WO2011125268A1 - Liquid crystal display panel - Google Patents

Liquid crystal display panel Download PDF

Info

Publication number
WO2011125268A1
WO2011125268A1 PCT/JP2011/000381 JP2011000381W WO2011125268A1 WO 2011125268 A1 WO2011125268 A1 WO 2011125268A1 JP 2011000381 W JP2011000381 W JP 2011000381W WO 2011125268 A1 WO2011125268 A1 WO 2011125268A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
display panel
crystal display
electrode
Prior art date
Application number
PCT/JP2011/000381
Other languages
French (fr)
Japanese (ja)
Inventor
池口太蔵
牧野洋樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011125268A1 publication Critical patent/WO2011125268A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13456Cell terminals located on one side of the display only
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/56Substrates having a particular shape, e.g. non-rectangular

Definitions

  • the present invention relates to a liquid crystal display panel, and more particularly to a technology for narrowing the frame of a liquid crystal display panel.
  • the liquid crystal display panel is, for example, a TFT substrate provided with a plurality of thin film transistors (hereinafter referred to as “TFT”) and a TFT substrate, and is disposed so as to face the TFT substrate.
  • CF substrate provided with a common electrode or the like, a liquid crystal layer provided between the TFT substrate and the CF substrate, and an alignment provided on each surface of the TFT substrate and the CF substrate on the liquid crystal layer side.
  • the film and a TFT substrate and a CF substrate are adhered to each other, and a sealing material provided in a frame shape is provided between the TFT substrate and the CF substrate to enclose a liquid crystal layer.
  • the common electrode of the CF substrate is connected to, for example, a common transition electrode provided on the TFT substrate via a common transition material containing conductive particles.
  • Patent Document 1 discloses that a first substrate and a second substrate on which electrodes and an alignment film are formed are bonded to each other, and a liquid crystal layer is sealed between them.
  • a liquid crystal device provided with a vertical conduction part having a conductive material containing conductive particles, an alignment film is formed so as to cover at least one surface of the first conductor and the second conductor, and the conductive particles are
  • a configuration in which the first conductor and the second conductor are in conductive contact through the alignment film is disclosed.
  • Patent Document 1 since the conductive particles in the conductive material pierce the alignment film, the first conductor and the second conductor are made conductive. Since there is no need to form an alignment film while avoiding the above, the restriction on the outer edge position of the alignment film is eliminated. As a result, the degree of freedom of design in the peripheral portion of the display area of the liquid crystal device is increased. It is described that both the expansion of the display area of the liquid crystal device and the miniaturization can be achieved.
  • the present invention has been made in view of such a point, and an object of the present invention is to suppress the pinching of the alignment film between the common transition electrode and the common electrode, and to ensure the common transition electrode and the common electrode. Is to connect to.
  • the common transition electrode and the extended portion of the common electrode are connected by the protruding portion of the second substrate.
  • a terminal region is defined along at least one side, a first substrate having a common transition electrode drawn to the terminal region, and the first substrate, A second substrate having a common electrode provided so as to expose the terminal region; a liquid crystal layer provided between the first substrate and the second substrate; and the liquid crystal layer of the first substrate and the second substrate.
  • Liquid crystal display panels each having an alignment film provided on each side surface, wherein the second substrate has a side corresponding to the side of the first substrate in which the terminal region is defined.
  • a protrusion provided to protrude to the end of the side, the common electrode extends to the protrusion, and the common transition electrode is provided to overlap the protrusion, Conductive in the extended part of the common electrode Characterized in that it is connected via the particles.
  • the terminal area is defined along at least one side of the first substrate, and the side of the second substrate corresponding to the side where the terminal area is defined is the side of the first substrate. Since the protruding portion that protrudes to the end portion is provided, the protruding portion of the second substrate is disposed so as to overlap the substrate end of the first substrate in which the terminal region is defined. Therefore, it is difficult to position the alignment film on the protruding portion of the second substrate and the portion of the first substrate that overlaps the protruding portion of the second substrate. Therefore, the common transition electrode and the common electrode connected at the protruding portion of the second substrate are extended. The alignment film is prevented from being caught between the formed portions.
  • the common transition electrode and the extended portion of the common electrode are connected to each other through the conductive particles, so that the alignment transition film is prevented from being caught between the common transition electrode and the common electrode. And the common electrode are securely connected. Further, in the liquid crystal display panel, since the protruding portion of the first substrate and the second substrate overlap at the side where the terminal region is defined, the strength of the side where the terminal region is defined is improved.
  • the protruding portion of the first substrate and the second substrate may be bonded to each other with an adhesive containing the conductive particles.
  • the protruding portion of the first substrate and the second substrate contain conductive particles.
  • the overall adhesive strength between the first substrate and the second substrate is improved.
  • the protrusions may be provided at both ends of the corresponding side of the second substrate.
  • the protrusion part is arrange
  • substrate was prescribed
  • substrate is 1st.
  • the liquid crystal layer may be sealed between the first substrate and the second substrate by a sealing material containing spacer particles, and the conductive particles and the spacer particles may be formed in different sizes.
  • the size of the conductive particles for connecting the common transition electrode and the common electrode is different from the size of the spacer particles for defining the thickness of the liquid crystal layer. The distance between the substrates in the vicinity of the terminal region is properly maintained.
  • the alignment film is prevented from being sandwiched between the common transition electrode and the common electrode.
  • the common transition electrode and the common electrode can be reliably connected.
  • FIG. 1 is a plan view of a liquid crystal display panel according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the liquid crystal display panel in which the X region in FIG. 1 is enlarged.
  • FIG. 3 is a cross-sectional view of the liquid crystal display panel taken along line III-III in FIG.
  • FIG. 4 is a plan view of a TFT substrate constituting a liquid crystal display panel according to an embodiment of the present invention.
  • FIG. 5 is a plan view of a CF substrate constituting the liquid crystal display panel according to the embodiment of the present invention.
  • FIG. 6 is a plan view of the substrate before forming the protrusions of the CF substrate constituting the liquid crystal display panel according to the embodiment of the present invention.
  • FIG. 1 is a plan view of the liquid crystal display panel 50 of the present embodiment
  • FIG. 2 is a plan view of the liquid crystal display panel 50 in which the X region in FIG. 1 is enlarged.
  • FIG. 3 is a cross-sectional view of the liquid crystal display panel 50 taken along line III-III in FIG. 4 and 5 are plan views showing the TFT substrate 20 and the CF substrate 30 constituting the liquid crystal display panel 50, respectively.
  • the liquid crystal display panel 50 includes a TFT substrate (first substrate) and a CF substrate 30 (second substrate) provided to face each other, and a TFT substrate 20 and a CF substrate 30.
  • the liquid crystal layer 40 provided therebetween, the alignment films 31 a and 31 b provided on the respective surfaces of the TFT substrate 20 and the CF substrate 30 on the liquid crystal layer 40 side, and the TFT substrate 20 and the CF substrate 30 are adhered to each other,
  • a sealing material 45 provided in a frame shape is provided.
  • a rectangular display area D for image display is defined.
  • the TFT substrate 20 includes a plurality of gate lines 1 provided on the insulating substrate 10a so as to extend in parallel with each other, and in a direction perpendicular to the gate lines.
  • a plurality of source lines 2 provided to extend in parallel and a plurality of TFTs (not provided) for each intersection of each gate line 1 and each source line 2, that is, for each pixel which is the minimum unit of an image.
  • an interlayer insulating film 12 provided so as to cover each TFT, and a plurality of pixel electrodes (not shown) provided in a matrix on the interlayer insulating film 12.
  • Each of the TFTs includes, for example, a gate electrode (not shown) in which each gate line 1 protrudes to the side, a gate insulating film (not shown) provided so as to cover the gate electrode, and a gate insulating film on the gate insulating film.
  • a semiconductor layer (not shown) provided in an island shape at a position corresponding to the gate electrode, and a source electrode (not shown) and a drain electrode (not shown) provided to face each other on the semiconductor layer ing.
  • the source electrode is, for example, a portion protruding to the side of each source line 2.
  • the drain electrode is connected to each pixel electrode through a contact hole formed in the interlayer insulating film 12.
  • a terminal region T exposed from the CF substrate 30 is defined outside the display region D of the TFT substrate 20 along the left side of the drawing.
  • the terminal region T is provided with a plurality of connection terminals 5 respectively connected to display wirings such as the gate lines 1 and the source lines 2 and connection terminals drawn from a common transfer electrode 13 described later. .
  • a common transition electrode 13 is provided outside the display region D and the terminal region T of the TFT substrate 20 so as to overlap a protruding portion P of a CF substrate 30 described later.
  • the common transition electrode 13 is formed of the same material (for example, ITO (Indium Tin Oxide) film) in the same layer as the pixel electrode, and is exposed to the low-resistance metal exposed from the interlayer insulating film 12 as shown in FIG. Provided on layer 11.
  • the low resistance metal layer 11 is formed of the same material (for example, an aluminum film) in the same layer as the gate line 1.
  • the CF substrate 30 has a frame shape on the insulating substrate 10 b and a black matrix 21 provided in a lattice shape in the frame (display area D), and the black matrix 21.
  • a plurality of colored layers such as a red layer, a green layer, and a blue layer provided between the respective lattices, and a common electrode 22 provided so as to cover the black matrix 21 and each colored layer. .
  • the CF substrate 30 is provided at both ends of the left side in FIG. 1 corresponding to the side of the TFT substrate 20 in which the terminal region T is defined. It has the protrusion part P which protrudes to a part.
  • the common electrode 22 is extended to the projecting portion P, and the extended portion is as shown in FIGS. It is connected to the common transfer electrode 13 on the TFT substrate 20 through a common transfer material 49 made of an adhesive 47 and conductive particles 48 contained therein.
  • the liquid crystal layer 40 is made of a nematic liquid crystal material having electro-optical characteristics.
  • the sealing material 45 contains spacer particles 46 for defining the thickness of the liquid crystal layer 40.
  • the particle diameter of the conductive particles 48 described above is larger by, for example, about 0.5 ⁇ m than the particle diameter of the spacer particles 46 in accordance with the thickness of the film laminated on the insulating substrates 10a and 10b. .
