WO2011125273A1 - Method for manufacturing liquid crystal display panel, and liquid crystal display panel manufactured by the method - Google Patents

Method for manufacturing liquid crystal display panel, and liquid crystal display panel manufactured by the method Download PDF

Info

Publication number
WO2011125273A1
WO2011125273A1 PCT/JP2011/000553 JP2011000553W WO2011125273A1 WO 2011125273 A1 WO2011125273 A1 WO 2011125273A1 JP 2011000553 W JP2011000553 W JP 2011000553W WO 2011125273 A1 WO2011125273 A1 WO 2011125273A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
liquid crystal
display panel
crystal display
Prior art date
Application number
PCT/JP2011/000553
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木伸夫
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011125273A1 publication Critical patent/WO2011125273A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a manufacturing method of a liquid crystal display panel and a liquid crystal display panel manufactured by the manufacturing method, and more particularly to a technique for removing an alignment film formed on each surface of a pair of substrates constituting the liquid crystal display panel.
  • the liquid crystal display panel is, for example, a TFT substrate provided with a thin film transistor (hereinafter also referred to as “TFT”) and the like and a TFT substrate, and a color filter (hereinafter referred to as “CF”). Also, the liquid crystal layer provided between the TFT substrate and the CF substrate, the TFT substrate and the CF substrate are bonded together, and the liquid crystal layer is enclosed between the TFT substrate and the CF substrate. In order to do so, a sealing material provided in a frame shape is provided.
  • an alignment film for aligning liquid crystal molecules constituting the liquid crystal layer in a certain direction is provided on each surface of the TFT substrate and the CF substrate on the liquid crystal layer side.
  • Patent Document 1 discloses that a laser beam having a predetermined energy is formed after an alignment film made of a polyimide film is formed so as to cover the entire panel substrate in which a metal film and a transparent conductive film are formed on a glass substrate.
  • An alignment film patterning method is disclosed in which the alignment film is selectively removed by irradiation.
  • Patent Document 1 describes that according to this, an alignment film pattern having a predetermined shape can be formed in a short time without damaging the underlying metal film or transparent conductive film. .
  • an alignment film made of polyimide resin or the like has a low strength of the film itself, and therefore tends to have a low adhesive strength with a sealing material. Therefore, it is conceivable to improve the adhesive strength between the substrate and the sealing material by partially removing the alignment film on each surface of the TFT substrate and the CF substrate that are in contact with the sealing material.
  • a method of irradiating laser light as in Patent Document 1 is effective.
  • a recess is formed on the surface of the glass substrate or the surface of the base film covering the surface, or the surface of the glass substrate or the surface of the base film is melted.
  • the substrate surface may be damaged.
  • the output in the beam spot of the laser beam is generally high at the center, so that the alignment film can be completely removed in the entire laser beam irradiation region.
  • damage to the substrate surface is likely to occur at the center of the laser light irradiation region, and when the laser output is decreased, film residue is likely to occur at the side edge of the laser light irradiation region. .
  • the removal rate is lowered, and damage to the substrate surface may be increased.
  • the present invention has been made in view of such points, and an object of the present invention is to remove the alignment film while suppressing damage to the substrate surface.
  • a protective insulating film made of an inorganic oxide film is formed under the alignment film.
  • a method of manufacturing a liquid crystal display panel according to the present invention includes a first substrate and a second substrate disposed to face each other, a liquid crystal layer provided between the first substrate and the second substrate, A method of manufacturing a liquid crystal display panel having a first substrate and a second substrate bonded to each other, and a sealing material for sealing the liquid crystal layer between the first substrate and the second substrate.
  • a protective insulating film made of an inorganic oxide film is formed on the surface of the substrate, and the first substrate manufacturing step of manufacturing the first substrate and the first insulating film formed on the protective insulating film are stacked in a region overlapping the sealing material.
  • the alignment film patterning step of irradiating a region overlapping with the sealing material of the alignment film with a laser beam to remove a part of the alignment film;
  • the first substrate from which a part has been removed and the second substrate The characterized in that it comprises a bonding step bonding through the sealing material.
  • the protective insulating film made of the inorganic oxide film formed in the first substrate manufacturing process is aligned. Since it is arranged in the lower layer of the film, the reflectance of at least the surface of the protective insulating film of the laser beam used for removing a part of the alignment film is improved. As a result, damage to the surface of the protective insulating film and the surface of the base substrate is suppressed. Therefore, in the first substrate, damage to the substrate surface is suppressed, and the alignment film is removed.
  • the adhesive strength between the first substrate and the sealing material is improved. Furthermore, in the first substrate, the side surface of the alignment film formed by the laser light irradiation is covered with the sealing material, so that moisture can be prevented from entering the panel through the alignment film on the first substrate side.
  • the inorganic oxide film may have transparency.
  • the inorganic oxide film constituting the protective insulating film has transparency, it is possible to form the protective insulating film on the entire surface of the substrate without affecting the image display. The manufacturing process becomes easier.
  • the inorganic oxide film may be a silicon oxide film.
  • the inorganic oxide film constituting the protective insulating film is a silicon oxide film
  • the reflectance of the laser light on the surface of the protective insulating film (the surface of the silicon oxide film) is improved and the protective insulating film is formed.
  • a base coat film of a TFT substrate can be used.
  • the inorganic oxide film may be a laminated film of a silicon oxynitride film and a silicon oxide film provided on the silicon oxynitride film.
  • the inorganic oxide film constituting the protective insulating film is a laminated film in which a silicon oxynitride film and a silicon oxide film are sequentially stacked, the surface of the protective insulating film for laser light (the surface of the silicon oxide film) ) And the internal interface (interface between the silicon oxynitride film and the silicon oxide film) are improved, and the base coat film of the TFT substrate, for example, can be used as the protective insulating film.
  • the protective insulating film may not include a silicon nitride film.
  • the protective insulating film does not include the silicon nitride film, the effects of the present invention are specifically exhibited.
  • the protective insulating film includes a silicon nitride film, for example, even if the above-described silicon oxide film or the like is disposed on the silicon nitride film, the substrate surface is easily damaged by laser light irradiation. End up.
  • a protective insulating film made of an inorganic oxide film is formed on the surface of the base substrate, and a second substrate manufacturing process for manufacturing the second substrate, and the first insulating film is laminated on the region of the protective insulating film overlapping the sealing material.
  • An alignment film patterning step may be provided in which after forming an alignment film on the entire surface of the two substrates, a region of the alignment film overlapping the sealing material is irradiated with laser light to remove a part of the alignment film. .
  • the protective insulating film made of the inorganic oxide film formed in the second substrate manufacturing process is aligned. Since it is arranged in the lower layer of the film, the reflectance of at least the surface of the protective insulating film of the laser beam used for removing a part of the alignment film is improved. As a result, damage to the surface of the protective insulating film and the surface of the base substrate is suppressed, so that the alignment film is removed while suppressing damage to the substrate surface in the second substrate. In addition, since the portion of the second substrate that contacts the sealing material of the alignment film is removed, the adhesive strength between the second substrate and the sealing material is improved. Furthermore, in the second substrate, the side surface of the alignment film formed by the laser light irradiation is covered with the sealing material, so that moisture can be prevented from entering the panel through the alignment film on the second substrate side.
  • an element film may be formed on the protective insulating film.
  • the element film is formed on the protective insulating film in the first substrate manufacturing process, for example, before forming the element film including the TFT on the base substrate, the base coat film formed on the entire substrate Thus, a protective insulating film is formed.
  • the liquid crystal display panel according to the present invention is a liquid crystal display panel manufactured by the above-described method for manufacturing a liquid crystal display panel, and the first substrate includes a base coat film that constitutes the protective insulating film, and the element film. Are formed in order, and the base coat film is exposed from the interlayer insulating film in a region overlapping with the sealing material.
  • the base coat film that forms the protective insulating film is exposed from the interlayer insulating film that forms the element film.
  • a protective insulating film made of an inorganic oxide film is disposed below the alignment film, and the effects of the present invention are specifically demonstrated.
  • the alignment film since the protective insulating film made of an inorganic oxide film is formed under the alignment film, the alignment film can be removed while suppressing damage to the substrate surface.
  • FIG. 1 is a cross-sectional view of a liquid crystal display panel according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a method for manufacturing a liquid crystal display panel in a portion where the region X in FIG. 1 is enlarged.
  • FIG. 3 is a plan view showing a method for manufacturing a liquid crystal display panel in an example and a comparative example according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view illustrating a method for manufacturing a liquid crystal display panel in an example and a comparative example according to an embodiment of the present invention.
  • FIG. 1 to 5 show an embodiment of a method for manufacturing a liquid crystal display panel according to the present invention.
  • FIG. 1 is a cross-sectional view of the liquid crystal display panel 50 of the present embodiment.
  • the liquid crystal display panel 50 includes a TFT substrate 20 provided as a first substrate, a CF substrate 30 provided as a second substrate so as to face the TFT substrate 20, and the TFT substrate 20 and the CF substrate.
  • the liquid crystal layer 40 provided between the substrates 30, the alignment films 14 and 24 provided on the respective surfaces of the TFT substrate 20 and the CF substrate 30 on the liquid crystal layer 40 side, and the TFT substrate 20 and the CF substrate 30 are bonded to each other.
  • a sealing material 45 provided in a frame shape for sealing the liquid crystal layer 40 between the TFT substrate 20 and the CF substrate 30 is provided.
  • a display area D for displaying an image and a frame area F around the display area D are defined.
  • the TFT substrate 20 includes a base coat film 11 provided as a protective insulating film on the base substrate 10a, and an element film 12 provided on the base coat film 11.
  • the element film 12 is, for example, in the display region D, a plurality of gate lines (not shown) provided so as to extend in parallel with each other on the base substrate 10a, and in parallel with each other in a direction orthogonal to each gate line.
  • a plurality of source lines (not shown) provided to extend, a plurality of TFTs provided for each gate line and each intersection of the source lines, that is, a plurality of TFTs provided for each pixel which is the minimum unit of an image,
  • An interlayer insulating film provided so as to cover the TFT and a plurality of pixel electrodes provided in a matrix on the interlayer insulating film are provided.
  • the base coat film 11 for example, a silicon oxynitride film and a silicon oxide film are sequentially stacked
  • the element film 12 for example, a silicon nitride film and a silicon oxide film are sequentially stacked. Exposed) from the interlayer insulating film.
  • the sealing material 45 is in contact with the portion.
  • the configuration in which the sealing material 45 is also in contact with the peripheral end portion of the alignment film 14 is exemplified, but the sealing material (45) may be in a configuration in which only the base coat film (11) is in contact. Good.
  • the CF substrate 30 includes a base substrate 10b, a base coat film 21 provided on the base substrate 10b, a black matrix 22 provided in a grid pattern on the base coat film 21, and a black matrix 22
  • a plurality of colored layers such as a red layer, a green layer, and a blue layer provided between the lattices, and a common electrode 23 provided so as to cover the black matrix 22 and the colored layers.
  • the sealing material 45 is in contact with the portion.
  • the configuration in which the sealing material 45 is in contact with the peripheral end portion of the alignment film 24 is exemplified, but the sealing material (45) may be in a configuration in which only the base coat film (21) is in contact. Good.
  • the liquid crystal layer 40 is made of a nematic liquid crystal material having electro-optical characteristics.
  • the liquid crystal display panel 50 configured as described above applies a predetermined voltage for each pixel to the liquid crystal layer 40 disposed between each pixel electrode on the TFT substrate 20 and the common electrode 23 on the CF substrate 30, so that the liquid crystal layer By changing the orientation state of 40, the transmittance of light transmitted through the panel is adjusted for each pixel, and an image is displayed.
  • FIG. 2 is a cross-sectional view showing a manufacturing method (alignment film patterning step) of the liquid crystal display panel 50 in a portion where the region X in FIG. 1 is enlarged.
  • the manufacturing method of the liquid crystal display panel 50 of this embodiment includes a TFT substrate manufacturing process, a CF substrate manufacturing process, an alignment film patterning process, and a bonding process.
  • a silicon oxynitride film (thickness of about 70 nm) and a silicon oxide film (thickness of about 100 nm) are sequentially formed on the entire base substrate 10a such as a glass substrate by plasma CVD (Chemical Vapor Deposition). Then, the base coat film 11 is formed.
  • an element film 12 including a gate line, a source line, a TFT, an interlayer insulating film, and a pixel electrode is formed on the base coat film 11 by using a known method so that the peripheral end portion of the base coat film 11 is exposed.
  • the TFT substrate 20 is produced (TFT substrate production process).
  • the alignment film 13 (about 100 nm in thickness) is formed by baking with respect to the application film
  • a silicon oxynitride film (thickness of about 70 nm) and a silicon oxide film (thickness of about 100 nm) are sequentially formed on the entire base substrate 10b such as a glass substrate by plasma CVD, and the base coat film 21 is formed.
  • a black colored photosensitive resin is applied to the entire substrate on which the base coat film 21 is formed by a spin coating method or a slit coating method, and then the coating film is exposed and developed.
  • the black matrix 22 is formed to a thickness of about 1.0 ⁇ m so that the peripheral end portion of the base coat film 21 is exposed.
  • a photosensitive resin colored in red, green or blue for example, is applied to the entire substrate on which the black matrix 22 is formed by spin coating or slit coating, and then the coating film is exposed and developed.
  • a colored layer for example, a red layer
  • a thickness of about 1.0 ⁇ m is formed to a thickness of about 1.0 ⁇ m.
  • the same process is repeated for the other two colors to form other two colored layers (for example, a green layer and a blue layer) with a thickness of about 1.0 ⁇ m.
  • the common electrode 23 is formed by forming a transparent conductive film (thickness of about 100 nm) such as an ITO (Indium Tin Oxide) film on the entire substrate on which each colored layer is formed by sputtering. Then, the CF substrate 30 is manufactured (CF substrate manufacturing step).
  • a transparent conductive film thickness of about 100 nm
  • ITO Indium Tin Oxide
  • the alignment film (about 100 nm in thickness) is formed by baking with respect to the coating film, By irradiating the peripheral edge of the alignment film (the region where the sealing material 45 is disposed later) with laser light L, a portion of the alignment film is removed with a width of about 100 ⁇ m, and then the rubbing treatment is performed to align the alignment film.
  • the film 24 is formed (second alignment film patterning step).
  • the seal material 45 is drawn in a frame shape on the frame region F of the CF substrate 30 on which the alignment film 24 is formed.
  • the pressure is released to atmospheric pressure.
  • the outer surfaces of the TFT substrate 20 and the CF substrate 30 are pressurized to produce a bonded body (bonding step).
  • the liquid crystal display panel 50 of the present embodiment can be manufactured.
  • FIG. 3 is a plan view showing a method of manufacturing a liquid crystal display panel in the example of the present embodiment and a comparative example
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5A is a cross-sectional view showing a method for manufacturing a liquid crystal display panel in an example of the present embodiment
  • FIG. 5B is a method for manufacturing a liquid crystal display panel in Comparative example 1 of the present embodiment
  • FIG. 5C is a cross-sectional view showing a method for manufacturing a liquid crystal display panel in Comparative Example 2 of the present embodiment.
  • an (upper layer) silicon oxide film (thickness: 100 nm) is formed on a glass substrate 10 (thickness: about 700 ⁇ m).
  • a substrate A on which a base coat film 11a of silicon oxynitride film (about 70 nm thick) and an alignment film 13 were laminated was prepared.
  • a substrate B on which a base coat film 11b of a film (thickness of about 100 nm) / a silicon oxynitride film (thickness of about 70 nm) and an alignment film 13 were prepared was prepared.
  • a substrate C base coat film: none
  • a substrate C in which only the alignment film 13 was laminated on a glass substrate 10 (thickness of about 700 ⁇ m) was prepared.
  • various laser beams L spot Ls diameter: 200 ⁇ m
  • the third harmonic wavelength 355 nm
  • the remaining condition of the alignment film 13 and the damage condition of the substrate surface in the irradiation region of the laser light L were evaluated.
  • the evaluation results of the substrates A, B, and C are as shown in Table 1, Table 2, and Table 3, respectively.
  • “ ⁇ ” indicates a state where there is no film residue of the alignment film and the substrate surface
  • “ ⁇ ” indicates a state where there is a film residue of the alignment film
  • “ ⁇ ” indicates that the substrate surface is damaged.
  • the substrate A of the example base coat film: SiO 2 / SiNO
  • the alignment film is sufficiently removed, and even if the laser output is increased, Damage to the substrate surface was not confirmed. This also broadens the conditions for laser processing by irradiating laser light, making laser processing easier.
  • the laser output is as shown in Table 2 and Table 3, respectively. Although the alignment film was sufficiently removed at 18 W, damage to the substrate surface was confirmed when the laser output was increased to 24 W and 30 W.
  • the substrate B of Comparative Example 1 and the substrate C of Comparative Example 2 were measured, the sum of the reflectance and transmittance of the substrate A was the substrate. Since it became larger than the sum of the reflectance and transmittance in B and C, it was inferred that the substrate A of the example had the lowest laser light absorption rate and suppressed substrate damage.
  • Comparative Example 1 Although the silicon oxide film is arranged on the surface side as in the example, damage to the substrate was confirmed on the high output side of the laser output as compared with the example. It was inferred that the silicon nitride film disposed on the back surface of the oxide film had an adverse effect.
  • the TFT Since the base coat film 11 made of an inorganic oxide film formed in the substrate manufacturing process is disposed below the alignment film 13, at least the base coat film 11 of the laser beam L used for removing a part of the alignment film 13 is used. The reflectance at the surface is improved. Thereby, since damage to the surface of the base coat film 11 and the surface of the base substrate 10a can be suppressed, damage to the substrate surface can be suppressed and the alignment film can be removed in the TFT substrate 20.
  • the adhesive strength between the TFT substrate 20 and the sealing material 45 can be improved.
  • the side surface of the alignment film 14 formed by the irradiation with the laser beam L is covered with the sealing material 45, so that moisture can be prevented from entering the panel via the alignment film 14 on the TFT substrate 20 side. be able to.
  • the second alignment film patterning process when the laser beam L is irradiated to the region overlapping the sealing material of the alignment film, it is formed in the CF substrate manufacturing process. Since the base coat film 21 made of the inorganic oxide film is disposed below the alignment film, the reflectance of at least the surface of the base coat film 21 of the laser light L used for removing a part of the alignment film is improved. To do. Thereby, since damage to the surface of the base coat film 21 and the surface of the base substrate 10b can be suppressed, damage to the substrate surface in the CF substrate 30 can be suppressed and the alignment film can be removed.
  • the adhesive strength between the CF substrate 30 and the sealing material 45 can be improved.
  • the side surface of the alignment film 24 formed by the irradiation with the laser light L is covered with the sealing material 45, so that moisture can be prevented from entering the panel via the alignment film 24 on the CF substrate 30 side. be able to.
  • the base coat film 11 since the inorganic oxide film constituting the base coat film 11 has transparency, the base coat film is formed on the entire surface of the substrate without affecting the image display. 11 can be formed, and the manufacturing process can be facilitated.
  • the inorganic oxide film constituting the base coat films 11 and 21 is a laminated film in which a silicon oxynitride film and a silicon oxide film are laminated in order, so that the laser beam
  • the inorganic oxide film constituting the base coat films 11 and 21 is a laminated film in which a silicon oxynitride film and a silicon oxide film are laminated in order, so that the laser beam
  • the inorganic oxide film constituting the base coat film (11 and 21) is a single-layer film of a silicon oxide film, the reflectance of the laser light on the surface of the protective insulating film, that is, the surface of the silicon oxide film As a result of the improvement, substrate damage can be suppressed.
  • the configuration in which the base coat film is provided on both the TFT substrate and the CF substrate is exemplified.
  • the base coat film is one of the TFT substrate and the CF substrate.
  • the present invention can also be applied to the configuration provided in FIG.
  • the alignment film in the laser light irradiation region it is desirable to completely remove the alignment film in the laser light irradiation region, but the alignment film in the laser light irradiation region is not completely removed. Good.
  • the method of removing the alignment film from the panel-sized TFT substrate and the CF substrate is exemplified, but the present invention is a mother glass-sized TFT substrate and CF substrate.
  • the present invention can also be applied to a method of removing the alignment film.
  • this invention is a vacuum after producing an empty cell under normal pressure.
  • the present invention can also be applied to a manufacturing method of a liquid crystal display panel in which a liquid crystal material is injected between substrates of empty cells by an injection method.
  • an active matrix drive type liquid crystal display panel is exemplified, but the present invention can also be applied to a passive matrix drive type liquid crystal display panel.
  • the present invention is useful for a method of manufacturing a liquid crystal display panel because the alignment film can be removed while suppressing damage to the substrate surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

Disclosed is a method for manufacturing a liquid crystal display panel (50) which is provided with: a first substrate (20) and a second substrate (30), which are disposed to face each other; a liquid crystal layer (40), which is provided between the substrates (20, 30); and a seal material (45), which bonds the substrates (20, 30) to each other, and seals the liquid crystal layer (40) between the substrates (20, 30). The method is provided with: a first substrate manufacturing step wherein an insulating protection film (11) composed of an inorganic oxide film is formed on the surface of a base substrate (10a), and the first substrate (20) is manufactured; an alignment film patterning step wherein an alignment film is formed over the entire surface of the first substrate (20) such that the alignment film is laminated in a region that overlaps the seal material (45) of the insulating protection film (11), then, a laser beam is applied to the region that overlaps the seal material (45) of the alignment film, and a part of the alignment film is removed; and a bonding step wherein the first substrate (20) having a part of the alignment film removed therefrom, and the second substrate (30) are bonded to each other with the seal material (45) therebetween.

Description

液晶表示パネルの製造方法及びその製造方法により製造された液晶表示パネルLiquid crystal display panel manufacturing method and liquid crystal display panel manufactured by the manufacturing method
 本発明は、液晶表示パネルの製造方法及びその製造方法により製造された液晶表示パネルに関し、特に、液晶表示パネルを構成する一対の基板の各表面に形成する配向膜の除去技術に関するものである。 The present invention relates to a manufacturing method of a liquid crystal display panel and a liquid crystal display panel manufactured by the manufacturing method, and more particularly to a technique for removing an alignment film formed on each surface of a pair of substrates constituting the liquid crystal display panel.
 液晶表示パネルは、例えば、薄膜トランジスタ(Thin Film Transistor、以下、「TFT」とも称する)などが設けられたTFT基板と、TFT基板に対向して配置され、カラーフィルター(Color Filter、以下、「CF」とも称する)などが設けられたCF基板と、TFT基板及びCF基板の間に設けられた液晶層と、TFT基板及びCF基板を互いに接着すると共に、TFT基板及びCF基板の間に液晶層を封入するために枠状に設けられたシール材とを備えている。ここで、TFT基板及びCF基板の液晶層側の各表面には、液晶層を構成する液晶分子を一定方向に配列させるための配向膜が設けられている。 The liquid crystal display panel is, for example, a TFT substrate provided with a thin film transistor (hereinafter also referred to as “TFT”) and the like and a TFT substrate, and a color filter (hereinafter referred to as “CF”). Also, the liquid crystal layer provided between the TFT substrate and the CF substrate, the TFT substrate and the CF substrate are bonded together, and the liquid crystal layer is enclosed between the TFT substrate and the CF substrate. In order to do so, a sealing material provided in a frame shape is provided. Here, an alignment film for aligning liquid crystal molecules constituting the liquid crystal layer in a certain direction is provided on each surface of the TFT substrate and the CF substrate on the liquid crystal layer side.
 例えば、特許文献1には、ガラス基板上に金属膜と透明導電膜とが形成されたパネル基板の全体を覆うようにポリイミド膜からなる配向膜を形成した後に、所定のエネルギーを有するレーザビームを照射することにより、配向膜の選択的な除去を行う配向膜のパターニング方法が開示されている。そして、特許文献1には、これによれば、下地となる金属膜や透明導電膜に損傷を与えることなく、短時間で所定形状の配向膜パターンを形成することができる、と記載されている。 For example, Patent Document 1 discloses that a laser beam having a predetermined energy is formed after an alignment film made of a polyimide film is formed so as to cover the entire panel substrate in which a metal film and a transparent conductive film are formed on a glass substrate. An alignment film patterning method is disclosed in which the alignment film is selectively removed by irradiation. Patent Document 1 describes that according to this, an alignment film pattern having a predetermined shape can be formed in a short time without damaging the underlying metal film or transparent conductive film. .
特開2007-212666号公報JP 2007-212666 A
 ところで、ポリイミド樹脂などにより構成された配向膜は、膜自体の強度が低いので、シール材との接着強度が低くなる傾向にある。そこで、シール材が接触するTFT基板及びCF基板の各表面において、配向膜を部分的に除去して、基板とシール材との接着強度を向上させることが考えられる。ここで、TFT基板及びCF基板の各表面に設けられた配向膜を部分的に除去するには、特許文献1のように、レーザ光を照射する方法が有効であるものの、例えば、配向膜の下層に透明導電膜や金属膜が配置しない場合には、ガラス基板の表面、又はその表面を覆う下地膜の表面に凹部が形成されたり、ガラス基板の表面又は下地膜の表面が溶融したりして、基板表面が損傷するおそれがある。そして、レーザ光を走査しながら照射する場合には、レーザ光のビームスポット内の出力がその中心部で概ね高いので、レーザ光の照射領域全体で配向膜を完全に除去するために、レーザの出力を上げると、レーザ光の照射領域の中心部で基板表面の損傷が発生し易くなり、また、レーザの出力を下げると、レーザ光の照射領域の側端部で膜残りが発生し易くなる。さらに、レーザ光の吸収が低い配向膜においては、その除去率が低くなると共に、基板表面の損傷が大きくなるおそれがある。 By the way, an alignment film made of polyimide resin or the like has a low strength of the film itself, and therefore tends to have a low adhesive strength with a sealing material. Therefore, it is conceivable to improve the adhesive strength between the substrate and the sealing material by partially removing the alignment film on each surface of the TFT substrate and the CF substrate that are in contact with the sealing material. Here, in order to partially remove the alignment film provided on each surface of the TFT substrate and the CF substrate, a method of irradiating laser light as in Patent Document 1 is effective. When a transparent conductive film or metal film is not disposed in the lower layer, a recess is formed on the surface of the glass substrate or the surface of the base film covering the surface, or the surface of the glass substrate or the surface of the base film is melted. The substrate surface may be damaged. When the laser beam is irradiated while scanning, the output in the beam spot of the laser beam is generally high at the center, so that the alignment film can be completely removed in the entire laser beam irradiation region. When the output is increased, damage to the substrate surface is likely to occur at the center of the laser light irradiation region, and when the laser output is decreased, film residue is likely to occur at the side edge of the laser light irradiation region. . Further, in the alignment film having low laser light absorption, the removal rate is lowered, and damage to the substrate surface may be increased.
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、基板表面の損傷を抑制して、配向膜を除去することにある。 The present invention has been made in view of such points, and an object of the present invention is to remove the alignment film while suppressing damage to the substrate surface.
 上記目的を達成するために、本発明は、配向膜の下層に、無機酸化膜からなる保護絶縁膜を形成するようにしたものである。 In order to achieve the above object, according to the present invention, a protective insulating film made of an inorganic oxide film is formed under the alignment film.
 具体的に本発明に係る液晶表示パネルの製造方法は、互いに対向して配置された第1基板及び第2基板と、上記第1基板及び第2基板の間に設けられた液晶層と、上記第1基板及び第2基板を互いに接着すると共に、該第1基板及び第2基板の間に上記液晶層を封入するためのシール材とを備えた液晶表示パネルを製造する方法であって、ベース基板の表面に無機酸化膜からなる保護絶縁膜を形成して、上記第1基板を作製する第1基板作製工程と、上記保護絶縁膜の上記シール材と重なる領域に積層するように、上記第1基板の表面全体に配向膜を形成した後に、該配向膜の上記シール材と重なる領域にレーザ光を照射して、該配向膜の一部を除去する配向膜パターニング工程と、上記配向膜の一部が除去された第1基板と上記第2基板とを上記シール材を介して貼り合わせる貼り合わせ工程とを備えることを特徴とする。 Specifically, a method of manufacturing a liquid crystal display panel according to the present invention includes a first substrate and a second substrate disposed to face each other, a liquid crystal layer provided between the first substrate and the second substrate, A method of manufacturing a liquid crystal display panel having a first substrate and a second substrate bonded to each other, and a sealing material for sealing the liquid crystal layer between the first substrate and the second substrate. A protective insulating film made of an inorganic oxide film is formed on the surface of the substrate, and the first substrate manufacturing step of manufacturing the first substrate and the first insulating film formed on the protective insulating film are stacked in a region overlapping the sealing material. After forming an alignment film on the entire surface of one substrate, the alignment film patterning step of irradiating a region overlapping with the sealing material of the alignment film with a laser beam to remove a part of the alignment film; The first substrate from which a part has been removed and the second substrate The characterized in that it comprises a bonding step bonding through the sealing material.
 上記の方法によれば、配向膜パターニング工程において、配向膜のシール材と重なる領域にレーザ光を照射する際には、第1基板作製工程で形成された無機酸化膜からなる保護絶縁膜が配向膜の下層に配置されているので、配向膜の一部を除去するために用いたレーザ光の保護絶縁膜の少なくとも表面での反射率が向上する。これにより、保護絶縁膜の表面及びベース基板の表面の損傷が抑制されるので、第1基板において、基板表面の損傷を抑制して、配向膜が除去される。また、第1基板において、配向膜のシール材と接触する部分が除去されるので、第1基板とシール材との接着強度が向上する。さらに、第1基板において、レーザ光の照射により形成された配向膜の側面がシール材に覆われるので、第1基板側の配向膜を介するパネル内部への水分の浸入が抑制される。 According to the above method, when the region overlapping the sealing material of the alignment film is irradiated with laser light in the alignment film patterning process, the protective insulating film made of the inorganic oxide film formed in the first substrate manufacturing process is aligned. Since it is arranged in the lower layer of the film, the reflectance of at least the surface of the protective insulating film of the laser beam used for removing a part of the alignment film is improved. As a result, damage to the surface of the protective insulating film and the surface of the base substrate is suppressed. Therefore, in the first substrate, damage to the substrate surface is suppressed, and the alignment film is removed. In addition, since the portion of the first substrate that contacts the sealing material of the alignment film is removed, the adhesive strength between the first substrate and the sealing material is improved. Furthermore, in the first substrate, the side surface of the alignment film formed by the laser light irradiation is covered with the sealing material, so that moisture can be prevented from entering the panel through the alignment film on the first substrate side.
 上記無機酸化膜は、透明性を有していてもよい。 The inorganic oxide film may have transparency.
 上記の方法によれば、保護絶縁膜を構成する無機酸化膜が透明性を有しているので、画像表示に影響を与えることなく、基板全面に保護絶縁膜を形成することが可能になり、製造プロセスが容易になる。 According to the above method, since the inorganic oxide film constituting the protective insulating film has transparency, it is possible to form the protective insulating film on the entire surface of the substrate without affecting the image display. The manufacturing process becomes easier.
 上記無機酸化膜は、シリコン酸化膜であってもよい。 The inorganic oxide film may be a silicon oxide film.
 上記の方法によれば、保護絶縁膜を構成する無機酸化膜がシリコン酸化膜であるので、レーザ光の保護絶縁膜の表面(シリコン酸化膜の表面)での反射率が向上すると共に、保護絶縁膜として、例えば、TFT基板のベースコート膜を利用することが可能になる。 According to the above method, since the inorganic oxide film constituting the protective insulating film is a silicon oxide film, the reflectance of the laser light on the surface of the protective insulating film (the surface of the silicon oxide film) is improved and the protective insulating film is formed. As the film, for example, a base coat film of a TFT substrate can be used.
 上記無機酸化膜は、シリコン酸化窒化膜と、該シリコン酸化窒化膜上に設けられたシリコン酸化膜との積層膜であってもよい。 The inorganic oxide film may be a laminated film of a silicon oxynitride film and a silicon oxide film provided on the silicon oxynitride film.
 上記の方法によれば、保護絶縁膜を構成する無機酸化膜が、シリコン酸化窒化膜及びシリコン酸化膜を順に積層した積層膜であるので、レーザ光の保護絶縁膜の表面(シリコン酸化膜の表面)及び内部界面(シリコン酸化窒化膜とシリコン酸化膜との界面)での反射率が向上すると共に、保護絶縁膜として、例えば、TFT基板のベースコート膜を利用することが可能になる。 According to the above method, since the inorganic oxide film constituting the protective insulating film is a laminated film in which a silicon oxynitride film and a silicon oxide film are sequentially stacked, the surface of the protective insulating film for laser light (the surface of the silicon oxide film) ) And the internal interface (interface between the silicon oxynitride film and the silicon oxide film) are improved, and the base coat film of the TFT substrate, for example, can be used as the protective insulating film.
 上記保護絶縁膜は、シリコン窒化膜を含まなくてもよい。 The protective insulating film may not include a silicon nitride film.
 上記の方法によれば、保護絶縁膜がシリコン窒化膜を含まないので、本発明の作用効果が具体的に奏される。ここで、保護絶縁膜がシリコン窒化膜を含む場合には、例えば、シリコン窒化膜の上層に上述したシリコン酸化膜などが配置されていても、基板表面がレーザ光の照射により損傷し易くなってしまう。 According to the above method, since the protective insulating film does not include the silicon nitride film, the effects of the present invention are specifically exhibited. Here, when the protective insulating film includes a silicon nitride film, for example, even if the above-described silicon oxide film or the like is disposed on the silicon nitride film, the substrate surface is easily damaged by laser light irradiation. End up.
 ベース基板の表面に無機酸化膜からなる保護絶縁膜を形成して、上記第2基板を作製する第2基板作製工程と、上記保護絶縁膜の上記シール材と重なる領域に積層するように上記第2基板の表面全体に配向膜を形成した後に、該配向膜の上記シール材と重なる領域にレーザ光を照射して、該配向膜の一部を除去する配向膜パターニング工程とを備えてもよい。 A protective insulating film made of an inorganic oxide film is formed on the surface of the base substrate, and a second substrate manufacturing process for manufacturing the second substrate, and the first insulating film is laminated on the region of the protective insulating film overlapping the sealing material. An alignment film patterning step may be provided in which after forming an alignment film on the entire surface of the two substrates, a region of the alignment film overlapping the sealing material is irradiated with laser light to remove a part of the alignment film. .
 上記の方法によれば、配向膜パターニング工程において、配向膜のシール材と重なる領域にレーザ光を照射する際には、第2基板作製工程で形成された無機酸化膜からなる保護絶縁膜が配向膜の下層に配置されているので、配向膜の一部を除去するために用いたレーザ光の保護絶縁膜の少なくとも表面での反射率が向上する。これにより、保護絶縁膜の表面及びベース基板の表面の損傷が抑制されるので、第2基板において、基板表面の損傷を抑制して、配向膜が除去される。また、第2基板において、配向膜のシール材と接触する部分が除去されるので、第2基板とシール材との接着強度が向上する。さらに、第2基板において、レーザ光の照射により形成された配向膜の側面がシール材に覆われるので、第2基板側の配向膜を介するパネル内部への水分の浸入が抑制される。 According to the above method, when the region overlapping the sealing material of the alignment film is irradiated with laser light in the alignment film patterning process, the protective insulating film made of the inorganic oxide film formed in the second substrate manufacturing process is aligned. Since it is arranged in the lower layer of the film, the reflectance of at least the surface of the protective insulating film of the laser beam used for removing a part of the alignment film is improved. As a result, damage to the surface of the protective insulating film and the surface of the base substrate is suppressed, so that the alignment film is removed while suppressing damage to the substrate surface in the second substrate. In addition, since the portion of the second substrate that contacts the sealing material of the alignment film is removed, the adhesive strength between the second substrate and the sealing material is improved. Furthermore, in the second substrate, the side surface of the alignment film formed by the laser light irradiation is covered with the sealing material, so that moisture can be prevented from entering the panel through the alignment film on the second substrate side.
 上記第1基板作製工程では、上記保護絶縁膜上に素子膜を形成してもよい。 In the first substrate manufacturing step, an element film may be formed on the protective insulating film.
 上記の方法によれば、第1基板作製工程では、保護絶縁膜上に素子膜を形成するので、例えば、ベース基板にTFTなどを含む素子膜を形成する前に、基板全体に形成するベースコート膜により、保護絶縁膜が形成される。 According to the above method, since the element film is formed on the protective insulating film in the first substrate manufacturing process, for example, before forming the element film including the TFT on the base substrate, the base coat film formed on the entire substrate Thus, a protective insulating film is formed.
 また、本発明に係る液晶表示パネルは、上述した液晶表示パネルの製造方法により製造された液晶表示パネルであって、上記第1基板では、上記保護絶縁膜を構成するベースコート膜、及び上記素子膜を構成する層間絶縁膜が順に積層され、上記シール材と重なる領域では、上記ベースコート膜が上記層間絶縁膜から露出していることを特徴とする。 The liquid crystal display panel according to the present invention is a liquid crystal display panel manufactured by the above-described method for manufacturing a liquid crystal display panel, and the first substrate includes a base coat film that constitutes the protective insulating film, and the element film. Are formed in order, and the base coat film is exposed from the interlayer insulating film in a region overlapping with the sealing material.
 上記の構成によれば、第1基板のシール材と重なる領域では、保護絶縁膜を構成するベースコート膜が素子膜を構成する層間絶縁膜から露出しているので、配向膜パターニング工程において、配向膜のシール材と重なる領域にレーザ光を照射する際には、配向膜の下層に無機酸化膜からなる保護絶縁膜が配置されることになり、本発明の作用効果が具体的に奏される。 According to the above configuration, in the region overlapping the sealing material of the first substrate, the base coat film that forms the protective insulating film is exposed from the interlayer insulating film that forms the element film. When irradiating the region overlapping with the sealing material with laser light, a protective insulating film made of an inorganic oxide film is disposed below the alignment film, and the effects of the present invention are specifically demonstrated.
 本発明によれば、配向膜の下層に、無機酸化膜からなる保護絶縁膜を形成するので、基板表面の損傷を抑制して、配向膜を除去することができる。 According to the present invention, since the protective insulating film made of an inorganic oxide film is formed under the alignment film, the alignment film can be removed while suppressing damage to the substrate surface.
図1は、本発明の一実施形態に係る液晶表示パネルの断面図である。FIG. 1 is a cross-sectional view of a liquid crystal display panel according to an embodiment of the present invention. 図2は、図1中の領域Xを拡大した部分における液晶表示パネルの製造方法を示す断面図である。FIG. 2 is a cross-sectional view illustrating a method for manufacturing a liquid crystal display panel in a portion where the region X in FIG. 1 is enlarged. 図3は、本発明の一実施形態に係る実施例及び比較例における液晶表示パネルの製造方法を示す平面図である。FIG. 3 is a plan view showing a method for manufacturing a liquid crystal display panel in an example and a comparative example according to an embodiment of the present invention. 図4は、図3中のIV-IV線に沿った断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 図5は、本発明の一実施形態に係る実施例及び比較例における液晶表示パネルの製造方法を示す断面図である。FIG. 5 is a cross-sectional view illustrating a method for manufacturing a liquid crystal display panel in an example and a comparative example according to an embodiment of the present invention.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment.
 図1~図5は、本発明に係る液晶表示パネルの製造方法の一実施形態を示している。具体的に、図1は、本実施形態の液晶表示パネル50の断面図である。 1 to 5 show an embodiment of a method for manufacturing a liquid crystal display panel according to the present invention. Specifically, FIG. 1 is a cross-sectional view of the liquid crystal display panel 50 of the present embodiment.
 液晶表示パネル50は、図1に示すように、第1基板として設けられたTFT基板20と、TFT基板20に対向するように第2基板として設けられたCF基板30と、TFT基板20及びCF基板30の間に設けられた液晶層40と、TFT基板20及びCF基板30の液晶層40側の各表面にそれぞれ設けられた配向膜14及び24と、TFT基板20及びCF基板30を互いに接着すると共に、TFT基板20及びCF基板30の間に液晶層40を封入するために枠状に設けられたシール材45とを備えている。また、液晶表示パネル50では、図1に示すように、画像表示を行う表示領域D、及び表示領域Dの周囲に額縁領域Fがそれぞれ規定されている。 As shown in FIG. 1, the liquid crystal display panel 50 includes a TFT substrate 20 provided as a first substrate, a CF substrate 30 provided as a second substrate so as to face the TFT substrate 20, and the TFT substrate 20 and the CF substrate. The liquid crystal layer 40 provided between the substrates 30, the alignment films 14 and 24 provided on the respective surfaces of the TFT substrate 20 and the CF substrate 30 on the liquid crystal layer 40 side, and the TFT substrate 20 and the CF substrate 30 are bonded to each other. In addition, a sealing material 45 provided in a frame shape for sealing the liquid crystal layer 40 between the TFT substrate 20 and the CF substrate 30 is provided. Further, in the liquid crystal display panel 50, as shown in FIG. 1, a display area D for displaying an image and a frame area F around the display area D are defined.
 TFT基板20は、図1に示すように、ベース基板10a上に保護絶縁膜として設けられたベースコート膜11と、ベースコート膜11上に設けられた素子膜12とを備えている。ここで、素子膜12は、例えば、表示領域Dにおいて、ベース基板10a上に互いに平行に延びるように設けられた複数のゲート線(不図示)と、各ゲート線と直交する方向に互いに平行に延びるように設けられた複数のソース線(不図示)と、各ゲート線及び各ソース線の交差部分毎、すなわち、画像の最小単位である各画素毎にそれぞれ設けられた複数のTFTと、各TFTを覆うように設けられた層間絶縁膜と、層間絶縁膜上にマトリクス状に設けられた複数の画素電極とを備えている。また、シール材45と重なる領域では、(例えば、シリコン酸化窒化膜及びシリコン酸化膜が順に積層された)ベースコート膜11が素子膜12を構成する(例えば、シリコン窒化膜及びシリコン酸化膜が順に積層された)層間絶縁膜から露出している。 As shown in FIG. 1, the TFT substrate 20 includes a base coat film 11 provided as a protective insulating film on the base substrate 10a, and an element film 12 provided on the base coat film 11. Here, the element film 12 is, for example, in the display region D, a plurality of gate lines (not shown) provided so as to extend in parallel with each other on the base substrate 10a, and in parallel with each other in a direction orthogonal to each gate line. A plurality of source lines (not shown) provided to extend, a plurality of TFTs provided for each gate line and each intersection of the source lines, that is, a plurality of TFTs provided for each pixel which is the minimum unit of an image, An interlayer insulating film provided so as to cover the TFT and a plurality of pixel electrodes provided in a matrix on the interlayer insulating film are provided. In the region overlapping with the sealing material 45, the base coat film 11 (for example, a silicon oxynitride film and a silicon oxide film are sequentially stacked) constitutes the element film 12 (for example, a silicon nitride film and a silicon oxide film are sequentially stacked). Exposed) from the interlayer insulating film.
 TFT基板20では、図1に示すように、額縁領域Fにおいて、ベースコート膜11の周端部が配向膜14から露出しており、配向膜14から露出するベースコート膜11及び配向膜14の周端部にシール材45が接触している。なお、本実施形態では、シール材45が配向膜14の周端部にも接触する構成を例示したが、シール材(45)は、ベースコート膜(11)だけに接触する構成などであってもよい。 In the TFT substrate 20, as shown in FIG. 1, in the frame region F, the peripheral edge of the base coat film 11 is exposed from the alignment film 14, and the base coat film 11 exposed from the alignment film 14 and the peripheral edge of the alignment film 14 are exposed. The sealing material 45 is in contact with the portion. In the present embodiment, the configuration in which the sealing material 45 is also in contact with the peripheral end portion of the alignment film 14 is exemplified, but the sealing material (45) may be in a configuration in which only the base coat film (11) is in contact. Good.
 CF基板30は、図1に示すように、ベース基板10bと、ベース基板10b上に設けられたベースコート膜21と、ベースコート膜21上に格子状に設けられたブラックマトリクス22と、ブラックマトリクス22の各格子間にそれぞれ設けられた赤色層、緑色層及び青色層などの複数の着色層(不図示)と、ブラックマトリクス22及び各着色層を覆うように設けられた共通電極23とを備えている。 As shown in FIG. 1, the CF substrate 30 includes a base substrate 10b, a base coat film 21 provided on the base substrate 10b, a black matrix 22 provided in a grid pattern on the base coat film 21, and a black matrix 22 A plurality of colored layers (not shown) such as a red layer, a green layer, and a blue layer provided between the lattices, and a common electrode 23 provided so as to cover the black matrix 22 and the colored layers. .
 CF基板30では、図1に示すように、額縁領域Fにおいて、ベースコート膜21の周端部が配向膜24から露出しており、配向膜24から露出するベースコート膜21及び配向膜24の周端部にシール材45が接触している。なお、本実施形態では、シール材45が配向膜24の周端部にも接触する構成を例示したが、シール材(45)は、ベースコート膜(21)だけに接触する構成などであってもよい。 In the CF substrate 30, as shown in FIG. 1, in the frame region F, the peripheral end portion of the base coat film 21 is exposed from the alignment film 24, and the base coat film 21 exposed from the alignment film 24 and the peripheral edges of the alignment film 24 The sealing material 45 is in contact with the portion. In the present embodiment, the configuration in which the sealing material 45 is in contact with the peripheral end portion of the alignment film 24 is exemplified, but the sealing material (45) may be in a configuration in which only the base coat film (21) is in contact. Good.
 液晶層40は、電気光学特性を有するネマチックの液晶材料などにより構成されている。 The liquid crystal layer 40 is made of a nematic liquid crystal material having electro-optical characteristics.
 上記構成の液晶表示パネル50は、TFT基板20上の各画素電極とCF基板30上の共通電極23との間に配置する液晶層40に各画素毎に所定の電圧を印加して、液晶層40の配向状態を変えることにより、各画素毎にパネル内を透過する光の透過率を調整して、画像を表示するように構成されている。 The liquid crystal display panel 50 configured as described above applies a predetermined voltage for each pixel to the liquid crystal layer 40 disposed between each pixel electrode on the TFT substrate 20 and the common electrode 23 on the CF substrate 30, so that the liquid crystal layer By changing the orientation state of 40, the transmittance of light transmitted through the panel is adjusted for each pixel, and an image is displayed.
 次に、本実施形態の液晶表示パネル50の製造方法について、図2を用いて説明する。ここで、図2は、図1中の領域Xを拡大した部分における液晶表示パネル50の製造方法(配向膜パターニング工程)を示す断面図である。なお、本実施形態の液晶表示パネル50の製造方法は、TFT基板作製工程、CF基板作製工程、配向膜パターニング工程及び貼り合わせ工程を備える。 Next, a manufacturing method of the liquid crystal display panel 50 of the present embodiment will be described with reference to FIG. Here, FIG. 2 is a cross-sectional view showing a manufacturing method (alignment film patterning step) of the liquid crystal display panel 50 in a portion where the region X in FIG. 1 is enlarged. In addition, the manufacturing method of the liquid crystal display panel 50 of this embodiment includes a TFT substrate manufacturing process, a CF substrate manufacturing process, an alignment film patterning process, and a bonding process.
 まず、ガラス基板などのベース基板10aの基板全体に、プラズマCVD(Chemical Vapor Deposition)法により、シリコン酸化窒化膜(厚さ70nm程度)及びシリコン酸化膜(厚さ100nm程度)を順に成膜して、ベースコート膜11を形成する。 First, a silicon oxynitride film (thickness of about 70 nm) and a silicon oxide film (thickness of about 100 nm) are sequentially formed on the entire base substrate 10a such as a glass substrate by plasma CVD (Chemical Vapor Deposition). Then, the base coat film 11 is formed.
 続いて、周知の方法を用いて、ベースコート膜11上に、ゲート線、ソース線、TFT、層間絶縁膜及び画素電極を含む素子膜12をベースコート膜11の周端部が露出するように形成することにより、TFT基板20を作製する(TFT基板作製工程)。 Subsequently, an element film 12 including a gate line, a source line, a TFT, an interlayer insulating film, and a pixel electrode is formed on the base coat film 11 by using a known method so that the peripheral end portion of the base coat film 11 is exposed. Thereby, the TFT substrate 20 is produced (TFT substrate production process).
 そして、TFT基板20の素子膜12を覆うように、印刷法により、ポリイミド樹脂を塗布した後に、その塗布膜に対して焼成を行うことにより、配向膜13(厚さ100nm程度)を形成し、さらに、図2に示すように、配向膜13の周端部(後にシール材45が配置する領域)にレーザ光Lを照射することにより、配向膜13の一部を100μm程度の幅で除去した後に、ラビング処理を行うことにより、配向膜14を形成する(第1配向膜パターニング工程)。 And after apply | coating a polyimide resin by the printing method so that the element film | membrane 12 of TFT substrate 20 may be covered, the alignment film 13 (about 100 nm in thickness) is formed by baking with respect to the application film | membrane, Further, as shown in FIG. 2, a part of the alignment film 13 is removed with a width of about 100 μm by irradiating the peripheral end portion of the alignment film 13 (region where the sealing material 45 will be disposed later) with a laser beam L. Later, an alignment film 14 is formed by performing a rubbing process (first alignment film patterning step).
 また、ガラス基板などのベース基板10bの基板全体に、プラズマCVD法により、シリコン酸化窒化膜(厚さ70nm程度)及びシリコン酸化膜(厚さ100nm程度)を順に成膜して、ベースコート膜21を形成する。 Further, a silicon oxynitride film (thickness of about 70 nm) and a silicon oxide film (thickness of about 100 nm) are sequentially formed on the entire base substrate 10b such as a glass substrate by plasma CVD, and the base coat film 21 is formed. Form.
 続いて、ベースコート膜21が形成された基板全体に、スピンコート法又はスリットコート法により、例えば、黒色に着色された感光性樹脂を塗布した後に、その塗布膜に対して露光及び現像を行うことにより、ベースコート膜21の周端部が露出するように、ブラックマトリクス22を厚さ1.0μm程度に形成する。 Subsequently, for example, a black colored photosensitive resin is applied to the entire substrate on which the base coat film 21 is formed by a spin coating method or a slit coating method, and then the coating film is exposed and developed. Thus, the black matrix 22 is formed to a thickness of about 1.0 μm so that the peripheral end portion of the base coat film 21 is exposed.
 そして、ブラックマトリクス22が形成された基板全体に、スピンコート法又はスリットコート法により、例えば、赤色、緑色又は青色に着色された感光性樹脂を塗布した後に、その塗布膜を露光及び現像することにより、選択した色の着色層(例えば、赤色層)を厚さ1.0μm程度に形成する。その後、他の2色についても同様な工程を繰り返して、他の2色の着色層(例えば、緑色層及び青色層)を厚さ1.0μm程度に形成する。 Then, a photosensitive resin colored in red, green or blue, for example, is applied to the entire substrate on which the black matrix 22 is formed by spin coating or slit coating, and then the coating film is exposed and developed. Thus, a colored layer (for example, a red layer) of the selected color is formed to a thickness of about 1.0 μm. Thereafter, the same process is repeated for the other two colors to form other two colored layers (for example, a green layer and a blue layer) with a thickness of about 1.0 μm.
 さらに、各着色層が形成された基板全体に、スパッタリング法により、例えば、ITO(Indium Tin Oxide)膜などの透明導電膜(厚さ100nm程度)を成膜することにより、共通電極23を形成して、CF基板30を作製する(CF基板作製工程)。 Further, the common electrode 23 is formed by forming a transparent conductive film (thickness of about 100 nm) such as an ITO (Indium Tin Oxide) film on the entire substrate on which each colored layer is formed by sputtering. Then, the CF substrate 30 is manufactured (CF substrate manufacturing step).
 そして、CF基板30の共通電極23を覆うように、印刷法により、ポリイミド樹脂を塗布した後に、その塗布膜に対して焼成を行うことにより、配向膜(厚さ100nm程度)を形成し、さらに、配向膜の周端部(後にシール材45が配置する領域)にレーザ光Lを照射することにより、配向膜の一部を100μm程度の幅で除去した後に、ラビング処理を行うことにより、配向膜24を形成する(第2配向膜パターニング工程)。 And after apply | coating a polyimide resin by the printing method so that the common electrode 23 of CF board | substrate 30 may be covered, the alignment film (about 100 nm in thickness) is formed by baking with respect to the coating film, By irradiating the peripheral edge of the alignment film (the region where the sealing material 45 is disposed later) with laser light L, a portion of the alignment film is removed with a width of about 100 μm, and then the rubbing treatment is performed to align the alignment film. The film 24 is formed (second alignment film patterning step).
 続いて、例えば、ディスペンサを用いて、配向膜24が形成されたCF基板30の額縁領域Fにシール材45を枠状に描画する。 Subsequently, for example, using a dispenser, the seal material 45 is drawn in a frame shape on the frame region F of the CF substrate 30 on which the alignment film 24 is formed.
 その後、シール材45が描画されたCF基板30に対し、シール材45に囲まれた領域(表示領域D)に液晶材料を滴下する。 Thereafter, a liquid crystal material is dropped onto the area (display area D) surrounded by the sealing material 45 on the CF substrate 30 on which the sealing material 45 is drawn.
 さらに、液晶材料が滴下されたCF基板30と配向膜14が形成されたTFT基板20とを、減圧下で互いの表示領域Dが重なり合うように貼り合わせた後に、大気圧に開放することにより、TFT基板20及びCF基板30の各外表面を加圧して、貼合体を作製する(貼り合わせ工程)。 Furthermore, by bonding the CF substrate 30 onto which the liquid crystal material is dropped and the TFT substrate 20 on which the alignment film 14 is formed so that the display areas D overlap each other under reduced pressure, the pressure is released to atmospheric pressure. The outer surfaces of the TFT substrate 20 and the CF substrate 30 are pressurized to produce a bonded body (bonding step).
 最後に、上記貼合体のTFT基板20及びCF基板30の間に挟持されたシール材45を硬化させて液晶層40を封入した後に、例えば、CF基板30の不要部分を分断により除去する。 Finally, after the sealing material 45 sandwiched between the TFT substrate 20 and the CF substrate 30 of the bonded body is cured and the liquid crystal layer 40 is enclosed, for example, unnecessary portions of the CF substrate 30 are removed by cutting.
 以上のようにして、本実施形態の液晶表示パネル50を製造することができる。 As described above, the liquid crystal display panel 50 of the present embodiment can be manufactured.
 次に、具体的に行った実験について、図3~図5を用いて説明する。ここで、図3は、本実施形態の実施例及び比較例における液晶表示パネルの製造方法を示す平面図であり、図4は、図3中のIV-IV線に沿った断面図である。また、図5(a)は、本実施形態の実施例における液晶表示パネルの製造方法を示す断面図であり、図5(b)は、本実施形態の比較例1における液晶表示パネルの製造方法を示す断面図であり、図5(c)は、本実施形態の比較例2における液晶表示パネルの製造方法を示す断面図である。 Next, specific experiments will be described with reference to FIGS. Here, FIG. 3 is a plan view showing a method of manufacturing a liquid crystal display panel in the example of the present embodiment and a comparative example, and FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. FIG. 5A is a cross-sectional view showing a method for manufacturing a liquid crystal display panel in an example of the present embodiment, and FIG. 5B is a method for manufacturing a liquid crystal display panel in Comparative example 1 of the present embodiment. FIG. 5C is a cross-sectional view showing a method for manufacturing a liquid crystal display panel in Comparative Example 2 of the present embodiment.
 具体的な実験としては、実施例として、図5(a)に示すように、上述した製造方法と同様に、ガラス基板10(厚さ700μm程度)上に(上層)シリコン酸化膜(厚さ100nm程度)/(下層)シリコン酸化窒化膜(厚さ70nm程度)のベースコート膜11a及び配向膜13を積層した基板Aを準備した。 As a specific experiment, as shown in FIG. 5A, as an example, as in the above-described manufacturing method, an (upper layer) silicon oxide film (thickness: 100 nm) is formed on a glass substrate 10 (thickness: about 700 μm). About) / (Lower layer) A substrate A on which a base coat film 11a of silicon oxynitride film (about 70 nm thick) and an alignment film 13 were laminated was prepared.
 また、比較例1として、図5(b)に示すように、ガラス基板10(厚さ700μm程度)上にシリコン酸化膜(厚さ400nm程度)/シリコン窒化膜(厚さ220m程度)/シリコン酸化膜(厚さ100nm程度)/シリコン酸化窒化膜(厚さ70nm程度)のベースコート膜11b及び配向膜13を積層した基板Bを準備した。 As Comparative Example 1, as shown in FIG. 5B, a silicon oxide film (thickness of about 400 nm) / silicon nitride film (thickness of about 220 m) / silicon oxide on a glass substrate 10 (thickness of about 700 μm). A substrate B on which a base coat film 11b of a film (thickness of about 100 nm) / a silicon oxynitride film (thickness of about 70 nm) and an alignment film 13 were prepared was prepared.
 さらに、比較例2として、図5(c)に示すように、ガラス基板10(厚さ700μm程度)上に配向膜13だけを積層した基板C(ベースコート膜:なし)を準備した。 Furthermore, as Comparative Example 2, as shown in FIG. 5C, a substrate C (base coat film: none) in which only the alignment film 13 was laminated on a glass substrate 10 (thickness of about 700 μm) was prepared.
 そして、準備した各基板A、B及びCの表面に、図3及び図4に示すように、YAGレーザの第3高調波(波長355nm)のレーザ光L(スポットLsの径:200μm)を種々の出力(6W、12W、18W、24W及び30W)で30mm/秒で走査しながら照射した後に、レーザ光Lの照射領域における配向膜13の残り具合及び基板表面の損傷具合を評価した。 As shown in FIGS. 3 and 4, various laser beams L (spot Ls diameter: 200 μm) of the third harmonic (wavelength 355 nm) of the YAG laser are applied to the surfaces of the prepared substrates A, B, and C. After irradiation with scanning at 30 mm / second at the output of 6 W, 12 W, 18 W, 24 W and 30 W, the remaining condition of the alignment film 13 and the damage condition of the substrate surface in the irradiation region of the laser light L were evaluated.
 各基板A、B及びCの評価結果は、それぞれ、以下の表1、表2及び表3のとおりである。なお、表1、表2及び表3の評価では、「○」が配向膜の膜残り及び基板表面の損傷がない状態を示し、「×」が配向膜の膜残りがある状態を示し、「△」が基板表面に損傷がある状態を示している。 The evaluation results of the substrates A, B, and C are as shown in Table 1, Table 2, and Table 3, respectively. In the evaluation of Table 1, Table 2, and Table 3, “◯” indicates a state where there is no film residue of the alignment film and the substrate surface, “×” indicates a state where there is a film residue of the alignment film, “Δ” indicates that the substrate surface is damaged.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例(ベースコート膜:SiO/SiNO)の基板Aでは、表1に示すように、レーザの出力が18W以上であれば、配向膜が十分に除去され、レーザの出力を上げても、、基板表面の損傷が確認されなかった。また、これにより、レーザ光の照射によるレーザ加工の条件が広がるので、レーザ加工が容易になった。 In the substrate A of the example (base coat film: SiO 2 / SiNO), as shown in Table 1, if the laser output is 18 W or more, the alignment film is sufficiently removed, and even if the laser output is increased, Damage to the substrate surface was not confirmed. This also broadens the conditions for laser processing by irradiating laser light, making laser processing easier.
 比較例1(ベースコート膜:SiO/SiN/SiO/SiNO)の基板B及び比較例2(ベースコート膜:なし)の基板Cでは、表2及び表3にそれぞれ示すように、レーザの出力が18Wで配向膜が十分に除去されたものの、レーザの出力を24W、30Wと上げると、基板表面の損傷が確認された。 In the substrate B of Comparative Example 1 (base coat film: SiO 2 / SiN / SiO 2 / SiNO) and the substrate C of Comparative Example 2 (base coat film: none), the laser output is as shown in Table 2 and Table 3, respectively. Although the alignment film was sufficiently removed at 18 W, damage to the substrate surface was confirmed when the laser output was increased to 24 W and 30 W.
 また、実施例の基板A、比較例1の基板B及び比較例2の基板Cの表面におけるレーザ光の反射率及び透過率を測定したところ、基板Aにおける反射率と透過率との和が基板B及びCにおける反射率と透過率との和よりも大きくなったので、実施例の基板Aでは、レーザ光の吸収率が最も低くなり、基板損傷が抑制されることが推察された。 Further, when the reflectance and transmittance of the laser beam on the surfaces of the substrate A of Example, the substrate B of Comparative Example 1 and the substrate C of Comparative Example 2 were measured, the sum of the reflectance and transmittance of the substrate A was the substrate. Since it became larger than the sum of the reflectance and transmittance in B and C, it was inferred that the substrate A of the example had the lowest laser light absorption rate and suppressed substrate damage.
 さらに、比較例1では、実施例と同様に、表面側にシリコン酸化膜が配置されているものの、実施例と比べて、レーザの出力の高出力側で基板の損傷が確認されたので、シリコン酸化膜の裏面に配置するシリコン窒化膜が悪影響を及ぼしていることが推察された。 Further, in Comparative Example 1, although the silicon oxide film is arranged on the surface side as in the example, damage to the substrate was confirmed on the high output side of the laser output as compared with the example. It was inferred that the silicon nitride film disposed on the back surface of the oxide film had an adverse effect.
 以上説明したように、本実施形態の液晶表示パネル50の製造方法によれば、第1配向膜パターニング工程において、配向膜13のシール材45と重なる領域にレーザ光を照射する際には、TFT基板作製工程で形成された無機酸化膜からなるベースコート膜11が配向膜13の下層に配置されているので、配向膜13の一部を除去するために用いたレーザ光Lのベースコート膜11の少なくとも表面での反射率が向上する。これにより、ベースコート膜11の表面及びベース基板10aの表面の損傷を抑制することができるので、TFT基板20において、基板表面の損傷を抑制して、配向膜を除去することができる。また、TFT基板20において、配向膜13のシール材45と接触する部分が除去されるので、TFT基板20とシール材45との接着強度を向上させることができる。さらに、TFT基板20において、レーザ光Lの照射により形成された配向膜14の側面がシール材45に覆われるので、TFT基板20側の配向膜14を介するパネル内部への水分の浸入を抑制することができる。 As described above, according to the method for manufacturing the liquid crystal display panel 50 of the present embodiment, in the first alignment film patterning step, when the region overlapping the sealing material 45 of the alignment film 13 is irradiated with laser light, the TFT Since the base coat film 11 made of an inorganic oxide film formed in the substrate manufacturing process is disposed below the alignment film 13, at least the base coat film 11 of the laser beam L used for removing a part of the alignment film 13 is used. The reflectance at the surface is improved. Thereby, since damage to the surface of the base coat film 11 and the surface of the base substrate 10a can be suppressed, damage to the substrate surface can be suppressed and the alignment film can be removed in the TFT substrate 20. In addition, since the portion of the TFT substrate 20 that contacts the sealing material 45 of the alignment film 13 is removed, the adhesive strength between the TFT substrate 20 and the sealing material 45 can be improved. Further, in the TFT substrate 20, the side surface of the alignment film 14 formed by the irradiation with the laser beam L is covered with the sealing material 45, so that moisture can be prevented from entering the panel via the alignment film 14 on the TFT substrate 20 side. be able to.
 また、本実施形態の液晶表示パネル50の製造方法によれば、第2配向膜パターニング工程において、配向膜のシール材と重なる領域にレーザ光Lを照射する際には、CF基板作製工程で形成された無機酸化膜からなるベースコート膜21が配向膜の下層に配置されているので、配向膜の一部を除去するために用いたレーザ光Lのベースコート膜21の少なくとも表面での反射率が向上する。これにより、ベースコート膜21の表面及びベース基板10bの表面の損傷を抑制することができるので、CF基板30において、基板表面の損傷を抑制して、配向膜を除去することができる。また、CF基板30において、配向膜のシール材45と接触する部分が除去されるので、CF基板30とシール材45との接着強度を向上させることができる。さらに、CF基板30において、レーザ光Lの照射により形成された配向膜24の側面がシール材45に覆われるので、CF基板30側の配向膜24を介するパネル内部への水分の浸入を抑制することができる。 Further, according to the method for manufacturing the liquid crystal display panel 50 of the present embodiment, in the second alignment film patterning process, when the laser beam L is irradiated to the region overlapping the sealing material of the alignment film, it is formed in the CF substrate manufacturing process. Since the base coat film 21 made of the inorganic oxide film is disposed below the alignment film, the reflectance of at least the surface of the base coat film 21 of the laser light L used for removing a part of the alignment film is improved. To do. Thereby, since damage to the surface of the base coat film 21 and the surface of the base substrate 10b can be suppressed, damage to the substrate surface in the CF substrate 30 can be suppressed and the alignment film can be removed. Further, since the portion of the alignment film that contacts the sealing material 45 of the alignment film is removed, the adhesive strength between the CF substrate 30 and the sealing material 45 can be improved. Further, in the CF substrate 30, the side surface of the alignment film 24 formed by the irradiation with the laser light L is covered with the sealing material 45, so that moisture can be prevented from entering the panel via the alignment film 24 on the CF substrate 30 side. be able to.
 また、本実施形態の液晶表示パネル50の製造方法によれば、ベースコート膜11を構成する無機酸化膜が透明性を有しているので、画像表示に影響を与えることなく、基板全面にベースコート膜11を形成することが可能になり、製造プロセスを容易にすることができる。 Further, according to the method for manufacturing the liquid crystal display panel 50 of the present embodiment, since the inorganic oxide film constituting the base coat film 11 has transparency, the base coat film is formed on the entire surface of the substrate without affecting the image display. 11 can be formed, and the manufacturing process can be facilitated.
 また、本実施形態の液晶表示パネル50の製造方法によれば、ベースコート膜11及び21を構成する無機酸化膜が、シリコン酸化窒化膜及びシリコン酸化膜を順に積層した積層膜であるので、レーザ光のベースコート膜11及び21の表面及び内部界面、すなわち、シリコン酸化膜の表面及びシリコン酸化窒化膜とシリコン酸化膜との界面での反射率が向上することにより、基板損傷を抑制することができる。ここで、ベースコート膜(11及び21)を構成する無機酸化膜がシリコン酸化膜の単層膜である場合には、レーザ光の保護絶縁膜の表面、すなわち、シリコン酸化膜の表面での反射率が向上することにより、基板損傷を抑制することができる。 Further, according to the method of manufacturing the liquid crystal display panel 50 of the present embodiment, the inorganic oxide film constituting the base coat films 11 and 21 is a laminated film in which a silicon oxynitride film and a silicon oxide film are laminated in order, so that the laser beam By improving the reflectance at the surface and internal interface of the base coat films 11 and 21, that is, the surface of the silicon oxide film and the interface between the silicon oxynitride film and the silicon oxide film, substrate damage can be suppressed. Here, when the inorganic oxide film constituting the base coat film (11 and 21) is a single-layer film of a silicon oxide film, the reflectance of the laser light on the surface of the protective insulating film, that is, the surface of the silicon oxide film As a result of the improvement, substrate damage can be suppressed.
 なお、本実施形態の液晶表示パネル50の製造方法では、ベースコート膜がTFT基板及びCF基板の双方に設けられている構成を例示したが、本発明は、ベースコート膜がTFT基板及びCF基板の一方に設けられている構成にも適用することができる。 In the manufacturing method of the liquid crystal display panel 50 of the present embodiment, the configuration in which the base coat film is provided on both the TFT substrate and the CF substrate is exemplified. However, in the present invention, the base coat film is one of the TFT substrate and the CF substrate. The present invention can also be applied to the configuration provided in FIG.
 また、本実施形態の液晶表示パネル50の製造方法では、レーザ光の照射領域の配向膜を完全に除去することが望ましいものの、レーザ光の照射領域の配向膜が完全に除去されていなくてもよい。 In the method of manufacturing the liquid crystal display panel 50 of the present embodiment, it is desirable to completely remove the alignment film in the laser light irradiation region, but the alignment film in the laser light irradiation region is not completely removed. Good.
 また、本実施形態の液晶表示パネル50の製造方法では、パネルサイズのTFT基板及びCF基板に対して配向膜を除去する方法を例示したが、本発明は、マザーガラスサイズのTFT基板及びCF基板に対して配向膜を除去する方法にも適用することができる。 Further, in the method of manufacturing the liquid crystal display panel 50 of the present embodiment, the method of removing the alignment film from the panel-sized TFT substrate and the CF substrate is exemplified, but the present invention is a mother glass-sized TFT substrate and CF substrate. In contrast, the present invention can also be applied to a method of removing the alignment film.
 また、本実施形態の液晶表示パネル50の製造方法では、ODF(One Drop Fill)法を用いた液晶表示パネルの製造方法を例示したが、本発明は、常圧下で空セルを作製した後に真空注入法により空セルの基板間に液晶材料を注入する液晶表示パネルの製造方法にも適用することができる。 Moreover, in the manufacturing method of the liquid crystal display panel 50 of this embodiment, although the manufacturing method of the liquid crystal display panel using ODF (One (Drop) Fill) method was illustrated, this invention is a vacuum after producing an empty cell under normal pressure. The present invention can also be applied to a manufacturing method of a liquid crystal display panel in which a liquid crystal material is injected between substrates of empty cells by an injection method.
 また、本実施形態の液晶表示パネル50の製造方法では、アクティブマトリクス駆動方式の液晶表示パネルを例示したが、本発明は、パッシブマトリクス駆動方式の液晶表示パネルにも適用することができる。 Further, in the method for manufacturing the liquid crystal display panel 50 of the present embodiment, an active matrix drive type liquid crystal display panel is exemplified, but the present invention can also be applied to a passive matrix drive type liquid crystal display panel.
 以上説明したように、本発明は、基板表面の損傷を抑制して、配向膜を除去することができるので、液晶表示パネルの製造方法について有用である。 As described above, the present invention is useful for a method of manufacturing a liquid crystal display panel because the alignment film can be removed while suppressing damage to the substrate surface.
L   レーザ光
10a,10b  ベース基板
11,21  ベースコート膜(保護絶縁膜)
12  素子膜
13,14,24  配向膜
20  TFT基板(第1基板)
22  ブラックマトリクス
23  共通電極
30  CF基板(第2基板)
40  液晶層
45  シール材
50  液晶表示パネル
L Laser beams 10a and 10b Base substrates 11 and 21 Base coat film (protective insulating film)
12 Element films 13, 14, 24 Alignment film 20 TFT substrate (first substrate)
22 Black matrix 23 Common electrode 30 CF substrate (second substrate)
40 Liquid crystal layer 45 Sealing material 50 Liquid crystal display panel

Claims (8)

  1.  互いに対向して配置された第1基板及び第2基板と、
     上記第1基板及び第2基板の間に設けられた液晶層と、
     上記第1基板及び第2基板を互いに接着すると共に、該第1基板及び第2基板の間に上記液晶層を封入するためのシール材とを備えた液晶表示パネルを製造する方法であって、
     ベース基板の表面に無機酸化膜からなる保護絶縁膜を形成して、上記第1基板を作製する第1基板作製工程と、
     上記保護絶縁膜の上記シール材と重なる領域に積層するように上記第1基板の表面全体に配向膜を形成した後に、該配向膜の上記シール材と重なる領域にレーザ光を照射して、該配向膜の一部を除去する配向膜パターニング工程と、
     上記配向膜の一部が除去された第1基板と上記第2基板とを上記シール材を介して貼り合わせる貼り合わせ工程とを備えることを特徴とする液晶表示パネルの製造方法。
    A first substrate and a second substrate disposed to face each other;
    A liquid crystal layer provided between the first substrate and the second substrate;
    A method of manufacturing a liquid crystal display panel comprising a sealing material for sealing the liquid crystal layer between the first substrate and the second substrate while bonding the first substrate and the second substrate to each other,
    Forming a protective insulating film made of an inorganic oxide film on the surface of the base substrate to produce the first substrate;
    After forming an alignment film on the entire surface of the first substrate so as to be stacked in a region overlapping the sealing material of the protective insulating film, the region overlapping the sealing material of the alignment film is irradiated with a laser beam, An alignment film patterning step for removing a portion of the alignment film;
    A method of manufacturing a liquid crystal display panel, comprising: a bonding step of bonding the first substrate from which a part of the alignment film is removed and the second substrate through the sealing material.
  2.  請求項1に記載された液晶表示パネルの製造方法において、
     上記無機酸化膜は、透明性を有していることを特徴とする液晶表示パネルの製造方法。
    In the manufacturing method of the liquid crystal display panel described in Claim 1,
    The said inorganic oxide film has transparency, The manufacturing method of the liquid crystal display panel characterized by the above-mentioned.
  3.  請求項1又は2に記載された液晶表示パネルの製造方法において、
     上記無機酸化膜は、シリコン酸化膜であることを特徴とする液晶表示パネルの製造方法。
    In the manufacturing method of the liquid crystal display panel described in Claim 1 or 2,
    The method for manufacturing a liquid crystal display panel, wherein the inorganic oxide film is a silicon oxide film.
  4.  請求項1又は2に記載された液晶表示パネルの製造方法において、
     上記無機酸化膜は、シリコン酸化窒化膜と、該シリコン酸化窒化膜上に設けられたシリコン酸化膜との積層膜であることを特徴とする液晶表示パネルの製造方法。
    In the manufacturing method of the liquid crystal display panel described in Claim 1 or 2,
    The method for manufacturing a liquid crystal display panel, wherein the inorganic oxide film is a laminated film of a silicon oxynitride film and a silicon oxide film provided on the silicon oxynitride film.
  5.  請求項1乃至4の何れか1つに記載された液晶表示パネルの製造方法において、
     上記保護絶縁膜は、シリコン窒化膜を含まないことを特徴とする液晶表示パネルの製造方法。
    In the manufacturing method of the liquid crystal display panel as described in any one of Claims 1 thru | or 4,
    The method for manufacturing a liquid crystal display panel, wherein the protective insulating film does not include a silicon nitride film.
  6.  請求項1乃至5の何れか1つに記載された液晶表示パネルの製造方法において、
     ベース基板の表面に無機酸化膜からなる保護絶縁膜を形成して、上記第2基板を作製する第2基板作製工程と、
     上記保護絶縁膜の上記シール材と重なる領域に積層するように上記第2基板の表面全体に配向膜を形成した後に、該配向膜の上記シール材と重なる領域にレーザ光を照射して、該配向膜の一部を除去する配向膜パターニング工程とを備えることを特徴とする液晶表示パネルの製造方法。
    In the manufacturing method of the liquid crystal display panel as described in any one of Claims 1 thru | or 5,
    Forming a protective insulating film made of an inorganic oxide film on the surface of the base substrate to produce the second substrate;
    After forming an alignment film over the entire surface of the second substrate so as to be laminated in a region overlapping the sealing material of the protective insulating film, the region overlapping the sealing material of the alignment film is irradiated with laser light, A method for producing a liquid crystal display panel, comprising: an alignment film patterning step for removing a part of the alignment film.
  7.  請求項1乃至6の何れか1つに記載された液晶表示パネルの製造方法において、
     上記第1基板作製工程では、上記保護絶縁膜上に素子膜を形成することを特徴とする液晶表示パネルの製造方法。
    In the manufacturing method of the liquid crystal display panel as described in any one of Claims 1 thru | or 6,
    In the first substrate manufacturing process, an element film is formed on the protective insulating film.
  8.  請求項7に記載された液晶表示パネルの製造方法により製造された液晶表示パネルであって、
     上記第1基板では、上記保護絶縁膜を構成するベースコート膜、及び上記素子膜を構成する層間絶縁膜が順に積層され、
     上記シール材と重なる領域では、上記ベースコート膜が上記層間絶縁膜から露出していることを特徴とする液晶表示パネル。
    A liquid crystal display panel manufactured by the method for manufacturing a liquid crystal display panel according to claim 7,
    In the first substrate, a base coat film forming the protective insulating film and an interlayer insulating film forming the element film are sequentially stacked,
    The liquid crystal display panel, wherein the base coat film is exposed from the interlayer insulating film in a region overlapping with the sealing material.
PCT/JP2011/000553 2010-04-01 2011-02-01 Method for manufacturing liquid crystal display panel, and liquid crystal display panel manufactured by the method WO2011125273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-085147 2010-04-01
JP2010085147 2010-04-01

Publications (1)

Publication Number Publication Date
WO2011125273A1 true WO2011125273A1 (en) 2011-10-13

Family

ID=44762245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000553 WO2011125273A1 (en) 2010-04-01 2011-02-01 Method for manufacturing liquid crystal display panel, and liquid crystal display panel manufactured by the method

Country Status (1)

Country Link
WO (1) WO2011125273A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3564744A4 (en) * 2016-12-27 2019-11-27 LG Chem, Ltd. Method for forming wired part of chromatic liquid crystal device, and chromatic liquid crystal device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810415U (en) * 1981-07-10 1983-01-22 三洋電機株式会社 liquid crystal display device
JPS61206922U (en) * 1985-06-14 1986-12-27
JPH0588160A (en) * 1991-09-30 1993-04-09 Sharp Corp Plastic substrate liquid crystal element
JP2007212666A (en) * 2006-02-08 2007-08-23 Sony Corp Method for patterning alignment layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810415U (en) * 1981-07-10 1983-01-22 三洋電機株式会社 liquid crystal display device
JPS61206922U (en) * 1985-06-14 1986-12-27
JPH0588160A (en) * 1991-09-30 1993-04-09 Sharp Corp Plastic substrate liquid crystal element
JP2007212666A (en) * 2006-02-08 2007-08-23 Sony Corp Method for patterning alignment layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3564744A4 (en) * 2016-12-27 2019-11-27 LG Chem, Ltd. Method for forming wired part of chromatic liquid crystal device, and chromatic liquid crystal device
JP2020513583A (en) * 2016-12-27 2020-05-14 エルジー・ケム・リミテッド Method for forming wiring portion of liquid crystal color changing element and liquid crystal color changing element
US10782578B2 (en) 2016-12-27 2020-09-22 Lg Chem, Ltd. Method for forming wire portion of liquid crystal chromic device and liquid crystal chromic device
JP7090608B2 (en) 2016-12-27 2022-06-24 エルジー・ケム・リミテッド How to form the wiring part of the liquid crystal discoloring element and the liquid crystal discoloring element

Similar Documents

Publication Publication Date Title
US7982942B2 (en) Color electrophoretic display device and method for manufacturing the same
JP4961271B2 (en) Liquid crystal display panel manufacturing method and liquid crystal display panel
WO2012147322A1 (en) Display device, electronic equipment including same, and method for manufacturing same
JP2009098425A (en) Liquid crystal display device and its manufacturing method
KR102018580B1 (en) Liquid crystal display and method for fabricating the same
JP5191257B2 (en) LCD panel
JP2008139555A (en) Liquid crystal display device and its manufacturing method
JP5733065B2 (en) Liquid crystal display panel and repair method
US7751019B2 (en) Display panel and method of manufacturing the same comprising a column spacer having a bottom side having a shape of a concave-sided polygon
JP5933362B2 (en) Liquid crystal display device and manufacturing method thereof
WO2011125273A1 (en) Method for manufacturing liquid crystal display panel, and liquid crystal display panel manufactured by the method
JP2010204405A (en) Method for manufacturing in plane switching liquid crystal display panel
WO2006040877A1 (en) Multilayer substrate
JP3987522B2 (en) Manufacturing method of liquid crystal display device
WO2011125284A1 (en) Method for producing lcd panel
KR20150066011A (en) Liquid crystal display device and method of fabricating the same
TWI344563B (en) Liquid crystal display unit and method for fabricating the same
US10928685B1 (en) Manufacturing method for ITO common electrode on CF substrate side
JP2009128799A (en) Liquid crystal display and method for manufacturing the same
JP2008111994A (en) Electrode substrate for liquid crystal display device
KR102010959B1 (en) Alignment layer patterning method and method of fabricating liquid crystal display device using the same
JP5607481B2 (en) A mother color filter substrate and a method for manufacturing a liquid crystal panel manufactured using the mother color filter substrate.
TWI385455B (en) Transflective pixel structure and display pane
WO2011125268A1 (en) Liquid crystal display panel
JP2009098426A (en) Liquid crystal display panel and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP