a diagram showing the mechanical properties of the steel sheets obtained in the examples.
  • DP steel sheets mainly composed of ferrite and martensite are listed as steel sheets having both strength and workability, but this DP steel sheet introduces mobile dislocation in the ferrite during martensitic transformation. Therefore, the yield ratio is low. Therefore, the present inventors set the bainite as a matrix structure (main phase), and suppress each fraction of martensite that generates movable dislocations and ferrite into which movable dislocations are introduced, by suppressing the yield ratio higher than that of conventional DP steel sheets. The basic idea was to achieve this. However, the introduction of bainite tends to lower the elongation due to a relative decrease in ferrite, and the strength tends to decrease due to the relative decrease in martensite.
  • Ferrite is important as a structure that contributes to the improvement of elongation characteristics, and in order to ensure elongation characteristics, the ferrite fraction with respect to the entire structure is set to 3 area% or more. Preferably it is 5 area% or more. On the other hand, in order to secure a bainite structure and realize a high yield ratio, it is necessary to suppress the ferrite fraction to 20 area% or less. Preferably it is 18 area% or less.
  • Martensite is a structure necessary for securing high strength, and in the present invention, the martensite fraction of the entire structure is 10 area% or more. Preferably it is 15 area% or more. On the other hand, in order to secure a bainite structure and achieve a high yield ratio, it is necessary to suppress the martensite fraction to 35% by area or less. Preferably it is 30 area% or less.
  • the steel sheet of the present invention has bainite as the parent phase structure (main phase).
  • the “matrix structure” in the present invention refers to a structure having the largest proportion of all the structures. When it is composed of only three phases of bainite, ferrite and martensite, from the upper limit values of the ferrite fraction and martensite fraction, the bainite fraction is 45 area% or more, and the bainite structure is “matrix structure”. Become. In the present invention, retained austenite that can be generated in the manufacturing process is included in this martensite.
  • the steel sheet of the present invention may be composed of only three phases of bainite, ferrite and martensite, but contains a structure that is inevitably generated in the manufacturing process, for example, as long as the action of the present invention is not hindered. Also good.
  • a structure include pearlite, and the fraction of the structure with respect to the entire structure is preferably 5 area% or less in total.
  • tissue identification and fraction measurement may be performed by the method shown in the examples described later.
  • C is an element necessary for ensuring the strength of the steel sheet in addition to improving hardenability and contributing to hardening of bainite and martensite.
  • the C amount is set to 0.12% or more.
  • it is 0.13% or more, More preferably, it is 0.14% or more.
  • the C content is 0.3% or less.
  • it is 0.26% or less, More preferably, it is 0.23% or less.
  • Si 0.1% or less (excluding 0%)
  • Si is an element that is effective for strengthening the solid solution of ferrite, but it is also an element that lowers the plating adhesion. Therefore, the Si amount is 0.1% or less. Preferably it is 0.07% or less, More preferably, it is 0.05% or less, More preferably, it is 0.03% or less.
  • Mn is an element that contributes to securing high strength by improving hardenability.
  • the amount of Mn is insufficient, hardenability becomes insufficient and a large amount of ferrite is generated, making it difficult to achieve high strength and high yield ratio. Therefore, in the present invention, 2.0% or more of Mn is contained.
  • a preferable amount of Mn is 2.3% or more.
  • the Mn content is 3.5% or less, preferably 3.2% or less.
  • P 0.05% or less (excluding 0%)
  • P is an element effective for strengthening the solid solution of ferrite, but is also an element that lowers the plating adhesion. Therefore, the P content is 0.05% or less. Preferably it is 0.03% or less.
  • S is an unavoidable impurity element, and is preferably as small as possible from the viewpoint of ensuring workability and weldability. Preferably it is 0.02% or less, More preferably, it is 0.01% or less.
  • Al is an element having a deoxidizing action and is made 0.005% or more. Preferably it is 0.01% or more, More preferably, it is 0.02% or more. However, even if it is added excessively, the effect is saturated, so the upper limit of Al content is set to 0.1%. Preferably it is 0.08% or less, More preferably, it is 0.06% or less.
  • N 0.015% or less (excluding 0%)
  • N is an inevitable impurity element, and if included in a large amount, N tends to deteriorate toughness and elongation. Therefore, the upper limit of N content is set to 0.015%. Preferably it is 0.01% or less, More preferably, it is 0.005% or less.
  • the basic components of steel used in the present invention are as described above, and the balance is iron and inevitable impurities.
  • Examples of the inevitable impurities brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. include O and playing element (Sn, Zn, Pb, As, Sb, Bi, etc.) in addition to S and N.
  • the steel used in the present invention may further contain the following optional elements as necessary.
  • Cr 1.0% or less (not including 0%), Mo: 1.0% or less (not including 0%), and B: 0.01% or less (not including 0%)
  • Cr, Mo, and B are all elements that contribute to ensuring high strength by improving hardenability.
  • Cr it is preferably 0.04% or more
  • Mo preferably 0.04% or more
  • B 0.0010% or more is preferably contained.
  • the upper limit of each is preferably 1.0% or less.
  • the upper limit of B content is preferably 0.01%, more preferably 0.005%.
  • Ti and V are elements that contribute to ensuring high strength by precipitation of carbonitride and refinement of the structure.
  • Ti preferably 0.01% or more
  • V preferably 0.01% or more.
  • the upper limit of each element is preferably set to 0.3%. More preferably, it is 0.20% or less for Ti and 0.20% or less for V.
  • the hot-dip galvanized steel sheet of the present invention In order to manufacture the hot-dip galvanized steel sheet of the present invention, it is effective to perform annealing after cold rolling so as to satisfy the following conditions. Hereinafter, the annealing process will be described in detail with reference to FIG.
  • the hot dip galvanized steel sheet (GI) and the alloyed hot dip galvanized steel sheet (GA) of the present invention can be used in the process shown in FIG. 1 during the low temperature holding process, between the low temperature holding process and the tertiary cooling process, or the tertiary.
  • a conventional plating process or a further conventional alloying process is added in these processes (or between processes) such as in the course of the cooling process.
  • the cold rolled steel sheet satisfying the above component composition is heated and soaked for 5 to 200 seconds (soaking time t1) in a temperature range (soaking temperature T1) of Ac 3 points to (Ac 3 points + 150 ° C.).
  • the soaking temperature T1 is lower than the Ac 3 point, the austenite transformation becomes insufficient and a large amount of ferrite remains, making it difficult to secure a desired structure. Further, since processing strain tends to remain in the ferrite, it is difficult to obtain excellent elongation characteristics.
  • the soaking temperature T1 is preferably (Ac 3 points + 10 ° C.) or higher.
  • the soaking temperature T1 exceeds (Ac 3 points + 150 ° C.), the austenite grain growth is promoted and the structure becomes coarse, and the strength-elongation balance is lowered.
  • the soaking temperature T1 is preferably (Ac 3 points + 100 ° C.) or less.
  • the soaking time t1 is 5 to 200 seconds. If it is less than 5 seconds, the austenite transformation becomes insufficient, and a large amount of ferrite remains, making it difficult to secure a desired structure. Further, when processing strain remains in the ferrite, it is difficult to obtain excellent elongation characteristics. Preferably it is 20 seconds or more. On the other hand, if the soaking time t1 is too long, austenite grain growth is promoted, the structure becomes coarse as described above, and the strength-elongation balance tends to be lowered. Therefore, the soaking time t1 is set to 200 seconds or less. Preferably it is 120 seconds or less.
  • the soaking temperature T1 does not need to be a constant temperature, and the soaking time (t1) in the temperature range (T1) from Ac 3 point to (Ac 3 point + 150 ° C.) is 5 when the temperature is raised from room temperature. As long as it is secured for ⁇ 200 seconds.
  • the temperature is increased to the maximum temperature at a stretch and then held at that temperature, as well as the Ac 3 point to (Ac 3 ) as shown in FIG. 2 (b).
  • Point + 150 ° C. After reaching the temperature range, the temperature is further increased within this temperature range, or as shown in FIG.
  • An embodiment in which the soaking time t1 at the temperature T1 is secured for 5 to 200 seconds is also included in the present invention.
  • the average heating rate HR from room temperature to the soaking temperature T1 in FIG. 1 is not particularly limited, and can be, for example, 1 to 100 ° C./second.
  • it is effective to set the average cooling rate (CR1) from T1 to the temperature range (T2) of 380 to 460 ° C. to 3 to 30 ° C./second.
  • the average cooling rate CR1 is preferably 25 ° C./second or less.
  • the average cooling rate CR1 is preferably 5 ° C./second or more.
  • the cooling from T1 to the temperature range (T2) of 380 to 460 ° C may be divided into multiple stages.
  • the average cooling rate from T1 to the temperature range (T2) of 380 to 460 ° C is 3 to 30 ° C.
  • the cooling rate of each stage is not particularly limited. For example, as shown in an example described later, two-stage cooling is performed, and a primary cooling rate (CR11) from T1 to an intermediate temperature (eg, 500 to 700 ° C.) and two temperatures from an intermediate temperature to a temperature range (T2) from 380 to 460 ° C.
  • the next cooling rate (CR12) may be changed.
  • the low temperature holding temperature T2 is preferably 390 ° C. or higher, more preferably 400 ° C. or higher.
  • the low temperature holding time t2 is 20 to 300 seconds. If the low temperature holding time t2 is less than 20 seconds, the bainite transformation does not occur sufficiently, and it becomes difficult to obtain a desired structure. Preferably it is 25 seconds or more. On the other hand, even if the low temperature holding time t2 exceeds 300 seconds, the bainite transformation does not proceed any further and the productivity decreases, so the upper limit of the low temperature holding time t2 is set to 300 seconds. Preferably it is 200 seconds or less, More preferably, it is 120 seconds or less.
  • the low temperature holding temperature T2 does not need to be a constant temperature, and it is sufficient if a heating time in a temperature range of 380 to 460 ° C. is secured for 20 to 300 seconds when cooling from the soaking temperature T1. Therefore, for example, as shown in FIG. 3A, a mode in which the temperature is cooled from the soaking temperature T1 to the low temperature holding temperature T2 at once and then held at the temperature may be adopted. As shown in (b) of FIG. 3, after reaching the low temperature holding temperature T ⁇ b> 2, the temperature may be further cooled. Further, as shown in FIG. 3 (c), if the time in the temperature range of 380 to 460 ° C. is ensured for 20 to 300 seconds during the cooling from the temperature of over 460 ° C.
  • the temperature may be raised within a temperature range of 380 to 460 ° C.
  • the bainite fraction is controlled by controlling the low temperature holding temperature T2 and the low temperature holding time t2.
  • a hot dip galvanized steel sheet After passing through a low temperature holding step, for example, it is immersed in a plating bath (temperature: about 430 to 500 ° C.) to perform hot dip galvanization, and then it is tertiary cooled. Can be mentioned.
  • a plating bath temperature: about 430 to 500 ° C.
  • G alloyed hot-dip galvanized steel sheet
  • after the hot-dip galvanizing it is heated to a temperature of about 500 to 750 ° C., alloyed, and then subjected to tertiary cooling.
  • plating treatment and alloying treatment may be performed in the middle of the low temperature holding step.
  • the total holding time at 380 to 460 ° C. performed before and after the plating treatment and alloying treatment is 20 to 300. Need to satisfy the second.
  • plating treatment and alloying treatment may be performed during the tertiary cooling.
  • the average cooling rate CR2 from the temperature range (T2) of 380 to 460 ° C. to room temperature in FIG. 1 is not particularly limited, and can be, for example, 1 to 100 ° C./second. Since the austenite remaining after the transformation of ferrite and bainite becomes martensite, the martensite fraction can be controlled by controlling the ferrite fraction and the bainite fraction.
  • Production conditions other than those described above may be carried out in accordance with conventional methods, and are not particularly limited.
  • finish rolling temperature Ac 3 points or more
  • winding temperature 400 to 700 ° C.
  • pickling may be performed as necessary, and for example, cold rolling with a cold rolling rate of 35 to 80% may be performed.
  • the conditions normally used can be employ
  • Example 1 Slab steel (plate thickness: 25 mm) having the chemical composition shown in Table 1 was melted and cast according to a normal melting method, and then hot-rolled to a thickness of 2.4 mm (the finish rolling temperature was 880 ° C., The winding temperature is 560 ° C.). Next, the obtained hot-rolled steel sheet was pickled and then cold-rolled to a thickness of 1.2 mm (cold rolling ratio: 50%).
  • annealing treatment simulating a continuous plating annealing line was performed in a laboratory under the annealing conditions shown in Table 2.
  • the ferrite fraction was measured by the following method.
  • crystal orientation analysis was performed on the cross section perpendicular to the rolling direction of the steel sheet obtained above by the EBSP method using a scanning electron microscope.
  • the crystal orientation of a measurement region of about 30 ⁇ m ⁇ 30 ⁇ m was measured with a step size of 0.1 ⁇ m. Calculate all the orientation differences between two adjacent points in a crystal grain surrounded by a large-angle grain boundary with a crystal orientation difference of 15 ° or more, and average the values within the whole grain as the average grain orientation difference. , And those with 0.35 ° or less were identified as ferrite. Observation was performed for three fields of view at a magnification of 3,000, and the arithmetic average of the ferrite area ratio measured by the point calculation method was obtained.
  • the fraction of bainite was determined by subtracting the fraction of ferrite and martensite from the entire structure (100 area%).
  • Experiment No. No. 9 uses steel type C with insufficient amount of C, and the low-temperature holding temperature T2 is too high, so both the ferrite and martensite fractions exceed the specified range, and a high yield ratio cannot be achieved.
  • FIG. 4 is a diagram showing the structural fraction of the steel sheet obtained in this example, and it can be seen that the steel sheet according to the present invention has the ferrite and martensite fractions within the specified range.
  • FIG. 5 is a diagram showing the mechanical properties of the steel sheet obtained in this example.
  • Example 2 Steel having the chemical composition shown in Table 4 was melted in a converter and slab steel (sheet thickness: 230 mm) was produced by continuous casting, and then hot-rolled to 2.3 mm (finish rolling temperature in hot rolling) Is 880 ° C. and the winding temperature is 560 ° C.). Next, the obtained hot-rolled steel sheet was pickled and then cold-rolled to a thickness of 1.4 mm (cold rolling rate: 39%).
  • annealing and hot dip galvanizing were performed in a continuous plating annealing line under the annealing conditions shown in Table 5.
  • the hot dip galvanizing process was performed after the low temperature holding process, and the third cooling was performed after the plating process.
  • the plating bath temperature at this time was 450 ° C., and the plating bath residence time was 2 seconds.

Abstract

 C:0.12~0.3%(質量%の意味。)、Si:0.1%以下(0%を含まない)、Mn:2.0~3.5%、P:0.05%以下(0%を含まない)、S:0.05%以下(0%を含まない)、Al:0.005~0.1%、およびN:0.015%以下(0%を含まない)を満たし、残部が鉄および不可避不純物であって、金属組織が、ベイナイトを母相組織とするものであって、全組織に対する割合で、フェライトの面積率:3~20%、およびマルテンサイトの面積率:10~35%を満たすことを特徴とする、引張強度が980MPa以上の加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板である。

Description

加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
 本発明は、加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板(以下、めっき鋼板で代表させる場合がある。)に関し、特に加工性を低下させることなく降伏比が高められた引張強度が980MPa以上の高強度めっき鋼板に関するものである。本発明のめっき鋼板は、例えば、高い加工性と共に、高い降伏強度が要求される自動車用構造部材(例えばピラー、メンバー、レインフォース類などのボディ骨格部材;バンパー、ドアガードバー、シート部品、足回り部品などの強度部材)や家電用部材などに好適に用いられる。
 近年、地球環境問題に関する意識の高まりから、各自動車メーカーでは燃費向上を目的として車体の軽量化が進められている。また、乗客の安全性の観点からは自動車の衝突安全基準が強化され、衝撃に対する部材の耐久性も求められている。そのため、最近の自動車では高強度鋼板の使用比率が一段と上昇しており、なかでも防錆性が要求されている車体骨格部材やレインフォース部材では、高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板が積極的に適用されている。高強度鋼板の用途拡大に伴い、求められる特性も高まっており、難成形部材では母材の加工性の改善が一層強く求められている。
 強度と加工性を兼ね備えた鋼板として、高い伸びを有するフェライトと高強度を発揮するマルテンサイトを主体とする複合組織鋼板(以下、DP鋼板ということがある)がある。また、高加工性と高降伏比を両立した高強度鋼板として、例えば特許文献1には、フェライトの平均結晶粒径を5.0μm以下とし、硬質第2相の平均粒径を5.0μm以下にすることによって、780MPa以上の強度を有すると共に伸びに優れ、且つ降伏比が60~80%の高張力溶融亜鉛めっき鋼板が開示されている。この文献に開示された技術では、Ti、Nbの析出強化元素を添加して、析出強化と組織微細化強化を図っているが、Ti、Nbの多量添加が必要なため、コストの観点から問題がある。
 ところで車体骨格用の高強度溶融亜鉛めっき鋼板には、加工性とともに衝突時のエネルギー吸収能が要求され、降伏強度、つまり降伏比が高い鋼板を低コストで製造する技術が求められている。しかしながら、上記DP鋼板は、低降伏比を示すものであって、高降伏比と高い加工性を両立させたものではない。また特許文献1には高降伏比と加工性を両立した鋼板が示されているが、製造コストの点で問題がある。そこで高降伏比かつ優れた加工性を示す高強度めっき鋼板を低コストで製造可能な技術の実現が望まれている。
特開2006-52445号公報
 本発明は上記の様な事情に着目してなされたものであって、その目的は、引張強度が980MPa以上であって、高降伏比を示しかつ加工性(詳細には、TS-ELバランス、更にはTS-λバランス)に優れた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を提供することにある。
 上記課題を解決することができた本発明に係るめっき鋼板は、鋼板の表面に溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有するめっき鋼板であって、C:0.12~0.3%(質量%の意味。化学成分組成について以下同じ)、Si:0.1%以下(0%を含まない)、Mn:2.0~3.5%、P:0.05%以下(0%を含まない)、S:0.05%以下(0%を含まない)、Al:0.005~0.1%、およびN:0.015%以下(0%を含まない)を満たし、残部が鉄および不可避不純物であって、金属組織が、ベイナイトを母相組織とするものであって、全組織に対する割合で、フェライトの面積率:3~20%、およびマルテンサイトの面積率:10~35%を満たすことに要旨を有する、引張強度が980MPa以上の加工性に優れた高降伏比高強度めっき鋼板である。
 本発明の好ましい実施形態において、上記めっき鋼板は、更に、Cr:1.0%以下(0%を含まない)、Mo:1.0%以下(0%を含まない)、およびB:0.01%以下(0%を含まない)よりなる群から選択される1種以上の元素を含有するものである。
 更に、Ti:0.3%以下(0%を含まない)、および/またはV:0.3%以下(0%を含まない)を含有するものも、好ましい実施形態である。
 本発明に係る高強度めっき鋼板は、ベイナイトを母相組織とし、第2相組織であるフェライトおよびマルテンサイトの分率を適切に制御しているため、引張強度が980MPa以上であって、高降伏比(特には65%以上)を示しかつ加工性に優れている。本明細書において、上記「加工性に優れた」とは、引張強度:980MPa以上において、TSELバランス(更にはTS-λバランス)に優れていることを意味する。具体的には、上記の高強度域において、[引張強度(TS:MPa)×伸び(EL:%)/100]≧130を満たすことをいう。上記TS×EL/100は140以上であることが好ましい。更には上記の高強度域において、[引張強度(TS:MPa)×穴広げ率(λ:%)/100]≧210であることが好ましく、上記TS×λ/100は220以上であることがより好ましい。
図1は、本発明の鋼板を製造する場合のヒートパターンを示す概略図である。 図2は、本発明の鋼板を製造する場合のヒートパターンの変形例を示す概略図である。 図3は、本発明の鋼板を製造する場合のヒートパターンの別の変形例を示す概略図である。 図4は、実施例において得られた鋼板の組織分率を示す図である。 図5は、実施例において得られた鋼板の機械的特性を示す図である。
 上述した通り、強度と加工性を兼ね備えた鋼板としてフェライトとマルテンサイトを主体とするDP鋼板が挙げられるが、このDP鋼板は、マルテンサイト変態時にフェライト中に可動転位(mobile dislocation)が導入されるため、低降伏比となってしまう。そこで本発明者らは、ベイナイトを母相組織(主相)とし、可動転位を生み出すマルテンサイトと可動転位が導入されるフェライトの各分率を、従来のDP鋼板よりも抑えることによって高降伏比を達成することを基本的思想とした。ただし、ベイナイトの導入により、フェライトが相対的に減少することで伸びが低下しやすく、またマルテンサイトが相対的に減少することで強度が低下しやすくなる。更に、ベイナイトが主相であっても、マルテンサイトやフェライトの分率が比較的多いと高降伏比を達成することが困難な場合がある。そこで高強度、高降伏比および高加工性の全ての特性を達成できるように、ベイナイトを主相とした上で、フェライトおよびマルテンサイトの各分率について鋭意研究を行った結果、これら組織の分率について最適範囲を見出し、本発明を完成した。
 以下、上記組織分率の範囲およびその設定理由について詳述する。
 [フェライト分率:3~20面積%]
 フェライトは伸び特性の向上に寄与する組織として重要であり、伸び特性を確保するため、全組織に対するフェライト分率を3面積%以上とする。好ましくは5面積%以上である。一方、ベイナイト組織を確保して高降伏比を実現するには、フェライト分率を20面積%以下に抑える必要がある。好ましくは18面積%以下である。
 [マルテンサイト分率:10~35面積%]
 マルテンサイトは高強度の確保に必要な組織であり、本発明では全組織に対するマルテンサイト分率を10面積%以上とする。好ましくは15面積%以上である。一方、ベイナイト組織を確保して高降伏比を実現するには、マルテンサイト分率を35面積%以下に抑える必要がある。好ましくは30面積%以下である。
 [母相組織:ベイナイト]
 上述の通り、本発明の鋼板は、ベイナイトを母相組織(主相)とするものである。本発明における「母相組織」とは、全組織に占める割合の最も多い組織のことをいう。ベイナイト、フェライトおよびマルテンサイトの3相のみから構成されている場合、上記フェライト分率およびマルテンサイト分率の上限値から、ベイナイト分率は45面積%以上となり、ベイナイト組織が「母相組織」となる。尚、本発明において、製造過程において生成しうる残留オーステナイトは、このマルテンサイトに含むものとする。
 本発明の鋼板は、ベイナイト、フェライトおよびマルテンサイトの3相のみから構成されていてもよいが、本発明の作用を阻害しない限度において、例えば製造過程などで不可避的に生成する組織を含んでいても良い。このような組織としては、例えばパーライト等が挙げられ、全組織に対する上記組織の分率は合計で5面積%以下であることが好ましい。
 上記組織の同定および分率の測定は、後述する実施例に示す方法で行えばよい。
 上記組織とすることによる優れた特性(高強度、高降伏比および高加工性)を十分に発揮させると共に、めっき鋼板としてのその他の特性(例えばめっき密着性や溶接性)も発揮させるには、鋼板の化学成分組成を下記の通り制御する必要がある。以下、化学成分組成について詳述する。
 [C:0.12~0.3%]
 Cは、焼入れ性の向上に加えて、ベイナイトやマルテンサイトの硬質化に寄与し、鋼板の強度を確保するために必要な元素である。C量が不足するとフェライトが多く生成してしまうだけでなく、ベイナイトやマルテンサイトも軟質化するため、高降伏比や高強度を達成することが困難となる。そこで本発明では、C量を0.12%以上と定めた。好ましくは0.13%以上、より好ましくは0.14%以上である。一方、Cが過剰に含まれると溶接性が低下するため、C量は0.3%以下とする。好ましくは0.26%以下、より好ましくは0.23%以下である。
 [Si:0.1%以下(0%を含まない)]
 Siは、フェライトの固溶強化に有効な元素であるが、めっき密着性を低下させる元素でもあるため、本発明では極力少ない方がよい。よってSi量は0.1%以下とする。好ましくは0.07%以下、より好ましくは0.05%以下、更に好ましくは0.03%以下である。
 [Mn:2.0~3.5%]
 Mnは、焼入れ性を向上させて高強度確保に寄与する元素である。Mn量が不足すると焼入れ性が不十分となってフェライトが多く生成してしまい、高強度や高降伏比を達成することが困難となる。そこで本発明ではMnを2.0%以上含有させる。好ましいMn量は2.3%以上である。一方、Mnが過剰に含まれると、強度-伸びバランスや溶接性が低下しやすくなるため、Mn量は3.5%以下、好ましくは3.2%以下である。
 [P:0.05%以下(0%を含まない)]
 Pは、フェライトの固溶強化に有効な元素であるが、めっき密着性を低下させる元素でもあるため、本発明では極力少ない方がよい。よってP量は0.05%以下とする。好ましくは0.03%以下である。
 [S:0.05%以下(0%を含まない)]
 Sは不可避不純物元素であり、加工性や溶接性を確保する観点から極力少ない方がよいため、0.05%以下とする。好ましくは0.02%以下、より好ましくは0.01%以下である。
 [Al:0.005~0.1%]
 Alは脱酸作用を有する元素であり、0.005%以上とする。好ましくは0.01%以上、より好ましくは0.02%以上である。しかし過剰に添加してもその効果は飽和するため、Al量の上限を0.1%とする。好ましくは0.08%以下、より好ましくは0.06%以下である。
 [N:0.015%以下(0%を含まない)]
 Nは不可避不純物元素であり、多量に含まれると靭性や伸びを劣化させる傾向があるため、N量の上限を0.015%とする。好ましくは0.01%以下、より好ましくは0.005%以下である。
 本発明に用いられる鋼の基本成分は上記の通りであり、残部は鉄および不可避不純物である。原料、資材、製造設備等の状況によって持ち込まれる上記不可避不純物としては、上記SやNの他、Oやトランプ元素(Sn、Zn、Pb、As、Sb、Biなど)などが挙げられる。
 本発明に用いられる鋼は、必要に応じて、以下の任意元素を更に含有していてもよい。
 [Cr:1.0%以下(0%を含まない)、Mo:1.0%以下(0%を含まない)、およびB:0.01%以下(0%を含まない)よりなる群から選択される1種以上の元素]
 Cr、Mo、Bは、いずれも焼入れ性を向上させて高強度確保に寄与する元素である。この様な効果を発揮させるには、Crの場合、好ましくは0.04%以上、Moの場合、好ましくは0.04%以上、Bの場合、好ましくは0.0010%以上含有させるのがよい。しかしCr、Moが過剰に含まれると伸びが劣化するため、それぞれの上限を1.0%以下とすることが好ましい。より好ましくはCrの場合0.50%以下、Moの場合0.50%以下である。また、Bが過剰に含まれた場合、その効果は飽和するだけでなく、伸びが劣化するので、B量の上限は0.01%とすることが好ましく、より好ましくは0.005%である。
 [Ti:0.3%以下(0%を含まない)、および/またはV:0.3%以下(0%を含まない)]
 Ti、Vは、炭窒化物の析出や組織の微細化により高強度確保に寄与する元素である。この様な効果を十分に発揮させるには、Tiの場合、好ましくは0.01%以上、Vの場合、好ましくは0.01%以上含有させることが好ましい。しかし、いずれの元素を過剰に含有させても上記効果は飽和するだけであるので、それぞれの上限を0.3%とすることが好ましい。より好ましくはTiの場合0.20%以下、Vの場合0.20%以下である。
 本発明の溶融亜鉛めっき鋼板を製造するためには、特に冷間圧延後の焼鈍を、下記の条件を満たすよう行うことが有効である。以下、図1を参照しながら、焼鈍工程について詳述する。
 尚、本発明の溶融亜鉛めっき鋼板(GI)や合金化溶融亜鉛めっき鋼板(GA)は、この図1に示す工程において、低温保持工程途中、或いは低温保持工程と三次冷却工程の間、または三次冷却工程の途中など、これら工程(或いは工程間)で常法のめっき工程、あるいは更に常法の合金化工程が付加されたものである。
 [Ac点~(Ac点+150℃)の温度域(均熱温度T1)で5~200秒(均熱時間t1)均熱]
 上記の成分組成を満たす冷間圧延鋼板を加熱して、Ac点~(Ac点+150℃)の温度域(均熱温度T1)で5~200秒(均熱時間t1)均熱する。均熱温度T1がAc点を下回ると、オーステナイト変態が不十分となり、フェライトが多く残存して所望の組織を確保することが困難となる。また、フェライト中に加工歪みが残存しやすくなるため、優れた伸び特性が得られにくい。均熱温度T1は好ましくは(Ac点+10℃)以上である。一方、均熱温度T1が(Ac点+150℃)を上回ると、オーステナイトの粒成長が促進されて組織が粗大化してしまい、強度-伸びバランスが低下するため好ましくない。均熱温度T1は好ましくは(Ac点+100℃)以下である。
 均熱時間t1は5~200秒とする。5秒未満ではオーステナイト変態が不十分となり、フェライトが多く残存して所望の組織を確保することが困難となる。また、フェライト中に加工歪みが残存した場合、優れた伸び特性が得られにくい。好ましくは20秒以上である。一方、均熱時間t1が長すぎると、オーステナイトの粒成長が促進され、上述の通り組織が粗大化して、強度-伸びバランスが低下しやすくなる。よって均熱時間t1は200秒以下とする。好ましくは120秒以下である。
 なお、均熱温度T1は、一定温度である必要はなく、室温からの昇温において、Ac点~(Ac点+150℃)の温度域(T1)での均熱時間(t1)が5~200秒確保されていればよい。よって、例えば図2の(a)に示す通り、最高到達温度まで一気に昇温させた後、該温度で保持する態様の他、図2の(b)に示す通り、Ac点~(Ac点+150℃)温度域に到達後、この温度域内にて更に昇温させたり、図2の(c)に示す通り、T1未満の温度から最高到達温度まで昇温させたりする間に、均熱温度T1での均熱時間t1が5~200秒確保されている態様も本発明に包含される。
 尚、前記図1における、室温から均熱温度T1までの平均加熱速度HRは特に限定されず、例えば1~100℃/秒とすることができる。
 [T1から380~460℃の温度域(T2)までの平均冷却速度(CR1):3~30℃/秒]
 上記フェライト分率を満たすようにするには、T1から380~460℃の温度域(T2)までの平均冷却速度(CR1)を3~30℃/秒とすることが有効である。平均冷却速度CR1が30℃/秒を上回ると、3%以上のフェライトを確保することが困難となるため、伸び特性の確保が難しくなる。平均冷却速度CR1は好ましくは25℃/秒以下である。一方、平均冷却速度CR1が3℃/秒を下回ると、フェライト変態が進行し、フェライト分率を20%以内に抑えることが困難となるため、高降伏比の確保が難しくなる。平均冷却速度CR1は好ましくは5℃/秒以上である。
 T1から380~460℃の温度域(T2)までの冷却は、多段階に分けてもよく、この場合、T1から380~460℃の温度域(T2)までの平均冷却速度が3~30℃/秒の範囲内にあれば、各段階の冷却速度については特に限定されない。例えば後述する実施例に示す通り、2段階冷却とし、T1から中間温度(例えば500~700℃)までの一次冷却速度(CR11)と中間温度から380~460℃の温度域(T2)までの二次冷却速度(CR12)を変えてもよい。
 [380~460℃の温度域(低温保持温度T2)で20~300秒(低温保持時間t2)加熱]
 上記平均冷却速度(CR1)で低温保持温度T2まで冷却後、この380~460℃の温度域(低温保持温度T2)で20~300秒(低温保持時間t2)確保する。380℃未満の温度でもベイナイト変態は起こるが、GIやGAを製造する場合、めっき浴の温度を過剰に低下させることとなり、生産性の低下が懸念される。460℃超の温度では、ベイナイト変態が起こりにくく、ベイナイトを主相とする所望の組織を確保することができない。ベイナイト変態が生じやすい380~460℃の温度で保持することにより、ベイナイトを主相とする所望の組織を確保することができる。低温保持温度T2は好ましくは390℃以上であり、より好ましくは400℃以上である。
 また低温保持時間t2は20~300秒とする。低温保持時間t2が20秒を下回るとベイナイト変態が十分に起こらないため所望の組織を得ることが困難となる。好ましくは25秒以上である。一方、低温保持時間t2を300秒超としても、ベイナイト変態はそれ以上進行せず生産性が低下するため、低温保持時間t2の上限を300秒とした。好ましくは200秒以下、更に好ましくは120秒以下である。
 低温保持温度T2は一定温度である必要はなく、均熱温度T1からの冷却時に、380~460℃の温度域での加熱時間が20~300秒確保されていればよい。よって、例えば図3の(a)に示す通り、均熱温度T1から低温保持温度T2まで一気に冷却させた後、該温度で保持する態様を採用してもよい。図3の(b)に示す通り、低温保持温度T2に到達後、更に該温度域で冷却させてもよい。また、図3の(c)に示す通り、460℃超の温度から低温保持温度T2まで冷却させたりする間に、380~460℃の温度域内にある時間が20~300秒確保されていればよい。また図3の(d)に示す通り、380~460℃の温度域内で昇温させてもよい。
 このように、低温保持温度T2及び低温保持時間t2を制御することにより、ベイナイト分率を制御する。
 なお、溶融亜鉛めっき鋼板(GI)を製造する場合、低温保持工程を経た後に、例えばめっき浴(温度:約430~500℃)に浸漬させて溶融亜鉛めっきを施し、その後に三次冷却することが挙げられる。また、合金化溶融亜鉛めっき鋼板(GA)を製造する場合には、前記溶融亜鉛めっきの後、500~750℃程度の温度まで加熱後、合金化を行った後に三次冷却することが挙げられる。
 また、低温保持工程の途中にめっき処理、合金化処理を施してもよいが、その場合はめっき処理、合金化処理の前後で実施される380~460℃での保持時間の合計が20~300秒を満足する必要がある。さらに、三次冷却途中に、めっき処理、合金化処理を施してもよい。
 尚、図1における380~460℃の温度域(T2)から室温までの平均冷却速度CR2は特に限定されず、例えば1~100℃/秒とすることができる。
 なお、フェライトとベイナイトが変態した後に残存しているオーステナイトがマルテンサイトとなるので、フェライト分率とベイナイト分率を制御することによりマルテンサイト分率を制御できる。
 上記以外の製造条件については常法に従って行えばよく、特に限定されないが、例えば熱間圧延については、例えば仕上げ圧延温度:Ac点以上、巻取り温度:400~700℃とすることができる。熱間圧延後は必要に応じて酸洗し、例えば冷延率:35~80%の冷間圧延を行うことが挙げられる。また、溶融亜鉛めっきや合金化溶融亜鉛めっきにおける上記の加熱条件を除くめっきや合金化の条件も通常用いられる条件を採用することができる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 [実施例1]
 表1に示す化学組成のスラブ鋼(板厚:25mm)を通常の溶製方法に従って溶製し、鋳造して作製した後、2.4mm厚まで熱間圧延した(仕上げ圧延温度は880℃、巻取温度は560℃である)。次いで得られた熱間圧延鋼板を酸洗した後、1.2mm厚まで冷間圧延した(冷延率:50%)。
 次いで、表2に示す焼鈍条件で、実験室にてめっき連続焼鈍ラインを模擬した焼鈍処理を行った。
Figure JPOXMLDOC01-appb-T000001
 尚、上記表1におけるAc点の計算式は、レスリー鉄鋼材料学(The Physical Metallurgy of Steels, William C. Leslie, 幸田成康(Kouda Shigeyasu)監訳,丸善株式会社(MARUZEN Co, Ltd.),1985年発行,p.273)を参照した(下記表4についても同じ)。
Figure JPOXMLDOC01-appb-T000002
 上記の様にして得られた各鋼板について、機械的特性(引張強度、降伏比、伸び)の測定、伸びフランジ性の評価、および組織観察を下記の通り行った。
 [機械的特性の測定]
 JIS Z2201の5号試験片を採取し、JIS Z2241に従って引張強度(TS)、降伏強度(YS)、全伸び(EL)を測定した。これらの値から、降伏比(YR)およびTS×ELを算出した。TSは980MPa以上である場合を高強度であると評価し、YRは65%以上である場合を高降伏比であると評価した。またELについて、TS×EL/100が130以上である場合を強度と伸びのバランス(TS-ELバランス)に優れていると評価した。
 [伸びフランジ性の評価]
 日本鉄鋼連盟規格JFS T 1001に規定の方法で試験片を採取し、初期穴径di=10mmφの打抜き穴加工を施した後、頂角60°の円錐パンチを押し込んで該打抜き穴を広げた。そして、打抜き穴部分に生じたクラックが板厚を貫通したときの穴径dbを求め、下記式によって限界穴広がり率(hole expanding limit;本明細書では「穴広げ率」と記載する場合がある)λ(%)を算出した。そして本実施例では、引張強度(TS)×穴広げ率(λ)/100が210以上である場合を強度と伸びフランジ性のバランス(TS-λバランス)に優れていると評価した。
 [組織観察(ミクロ組織観察)]
 マルテンサイトは、次のような方法で分率を測定した。上記で得られた鋼板の圧延方向に垂直な断面を研磨し、ナイタール腐食(knightal)を行った後、走査型電子顕微鏡により、1視野が約30μm×30μmの測定領域を、倍率3,000倍で観察した。観察は3視野について行い、点算法(point counting method)によって測定したマルテンサイト面積率の算術平均を求めた。
 フェライトは、次のような方法で分率を測定した。フェライトを同定するために、上記で得られた鋼板の圧延方向に垂直な断面に対して、走査型電子顕微鏡を用いたEBSP法により、結晶方位解析を行った。EBSP法では、0.1μmのステップサイズで約30μm×30μmの測定領域の結晶方位を測定した。結晶方位差が15°以上の大傾角粒界で囲まれた結晶粒内の隣接する2点間の方位差を全て計算し、それを粒内全体について平均化した値を平均粒内方位差とし、それが0.35°以下のものをフェライトとして同定した。観察は、倍率3,000倍で3視野について行い、点算法によって測定したフェライト面積率の算術平均を求めた。
 走査型電子顕微鏡を用いたEBSP法による結晶方位解析について、鉄と鋼(Journal of The Iron and Steel,vol.94(2008)No.8、p313)を参考にした。
 尚、ベイナイトの分率は、全組織(100面積%)から上記フェライトおよびマルテンサイトの分率を差し引いて求めた。
 これらの測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表1~3より次のように考察することができる。即ち、実験No.1~6、15~21は本発明で規定する要件を満たしているので、引張強度が980MPa以上であって、高降伏比を示し、かつTS-ELバランス、更にはTS-λバランスにも優れたものが得られている。これに対し、実験No.7~14、22~26は、本発明で規定する要件を満たしていないため、所望の特性が得られていない。
 詳細には、実験No.7、8、13は、低温保持温度T2が高すぎるため、マルテンサイト分率が規定範囲を超えてしまい、高降伏比を達成することができなかった。
 実験No.9は、C量が不足した鋼種Cを用い、かつ低温保持温度T2が高すぎるため、フェライト、マルテンサイト分率が共に規定範囲を超えてしまい、高降伏比を達成することができなかった。
 実験No.10、24は、C量が不足した鋼種C(No.10)、鋼種Q(No.24)を用いているため、フェライトが過剰に生成して高強度および高降伏比を達成することができなかった。
 実験No.11、25は、Mn量が不足した鋼種Iを用いているため、フェライトが過剰に生成して高強度および高降伏比を達成することができなかった。
 実験No.12は、均熱温度T1が低すぎるため、フェライトが過剰に生成し、かつフェライト中に加工歪みが残存して、優れた伸び特性が得られなかった。
 実験No.14は、低温保持時間t2が短すぎるため、ベイナイトが十分生成されず、マルテンサイトが過剰となって降伏比の低いものとなった。
 実験No.22は、低温保持温度T2が高すぎるため、マルテンサイト分率が規定範囲を超えてしまい、高降伏比を達成することができなかった。更にマルテンサイト分率が高く、引張強度(TS)も高くなっているため、伸び特性(El)も劣っている。
 実験No.23は、低温保持時間t2が短すぎるため、ベイナイトが十分生成されず、マルテンサイトが過剰となって降伏比の低いものとなった。更にマルテンサイト分率が高く、引張強度(TS)も高くなっているため、伸び特性も劣っている。
 実験No.26は、Mn量が過剰であるため、フェライトが生成されず、かつマルテンサイトが過剰となり、伸び特性の劣るものとなった。
 図4は、本実施例において得られた鋼板の組織分率を示す図であるが、本発明に係る鋼板は、フェライトおよびマルテンサイトの分率が規定範囲内にあることがわかる。また図5は、本実施例において得られた鋼板の機械的特性を示す図であるが、フェライトおよびマルテンサイトの分率を上記図4の範囲内とすることで、高強度領域において、高降伏比と優れた加工性(具体的には優れた強度-伸びバランス)を兼備できることがわかる。
 なお、本実施例は、めっき前の鋼板を用いたものであるが、溶融亜鉛めっきおよび合金化溶融亜鉛めっきを行なっためっき鋼板においても上述した優れた特性をそのまま具備していることを、実験により確認している。
 [実施例2]
 表4に示す化学組成を有する鋼を転炉で溶製し、連続鋳造によりスラブ鋼(板厚:230mm)を作製した後、2.3mm厚まで熱間圧延した(熱間圧延における仕上げ圧延温度は880℃、巻取温度は560℃である)。次いで得られた熱間圧延鋼板を酸洗した後、1.4mm厚まで冷間圧延した(冷延率:39%)。
 次いで、表5に示す焼鈍条件で、めっき連続焼鈍ラインにて焼鈍および溶融亜鉛めっきを施した。なお、溶融亜鉛めっき処理は、低温保持工程後に行い、めっき処理後に3次冷却を実施した。この際のめっき浴温度は450℃、めっき浴滞在時間は2秒とした。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 上記の様にして得られた各溶融亜鉛めっき鋼板について、機械的特性(引張強度、降伏比、伸び)の測定、伸びフランジ性の評価、および組織観察を実施例1と同様にして行った。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表4~6より次のように考察することができる。即ち、実験No.27~29は本発明で規定する要件を満たしているので、引張強度が980MPa以上であって、高降伏比を示し、かつTS-ELバランス、更にはTS-λバランスにも優れたものが得られている。これに対し、実験No.30は、マルテンサイト分率が規定範囲を超えてしまい、高降伏比を達成することができなかった。
 本実施例の結果より、本発明の要件を満足するGI鋼板は、良好な特性を兼ね備えていることが確認された。本実施例ではGI鋼板の結果を示しているが、その後に合金化処理を行なったGA鋼板においても、本発明の要件を備えているものは良好な特性を兼ね備えていることを確認している。

Claims (3)

  1.  鋼板の表面に溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有するめっき鋼板であって、
     C:0.12~0.3%(質量%の意味。化学成分組成について以下同じ)、
    Si:0.1%以下(0%を含まない)、
    Mn:2.0~3.5%、
    P:0.05%以下(0%を含まない)、
    S:0.05%以下(0%を含まない)、
    Al:0.005~0.1%、および
    N:0.015%以下(0%を含まない)
    を満たし、残部が鉄および不可避不純物であって、
     金属組織が、
    ベイナイトを母相組織とするものであって、
    全組織に対する割合で、
    フェライトの面積率:3~20%、および
    マルテンサイトの面積率:10~35%
    を満たすことを特徴とする、引張強度が980MPa以上の加工性に優れた高降伏比高強度めっき鋼板。
  2.  更に、
    Cr:1.0%以下(0%を含まない)、
    Mo:1.0%以下(0%を含まない)、および
    B:0.01%以下(0%を含まない)
    よりなる群から選択される1種以上の元素を含む請求項1に記載のめっき鋼板。
  3.  更に、
    Ti:0.3%以下(0%を含まない)、および/または
    V:0.3%以下(0%を含まない)を含む請求項1に記載のめっき鋼板。
PCT/JP2011/058007 2010-03-31 2011-03-30 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 WO2011125738A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/635,768 US9040169B2 (en) 2010-03-31 2011-03-30 Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, each having excellent workability, high yield ratio and high strength
GB1218559.1A GB2499689A (en) 2010-03-31 2011-03-30 Hot dipped galvanized steel sheet and alloyed hot-dip galvanised steel sheet, each having excellent processability, high yield ratio and high strength
CN201180016239.2A CN102844454B (zh) 2010-03-31 2011-03-30 加工性优异的高屈服比高强度的熔融镀锌钢板和合金化熔融镀锌钢板
KR1020127025372A KR101470721B1 (ko) 2010-03-31 2011-03-30 가공성이 우수한 고항복비 고강도의 용융 아연 도금 강판 및 합금화 용융 아연 도금 강판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010084468A JP5432802B2 (ja) 2010-03-31 2010-03-31 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
JP2010-084468 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125738A1 true WO2011125738A1 (ja) 2011-10-13

Family

ID=44762680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058007 WO2011125738A1 (ja) 2010-03-31 2011-03-30 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板

Country Status (6)

Country Link
US (1) US9040169B2 (ja)
JP (1) JP5432802B2 (ja)
KR (1) KR101470721B1 (ja)
CN (1) CN102844454B (ja)
GB (1) GB2499689A (ja)
WO (1) WO2011125738A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130273391A1 (en) * 2012-03-30 2013-10-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-yield-ratio high-strength steel sheet having excellent workability

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101682868B1 (ko) 2011-07-21 2016-12-05 가부시키가이샤 고베 세이코쇼 열간 프레스 성형 강 부재의 제조 방법
CA2869340C (en) 2012-04-05 2016-10-25 Tata Steel Ijmuiden B.V. Steel strip having a low si content
JP5867436B2 (ja) 2013-03-28 2016-02-24 Jfeスチール株式会社 高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP5867435B2 (ja) 2013-03-28 2016-02-24 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6246621B2 (ja) * 2013-05-08 2017-12-13 株式会社神戸製鋼所 引張強度が1180MPa以上の強度−曲げ性バランスに優れた溶融亜鉛めっき鋼板もしくは合金化溶融亜鉛めっき鋼板
KR102148739B1 (ko) * 2016-01-29 2020-08-27 제이에프이 스틸 가부시키가이샤 고강도 아연 도금 강판, 고강도 부재 및 고강도 아연 도금 강판의 제조 방법
ES2911655T3 (es) * 2019-06-17 2022-05-20 Tata Steel Ijmuiden Bv Tratamiento térmico de un fleje de acero laminado en frío
JP7389322B2 (ja) * 2019-08-20 2023-11-30 日本製鉄株式会社 薄鋼板及びその製造方法
CN111235460B (zh) * 2020-02-12 2021-08-17 首钢集团有限公司 一种适用于感应加热的桥壳钢及其生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197121A (ja) * 1993-12-29 1995-08-01 Kobe Steel Ltd 高密度エネルギーの照射によって高強度化特性を示す高加工性鋼板を製造する方法
JP2003247045A (ja) * 2001-10-03 2003-09-05 Kobe Steel Ltd 伸びフランジ性に優れた複合組織鋼板およびその製造方法
JP2010065316A (ja) * 2008-08-12 2010-03-25 Kobe Steel Ltd 加工性に優れた高強度鋼板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282175A (ja) * 1999-04-02 2000-10-10 Kawasaki Steel Corp 加工性に優れた超高強度熱延鋼板およびその製造方法
FR2830260B1 (fr) 2001-10-03 2007-02-23 Kobe Steel Ltd Tole d'acier a double phase a excellente formabilite de bords par etirage et procede de fabrication de celle-ci
JP4336269B2 (ja) 2004-08-12 2009-09-30 新日本製鐵株式会社 溶融亜鉛めっき高張力鋼板の製造装置
JP5194811B2 (ja) * 2007-03-30 2013-05-08 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板
JP5194878B2 (ja) * 2007-04-13 2013-05-08 Jfeスチール株式会社 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
EP2202327B1 (en) * 2007-10-25 2020-12-02 JFE Steel Corporation Method for manufacturing a high-strength galvanized steel sheet with excellent formability
JP5119903B2 (ja) * 2007-12-20 2013-01-16 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法
JP4894863B2 (ja) * 2008-02-08 2012-03-14 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197121A (ja) * 1993-12-29 1995-08-01 Kobe Steel Ltd 高密度エネルギーの照射によって高強度化特性を示す高加工性鋼板を製造する方法
JP2003247045A (ja) * 2001-10-03 2003-09-05 Kobe Steel Ltd 伸びフランジ性に優れた複合組織鋼板およびその製造方法
JP2010065316A (ja) * 2008-08-12 2010-03-25 Kobe Steel Ltd 加工性に優れた高強度鋼板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130273391A1 (en) * 2012-03-30 2013-10-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-yield-ratio high-strength steel sheet having excellent workability
CN103361577A (zh) * 2012-03-30 2013-10-23 株式会社神户制钢所 加工性优异的高屈强比高强度钢板
US9611524B2 (en) 2012-03-30 2017-04-04 Kobe Steel, Ltd. High-yield-ratio high-strength steel sheet having excellent workability

Also Published As

Publication number Publication date
JP2011214101A (ja) 2011-10-27
KR20120126116A (ko) 2012-11-20
GB201218559D0 (en) 2012-11-28
CN102844454A (zh) 2012-12-26
US20130017411A1 (en) 2013-01-17
CN102844454B (zh) 2016-04-27
GB2499689A (en) 2013-08-28
JP5432802B2 (ja) 2014-03-05
KR101470721B1 (ko) 2014-12-08
US9040169B2 (en) 2015-05-26

Similar Documents

Publication Publication Date Title
KR101831020B1 (ko) 가공성이 우수한 고항복비 고강도 강판
US20180023171A1 (en) Steel sheet for warm press forming, warm-pressed member, and manufacturing methods thereof
US8828557B2 (en) High strength galvanized steel sheet having excellent formability, weldability, and fatigue properties and method for manufacturing the same
TWI412605B (zh) 高強度鋼板及其製造方法
US8876987B2 (en) High-strength steel sheet and method for manufacturing same
KR101399741B1 (ko) 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
JP5432802B2 (ja) 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
JP5365112B2 (ja) 高強度鋼板およびその製造方法
KR101422556B1 (ko) 고강도 강판의 제조 방법
JP5857909B2 (ja) 鋼板およびその製造方法
CN108699660B (zh) 高强度钢板及其制造方法
KR101521342B1 (ko) 가공성이 우수한 고항복비 고강도 강판
US20140234655A1 (en) Hot-dip galvanized steel sheet and method for producing same
KR20200069371A (ko) 고강도 아연 도금 강판 및 그의 제조 방법
JP5256690B2 (ja) 加工性および耐衝撃特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
MX2014009571A (es) Plancha de acero laminada en frio, plancha de acero chapada y metodo para fabricarla.
JP4855442B2 (ja) 低降伏比型合金化溶融亜鉛メッキ高強度鋼板の製造方法
CN111448329A (zh) 经冷轧和涂覆的钢板及其制造方法
JP5256689B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5338873B2 (ja) 引張強度440MPa以上の加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5434984B2 (ja) 引張強度440MPa以上の加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP6434348B2 (ja) 加工性に優れた高強度鋼板
KR101489243B1 (ko) 가공성 및 도금밀착성이 우수한 고강도 합금화 용융 아연도금강판 및 그 제조방법
JP6541504B2 (ja) 製造安定性に優れた高強度高延性鋼板、及びその製造方法、並びに高強度高延性鋼板の製造に用いられる冷延原板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016239.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765638

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13635768

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 8206/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127025372

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 1218559

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110330

WWE Wipo information: entry into national phase

Ref document number: 1218559.1

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 11765638

Country of ref document: EP

Kind code of ref document: A1