  • the liquid crystal display panel 50 having the above configuration has a predetermined liquid crystal layer 40 for each pixel on the liquid crystal layer 40 disposed via the alignment films 31a and 31b between the pixel electrodes on the TFT substrate 20 and the common electrode 22 on the CF substrate 30.
  • a voltage to change the alignment state of the liquid crystal layer 40 the transmittance of light transmitted through the panel is adjusted for each pixel, and image display is performed.
  • FIG. 6 is a plan view of the substrate before the protrusion P of the CF substrate 30 is formed.
  • the manufacturing method of the liquid crystal display panel 50 of this embodiment includes a TFT substrate manufacturing process, a CF substrate manufacturing process, a bonding process, and a dividing process.
  • ⁇ TFT substrate manufacturing process> First, after forming a metal film such as an aluminum film on the entire substrate of the insulating substrate 10a such as a glass substrate by sputtering, for example, the metal film is patterned using photolithography to obtain the gate line 1, The gate electrode and the low resistance metal layer 11 are formed to a thickness of about 200 nm.
  • a silicon nitride film is formed on the entire substrate on which the gate line 1, the gate electrode, and the low-resistance metal layer 11 are formed by a plasma CVD (Chemical Vapor Deposition) method, thereby forming a gate insulating film. It is formed to a thickness of about 400 nm.
  • an intrinsic amorphous silicon film and an n + amorphous silicon film doped with phosphorus are continuously formed on the entire substrate on which the gate insulating film is formed by plasma CVD, and then the gate is formed using photolithography.
  • a semiconductor formation layer in which an intrinsic amorphous silicon layer having a thickness of about 100 nm and an n + amorphous silicon layer having a thickness of about 50 nm are stacked is formed.
  • an aluminum film and a titanium film are sequentially formed on the entire substrate on which the semiconductor formation layer has been formed by sputtering, to form a metal multilayer film, and then the metal multilayer film is formed using photolithography.
  • the source line 2, the source electrode, and the drain electrode are formed to a thickness of about 350 nm.
  • the n + amorphous silicon layer of the semiconductor formation layer is etched using the source electrode and the drain electrode as a mask, thereby forming a semiconductor layer and a TFT.
  • an inorganic insulating film such as a silicon nitride film is formed to a thickness of about 300 nm by plasma CVD on the entire substrate on which the TFT is formed, and subsequently, for example, acrylic photosensitive film is formed by spin coating.
  • An organic insulating film having a contact hole on the drain electrode and the low-resistance metal layer 11 is formed by applying a photosensitive resin or the like to a thickness of about 2 ⁇ m and exposing and developing the applied photosensitive resin through a photomask. After the formation, the inorganic insulating film exposed from the organic insulating film is etched to deepen the contact hole, thereby forming the interlayer insulating film 12.
  • connection terminal 5 and the common transition are formed.
  • the electrode 13 and the pixel electrode are formed to a thickness of about 100 nm. Note that, in the lower layer of the connection terminal 5, display wirings such as the gate line 1 and the source line 2 are formed in advance by using the process of forming the gate line and the process of forming the source line. .
  • the TFT substrate 20 can be manufactured as described above. Thereafter, an alignment film 31a is formed on the surface of the TFT substrate 20 to a thickness of about 100 nm using a printing method.
  • ⁇ CF substrate manufacturing process First, an acrylic photosensitive resin in which fine particles such as carbon are dispersed is applied to the whole substrate of the insulating substrate 10b such as a glass substrate by a spin coating method, and the applied photosensitive resin is applied to a photomask.
  • the black matrix 21 is formed to a thickness of about 1.0 ⁇ m by developing after being exposed to light.
  • an acrylic photosensitive resin colored in red, green, or blue is applied on the substrate on which the black matrix 21 is formed, and the applied photosensitive resin is exposed through a photomask.
  • patterning is performed by developing to form a colored layer (for example, a red layer) of a selected color with a thickness of about 1.0 ⁇ m.
  • the same process is repeated for the other two colors to form other two colored layers (for example, a green layer and a blue layer) with a thickness of about 1.0 ⁇ m.
  • the transparent conductive film is patterned using photolithography to thereby form a common electrode. 22 is formed to a thickness of about 100 nm.
  • the CF substrate 35 can be manufactured as described above. Thereafter, the alignment film 31b is formed to a thickness of about 100 nm on the surface of the CF substrate 35 by using a printing method.
  • the CF substrate 35 is a CF substrate 30 before the unnecessary portion W is removed in a cutting step described later.
  • the seal material 45 contained in the spacer particles 46 is arranged in a frame shape around the display region D of the TFT substrate 20 on which the alignment film 31a is formed in the TFT substrate manufacturing process.
  • An adhesive 47 contained in the conductive particles 48, that is, a common transition material 49 is disposed on the transition electrode 13.
  • a liquid crystal material is dropped onto a region (display region D) surrounded by the sealing material 45 on the TFT substrate 20 on which the sealing material 45 and the common transition material 49 are arranged.
  • the TFT substrate 20 onto which the liquid crystal material is dropped and the CF substrate 35 on which the alignment film 31b is formed in the CF substrate manufacturing process are bonded so that the display regions D overlap each other under reduced pressure.
  • the outer surfaces of the TFT substrate 20 and the CF substrate 35 are pressurized to produce a bonded body.
  • the sealing material 45 and the common transition material 49 sandwiched between the TFT substrate 20 and the CF substrate 35 of the bonded body are cured to enclose the liquid crystal layer 40 between the TFT substrate 20 and the CF substrate 35.
  • the conductive particles 48 are fixed between the common transition electrode 13 on the TFT substrate 20 and the extended portion of the common electrode 23 on the CF substrate 35.
  • ⁇ Division process> On the surface of the CF substrate 35 of the bonded body in which the sealing material 45 and the common transition material 49 are cured in the bonding process, for example, a cutting edge of a disk-shaped cutting blade along the cutting line L as shown in FIG. While rolling the parting blade, the crack is formed and the formed crack grows in the thickness direction, thereby removing the substantially trapezoidal unnecessary portion W of the CF substrate 35. Thus, the protruding portion P (of the CF substrate 30) is formed.
  • the liquid crystal display panel 50 of the present embodiment can be manufactured.
  • conductive particles made of Sekisui Chemical Co., Ltd. micropearl AU (average particle size 4.5 ⁇ m) are used for the adhesive 47 made of acrylate-based UV curing / thermosetting resin.
  • the liquid crystal display panel 50 was manufactured by the manufacturing method mentioned above using the common transition material 49 which mix
  • the electrical resistance value between the pair of common transition electrodes 13 (the upper left portion and the lower left portion in FIG. 1) sandwiching the terminal region T is about 100 ⁇ . The effect by the example was confirmed.
  • the electric resistance value between the corresponding pair of common transition electrodes is about 500 ⁇ . End up.
  • the TFT substrate 20 is defined with the terminal region T along at least one side, and the terminal region T corresponds to the defined side. Since the side of the substrate 30 is provided with a protruding portion P that protrudes to the end of the side of the TFT substrate 20, the protruding portion P of the CF substrate 30 is the substrate end of the TFT substrate 20 in which the terminal region T is defined. It is arranged to overlap. For this reason, the alignment films 31b and 31a are not easily formed on the protrusion P of the CF substrate 30 and the portion of the TFT substrate 20 overlapping the protrusion substrate P by separating the alignment films 31b and 31a from the necessary display region D.
  • the alignment films 31 a and 31 b can be prevented from being sandwiched between the common transition electrode 13 connected at the protruding portion P of the CF substrate 30 and the extended portion of the common electrode 22.
  • the common transition electrode 13 and the extended portion of the common electrode 22 can be connected to each other via the conductive particles 48, so that the alignment films 31a and 31b between the common transition electrode 13 and the common electrode 22 are connected. Therefore, the common transition electrode 13 and the common electrode 22 can be reliably connected, and the frame can be narrowed.
  • the TFT substrate 20 and the protruding portion P of the CF substrate 30 overlap each other at the side where the terminal region T is defined, so that the strength of the side where the terminal region T is defined is improved. Can do.
  • the liquid crystal display panel 50 of the present embodiment since the alignment films 31b and 31a are difficult to be formed on the protruding portion P of the CF substrate 30 and the portion of the TFT substrate 20 overlapping therewith, the TFT substrate 20 and the CF substrate. 30 protrusions P are firmly bonded to each other by an adhesive 47 (common transfer material 49) containing conductive particles 48, thereby improving the overall adhesive strength between the TFT substrate 20 and the CF substrate 30. Can do.
  • the protrusions P are disposed at both ends of the side of the CF substrate 30 corresponding to the side where the terminal region T of the TFT substrate 20 is defined, the CF substrate Since the 30 pairs of protrusions P are arranged on both sides of the terminal region T of the TFT substrate 20, the strength of the corners of the side where the terminal region T of the liquid crystal display panel 50 is defined can be improved. .
  • the size of the conductive particles 48 for connecting the common transition electrode 13 and the common electrode 22 is such that the spacer particles 46 for defining the thickness of the liquid crystal layer 40. Therefore, the distance between the substrates in the vicinity of the terminal region T of the liquid crystal display panel 50 can be appropriately maintained.
  • the liquid crystal display panel 50 in which the terminal region T is defined on one side of the TFT substrate 20 is illustrated.
  • the present invention is a liquid crystal display panel in which the terminal region is defined on two or more sides of the TFT substrate. It can also be applied to.
  • the manufacturing method of the liquid crystal display panel 50 in which the sealing material 45 and the common transition material 49 are arranged on the TFT substrate 20 is exemplified, but the present invention places the sealing material and the common transition material on the CF substrate.
  • the present invention can also be applied to a liquid crystal display panel manufacturing method.
  • the method of manufacturing a liquid crystal display panel with a single surface is illustrated, but the present invention can also be applied to a method of manufacturing a liquid crystal display panel with multiple surfaces.
  • a method for manufacturing a liquid crystal display panel using the ODF (One Drop Drop Fill) method has been exemplified.
  • the present invention provides a method for forming a blank cell under normal pressure and then performing a vacuum injection method between the blank cell substrates.
  • the present invention can also be applied to a method for manufacturing a liquid crystal display panel in which a liquid crystal material is injected.
  • a liquid crystal display panel including a TFT substrate having a TFT electrode connected to a pixel electrode as a drain electrode is illustrated.
  • a TFT electrode connected to a pixel electrode is used as a source electrode.
  • the present invention can also be applied to a liquid crystal display panel provided with a TFT substrate called.
  • the present invention can prevent the alignment film from being sandwiched between the common transition electrode and the common electrode and can reliably connect the common transition electrode and the common electrode. Useful for narrowing the frame.

Abstract

Disclosed is a liquid crystal display panel (50) which is provided with: a first substrate (20), which has a terminal region (T) specified along at least one side, and which has a common transition electrode (13) led out to the terminal region (T); a second substrate (30), which is provided to face the first substrate (20) and to expose the terminal region (T), and which has a common electrode (22); and alignment films that are provided on the surface of the first substrate (20) and on the surface of the second substrate (30), said surfaces being on the liquid crystal layer side. The second substrate (30) has a protruding section (P), which is provided on the side that corresponds to the side of the first substrate (20) where the terminal region (T) is specified, and the protruding section protrudes to the end portion of the side of the first substrate (20). The common electrode (22) extends to the protruding section (P), and the common transition electrode (13) is provided to overlap the protruding section (P), and is connected to the extending portion of the common electrode (22) via conductive particles (48).

Description

液晶表示パネルLCD panel
 本発明は、液晶表示パネルに関し、特に、液晶表示パネルの狭額縁化技術に関するものである。 The present invention relates to a liquid crystal display panel, and more particularly to a technology for narrowing the frame of a liquid crystal display panel.
 液晶表示パネルは、例えば、複数の薄膜トランジスタ(Thin Film Transistor、以下、「TFT」とも称する)などが設けられたTFT基板と、TFT基板に対向して配置され、カラーフィルター(Color Filter、以下、「CF」とも称する)や共通電極などが設けられたCF基板と、TFT基板及びCF基板の間に設けられた液晶層と、TFT基板及びCF基板の液晶層側の各表面にそれぞれ設けられた配向膜と、TFT基板及びCF基板を互いに接着すると共に、TFT基板及びCF基板の間に液晶層を封入するために枠状に設けられたシール材とを備えている。ここで、CF基板の共通電極は、例えば、TFT基板に設けられたコモン転移電極に導電性粒子を含有するコモン転移材を介して接続されている。 The liquid crystal display panel is, for example, a TFT substrate provided with a plurality of thin film transistors (hereinafter referred to as “TFT”) and a TFT substrate, and is disposed so as to face the TFT substrate. CF substrate) provided with a common electrode or the like, a liquid crystal layer provided between the TFT substrate and the CF substrate, and an alignment provided on each surface of the TFT substrate and the CF substrate on the liquid crystal layer side. The film and a TFT substrate and a CF substrate are adhered to each other, and a sealing material provided in a frame shape is provided between the TFT substrate and the CF substrate to enclose a liquid crystal layer. Here, the common electrode of the CF substrate is connected to, for example, a common transition electrode provided on the TFT substrate via a common transition material containing conductive particles.
 例えば、特許文献1には、表面上に電極及び配向膜を形成した第1基板及び第2基板を相互に貼り合わせ、その間に液晶層を封止してなり、第1基板の周縁部の表面上に形成された第1導電体と、第2基板上の第1導電体に対向する部分に形成された第2導電体と、第1導電体と第2導電体とを導電接続するための導電性粒子を含む導通材とを有する上下導通部を備えた液晶装置において、第1導電体と第2導電体との少なくとも一方の表面を覆うように配向膜が延長形成され、導電性粒子が配向膜を突き破って第1導電体と第2導電体とに導電接触している構成が開示されている。そして、特許文献1には、これによれば、導通材中の導電性粒子が配向膜を突き破って第1導電体と第2導電体とを導通させているので、従来のように上下導通部を避けて配向膜を形成する必要がなくなるため、配向膜の外縁位置に対する制約がなくなる結果、液晶装置の表示領域の周囲部分における設計の自由度が高くなることから、当該周囲部分の狭幅化が可能となり、液晶装置の表示領域の拡大と小型化とを両立させることができる、と記載されている。 For example, Patent Document 1 discloses that a first substrate and a second substrate on which electrodes and an alignment film are formed are bonded to each other, and a liquid crystal layer is sealed between them. The first conductor formed on the second substrate, the second conductor formed on the second substrate facing the first conductor, and the first conductor and the second conductor for conductive connection In a liquid crystal device provided with a vertical conduction part having a conductive material containing conductive particles, an alignment film is formed so as to cover at least one surface of the first conductor and the second conductor, and the conductive particles are A configuration in which the first conductor and the second conductor are in conductive contact through the alignment film is disclosed. According to Patent Document 1, according to this, since the conductive particles in the conductive material pierce the alignment film, the first conductor and the second conductor are made conductive. Since there is no need to form an alignment film while avoiding the above, the restriction on the outer edge position of the alignment film is eliminated. As a result, the degree of freedom of design in the peripheral portion of the display area of the liquid crystal device is increased. It is described that both the expansion of the display area of the liquid crystal device and the miniaturization can be achieved.
特開2001-183690号公報JP 2001-183690 A
 近年、携帯電話などのモバイル用途の液晶表示パネルでは、画像表示を行う表示領域を大きくするために、表示領域の周囲の額縁領域の幅を狭くする、狭額縁化が常に要望されている。そのため、モバイル用途の液晶表示パネルにおいて、TFT基板上のコモン転移電極とCF基板の共通電極とを接続するための導電性粒子をシール材に含有してコモン転移材とする場合には、配向膜の印刷ずれなどの製造プロセスの公差により、シール材を印刷する部分に配向膜の端部が重なり、導電粒子と被接続部(コモン転移電極及び共通電極)との間に絶縁性の配向膜が挟み込まれるおそれがある。そうなると、コモン転移電極と共通電極との間の接続抵抗が高くなるので、共通電極に供給される対向電位が所定値からずれることにより、色味が変化するなどの表示不良を引き起こしてしまう。 In recent years, in liquid crystal display panels for mobile use such as mobile phones, there is a constant demand for narrowing the frame to reduce the width of the frame area around the display area in order to increase the display area for displaying images. Therefore, in a liquid crystal display panel for mobile use, when the conductive material for connecting the common transition electrode on the TFT substrate and the common electrode on the CF substrate is contained in the sealing material and used as the common transition material, the alignment film Due to manufacturing process tolerances such as printing misalignment, the end of the alignment film overlaps the portion where the sealing material is printed, and an insulating alignment film is formed between the conductive particles and the connected portion (common transition electrode and common electrode). There is a risk of being caught. If so, the connection resistance between the common transition electrode and the common electrode becomes high, and the counter potential supplied to the common electrode deviates from a predetermined value, thereby causing a display defect such as a change in color.
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、コモン転移電極と共通電極との間における配向膜の挟み込みを抑制して、コモン転移電極と共通電極とを確実に接続することにある。 The present invention has been made in view of such a point, and an object of the present invention is to suppress the pinching of the alignment film between the common transition electrode and the common electrode, and to ensure the common transition electrode and the common electrode. Is to connect to.
 上記目的を達成するために、本発明は、コモン転移電極と共通電極の延設された部分とを第2基板の突出部で接続するようにしたものである。 In order to achieve the above object, according to the present invention, the common transition electrode and the extended portion of the common electrode are connected by the protruding portion of the second substrate.
 具体的に本発明に係る液晶表示パネルは、少なくとも1辺に沿って端子領域が規定され、該端子領域に引き出されたコモン転移電極を有する第1基板と、上記第1基板に対向すると共に、上記端子領域が露出するように設けられ、共通電極を有する第2基板と、上記第1基板及び第2基板の間に設けられた液晶層と、上記第1基板及び第2基板の上記液晶層側の各表面にそれぞれ設けられた配向膜とを備えた液晶表示パネルであって、第2基板は、上記端子領域が規定された第1基板の辺に対応する辺において、該第1基板の辺の端部まで突出するように設けられた突出部を有し、上記共通電極は、上記突出部まで延設され、上記コモン転移電極は、上記突出部に重なるように設けられていると共に、上記共通電極の延設された部分に導電性粒子を介して接続されていることを特徴とする。 Specifically, in the liquid crystal display panel according to the present invention, a terminal region is defined along at least one side, a first substrate having a common transition electrode drawn to the terminal region, and the first substrate, A second substrate having a common electrode provided so as to expose the terminal region; a liquid crystal layer provided between the first substrate and the second substrate; and the liquid crystal layer of the first substrate and the second substrate. Liquid crystal display panels each having an alignment film provided on each side surface, wherein the second substrate has a side corresponding to the side of the first substrate in which the terminal region is defined. A protrusion provided to protrude to the end of the side, the common electrode extends to the protrusion, and the common transition electrode is provided to overlap the protrusion, Conductive in the extended part of the common electrode Characterized in that it is connected via the particles.
 上記の構成によれば、第1基板には、少なくとも1辺に沿って端子領域が規定され、その端子領域が規定された辺に対応する第2基板の辺には、第1基板の辺の端部まで突出する突出部が設けられているので、第2基板の突出部は、端子領域が規定された第1基板の基板端に重なって配置される。そのため、第2基板の突出部及びそれに重なる第1基板の部分には、配向膜が位置的に形成され難くなるので、第2基板の突出部において接続されるコモン転移電極と共通電極の延設された部分との間における配向膜の挟み込みが抑制される。これにより、コモン転移電極と共通電極の延設された部分とが導電粒子を介して互いに接続されるので、コモン転移電極と共通電極との間における配向膜の挟み込みを抑制して、コモン転移電極と共通電極とが確実に接続される。また、液晶表示パネルにおいて、端子領域が規定された辺では、第1基板と第2基板の突出部とが重なっているので、端子領域が規定された辺の強度が向上する。 According to the above configuration, the terminal area is defined along at least one side of the first substrate, and the side of the second substrate corresponding to the side where the terminal area is defined is the side of the first substrate. Since the protruding portion that protrudes to the end portion is provided, the protruding portion of the second substrate is disposed so as to overlap the substrate end of the first substrate in which the terminal region is defined. Therefore, it is difficult to position the alignment film on the protruding portion of the second substrate and the portion of the first substrate that overlaps the protruding portion of the second substrate. Therefore, the common transition electrode and the common electrode connected at the protruding portion of the second substrate are extended. The alignment film is prevented from being caught between the formed portions. As a result, the common transition electrode and the extended portion of the common electrode are connected to each other through the conductive particles, so that the alignment transition film is prevented from being caught between the common transition electrode and the common electrode. And the common electrode are securely connected. Further, in the liquid crystal display panel, since the protruding portion of the first substrate and the second substrate overlap at the side where the terminal region is defined, the strength of the side where the terminal region is defined is improved.
 上記第1基板と上記第2基板の突出部とは、上記導電性粒子を含有する接着材により互いに接着されていてもよい。 The protruding portion of the first substrate and the second substrate may be bonded to each other with an adhesive containing the conductive particles.
 上記の構成によれば、第2基板の突出部及びそれに重なる第1基板の部分には、配向膜が形成され難いので、第1基板と第2基板の突出部とが、導電性粒子を含有する接着材により互いに強固に接着して、第1基板と第2基板との全体的な接着強度が向上する。 According to the above configuration, since the alignment film is difficult to be formed on the protruding portion of the second substrate and the portion of the first substrate that overlaps the protruding portion of the second substrate, the protruding portion of the first substrate and the second substrate contain conductive particles. Thus, the overall adhesive strength between the first substrate and the second substrate is improved.
 上記突出部は、上記第2基板の対応する辺の両端部にそれぞれ設けられていてもよい。 The protrusions may be provided at both ends of the corresponding side of the second substrate.
 上記の構成によれば、第1基板の端子領域が規定された辺に対応する第2基板の辺における両端部に突出部が配置されているので、第2基板の一対の突出部が第1基板の端子領域の両側に重なって配置されることにより、液晶表示パネルの端子領域が規定された辺の角部の強度が向上する。 According to said structure, since the protrusion part is arrange | positioned at the both ends in the edge | side of the 2nd board | substrate corresponding to the edge | side where the terminal area | region of the 1st board | substrate was prescribed | regulated, a pair of protrusion part of a 2nd board | substrate is 1st. By being arranged on both sides of the terminal area of the substrate, the strength of the corners of the side where the terminal area of the liquid crystal display panel is defined is improved.
 上記液晶層は、スペーサ粒子を含有するシール材により上記第1基板及び第2基板の間に封入され、上記導電粒子及びスペーサ粒子は、互いに異なる大きさに形成されていてもよい。 The liquid crystal layer may be sealed between the first substrate and the second substrate by a sealing material containing spacer particles, and the conductive particles and the spacer particles may be formed in different sizes.
 上記の構成によれば、コモン転移電極と共通電極とを接続するための導電粒子の大きさが、液晶層の厚さを規定するためのスペーサ粒子の大きさと異なっているので、液晶表示パネルの端子領域の近傍における基板間の距離が適正に保持される。 According to the above configuration, the size of the conductive particles for connecting the common transition electrode and the common electrode is different from the size of the spacer particles for defining the thickness of the liquid crystal layer. The distance between the substrates in the vicinity of the terminal region is properly maintained.
 本発明によれば、コモン転移電極と共通電極の延設された部分とが第2基板の突出部で接続されているので、コモン転移電極と共通電極との間における配向膜の挟み込みを抑制して、コモン転移電極と共通電極とを確実に接続することができる。 According to the present invention, since the common transition electrode and the extended portion of the common electrode are connected by the protruding portion of the second substrate, the alignment film is prevented from being sandwiched between the common transition electrode and the common electrode. Thus, the common transition electrode and the common electrode can be reliably connected.
図1は、本発明の一実施形態に係る液晶表示パネルの平面図である。FIG. 1 is a plan view of a liquid crystal display panel according to an embodiment of the present invention. 図2は、図1中のX領域を拡大した液晶表示パネルの平面図である。FIG. 2 is a plan view of the liquid crystal display panel in which the X region in FIG. 1 is enlarged. 図3は、図2中のIII-III線に沿った液晶表示パネルの断面図である。FIG. 3 is a cross-sectional view of the liquid crystal display panel taken along line III-III in FIG. 図4は、本発明の一実施形態に係る液晶表示パネルを構成するTFT基板の平面図である。FIG. 4 is a plan view of a TFT substrate constituting a liquid crystal display panel according to an embodiment of the present invention. 図5は、本発明の一実施形態に係る液晶表示パネルを構成するCF基板の平面図である。FIG. 5 is a plan view of a CF substrate constituting the liquid crystal display panel according to the embodiment of the present invention. 図6は、本発明の一実施形態に係る液晶表示パネルを構成するCF基板の突出部を形成する前の基板の平面図である。FIG. 6 is a plan view of the substrate before forming the protrusions of the CF substrate constituting the liquid crystal display panel according to the embodiment of the present invention.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment.
 図1~図6は、本発明に係る液晶表示パネルの一実施形態を示している。具体的に、図1は、本実施形態の液晶表示パネル50の平面図であり、図2は、図1中のX領域を拡大した液晶表示パネル50の平面図である。また、図3は、図2中のIII-III線に沿った液晶表示パネル50の断面図である。さらに、図4及び図5は、液晶表示パネル50を構成するTFT基板20及びCF基板30をそれぞれ示す平面図である。 1 to 6 show an embodiment of a liquid crystal display panel according to the present invention. Specifically, FIG. 1 is a plan view of the liquid crystal display panel 50 of the present embodiment, and FIG. 2 is a plan view of the liquid crystal display panel 50 in which the X region in FIG. 1 is enlarged. FIG. 3 is a cross-sectional view of the liquid crystal display panel 50 taken along line III-III in FIG. 4 and 5 are plan views showing the TFT substrate 20 and the CF substrate 30 constituting the liquid crystal display panel 50, respectively.
 液晶表示パネル50は、図1~図3に示すように、互いに対向するように設けられたTFT基板(第1基板)及びCF基板30(第2基板)と、TFT基板20及びCF基板30の間に設けられた液晶層40と、TFT基板20及びCF基板30の液晶層40側の各表面にそれぞれ設けられた配向膜31a及び31bと、TFT基板20及びCF基板30を互いに接着すると共に、TFT基板20及びCF基板30の間に液晶層40を封入するために枠状に設けられたシール材45とを備えている。また、液晶表示パネル50では、図1及び図2に示すように、画像表示を行う矩形状の表示領域Dが規定されている。 As shown in FIGS. 1 to 3, the liquid crystal display panel 50 includes a TFT substrate (first substrate) and a CF substrate 30 (second substrate) provided to face each other, and a TFT substrate 20 and a CF substrate 30. The liquid crystal layer 40 provided therebetween, the alignment films 31 a and 31 b provided on the respective surfaces of the TFT substrate 20 and the CF substrate 30 on the liquid crystal layer 40 side, and the TFT substrate 20 and the CF substrate 30 are adhered to each other, In order to enclose the liquid crystal layer 40 between the TFT substrate 20 and the CF substrate 30, a sealing material 45 provided in a frame shape is provided. Further, in the liquid crystal display panel 50, as shown in FIGS. 1 and 2, a rectangular display area D for image display is defined.
 TFT基板20は、図1~図4に示すように、表示領域Dにおいて、絶縁基板10a上に互いに平行に延びるように設けられた複数のゲート線1と、各ゲート線と直交する方向に互いに平行に延びるように設けられた複数のソース線2と、各ゲート線1及び各ソース線2の交差部分毎、すなわち、画像の最小単位である各画素毎にそれぞれ設けられた複数のTFT(不図示)と、各TFTを覆うように設けられた層間絶縁膜12と、層間絶縁膜12上にマトリクス状に設けられた複数の画素電極(不図示)とを備えている。 As shown in FIGS. 1 to 4, in the display region D, the TFT substrate 20 includes a plurality of gate lines 1 provided on the insulating substrate 10a so as to extend in parallel with each other, and in a direction perpendicular to the gate lines. A plurality of source lines 2 provided to extend in parallel and a plurality of TFTs (not provided) for each intersection of each gate line 1 and each source line 2, that is, for each pixel which is the minimum unit of an image. And an interlayer insulating film 12 provided so as to cover each TFT, and a plurality of pixel electrodes (not shown) provided in a matrix on the interlayer insulating film 12.
 上記各TFTは、例えば、各ゲート線1が側方に突出したゲート電極(不図示)と、そのゲート電極を覆うように設けられたゲート絶縁膜(不図示)と、そのゲート絶縁膜上でゲート電極に対応する位置に島状に設けられた半導体層(不図示)と、その半導体層上で互いに対峙するように設けられたソース電極(不図示)及びドレイン電極(不図示)とを備えている。ここで、上記ソース電極は、例えば、各ソース線2の側方に突出した部分である。また、上記ドレイン電極は、層間絶縁膜12に形成されたコンタクトホールを介して上記各画素電極に接続されている。 Each of the TFTs includes, for example, a gate electrode (not shown) in which each gate line 1 protrudes to the side, a gate insulating film (not shown) provided so as to cover the gate electrode, and a gate insulating film on the gate insulating film. A semiconductor layer (not shown) provided in an island shape at a position corresponding to the gate electrode, and a source electrode (not shown) and a drain electrode (not shown) provided to face each other on the semiconductor layer ing. Here, the source electrode is, for example, a portion protruding to the side of each source line 2. The drain electrode is connected to each pixel electrode through a contact hole formed in the interlayer insulating film 12.
 TFT基板20の表示領域Dの外側には、図1及び図2に示すように、その図中左辺に沿って、CF基板30から露出する端子領域Tが規定されている。ここで、端子領域Tには、ゲート線1やソース線2などの表示用配線にそれぞれ接続された複数の接続端子5、及び後述するコモン転移電極13から引き出された接続端子が設けられている。 As shown in FIGS. 1 and 2, a terminal region T exposed from the CF substrate 30 is defined outside the display region D of the TFT substrate 20 along the left side of the drawing. Here, the terminal region T is provided with a plurality of connection terminals 5 respectively connected to display wirings such as the gate lines 1 and the source lines 2 and connection terminals drawn from a common transfer electrode 13 described later. .
 TFT基板20の表示領域D及び端子領域Tの外側には、後述するCF基板30の突出部Pに重なるようにコモン転移電極13が設けられている。ここで、コモン転移電極13は、上記画素電極と同一層に同一材料(例えば、ITO(Indium Tin Oxide)膜)により形成され、図3に示すように、層間絶縁膜12から露出する低抵抗金属層11上に設けられている。なお、低抵抗金属層11は、ゲート線1と同一層に同一材料(例えば、アルミニウム膜)により形成されている。 A common transition electrode 13 is provided outside the display region D and the terminal region T of the TFT substrate 20 so as to overlap a protruding portion P of a CF substrate 30 described later. Here, the common transition electrode 13 is formed of the same material (for example, ITO (Indium Tin Oxide) film) in the same layer as the pixel electrode, and is exposed to the low-resistance metal exposed from the interlayer insulating film 12 as shown in FIG. Provided on layer 11. The low resistance metal layer 11 is formed of the same material (for example, an aluminum film) in the same layer as the gate line 1.
 CF基板30は、図1~図3及び図5に示すように、絶縁基板10b上に枠状及びその枠内(表示領域D)に格子状に設けられたブラックマトリクス21と、ブラックマトリクス21の各格子間にそれぞれ設けられた赤色層、緑色層及び青色層などの複数の着色層(不図示)と、ブラックマトリクス21及び各着色層を覆うように設けられた共通電極22とを備えている。 As shown in FIGS. 1 to 3 and 5, the CF substrate 30 has a frame shape on the insulating substrate 10 b and a black matrix 21 provided in a lattice shape in the frame (display area D), and the black matrix 21. A plurality of colored layers (not shown) such as a red layer, a green layer, and a blue layer provided between the respective lattices, and a common electrode 22 provided so as to cover the black matrix 21 and each colored layer. .
 CF基板30は、図1、図2及び図5に示すように、端子領域Tが規定されたTFT基板20の辺に対応する図1中の左辺の両端部に、TFT基板20の辺の端部まで突出する突出部Pを有している。ここで、共通電極22は、図1、図2及び図5に示すように、突出部Pまで延設されていると共に、その延設された部分が、図1~図3に示すように、接着材47及びそれに含有する導電性粒子48からなるコモン転移材49を介して、TFT基板20上のコモン転移電極13に接続されている。 1, 2, and 5, the CF substrate 30 is provided at both ends of the left side in FIG. 1 corresponding to the side of the TFT substrate 20 in which the terminal region T is defined. It has the protrusion part P which protrudes to a part. Here, as shown in FIGS. 1, 2 and 5, the common electrode 22 is extended to the projecting portion P, and the extended portion is as shown in FIGS. It is connected to the common transfer electrode 13 on the TFT substrate 20 through a common transfer material 49 made of an adhesive 47 and conductive particles 48 contained therein.
 液晶層40は、電気光学特性を有するネマチックの液晶材料などにより構成されている。 The liquid crystal layer 40 is made of a nematic liquid crystal material having electro-optical characteristics.
 シール材45には、液晶層40の厚さを規定するためのスペーサ粒子46が含有されている。ここで、上述した導電性粒子48の粒径は、絶縁基板10a及び10bに積層された膜の厚さに合わせて、スペーサ粒子46の粒径よりも、例えば0.5μm程度、大きくなっている。 The sealing material 45 contains spacer particles 46 for defining the thickness of the liquid crystal layer 40. Here, the particle diameter of the conductive particles 48 described above is larger by, for example, about 0.5 μm than the particle diameter of the spacer particles 46 in accordance with the thickness of the film laminated on the insulating substrates 10a and 10b. .
 上記構成の液晶表示パネル50は、TFT基板20上の各画素電極とCF基板30上の共通電極22との間に配向膜31a及び31bを介して配置する液晶層40に各画素毎に所定の電圧を印加して、液晶層40の配向状態を変えることにより、各画素毎にパネル内を透過する光の透過率を調整して、画像表示を行うように構成されている。 The liquid crystal display panel 50 having the above configuration has a predetermined liquid crystal layer 40 for each pixel on the liquid crystal layer 40 disposed via the alignment films 31a and 31b between the pixel electrodes on the TFT substrate 20 and the common electrode 22 on the CF substrate 30. By applying a voltage to change the alignment state of the liquid crystal layer 40, the transmittance of light transmitted through the panel is adjusted for each pixel, and image display is performed.
 次に、本実施形態の液晶表示パネル50の製造方法について、図6を用いて一例を挙げて説明する。ここで、図6は、CF基板30の突出部Pを形成する前の基板の平面図である。なお、本実施形態の液晶表示パネル50の製造方法は、TFT基板作製工程、CF基板作製工程、貼り合わせ工程及び分断工程を備える。 Next, a method for manufacturing the liquid crystal display panel 50 of the present embodiment will be described with reference to FIG. Here, FIG. 6 is a plan view of the substrate before the protrusion P of the CF substrate 30 is formed. In addition, the manufacturing method of the liquid crystal display panel 50 of this embodiment includes a TFT substrate manufacturing process, a CF substrate manufacturing process, a bonding process, and a dividing process.
 <TFT基板作製工程>
 まず、ガラス基板などの絶縁基板10aの基板全体に、スパッタリング法により、例えば、アルミニウム膜などの金属膜を成膜した後、その金属膜をフォトリソグラフィを用いてパターニングすることにより、ゲート線1、ゲート電極及び低抵抗金属層11を厚さ200nm程度に形成する。
<TFT substrate manufacturing process>
First, after forming a metal film such as an aluminum film on the entire substrate of the insulating substrate 10a such as a glass substrate by sputtering, for example, the metal film is patterned using photolithography to obtain the gate line 1, The gate electrode and the low resistance metal layer 11 are formed to a thickness of about 200 nm.
 続いて、ゲート線1、ゲート電極及び低抵抗金属層11が形成された基板全体に、プラズマCVD(Chemical Vapor Deposition)法により、例えば、窒化シリコン膜などを成膜することにより、ゲート絶縁膜を厚さ400nm程度に形成する。 Subsequently, for example, a silicon nitride film is formed on the entire substrate on which the gate line 1, the gate electrode, and the low-resistance metal layer 11 are formed by a plasma CVD (Chemical Vapor Deposition) method, thereby forming a gate insulating film. It is formed to a thickness of about 400 nm.
 さらに、上記ゲート絶縁膜が形成された基板全体に、プラズマCVD法により、真性アモルファスシリコン膜、及びリンがドープされたnアモルファスシリコン膜を連続して成膜した後に、フォトリソグラフィを用いてゲート電極11a上に島状にパターニングすることにより、厚さ100nm程度の真性アモルファスシリコン層、及び厚さ50nm程度のnアモルファスシリコン層が積層された半導体形成層を形成する。 Further, an intrinsic amorphous silicon film and an n + amorphous silicon film doped with phosphorus are continuously formed on the entire substrate on which the gate insulating film is formed by plasma CVD, and then the gate is formed using photolithography. By patterning in an island shape on the electrode 11a, a semiconductor formation layer in which an intrinsic amorphous silicon layer having a thickness of about 100 nm and an n + amorphous silicon layer having a thickness of about 50 nm are stacked is formed.
 そして、上記半導体形成層が形成された基板全体に、スパッタリング法により、例えば、アルミニウム膜及びチタン膜などを順に成膜して金属積層膜を形成した後に、その金属積層膜をフォトリソグラフィを用いてパターニングすることにより、ソース線2、ソース電極及びドレイン電極を厚さ350nm程度に形成する。 Then, for example, an aluminum film and a titanium film are sequentially formed on the entire substrate on which the semiconductor formation layer has been formed by sputtering, to form a metal multilayer film, and then the metal multilayer film is formed using photolithography. By patterning, the source line 2, the source electrode, and the drain electrode are formed to a thickness of about 350 nm.
 引き続いて、上記ソース電極及びドレイン電極をマスクとして上記半導体形成層のnアモルファスシリコン層をエッチングすることにより、半導体層を形成すると共に、TFTを形成する。 Subsequently, the n + amorphous silicon layer of the semiconductor formation layer is etched using the source electrode and the drain electrode as a mask, thereby forming a semiconductor layer and a TFT.
 さらに、TFTが形成された基板全体に、プラズマCVD法により、例えば、窒化シリコン膜などの無機絶縁膜を厚さ300nm程度で成膜し、続いて、スピンコート法により、例えば、アクリル系の感光性樹脂などを厚さ2μm程度に塗布し、その塗布された感光性樹脂をフォトマスクを介して露光及び現像することにより、ドレイン電極及び低抵抗金属層11上にコンタクトホールを有する有機絶縁膜を形成した後に、その有機絶縁膜から露出する無機絶縁膜をエッチングしてコンタクトホールを深くすることにより、層間絶縁膜12を形成する。 Further, an inorganic insulating film such as a silicon nitride film is formed to a thickness of about 300 nm by plasma CVD on the entire substrate on which the TFT is formed, and subsequently, for example, acrylic photosensitive film is formed by spin coating. An organic insulating film having a contact hole on the drain electrode and the low-resistance metal layer 11 is formed by applying a photosensitive resin or the like to a thickness of about 2 μm and exposing and developing the applied photosensitive resin through a photomask. After the formation, the inorganic insulating film exposed from the organic insulating film is etched to deepen the contact hole, thereby forming the interlayer insulating film 12.
 そして、層間絶縁膜12上の基板全体に、スパッタリング法により、ITO膜などの透明導電膜を成膜した後に、その透明導電膜をフォトリソグラフィを用いてパターニングすることにより、接続端子5、コモン転移電極13及び画素電極を厚さ100nm程度に形成する。なお、接続端子5の下層には、上記ゲート線を形成する工程及びソース線を形成する工程を利用して、ゲート線1やソース線2などの表示用配線の引出配線が予め形成されている。 Then, after forming a transparent conductive film such as an ITO film on the entire substrate on the interlayer insulating film 12 by sputtering, the transparent conductive film is patterned using photolithography, so that the connection terminal 5 and the common transition are formed. The electrode 13 and the pixel electrode are formed to a thickness of about 100 nm. Note that, in the lower layer of the connection terminal 5, display wirings such as the gate line 1 and the source line 2 are formed in advance by using the process of forming the gate line and the process of forming the source line. .
 以上のようにして、TFT基板20を作製することができる。その後、TFT基板20の表面に、印刷法を用いて、配向膜31aを厚さ100nm程度に形成する。 The TFT substrate 20 can be manufactured as described above. Thereafter, an alignment film 31a is formed on the surface of the TFT substrate 20 to a thickness of about 100 nm using a printing method.
 <CF基板作製工程>
 まず、ガラス基板などの絶縁基板10bの基板全体に、スピンコート法により、例えば、カーボンなどの微粒子が分散されたアクリル系の感光性樹脂を塗布し、その塗布された感光性樹脂をフォトマスクを介して露光した後に、現像することにより、ブラックマトリクス21を厚さ1.0μm程度に形成する。
<CF substrate manufacturing process>
First, an acrylic photosensitive resin in which fine particles such as carbon are dispersed is applied to the whole substrate of the insulating substrate 10b such as a glass substrate by a spin coating method, and the applied photosensitive resin is applied to a photomask. The black matrix 21 is formed to a thickness of about 1.0 μm by developing after being exposed to light.
 続いて、ブラックマトリクス21が形成された基板上に、例えば、赤、緑又は青に着色されたアクリル系の感光性樹脂を塗布し、その塗布された感光性樹脂をフォトマスクを介して露光した後に、現像することによりパターニングして、選択した色の着色層(例えば、赤色層)を厚さ1.0μm程度に形成する。さらに、他の2色についても同様な工程を繰り返して、他の2色の着色層(例えば、緑色層及び青色層)を厚さ1.0μm程度に形成する。 Subsequently, for example, an acrylic photosensitive resin colored in red, green, or blue is applied on the substrate on which the black matrix 21 is formed, and the applied photosensitive resin is exposed through a photomask. Later, patterning is performed by developing to form a colored layer (for example, a red layer) of a selected color with a thickness of about 1.0 μm. Further, the same process is repeated for the other two colors to form other two colored layers (for example, a green layer and a blue layer) with a thickness of about 1.0 μm.
 さらに、上記各着色層が形成された基板上に、スパッタリング法により、例えば、ITO膜などの透明導電膜を成膜した後に、その透明導電膜をフォトリソグラフィを用いてパターニングすることにより、共通電極22を厚さ100nm程度に形成する。 Further, after forming a transparent conductive film such as an ITO film on the substrate on which each of the colored layers is formed by sputtering, for example, the transparent conductive film is patterned using photolithography to thereby form a common electrode. 22 is formed to a thickness of about 100 nm.
 以上のようにして、CF基板35を作製することができる。その後、CF基板35の表面に、印刷法を用いて、配向膜31bを厚さ100nm程度に形成する。ここで、CF基板35は、図6に示すように、後述する分断工程において、不要部分Wを除去する前のCF基板30である。 The CF substrate 35 can be manufactured as described above. Thereafter, the alignment film 31b is formed to a thickness of about 100 nm on the surface of the CF substrate 35 by using a printing method. Here, as shown in FIG. 6, the CF substrate 35 is a CF substrate 30 before the unnecessary portion W is removed in a cutting step described later.
 <貼り合わせ工程>
 まず、例えば、ディスペンサを用いて、上記TFT基板作製工程で配向膜31aが形成されたTFT基板20の表示領域Dの周囲にスペーサ粒子46が含有するシール材45を枠状に配置すると共に、コモン転移電極13上に導電性粒子48が含有する接着材47、すなわち、コモン転移材49を配置する。
<Lamination process>
First, for example, using a dispenser, the seal material 45 contained in the spacer particles 46 is arranged in a frame shape around the display region D of the TFT substrate 20 on which the alignment film 31a is formed in the TFT substrate manufacturing process. An adhesive 47 contained in the conductive particles 48, that is, a common transition material 49 is disposed on the transition electrode 13.
 続いて、シール材45及びコモン転移材49が配置されたTFT基板20に対し、シール材45に囲まれた領域(表示領域D)に液晶材料を滴下する。 Subsequently, a liquid crystal material is dropped onto a region (display region D) surrounded by the sealing material 45 on the TFT substrate 20 on which the sealing material 45 and the common transition material 49 are arranged.
 さらに、液晶材料が滴下されたTFT基板20と、上記CF基板作製工程で配向膜31bが形成されたCF基板35とを、減圧下で互いの表示領域Dが重なり合うように貼り合わせた後に、大気圧に開放することにより、TFT基板20及びCF基板35の各外表面を加圧して、貼合体を作製する。 Further, after the TFT substrate 20 onto which the liquid crystal material is dropped and the CF substrate 35 on which the alignment film 31b is formed in the CF substrate manufacturing process are bonded so that the display regions D overlap each other under reduced pressure, By releasing to atmospheric pressure, the outer surfaces of the TFT substrate 20 and the CF substrate 35 are pressurized to produce a bonded body.
 最後に、貼合体のTFT基板20及びCF基板35の間に挟持されたシール材45及びコモン転移材49を硬化させることにより、TFT基板20及びCF基板35の間に液晶層40を封入すると共に、TFT基板20上のコモン転移電極13とCF基板35上の共通電極23の延設された部分との間に導電性粒子48を固定する。 Finally, the sealing material 45 and the common transition material 49 sandwiched between the TFT substrate 20 and the CF substrate 35 of the bonded body are cured to enclose the liquid crystal layer 40 between the TFT substrate 20 and the CF substrate 35. The conductive particles 48 are fixed between the common transition electrode 13 on the TFT substrate 20 and the extended portion of the common electrode 23 on the CF substrate 35.
 <分断工程>
 上記貼り合わせ工程でシール材45及びコモン転移材49を硬化させた貼合体のCF基板35の表面において、図6に示すように、分断ラインLに沿って、例えば、円盤状の分断刃の刃先を当接させながら、その分断刃を転動させることにより、クラックを形成すると共に、その形成されたクラックを厚さ方向に成長させることにより、CF基板35の略台形状の不要部分Wを除去して、(CF基板30の)突出部Pを形成する。
<Division process>
On the surface of the CF substrate 35 of the bonded body in which the sealing material 45 and the common transition material 49 are cured in the bonding process, for example, a cutting edge of a disk-shaped cutting blade along the cutting line L as shown in FIG. While rolling the parting blade, the crack is formed and the formed crack grows in the thickness direction, thereby removing the substantially trapezoidal unnecessary portion W of the CF substrate 35. Thus, the protruding portion P (of the CF substrate 30) is formed.
 以上のようにして、本実施形態の液晶表示パネル50を製造することができる。 As described above, the liquid crystal display panel 50 of the present embodiment can be manufactured.
 次に、具体的に行った実験について説明する。 Next, a specific experiment will be described.
 本実施形態の実施例として、アクリレート系のUV硬化・熱硬化併用型の樹脂からなる接着材47に、積水化学工業株式会社製のミクロパールAU(平均粒径4.5μm)からなる導電性粒子48を0.1重量%配合したコモン転移材49を用いて、上述した製造方法により、液晶表示パネル50を製造した。そして、本実施例の液晶表示パネル50では、端子領域Tを挟む一対のコモン転移電極13(図1中の左上部及び左下部)の間の電気抵抗値が100Ω程度になったので、本実施例による効果が確認された。なお、コモン転移電極及びそれに接続する共通電極の部分が厚さ100nm程度の配向膜で覆われた従来の液晶表示パネルでは、相当する一対のコモン転移電極の間の電気抵抗値が500Ω程度になってしまう。 As an example of this embodiment, conductive particles made of Sekisui Chemical Co., Ltd. micropearl AU (average particle size 4.5 μm) are used for the adhesive 47 made of acrylate-based UV curing / thermosetting resin. The liquid crystal display panel 50 was manufactured by the manufacturing method mentioned above using the common transition material 49 which mix | blended 48 weight%. In the liquid crystal display panel 50 of the present embodiment, the electrical resistance value between the pair of common transition electrodes 13 (the upper left portion and the lower left portion in FIG. 1) sandwiching the terminal region T is about 100Ω. The effect by the example was confirmed. In the conventional liquid crystal display panel in which the common transition electrode and the common electrode connected to the common transition electrode are covered with an alignment film having a thickness of about 100 nm, the electric resistance value between the corresponding pair of common transition electrodes is about 500Ω. End up.
 以上説明したように、本実施形態の液晶表示パネル50によれば、TFT基板20には、少なくとも1辺に沿って端子領域Tが規定され、その端子領域Tが規定された辺に対応するCF基板30の辺には、TFT基板20の辺の端部まで突出する突出部Pが設けられているので、CF基板30の突出部Pは、端子領域Tが規定されたTFT基板20の基板端に重なって配置される。そのため、CF基板30の突出部P及びそれに重なるTFT基板20の部分には、配向膜31b及び31aが必要な表示領域Dから離間することにより、配向膜31b及び31aが位置的にそれぞれ形成され難くなるので、CF基板30の突出部Pにおいて接続されるコモン転移電極13と共通電極22の延設された部分との間における配向膜31a及び31bの挟み込みを抑制することができる。これにより、コモン転移電極13と共通電極22の延設された部分とを導電粒子48を介して互いに接続することができるので、コモン転移電極13と共通電極22との間における配向膜31a及び31bの挟み込みを抑制して、コモン転移電極13と共通電極22とを確実に接続することができ、狭額縁化を図ることができる。また、液晶表示パネル50において、端子領域Tが規定された辺では、TFT基板20とCF基板30の突出部Pとが重なっているので、端子領域Tが規定された辺の強度を向上させることができる。 As described above, according to the liquid crystal display panel 50 of the present embodiment, the TFT substrate 20 is defined with the terminal region T along at least one side, and the terminal region T corresponds to the defined side. Since the side of the substrate 30 is provided with a protruding portion P that protrudes to the end of the side of the TFT substrate 20, the protruding portion P of the CF substrate 30 is the substrate end of the TFT substrate 20 in which the terminal region T is defined. It is arranged to overlap. For this reason, the alignment films 31b and 31a are not easily formed on the protrusion P of the CF substrate 30 and the portion of the TFT substrate 20 overlapping the protrusion substrate P by separating the alignment films 31b and 31a from the necessary display region D. Therefore, the alignment films 31 a and 31 b can be prevented from being sandwiched between the common transition electrode 13 connected at the protruding portion P of the CF substrate 30 and the extended portion of the common electrode 22. As a result, the common transition electrode 13 and the extended portion of the common electrode 22 can be connected to each other via the conductive particles 48, so that the alignment films 31a and 31b between the common transition electrode 13 and the common electrode 22 are connected. Therefore, the common transition electrode 13 and the common electrode 22 can be reliably connected, and the frame can be narrowed. Further, in the liquid crystal display panel 50, the TFT substrate 20 and the protruding portion P of the CF substrate 30 overlap each other at the side where the terminal region T is defined, so that the strength of the side where the terminal region T is defined is improved. Can do.
 また、本実施形態の液晶表示パネル50によれば、CF基板30の突出部P及びそれに重なるTFT基板20の部分には、配向膜31b及び31aがそれぞれ形成され難いので、TFT基板20とCF基板30の突出部Pとが、導電性粒子48を含有する接着材47(コモン転移材49)により互いに強固に接着して、TFT基板20とCF基板30との全体的な接着強度を向上させることができる。 Further, according to the liquid crystal display panel 50 of the present embodiment, since the alignment films 31b and 31a are difficult to be formed on the protruding portion P of the CF substrate 30 and the portion of the TFT substrate 20 overlapping therewith, the TFT substrate 20 and the CF substrate. 30 protrusions P are firmly bonded to each other by an adhesive 47 (common transfer material 49) containing conductive particles 48, thereby improving the overall adhesive strength between the TFT substrate 20 and the CF substrate 30. Can do.
 また、本実施形態の液晶表示パネル50によれば、TFT基板20の端子領域Tが規定された辺に対応するCF基板30の辺における両端部に突出部Pが配置されているので、CF基板30の一対の突出部PがTFT基板20の端子領域Tの両側に重なって配置されることにより、液晶表示パネル50の端子領域Tが規定された辺の角部の強度を向上させることができる。 Further, according to the liquid crystal display panel 50 of the present embodiment, since the protrusions P are disposed at both ends of the side of the CF substrate 30 corresponding to the side where the terminal region T of the TFT substrate 20 is defined, the CF substrate Since the 30 pairs of protrusions P are arranged on both sides of the terminal region T of the TFT substrate 20, the strength of the corners of the side where the terminal region T of the liquid crystal display panel 50 is defined can be improved. .
 また、本実施形態の液晶表示パネル50によれば、コモン転移電極13と共通電極22とを接続するための導電粒子48の大きさが、液晶層40の厚さを規定するためのスペーサ粒子46の大きさと異なっているので、液晶表示パネル50の端子領域Tの近傍における基板間の距離を適正に保持することができる。 Further, according to the liquid crystal display panel 50 of the present embodiment, the size of the conductive particles 48 for connecting the common transition electrode 13 and the common electrode 22 is such that the spacer particles 46 for defining the thickness of the liquid crystal layer 40. Therefore, the distance between the substrates in the vicinity of the terminal region T of the liquid crystal display panel 50 can be appropriately maintained.
 なお、本実施形態では、TFT基板20の1辺に端子領域Tが規定された液晶表示パネル50を例示したが、本発明は、TFT基板の2辺以上に端子領域が規定された液晶表示パネルにも適用することができる。 In the present embodiment, the liquid crystal display panel 50 in which the terminal region T is defined on one side of the TFT substrate 20 is illustrated. However, the present invention is a liquid crystal display panel in which the terminal region is defined on two or more sides of the TFT substrate. It can also be applied to.
 また、本実施形態では、シール材45及びコモン転移材49をTFT基板20に配置する液晶表示パネル50の製造方法を例示したが、本発明は、シール材及びコモン転移材をCF基板に配置する液晶表示パネルの製造方法にも適用することができる。 Further, in the present embodiment, the manufacturing method of the liquid crystal display panel 50 in which the sealing material 45 and the common transition material 49 are arranged on the TFT substrate 20 is exemplified, but the present invention places the sealing material and the common transition material on the CF substrate. The present invention can also be applied to a liquid crystal display panel manufacturing method.
 また、本実施形態では、単面取りで液晶表示パネルを製造する方法を例示したが、本発明は、多面取りで液晶表示パネルを製造する方法にも適用することができる。 Further, in the present embodiment, the method of manufacturing a liquid crystal display panel with a single surface is illustrated, but the present invention can also be applied to a method of manufacturing a liquid crystal display panel with multiple surfaces.
 また、本実施形態では、ODF(One Drop Fill)法を用いた液晶表示パネルの製造方法を例示したが、本発明は、常圧下で空セルを作成した後に真空注入法により空セルの基板間に液晶材料を注入する液晶表示パネルの製造方法にも適用することができる。 In the present embodiment, a method for manufacturing a liquid crystal display panel using the ODF (One Drop Drop Fill) method has been exemplified. However, the present invention provides a method for forming a blank cell under normal pressure and then performing a vacuum injection method between the blank cell substrates. The present invention can also be applied to a method for manufacturing a liquid crystal display panel in which a liquid crystal material is injected.
 また、本実施形態では、画素電極に接続されたTFTの電極をドレイン電極としたTFT基板を備えた液晶表示パネルを例示したが、本発明は、画素電極に接続されたTFTの電極をソース電極と呼ぶTFT基板を備えた液晶表示パネルにも適用することができる。 In this embodiment, a liquid crystal display panel including a TFT substrate having a TFT electrode connected to a pixel electrode as a drain electrode is illustrated. However, in the present invention, a TFT electrode connected to a pixel electrode is used as a source electrode. The present invention can also be applied to a liquid crystal display panel provided with a TFT substrate called.
 以上説明したように、本発明は、コモン転移電極と共通電極との間における配向膜の挟み込みを抑制して、コモン転移電極と共通電極とを確実に接続することができるので、液晶表示パネルの狭額縁化について有用である。 As described above, the present invention can prevent the alignment film from being sandwiched between the common transition electrode and the common electrode and can reliably connect the common transition electrode and the common electrode. Useful for narrowing the frame.
P   突出部
T   端子領域
13  コモン転移電極
20  TFT基板(第1基板)
22  共通電極
30  CF基板(第2基板)
31a,31b  配向膜
40  液晶層
45  シール材
46  スペーサ粒子
47  接着材
48  導電性粒子
50  液晶表示パネル
P Projection portion T Terminal region 13 Common transition electrode 20 TFT substrate (first substrate)
22 Common electrode 30 CF substrate (second substrate)
31a, 31b Alignment film 40 Liquid crystal layer 45 Sealing material 46 Spacer particle 47 Adhesive material 48 Conductive particle 50 Liquid crystal display panel

Claims (4)

  1.  少なくとも1辺に沿って端子領域が規定され、該端子領域に引き出されたコモン転移電極を有する第1基板と、
     上記第1基板に対向すると共に、上記端子領域が露出するように設けられ、共通電極を有する第2基板と、
     上記第1基板及び第2基板の間に設けられた液晶層と、
     上記第1基板及び第2基板の上記液晶層側の各表面にそれぞれ設けられた配向膜とを備えた液晶表示パネルであって、
     第2基板は、上記端子領域が規定された第1基板の辺に対応する辺において、該第1基板の辺の端部まで突出するように設けられた突出部を有し、
     上記共通電極は、上記突出部まで延設され、
     上記コモン転移電極は、上記突出部に重なるように設けられていると共に、上記共通電極の延設された部分に導電性粒子を介して接続されていることを特徴とする液晶表示パネル。
    A first substrate having a terminal region defined along at least one side and having a common transition electrode drawn into the terminal region;
    A second substrate facing the first substrate and having a common electrode provided to expose the terminal region;
    A liquid crystal layer provided between the first substrate and the second substrate;
    A liquid crystal display panel comprising an alignment film provided on each surface of the first substrate and the second substrate on the liquid crystal layer side,
    The second substrate has a protruding portion provided so as to protrude to an end portion of the side of the first substrate in a side corresponding to the side of the first substrate in which the terminal region is defined,
    The common electrode extends to the protrusion,
    The liquid crystal display panel, wherein the common transition electrode is provided so as to overlap the protruding portion, and is connected to an extended portion of the common electrode via conductive particles.
  2.  請求項1に記載された液晶表示パネルにおいて、
     上記第1基板と上記第2基板の突出部とは、上記導電性粒子を含有する接着材により互いに接着されていることを特徴とする液晶表示パネル。
    The liquid crystal display panel according to claim 1,
    The liquid crystal display panel, wherein the protruding portion of the first substrate and the second substrate are bonded to each other with an adhesive containing the conductive particles.
  3.  請求項1又は2に記載された液晶表示パネルにおいて、
     上記突出部は、上記第2基板の対応する辺の両端部にそれぞれ設けられていることを特徴とする液晶表示パネル。
    In the liquid crystal display panel according to claim 1 or 2,
    The liquid crystal display panel according to claim 1, wherein the protrusions are provided at both ends of the corresponding side of the second substrate.
  4.  請求項1乃至3の何れか1つに記載された液晶表示パネルにおいて、
     上記液晶層は、スペーサ粒子を含有するシール材により上記第1基板及び第2基板の間に封入され、
     上記導電粒子及びスペーサ粒子は、互いに異なる大きさに形成されていることを特徴とする液晶表示パネル。
    In the liquid crystal display panel as described in any one of Claims 1 thru | or 3,
    The liquid crystal layer is sealed between the first substrate and the second substrate by a sealing material containing spacer particles,
    The liquid crystal display panel, wherein the conductive particles and the spacer particles are formed in different sizes.
PCT/JP2011/000381 2010-04-06 2011-01-25 Liquid crystal display panel WO2011125268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010087537 2010-04-06
JP2010-087537 2010-04-06

Publications (1)

Publication Number Publication Date
WO2011125268A1 true WO2011125268A1 (en) 2011-10-13

Family

ID=44762240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000381 WO2011125268A1 (en) 2010-04-06 2011-01-25 Liquid crystal display panel

Country Status (1)

Country Link
WO (1) WO2011125268A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3896514A1 (en) * 2020-04-17 2021-10-20 Solum Co., Ltd. Display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330848A (en) * 2000-03-13 2001-11-30 Seiko Epson Corp Electrooptical device
JP2005084514A (en) * 2003-09-10 2005-03-31 Seiko Epson Corp Display device and substrate for display device, and method for manufacturing display device, and method for manufacturing substrate for display device
JP2008225398A (en) * 2007-03-16 2008-09-25 Citizen Holdings Co Ltd Manufacturing method of liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330848A (en) * 2000-03-13 2001-11-30 Seiko Epson Corp Electrooptical device
JP2005084514A (en) * 2003-09-10 2005-03-31 Seiko Epson Corp Display device and substrate for display device, and method for manufacturing display device, and method for manufacturing substrate for display device
JP2008225398A (en) * 2007-03-16 2008-09-25 Citizen Holdings Co Ltd Manufacturing method of liquid crystal display element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3896514A1 (en) * 2020-04-17 2021-10-20 Solum Co., Ltd. Display device
CN113552754A (en) * 2020-04-17 2021-10-26 株式会社搜路研 Display device
US11899332B2 (en) 2020-04-17 2024-02-13 Solum Co., Ltd Display device

Similar Documents

Publication Publication Date Title
JP5934797B2 (en) Display panel
US8558972B2 (en) Liquid crystal display device and method for fabricating the same
JP4925030B2 (en) Liquid crystal display device and manufacturing method thereof
US9632634B2 (en) Touch panel and display device with touch panel
JP5372900B2 (en) Liquid crystal display
US20130023086A1 (en) Active matrix substrate, display panel provided with same, and method for manufacturing active matrix substrate
US8749734B2 (en) Liquid crystal display device with layers of different color filters covering light shielding films
WO2011004521A1 (en) Display panel
JP2007011340A (en) Liquid crystal display device and fabricating method thereof
WO2012117695A1 (en) Semiconductor device and process of producing same, and display device
WO2013104300A1 (en) Array substrate and display device comprising same
WO2011142061A1 (en) Thin-film transistor substrate and liquid-crystal display device provided with the same
WO2012114687A1 (en) Electronic device and method for manufacturing same
US9224824B2 (en) Display device substrate and display device equipped with same
US20120069260A1 (en) Active matrix substrate, liquid crystal display device including the same, and method for fabricating active matrix substrate
WO2011125268A1 (en) Liquid crystal display panel
JP2011022182A (en) Liquid crystal display device of lateral electric field system
WO2010079540A1 (en) Liquid-crystal display panel
US20130009160A1 (en) Active matrix substrate
WO2010079706A1 (en) Array substrate for liquid crystal panel, and liquid crystal display device comprising the substrate
US8530291B2 (en) Method for manufacturing display device
US8330929B2 (en) Display panel
JP5560227B2 (en) Method for manufacturing liquid crystal display device and liquid crystal display device
KR101557805B1 (en) Liquid crystal display device
JPH04268536A (en) Active matrix substrate and production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP