WO2011124861A2 - Utilisation de composés oligosaccharides dérivés du xanthane comme agent énergisant - Google Patents

Utilisation de composés oligosaccharides dérivés du xanthane comme agent énergisant Download PDF

Info

Publication number
WO2011124861A2
WO2011124861A2 PCT/FR2011/050795 FR2011050795W WO2011124861A2 WO 2011124861 A2 WO2011124861 A2 WO 2011124861A2 FR 2011050795 W FR2011050795 W FR 2011050795W WO 2011124861 A2 WO2011124861 A2 WO 2011124861A2
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
daltons
equal
alteration
cutaneous
Prior art date
Application number
PCT/FR2011/050795
Other languages
English (en)
Other versions
WO2011124861A3 (fr
Inventor
Laurent Rios
Cédric DELATTRE
Jean-Yves Berthon
Original Assignee
Greentech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1052699A external-priority patent/FR2958648B1/fr
Application filed by Greentech filed Critical Greentech
Publication of WO2011124861A2 publication Critical patent/WO2011124861A2/fr
Publication of WO2011124861A3 publication Critical patent/WO2011124861A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/0033Xanthan, i.e. D-glucose, D-mannose and D-glucuronic acid units, saubstituted with acetate and pyruvate, with a main chain of (beta-1,4)-D-glucose units; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q7/00Preparations for affecting hair growth

Definitions

  • oligosaccharide compounds derived from xanthan as an energizing agent
  • the present invention relates to the use of oligosaccharide compounds derived from xanthan and their pharmaceutically acceptable salt for their energizing effect.
  • Cells need energy to live and perform their biological functions.
  • cells can be viewed as chemical machines capable of operating under conditions where temperature, pressure and volume remain constant. Like machines invented by man, all living organisms can draw their energy from the surrounding environment.
  • Photosynthetic organisms use the radiant energy of the sun, while heterotrophic organisms use energy related to the structure of organic nutrient molecules that they obtain in the environment.
  • ATP adenosine triphosphate
  • ATP operates cyclically as a carrier of chemical energy from degradation reactions (catabolism) that provide chemical energy to energy-demanding cellular processes (biosynthesis of molecules, active transport of ions, minerals, nutrients, muscle contraction, etc.).
  • ATP is formed from adenosine diphosphate (ADP) by energy-related phosphorylation reactions generated by the degradation of cellular fuel molecules.
  • ADP adenosine diphosphate
  • the ATP thus formed will be able to be hydrolysed to ADP or AMP (adenosine monophosphate) thus producing an exergonic reaction producing energy that can be used by different endergonic functions in the cell.
  • the ADP and AMP thus formed will be rephosphorylated to ATP at the expense of oxidation reactions providing energy.
  • a cellular energy cycle is thus formed.
  • energy metabolism is controlled by a major factor: the ATP (adenosine triphosphate) level, or more precisely the energetic burden of ATP / ADP coenzyme.
  • ATP production oxidation-reduction reactions
  • is mainly produced by cellular respiration, which can be defined as the oxidation of organic fuels by molecular oxygen. Oxygen thus serves as the final acceptor of electrons.
  • Cellular respiration takes place in a specialized organelle: the mitochondria. Cellular respiration is thus a mode of production of energy-rich bonds (in the form of ATP) characterized by active phosphorylating oxidation within a membrane rich in cytochromes, whose final electron acceptor is oxygen.
  • the first part of the respiration takes place in the cytosol and enriches the molecules of NADH in electrons.
  • glucose plays the role of fuel.
  • the glycolysis is the phenomenon of its fragmentation into simpler molecules, under the action of multiple enzymes.
  • Secondary molecules (NADH) are loaded into electrons removed from glucose during enzymatic reactions and will be recycled to the mitochondria.
  • the second part of the respiration takes place in the mitochondria where the electrons carried by these molecules are converted into a proton gradient within the respiratory chain. It is at this level that the oxygen, playing the role of final acceptor of electrons, captures electrons and is transformed into water, the final product of degradation.
  • ATP-synthase membrane proteins or ATP synthetases
  • the variations in the concentration of ATP and ADP have an effect on the mitochondrial respiratory chain: it is thus known that, at rest, the concentration of ATP is much higher than that of ADP and the flow of ADP entering mitochondria are weak. In this case the respiratory chain is slowed down. On the contrary, during the period of activity, the ATP / ADP ratio decreases and the flow of ADP entering the mitochondria increases. The respiratory chain is then accelerated.
  • An important general principle of metabolism is that the pathways of biosynthesis and degradation are almost distinct and balanced. Many metabolic reactions are controlled by the energy state of the cell. An energy index is the energy charge.
  • the energy charge of a cell can be defined as being proportional to the mole fraction of ⁇ plus half of the mole fraction of ADP, given that ⁇ contains two anhydride bonds while the ADP contains only one.
  • the energy charge of a cell can be defined (and calculated) as:
  • Cellular aging is the consequence of an imbalance between the degradation process (catabolism) and the synthesis process (anabolism). Maintaining a stable energy load makes it possible to balance these two processes, thereby delaying cellular aging.
  • compositions having an effect called “energizing”, that is to say enabling stimulation of cellular energy metabolism can be used in the context of the prevention and / or treatment of signs of aging skin and / or capillary intrinsic and / or extrinsic, including alteration of structures and cutaneous and / or capillary functions, alteration of tissue regeneration, tissue relaxation, alteration of cutaneous microcirculation and / or capillary, alteration of cutaneous detoxification, loss of uniformity, brightness and shine of the hue (cutaneous and / or capillary), alteration of the cutaneous surface texture (appearance of wrinkles, puffiness) , dry skin, etc.) and / or capillary (brittle hair), the alteration of the cutaneous and / or capillary architecture (inducing in particular the hair loss).
  • alteration of structures and cutaneous and / or capillary functions alteration of tissue regeneration, tissue relaxation, alteration of cutaneous microcirculation and / or capillary
  • alteration of cutaneous detoxification loss of uniformity, brightness and
  • Xanthan is a high molecular weight branched polysaccharide consisting of a combination of four compounds: glucose, mannose, glucuronic acid and pyruvic acid. It is obtained by fermentation of a hydrocarbon substrate such as corn starch, glucose or sucrose by a bacterium, Xanthomonas campestris. Xanthan gum is frequently used as a food additive for its thickening and gelling properties. It is also frequently used as a formulation adjunct, in the cosmetic field but also pharmacologically. The degradation of xanthan to polysaccharides or oligosaccharides has been described in the literature.
  • the present invention therefore has obj and the cosmetic use as an energizing agent of one or more oligosaccharide (s) of general formula (I)
  • R 1 , R 3 , R 4 and R 6 to R 14 are independently selected from each other as hydrogen; or a hydroxy, alkyloxy, alkoxycarbonyl, acyloxy, sulfate or phosphate group; or an -OCH 2 R a group , wherein R a is hydroxy, alkyloxy, acyloxy, sulfate or phosphate;
  • R 2 and R 5 are independently selected from each other as hydrogen; or an alkyl, alkylcarbonyl, acyl sulfate or phosphate group; or a -CH 2 R a group , wherein R a is hydroxy, alkyloxy, acyloxy, sulfate or phosphate; and
  • n is chosen so that the molecular weight is predominantly less than or equal to 100,000 Daltons;
  • oligosaccharides according to the present invention have never been described as having a possible energizing effect.
  • these compounds allow stimulation of cellular energy metabolism.
  • These compounds can therefore be incorporated into cosmetic compositions that are useful for their energizing effect in the context of the prevention and / or treatment of signs of intrinsic and / or extrinsic cutaneous and / or capillary aging, in particular the alteration of structures and functions.
  • cutaneous and / or capillary alteration of tissue regeneration, tissue relaxation, alteration of cutaneous and / or capillary micro-circulation, alteration of cutaneous detoxification, loss of uniformity, radiance and the shine of the hue (cutaneous and / or capillary), the alteration of the cutaneous surface texture (appearance of wrinkles, puffiness, dry skin, etc.) and / or capillary (brittle hair), the alteration cutaneous and / or capillary architecture (inducing in particular hair loss).
  • molecular weight refers indifferently to the molecule alone or to the mixture of molecules and then represents in this case a mean value
  • pharmaceutically acceptable salt means any addition salt with a mineral or organic acid by the action of such an acid in an organic or aqueous solvent such as an alcohol, a ketone, an ether or a solvent chlorine, which is acceptable from a pharmaceutical point of view.
  • salts By way of example of such salts, mention may be made of the following salts: benzenesulphonate, hydrobromide, hydrochloride, citrate, ethanesulphonate, fumarate, gluconate, iodate, isethionate, maleate, methanesulphonate, methylene-bis-b-oxynaphthoate, nitrate, oxalate, palmoate, phosphate, salicylate, sulfate, tartrate, theophyllinacetate and p-toluenesulfonate;
  • an alkyl group is understood to mean a saturated, monovalent, linear or branched hydrocarbon-based chain containing from 1 to 6 carbon atoms, such as the following groups: methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, hexyl.
  • alkyl retains the same definition when it includes the name of a group, for example in the alkyloxy group.
  • alkyloxy groups there may be mentioned methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, pentyloxy;
  • activation of basal and mitochondrial cellular energy metabolism is defined as the activation of basal and mitochondrial cellular energy metabolism (synthesis of ATP, ADP and AMP) while maintaining a constant energetic charge allowing the balance between degradation processes (catabolism ) and synthesis (anabolism);
  • Energizing agent means any product that provides an energizing effect.
  • the subject of the present invention is the cosmetic use as an energizing agent of one or more oligosaccharide (s) of general formula (I-a):
  • R 15 to R 28 are independently selected from each other as hydrogen; or a group, alkyl, acyl, sulfate or phosphate; or one -CH 2 R a group , wherein R a is hydroxy, alkyloxy, acyloxy, sulfate or phosphate; and
  • n is chosen so that the molecular weight is predominantly less than or equal to 100,000 Daltons;
  • the present invention relates to the cosmetic use as an energizing agent of one or more oligosaccharide (s) of general formula
  • n is chosen so that the molecular weight is less than or equal to 100,000 Daltons;
  • the oligosaccharides of general formula (I), (Ia) and (Ib) have a molecular weight less than or equal to 100,000 Daltons.
  • the subject of the present invention is an oligosaccharide of general formula (I), (Ia) or (Ib) in which n is chosen so that the molecular weight is greater than or equal to 5,000 Daltons and less than or equal to 100,000. daltons. More preferably, n is chosen so that the molecular weight is greater than or equal to 5,000 Daltons and less than or equal to 50,000 Daltons. Most preferably, n is chosen so that the molecular weight is greater than or equal to 5,000 Daltons and less than or equal to 10,000 Daltons.
  • Oligosaccharides according to the present invention may be prepared according to methods well known to those skilled in the art. By way of example of such processes, there may be mentioned the radical degradation process of xanthan comprising the following steps:
  • the dissolution is carried out with stirring at a speed ranging from 500 to 2,500 revolutions / minute, preferably ranging from 1,000 to 2,000 revolutions / minute.
  • concentration of polysaccharides in the water after dissolution may vary according to the needs of those skilled in the art and the equipment used.
  • the polysaccharide concentration may be from 1 to 1,000 g / l, more preferably from 1 to 100 g / l, most preferably from 10 to 50 g / l.
  • the dissolution is carried out at a temperature ranging from 20 ° C to 100 ° C, preferably at a temperature ranging from 40 ° C to 80 ° C, more preferably at a temperature ranging from 50 to 70 ° C;
  • the mass ratio between the Xanthan gum and the added hydrogen peroxide is 1/1.
  • the added hydrogen peroxide will preferably be selected as 30% H 2 0 2 .
  • the addition of hydrogen peroxide is done gradually.
  • the addition of hydrogen peroxide will be continuous over a period ranging from 30 minutes to 3 hours.
  • the degradation method according to the present invention makes it possible to obtain oligosaccharides of low molecular weight with a high production yield, of the order of 60% to 70%.
  • the oligosaccharides according to the present invention can therefore be used in cosmetics as an energizing agent, that is to say to stimulate the cellular energy metabolism, which makes it possible to limit the aging of the cells.
  • the present invention is obj and the use of one or more oligosaccharide (s) as (s) that defni (s) previously in the context of the prevention and / or treatment of intrinsic and / or extrinsic skin and / or capillary aging, including alteration of structures and cutaneous functions and / or capillaries, alteration of tissue regeneration, tissue relaxation, alteration of cutaneous and / or capillary microcirculation, alteration of cutaneous detoxification, loss of uniformity, radiance and the brilliance of the hue (cutaneous and / or capillary), the alteration of the cutaneous surface texture (appearance of wrinkles, puffiness, dry skin, etc.) and / or capillary (brittle hair), the alteration of the cutaneous and / or capillar
  • compositions may be formulated in any dosage form suitable for their administration.
  • These compositions can thus be formulated in the form of cream, gel, lotion, milk, oil-in-water emulsion or water-in-oil, solution, ointment, spray, body oil, aftershave, soap, protective lip stick, stick and pencil. for makeup.
  • compositions contain one or more oligosaccharides as described above at contents ranging from 0.005% to 75% by total weight of the composition, preferably from 0.01% to 25%, more preferably from 0.1% to 5%.
  • one or more low molecular weight oligosaccharides according to the present invention or one or more of their pharmaceutically acceptable salts are mixed with the excipients generally employed in the cosmetic art.
  • compositions may take the form of a cream in which one or more low molecular weight oligosaccharides according to the present invention or one or more of their pharmaceutically acceptable salts are associated with excipients commonly used in cosmetology.
  • compositions may take the form of gels in suitable excipients such as cellulose esters or other gelling agents, such as carbopol, sepinov (polyacrylate), guar gum, and the like.
  • suitable excipients such as cellulose esters or other gelling agents, such as carbopol, sepinov (polyacrylate), guar gum, and the like.
  • compositions may also take the form of a lotion or a solution in which one or more low molecular weight oligosaccharides according to the present invention or one or more of their pharmaceutically acceptable salts are in encapsulated form.
  • microspheres may for example consist of fat, agar and water.
  • One or more low molecular weight oligosaccharides according to the present invention or one or more of their pharmaceutically acceptable salts may be incorporated in liposomes, glycospheres, cyclodextrins, in chylomicrons, macro-, micro-nano-particles and as macro-, micro- and nanocapsules and also be absorbed on powdery organic polymers, talcs, bentonites and other mineral carriers.
  • emulsions have good stability and can be stored for the time necessary for use at temperatures between 0 and 50 ° C without sedimentation of the constituents or phase separation.
  • compositions may also contain additives or adjuvants customary in cosmetologies, such as, for example, antimicrobial agents or perfumes, but also extraction or synthesis lipids, gelling and viscosifying polymers, surfactants and emulsifiers, principles hydro- or liposoluble active ingredients, plant extracts, tissue extracts, marine extracts, synthetic actives.
  • additives or adjuvants customary in cosmetologies such as, for example, antimicrobial agents or perfumes, but also extraction or synthesis lipids, gelling and viscosifying polymers, surfactants and emulsifiers, principles hydro- or liposoluble active ingredients, plant extracts, tissue extracts, marine extracts, synthetic actives.
  • compositions may also comprise other complementary active ingredients chosen for their action, for example for the slimming effect, the anti-cellulite effect, the firming effect, the moisturizing effect, the antimicrobial activity, the antioxidant activity, antiradical activity, the healing effect, the tensor effect, the anti-wrinkle effect, the chelating activity, the complexing and sequestering activity, the soothing effect, the anti-radical effect, dark circles, anti-redness effect, emollient activity, hair conditioning effect, anti-dandruff activity, stimulating effect of hair regrowth, hair loss inhibiting effect, sheathing effect capillary, epilatory activity, hair regrowth limiting activity, activity participating in cell renewal, activity modulating the inflammatory response, activity involved in maintaining the oval of the face, but also sun protection , anti-irritant activity, nutrition cell, cellular respiration, anti-seborrhoeic treatments, skin tone, hair protection.
  • other complementary active ingredients chosen for their action, for example for the slimming effect, the anti-cellulite
  • compositions according to the present invention contain complementary active ingredients, these are generally present in the composition at a sufficiently high concentration so that they can exercise their activity.
  • Such compositions are preferably used daily by applying them one or more times daily. They are very well tolerated, they have no toxicity and their application to the skin, for prolonged periods of time, does not imply any systematic effect.
  • Example 1 Process for preparing an oligosaccharide according to the present invention a) Preparation of oligoXanthane of low molecular weight
  • the medium is allowed to warm to 25 ° C and filtered through diatomaceous earth (or centrifuged at 10,000g, 10 minutes, 25 ° C) to remove the insolubles.
  • the filtrate is then concentrated under reduced pressure at 40 ° C. to a volume corresponding to 1/5 of the initial volume.
  • the concentrate is then precipitated in 5 volumes of 96% ethanol at 4 ° C. with stirring (500 rpm) for 1 hour.
  • the precipitate is recovered by filtration on sintered glass 2 (porosity ⁇ 100 microns), then washed with 50 ml of ethanol for 30 minutes and then filtered on sintered glass 2. Finally, the precipitate is dried in an oven (40.degree. 1 night) then crushed into fine powder.
  • the production yield of low molecular weight oligosaccharides is 60-70%. b) Analysis of prepared oligosaccharides Analysis of constituent sugars
  • Oligosaccharides are hydrolysed to TFA IN and constituent sugar analyzes are carried out by ion chromatography (HPAEC) with reference to monosaccharide databases for identification. Determination of molecular weight
  • Step 1 Investigation of the effect of the low molecular weight oligosaccharides according to the present invention on the respiration rate (oxygen consumption) of the human 3T3-L1 preadipocytes in culture,
  • Step 2 Investigation of the effect of the low molecular weight oligosaccharides according to the present invention on the energetic metabolism of cells in culture. Assay of cellular adenyl nucleotides (ATP, ADP, AMP) and calculation of the energy load of the cells treated for 5 days with 0.5% of low molecular weight oligosaccharides according to the present invention.
  • ATP cellular adenyl nucleotides
  • ADP adenyl nucleotides
  • Stage 1 was carried out according to two different conditions: effect on the basal cell respiration rate at the non-permeabilized cells and in the presence of glucose and the effect on the mitochondrial respiration rate of the permeabilized cells in the presence of the respiratory substrate pyruvate -malate.
  • the amount of oxygen dissolved in an incubation medium was determined using a Clark electrode. Oxygen diffusing through a tefion film is reduced at the platinum cathode polarized at -0.8 volts. Under these conditions, the current passing between this cathode and the silver anode is proportional to the oxygen concentration in the solution.
  • the ion bridge is provided by a solution of saturated saturated KO. The acquisition and processing of measurements are done on a micro-computer. The test was conducted in triplicate after 20 minutes of contact of the low molecular weight oligosaccharides according to the present invention to 0.5% (by weight) with the cells.
  • the preadipocytes were cultured for 5 days in the absence and in the presence of low molecular weight oligosaccharides according to the present invention (1 million cells per measurement). Once trypsinized, the cells were harvested and the concentrations of the adenyl nucleotides (ATP, ADP and AMP) were determined by HPLC.
  • ATP adenyl nucleotides
  • the assay was conducted in triplicate after 5 days of contact of the low molecular weight oligosaccharides according to the present invention to 0.5% (by weight) with the cells.
  • the low molecular weight oligosaccharides according to the present invention (0.5% by weight) induced a significant effect (p ⁇ 0.05 Wilcoxon Rank Sum test) on the rate of oxygen uptake. Stimulation of basal and mitochondrial breaths results in increases in oxygen consumption rate of 27% and 22%, respectively.
  • the low molecular weight oligosaccharides according to the present invention incubated at a concentration of 0.5% (by weight) with the cells induced a significant (p ⁇ 0.05) increase in the synthesis of adenyl nucleotides (ATP, ADP, AMP). ) thus reflecting an increase in the metabolic activity of the cells. Moreover, the energy charge remains constant, thus reflecting a stable energy balance between the adenyl nucleotides.
  • Maintaining a stable energy load balances the processes of catabolism and anabolism, thereby delaying cellular aging.
  • the activity of low molecular weight oligosaccharides according to the present invention on cellular and respiratory metabolism was evaluated by the metabolism of glucose by epidermal cells under hypoxic conditions. Indeed, the conditions of in vitro hypoxia lead to profound alterations of the cellular electromechanical functions, accompanied by an increase in lactate production, a drop in ATP and ADP levels, an LDH leak (lactate dehydrogenase). Reoxygenation of hypoxia cells (reversible stage) normalizes lactate loss, leads to ATP resynthesis and attenuation of LDH release. The decrease in superoxide dismutase and glutathione peroxidase activity is attenuated.
  • the asphyxiation of the epidermis was achieved by oxygen deprivation 24 hours before treatment with low molecular weight oligosaccharides according to the present invention.
  • the test is conducted in duplicate after 24 hours of contact of the low molecular weight oligosaccharides according to the present invention with the epidermis.
  • the reconstituted epidermis are divided into 6 lots:
  • Lot 2 Epidermis treated with low molecular weight oligosaccharides according to the present invention at 0.1% (by weight)
  • Lot 3 Epidermis treated with low molecular weight oligosaccharides according to the present invention at 0.5% (by weight)
  • Lot 4 control epidermals receiving no low molecular weight oligosaccharide according to the present invention (Asphyxiation 24 hours)
  • Lo t 6 treated epidermis receiving the low molecular weight oligosaccharides according to the present invention at 0.5%> (by weight) (Asphyxiation 24 hours)
  • the 14 C0 2 released from the metabolism of D- [ 14 C] - glucose-6-phosphate was evaluated by capturing 14 CO 2 on filters placed above the epidermis.
  • D- [ 14 C] -glucose-6-phosphate is contacted with the epidermis throughout the course of treatment with the low molecular weight oligosaccharides according to the present invention (24 hours).
  • the filters are recovered and the radioactivity is counted using a scintillation counter. The results obtained are shown in the table below:
  • the low molecular weight oligosaccharides according to the present invention (0.1% and 0.5%) increase the release of 14 CO 2 respectively by 15% and 18% under physiological conditions and by 23% and 24% under the conditions. asphyxiation. This result shows that the low molecular weight oligosaccharides of the present invention stimulate cellular metabolism by metabolizing glucose.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cosmetics (AREA)
  • Saccharide Compounds (AREA)

Abstract

Utilisation cosmétique comme agent énergisant d'un ou plusieurs oligosaccharide(s) de formule générale (I) :

Description

Utilisation de composés oligosaccharides dérivés du xanthane comme agent énergisant
La présente invention a pour objet l'utilisation de composés oligosaccharides dérivés du xanthane ainsi que leur sel pharmaceutiquement acceptable pour leur effet énergisant.
Les cellules ont besoin d'énergie pour vivre et assurer leurs fonctions biologiques. Dans le concept moléculaire de l'état vivant, les cellules peuvent être vues comme des machines chimiques capables de fonctionner dans des conditions où la température, la pression et le volume demeurent constants. Comme les machines inventées par l'homme, tous les organismes vivants peuvent tirer leur énergie du milieu environnant. Les organismes photosynthétiques utilisent l'énergie radiante du soleil, alors que les organismes hétérotrophes utilisent l'énergie liée à la structure des molécules de nutriments organiques qu'elles se procurent dans l'environnement. Ces différentes formes d'énergie sont transformées au sein des cellules en énergie chimique sous forme d'adénosine triphosphate (ATP) qui joue aussi le rôle de transporteur d'énergie. L'ATP fonctionne de manière cyclique comme transporteur de l'énergie chimique à partir de réactions de dégradation (catabolisme) qui fournissent de l'énergie chimique vers des processus cellulaires demandeurs d'énergie (biosynthèse de molécules, transport actif d'ions, de minéraux, de nutriments, contraction musculaire, etc.). L'ATP est formée à partir de l'adénosine diphosphate (ADP) par des réactions de phosphorylation liées à l'énergie engendrée par la dégradation des molécules de combustibles cellulaires. L'ATP ainsi formé va pouvoir être hydrolysé en ADP ou en AMP (adénosine monophosphate) réalisant ainsi une réaction exergonique produisant de l'énergie qui pourra être utilisée par différentes fonctions endergoniques dans la cellule. L'ADP et l'AMP ainsi formés vont être rephosphorylés en ATP aux dépens de réactions d'oxydation fournissant de l'énergie. Un cycle énergétique cellulaire est ainsi formé. Dans tous les tissus le métabolisme énergétique est commandé par un facteur principal : le taux d'ATP (adénosine triphosphate), ou plus précisément la charge énergétique du coenzyme ATP/ ADP.
Tous les organismes hétérotrophes tirent leur énergie (production d'ATP) de réactions d'oxydoréduction, c'est à dire de réactions où les électrons sont transférés d'un donneur d'électrons (ou agent réducteur) vers un accepteur d'électrons (ou agent oxydant). Chez l'homme, ΓΑΤΡ est principalement produit par la respiration cellulaire qui peut être définie comme l'oxydation des combustibles organiques par l'oxygène moléculaire. L'oxygène sert ainsi d'accepteur final d'électrons. La respiration cellulaire a lieu au sein d'un organite spécialisé : la mitochondrie. La respiration cellulaire est donc un mode de production de liaisons riches en énergie (sous forme d'ATP) se caractérisant par des oxydations phosphorylantes actives au sein d'une membrane riche en cytochromes, dont l'accepteur final d'électrons est l'oxygène et dont l'intermédiaire entre oxydation et phosphorylation (couplage) est un potentiel de membrane. La première partie de la respiration a lieu dans le cytosol et enrichit en électrons les molécules de NADH. De façon simplifiée, le glucose joue le rôle de combustible. La glycolyse est le phénomène de son morcellement en molécules plus simples, sous l'action de multiples enzymes. Des molécules secondaires (NADH) se chargent en électrons arrachés au glucose au cours des réactions enzymatiques et seront recyclées dans les mitochondries. La seconde partie de la respiration a lieu dans la mitochondrie où les électrons portés par ces molécules sont converties en gradient de protons au sein de la chaîne respiratoire. C'est à ce niveau que le dioxygène, jouant le rôle d'accepteur final d'électrons, capte des électrons et est transformé en eau, produit final de dégradation. La dissipation du gradient de protons à travers les protéines membranaires ATP-synthases (ou ATP-synthétases) permet de créer de ΑΤΡ à partir d'ADP (adénosine diphosphate) et de phosphate inorganique (Pi).
Les variations de concentration d'ATP et d'ADP ont un effet sur la chaîne respiratoire mitochondriale : il est ainsi connu qu'au repos, la concentration d'ATP est très supérieure à celle de Γ ADP et le flux d'ADP entrant dans la mitochondrie est faible. Dans ce cas la chaîne respiratoire est ralentie. Au contraire, en période d'activité, le rapport ATP/ADP diminue et le flux d'ADP entrant dans la mitochondrie augmente. La chaîne respiratoire est alors accélérée. Un principe général important du métabolisme est que les voies de biosynthèse et de dégradation sont presque distinctes et équilibrées. De nombreuses réactions métaboliques sont contrôlées par l'état énergétique de la cellule. Un index énergétique est la charge énergétique. La charge énergétique d'une cellule peut être définie comme étant proportionnelle à la fraction molaire de ΓΑΤΡ plus la moitié de la fraction molaire de l'ADP, étant donné que ΓΑΤΡ contient deux liaisons anhydride alors que l'ADP n'en contient qu'une. Ainsi, la charge énergétique d'une cellule peut être définie (et calculée) comme correspondant à :
[ATP] + ½ [ADP]
[ATP] + [ADP] + [AMP] (Atkinson DE., The energy charge of adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry, 1968, Nov. ; 7(11) : 4030-4034)
Le vieillissement cellulaire est la conséquence d'un déséquilibre entre le processus de dégradation (catabolisme) et le processus de synthèse (anabolisme). Le maintien d'une charge énergétique stable permet d'équilibrer ces deux processus, retardant d'autant le vieillissement cellulaire.
Dans le domaine de la cosmétologie, des compositions ayant un effet dit « énergisant », c'est-à-dire permettant une stimulation du métabolisme énergétique cellulaire, peuvent être utilisées dans le cadre de la prévention et/ou du traitement des signes de vieillissement cutané et/ou capillaire intrinsèques et/ou extrinsèques, notamment l'altération des structures et des fonctions cutanées et/ou capillaires, l'altération de la régénération tissulaire, le relâchement tissulaire, l'altération de la microcirculation cutanée et/ou capillaire, l'altération de la détoxification cutanée, la perte de l'uniformité, de l' éclat et de la brillance de la teinte (cutanée et/ou capillaire), l'altération de la texture de surface cutanée (apparition de rides, de poches, sécheresse cutanée, etc.) et/ou capillaire (cheveux cassant), l'altération de l'architecture cutanée et/ou capillaire (induisant notamment la chute des cheveux). Le xanthane (ou gomme de xanthane) est un polyoside ramifié de haut poids moléculaire constitué d'une combinaison de quatre composés : le glucose, le mannose, l'acide glucuronique et l'acide pyruvique. Il est obtenu par fermentation d'un substrat hydrocarboné tel que l'amidon de maïs, le glucose ou le sucrose par une bactérie, la Xanthomonas campestris. La gomme de xanthane est fréquemment utilisée comme additif alimentaire pour ses propriétés épaississantes et gélifiantes. Elle est également fréquemment utilisée comme adjuvant de formulation, dans le domaine cosmétique mais également pharmacologique. La dégradation du xanthane en polysaccharides ou en oligosaccharides a été décrite dans la littérature.
Ainsi, dans un article intitulé « Dégradation of double-stranded xanthan by hydrogen peroxide in the présence of ferrous ions : comparison to acid hydrolysis », Carbohydrates research, vol.280, 1996 ; pages 85 à 99, Bjorn E. Christensen et al. décrivent un procédé de dégradation de la gomme de xanthane par le peroxyde d'hydrogène en présence d'ions ferriques. Dans cet article, il n'est précisé si le procédé permet d'obtenir des polysaccharides ou des oligosaccharides. D'autre part, aucune utilisation des composés obtenus à la suite de cette dégradation n'est décrite ni suggérée.
La demande de brevet internationale WO-A-2004/082380 décrit quant à elle un procédé de dégradation enzymatique de xanthane permettant d'obtenir des oligomères présentant un degré de polymérisation compris entre 1 (5 unités saccharidiques) et 30 (150 unités saccharidiques). L'utilisation des oligomères ainsi obtenus pour stimuler les mécanismes de défenses naturelles des plantes est également décrite.
Or, il a maintenant été découvert de façon toute à fait surprenante que certains oligosaccharides de faible poids moléculaire issus de l'hydrolyse radicalaire contrôlée du xanthane permettait une stimulation du métabolisme énergétique cellulaire.
La présente invention a donc pour obj et l'utilisation cosmétique comme agent énergisant d'un ou plusieurs oligosaccharide(s) de formule générale (I)
dans laquelle :
R1, R3, R4 et R6 à R14 sont choisis indépendamment les uns des autres comme étant un atome d'hydrogène ; ou un groupe hydroxy, alkyloxy, alkoxycarbonyl, acyloxy, sulfate ou phosphate; ou un groupement -OCH2Ra, dans lequel Ra représente un groupe hydroxy, alkyloxy, acyloxy, sulfate ou phosphate;
R2 et R5 sont choisis indépendamment les uns des autres comme étant un atome d'hydrogène ; ou un groupe alkyl, alkylcarbonyl, acyl sulfate ou phosphate; ou un groupement -CH2Ra, dans lequel Ra représente un groupe hydroxy, alkyloxy, acyloxy, sulfate ou phosphate; et
- n est choisi de manière à ce que le poids moléculaire soit majoritairement inférieur ou égal à 100.000 Daltons ;
ainsi que son sel pharmaceutiquement acceptable.
Les oligosaccharides selon la présente invention n'ont jamais été décrits comme ayant un éventuel effet énergisant. Or, ces composés permettent une stimulation du métabolisme énergétique cellulaire. Ces composés peuvent donc être incorporés dans des compositions cosmétiques utiles pour leur effet énergisant dans le cadre de la prévention et/ou du traitement des signes de vieillissement cutané et/ou capillaire intrinsèques et/ou extrinsèques, notamment l'altération des structures et des fonctions cutanées et/ou capillaires, l'altération de la régénération tissulaire, le relâchement tissulaire, l'altération de la micro circulation cutanée et/ou capillaire, l'altération de la détoxifïcation cutanée, la perte de l'uniformité, de l'éclat et de la brillance de la teinte (cutanée et/ou capillaire), l'altération de la texture de surface cutanée (apparition de rides, de poches, sécheresse cutanée, etc.) et/ou capillaire (cheveux cassant), l'altération de l'architecture cutanée et/ou capillaire (induisant notamment la chute des cheveux)..
Dans le cadre de la présente invention :
- l'expression « poids moléculaire » se réfère indifféremment à la molécule seule ou au mélange de molécules et représente alors dans ce cas une valeur moyenne ;
- on entend par « sel pharmaceutiquement acceptable » tout sel d'addition avec un acide minéral ou organique par action d'un tel acide au sein d'un solvant organique ou aqueux tel qu'un alcool, une cétone, un éther ou un solvant chloré, et qui soit acceptable d'un point de vue pharmaceutique. A titre d'exemple de tels sels, on peut citer les sels suivants : benzènesulfonate, bromhydrate, chlorhydrate, citrate, éthanesulfonate, fumarate, gluconate, iodate, iséthionate, maléate, méthanesulfonate, méthylène-bis-b-oxynaphtoate, nitrate, oxalate, palmoate, phosphate, salicylate, sulfate, tartrate, théophyllinacétate et p-toluènesulfonate ;
- on entend par un groupe alkyle, une chaîne hydrocarbonée saturée, monovalente, linéaire ou ramifiée, comportant de 1 à 6 atomes de carbone, tels que les groupes suivants : méthyle, éthyle, n-propyle, iso-propyle, n-butyle, sec-butyle, iso-butyle, tert- butyle, pentyle, hexyle.
- le terme « alkyle » tel que défini ci-dessus conserve la même définition quand il intègre le nom d'un groupe, par exemple dans le groupe alkyloxy. Ainsi, parmi les groupes alkyloxy, on peut citer les groupes méthoxy, éthoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, pentyloxy ;
- on entend par « effet énergisant » l'activation du métabolisme énergétique cellulaire basai et mitochondrial (synthèse d'ATP, d'ADP et d'AMP) tout en maintenant une charge énergétique constante permettant l'équilibre entre les processus de dégradation (catabolisme) et de synthèse (anabolisme) ; et
- on entend par « agent énergisant » tout produit permettant d'obtenir un effet énergisant.
De façon préférée, la présente invention a pour objet l'utilisation cosmétique comme agent énergisant d'un ou plusieurs oligosaccharide(s) de formule générale (I-a) :
Figure imgf000007_0001
(I-a) dans laquelle :
R15 à R28 sont choisis indépendamment les uns des autres comme étant un atome d'hydrogène ; ou un groupe, alkyl, acyl, sulfate ou phosphate ; ou un groupement -CH2Ra, dans lequel Ra représente un groupe hydroxy, alkyloxy, acyloxy, sulfate ou phosphate ; et
n est choisi de manière à ce que le poids moléculaire soit majoritairement inférieur ou égal à 100.000 Daltons ;
ainsi que son sel pharmaceutiquement acceptable.
De façon toute à fait préférée, la présente invention a pour objet l'utilisation cosmétique comme agent énergisant d'un ou plusieurs oligosaccharide(s) de formule général
Figure imgf000008_0001
dans laquelle :
- Ac désigne un groupe acétyle ; et
- n est choisi de manière à ce que le poids moléculaire soit inférieur ou égal 100.000 Daltons ;
ainsi que son sel pharmaceutiquement acceptable.
Les oligosaccharides de formule générale (I), (I-a) et (I-b) ont un poids moléculaire inférieur ou égal à 100.000 Daltons. Préférentiellement, la présente invention a pour objet un oligosaccharide de formule générale (I), (I-a) ou (I-b) dans laquelle n est choisi de manière à ce que le poids moléculaire soit supérieur ou égal à 5.000 Daltons et inférieur ou égal à 100.000 Daltons. De préférence encore, n est choisi de manière à ce que le poids moléculaire soit supérieur ou égal à 5.000 Daltons et inférieur ou égal à 50.000 Daltons. De façon toute à fait préférée, n est choisi de manière à ce que le poids moléculaire soit supérieur ou égal à 5.000 Daltons et inférieur ou égal à 10.000 Daltons. Les oligosaccharides selon la présente invention peuvent être préparés selon des procédés bien connus de l'homme du métier. A titre d'exemple de tels procédés, on peut citer le procédé de dégradation radicalaire de xanthane comprenant les étapes suivantes :
a) dissolution de la gomme Xanthane dans l'eau à une température allant de 20°C à 100°C, le pH de la solution allant de 6 à 8.
De préférence la dissolution s'effectue sous agitation à une vitesse allant de 500 à 2.500 tours/minute, de préférence allant de 1.000 à 2.000 tours/minute. La concentration en polysaccharides dans l'eau après dissolution pourra varier en fonction des besoins de l'homme du métier et du matériel utilisé. Préférentiellement, la concentration en polysaccharides pourra être de 1 à 1.000 g/1, de préférence encore de 1 à 100 g/1, de façon toute à fait préférée de 10 à 50 g/1. La dissolution s'effectue à une température allant de 20°C à 100°C, de préférence à une température allant de 40°C à 80°C, de préférence encore à une température allant de 50 à 70°C ;
b) ajout progressif de peroxyde d'hydrogène (H202), la température de la solution allant de 20°C à 100°C, le pH de la solution allant de 6 à 8.
De préférence, le rapport massique entre la gomme Xanthane et le peroxyde d'hydrogène ajouté est de 1/1. Le peroxyde d'hydrogène ajouté sera préférentiellement choisi comme étant du H202 à 30%. L'ajout de peroxyde d'hydrogène s'effectue de façon progressive. De préférence, l'ajout de peroxyde d'hydrogène se fera de façon continue sur une période allant de 30 minutes à 3 heures.
c) maintient sous agitation, la température de la solution allant de 20°C à 100°C, le pH de la solution allant de 6 à 8 ;
d) fïltration ou centrifugation à température ambiante ;
e) concentration sous pression réduite ;
f) précipitation des oligosaccharides de faible poids moléculaire ; et
g) fïltration, lavage et séchage du précipitât obtenu.
Le procédé de dégradation selon la présente invention permet l ' obtention d'oligosaccharides de faible poids moléculaire avec un rendement de production élevé, de l'ordre de 60% à 70%.
Les oligosaccharides selon la présente invention peuvent donc être utilisés en cosmétique comme agent énergisant c'est-à-dire pour stimuler le métabolisme énergétique cellulaire ce qui permet de limiter le vieillissement des cellules. De préférence, la présente invention a pour obj et l'utilisation d'un ou plusieurs oligosaccharide(s) tel(s) que défïni(s) précédemment dans le cadre de la prévention et/ou du traitement des signes de vieillissement cutané et/ou capillaire intrinsèques et/ou extrinsèques, notamment l'altération des structures et des fonctions cutanées et/ou capillaires, l' altération de la régénération tissulaire, le relâchement tissulaire, l' altération de la microcirculation cutanée et/ou capillaire, l' altération de la détoxifïcation cutanée, la perte de l'uniformité, de l'éclat et de la brillance de la teinte (cutanée et/ou capillaire), l'altération de la texture de surface cutanée (apparition de rides, de poches, sécheresse cutanée, etc.) et/ou capillaire (cheveux cassant), l'altération de l'architecture cutanée et/ou capillaire (induisant notamment la chute des cheveux).
Les oligosaccharides décrits précédemment peuvent donc être utilisés dans une composition cosmétique. De telles compositions cosmétiques peuvent être formulées sous toute forme galénique appropriée à leur administration. Ces compositions peuvent ainsi être formulées sous forme de crème, gel, lotion, lait, émulsion huile dans eau ou eau dans huile, solution, onguent, pulvérisateur, huile corporelle, lotion après-rasage, savon, bâton protecteur des lèvres, bâton et crayon pour maquillage.
Des plus, de telles compositions contiennent un ou plusieurs oligosaccharides tels que décrits précédemment à des teneurs allant de 0,005% à 75% en poids total de la composition, préférentiellement de 0,01% à 25%, préférentiellement encore de 0,1 % à 5%.
Pour la préparation de ces compositions, un ou plusieurs oligosaccharides de faible poids moléculaires selon la présente invention ou un ou plusieurs de leurs sels pharmaceutiquement acceptables sont mélangés aux excipients généralement employés dans la technique cosmétique.
Ces compositions peuvent prendre la forme d'une crème dans laquelle un ou plusieurs oligosaccharides de faible poids moléculaires selon la présente invention ou un ou plusieurs de leurs sels pharmaceutiquement acceptables sont associés aux excipients couramment utilisés dans la cosmétologie.
Ces compositions peuvent prendre la forme de gels dans les excipients appropriés tels que les esters de cellulose ou d'autres agents gélifiants, tels que le carbopol, le sepinov (polyacrylate), la gomme guar, etc.
Ces compositions peuvent aussi prendre la forme d'une lotion ou d'une solution dans lesquelles un ou plusieurs oligosaccharides de faible poids moléculaires selon la présente invention ou un ou plusieurs de leurs sels pharmaceutiquement acceptables sont sous forme encapsulée.
Ces microsphères peuvent par exemple être constituées de corps gras, d'agar et d'eau. Un ou plusieurs oligosaccharides de faible poids moléculaires selon la présente invention ou un ou plusieurs de leurs sels pharmaceutiquement acceptables peuvent être incorporés dans des vecteurs de type liposomes, glycosphères, cyclodextrines, dans des chylomicrons, des macro-, micro-, nano-particules ainsi que les macro-, micro- et nanocapsules et aussi être absorbés sur des polymères organiques poudreux, les talcs, bentonites et autres supports minéraux.
Ces émulsions jouissent d'une bonne stabilité et peuvent être conservées pendant le temps nécessaire pour l'utilisation à des températures comprises entre 0 et 50°C sans qu'il y ait sédimentation des constituants ou séparation des phases.
Ces compositions peuvent aussi contenir des additifs ou des adjuvants usuels en cosmétologies, comme par exemple des agents antimicrobiens ou des parfums mais aussi des lipides d'extraction ou de synthèse, des polymères gélifiants et viscosifïants, des tensio-actifs et des émulsifiants, des principes actifs hydro- ou liposolubles, des extraits de plantes, des extraits tissulaires, des extraits marins, des actifs de synthèse.
De plus, ces compositions peuvent aussi comprendre d'autres principes actifs complémentaires choisis pour leur action, par exemple pour l'effet amincissant, l'effet anti-cellulite, l'effet raffermissant, l' effet hydratant, l'activité antimicrobienne, l'activité anti-oxydante, l'activité antiradicalaire, l'effet cicatrisant, l'effet tenseur, l'effet anti-ride, l'activité chélatante, l'activité complexante et séquestrante, l'effet apaisant, l'effet anti-cernes, l'effet anti-rougeurs, l'activité émolliente, l'effet démêlant capillaire, l'activité anti-pelliculaire, l'effet stimulant de la repousse du cheveu, l'effet inhibant la chute du cheveu, l'effet gainant capillaire, l'activité épilatoire, l'activité limitant la repousse du poil, l'activité participant au renouvellement cellulaire, l'activité modulant la réponse inflammatoire, l'activité participant au maintien de l'ovale du visage, mais également la protection solaire, l'activité anti- irritante, la nutrition cellulaire, la respiration cellulaire, les traitements anti-séborrhéiques, la tonicité cutanée, la protection du cheveu.
Lorsque les compositions selon la présente invention contiennent des principes actifs complémentaires, ceux-ci sont généralement présents dans la composition à une concentration suffisamment élevée pour qu'ils puissent exercer leur activité. De telles compositions sont de préférence à utiliser quotidiennement en les appliquant une ou plusieurs fois par jour. Elles sont très bien tolérées, elles ne présentent aucune toxicité et leur application sur la peau, pour des périodes de temps prolongées, n'implique aucun effet systématique.
La présente invention est illustrée de manière non limitative par les exemples suivants.
Exemple 1 - Procédé de préparation d'un oligosaccharide selon la présente invention a) Préparation d'oligoXanthane de faibles poids moléculaires
50 g de Xanthane sont dissous dans 1 litre d'eau (80 °C, pH 7.8) sous vive agitation (1.500 tr/min). On ajoute 167 ml d'une solution d' H2O2 à 30% pendant 1 heure à un débit de 2,80 ml/min à 80°C et en maintenant à pH 7,8 par ajout continu de NaOH (5M).
Après ajout complet de ΓΗ2Ο2, l'agitation est maintenue durant lh supplémentaire (500tr/min) à 80°C en maintenant le pH à 7,8 par ajout de NaOH (5M).
On laisse le milieu revenir à 25 °C et on filtre sur diatomée (ou centrifuger à 10000g, 10 minutes, 25°C) pour éliminer les insolubles.
Le filtrat est ensuite concentré sous pression réduite à 40 °C jusqu'à un volume correspondant à 1/5 du volume initial.
Le concentrât est alors précipité dans 5 volumes d'éthanol 96%> à 4°C sous agitation (500 tr/min) pendant 1 heure.
Le précipitât est récupéré par fïltration sur verre Fritté 2 (porosité <100 microns), puis lavé avec 50 ml d'éthanol pendant 30 minutes puis filtré sur verre Fritté 2. Finalement, le précipitât est séché à l'étuve (40°C, 1 nuit) puis broyé en fine poudre.
Le rendement de production des oligosaccharides de faibles poids moléculaires est de 60-70%. b) Analyse des oligosaccharides préparés Analyse des sucres constitutifs
On hydrolyse des oligosaccharides au TFA IN et on procède aux analyses des sucres constitutifs par chromatographie ionique (HPAEC) en se référant à des bases de données monosaccharides pour l'identification. Détermination du poids moléculaire
Analyse par chromato graphie d'exclusion stérique (SEC MALLS) avec l'utilisation de 2 colonnes de chromatographie OHPAK SB 804 et 806 HQ (Shodex).
Composition (rapport molaire) Poids
moléculaires (majoritaires)
Glc Man GlcA
Oligosaccharides 2 2 1 <10kDa
Exemple 2 - Activité sur le métabolisme énergétique
Une étude in-vitro a été réalisée sur des préadipocytes 3T3-L1 en culture en absence (condition témoin) ou en présence de 0,5% (en poids) d'oligosaccharides de faible poids moléculaire selon la présente invention (condition traité). Cette étude s'est déroulée en deux étapes :
Étape 1 : recherche de l'effet des oligosaccharides de faible poids moléculaire selon la présente invention sur la vitesse de respiration (consommation d'oxygène) des préadipocytes 3T3-L1 humains en culture,
Étape 2 : recherche de l'effet des oligosaccharides de faible poids moléculaire selon la présente invention sur le métabolisme énergétique des cellules en culture. Dosage des nucléotides adényliques cellulaires (ATP, ADP, AMP) et calcul de la charge énergétique des cellules traitées pendant 5 jours avec 0,5% d'oligosaccharides de faible poids moléculaire selon la présente invention.
L'étape 1 a été réalisée selon deux conditions différentes : effet sur la vitesse de respiration basale cellulaire au niveau des cellules non perméabilisées et en présence de glucose et l ' effet sur la vitesse de respiration mitochondriale des cellules perméabilisées en présence du substrat respiratoire pyruvate-malate.
L'étude a été réalisée sur des préadipocytes en culture (10 millions de cellules par millilitre) dans du milieu HBSS à 30°C contenant soit du glucose (respiration basale) soit du pyruvate-malate (respiration mitochondriale). La respiration a été suivie en temps réel et exprimée en picoatomes d'oxygène consommés par minute et par million de cellules. L'addition de différentes quantités du produit dans la cuve de l'oxy graphe met en évidence une éventuelle stimulation ou inhibition de la respiration.
La quantité d'oxygène dissous dans un milieu d'incubation a été déterminée à l'aide d'une électrode de Clark. L'oxygène qui diffuse à travers un film de téfion est réduit au niveau de la cathode de platine polarisée à -0,8 Volt. Dans ces conditions, le courant passant entre cette cathode et l'anode d'argent est proportionnel à la concentration en oxygène dans la solution. Le pont ionique est assuré par une solution de KO demie saturée. L'acquisition et le traitement des mesures sont faits sur un micro -ordinateur. L'essai a été conduit en triplicate, après 20 minutes de contact des oligosaccharides de faible poids moléculaire selon la présente invention à 0,5% (en poids) avec les cellules.
Pour réaliser l'étape 2, les préadipocytes ont été mis en culture durant 5 jours en absence et en présence des oligosaccharides de faible poids moléculaire selon la présente invention (1 million de cellules par mesure). Un fois trypsinisées, les cellules ont été récoltées et les concentrations des nucléotides adényliques (ATP, ADP et AMP) ont été déterminées par HPLC.
L'essai a été conduit en triplicate, après 5 jours de contact des oligosaccharides de faible poids moléculaire selon la présente invention à 0,5% (en poids) avec les cellules.
Résultats Étape 1
Recherche de l'effet des oligosaccharides de faible poids moléculaire selon la présente invention sur la vitesse de respiration (consommation d'oxygène) des préadipocytes 3T3-L1 humains en culture.
Les résultats, exprimés en picoatomes d'oxygène par million de cellules et par minute, sont présentés dans le tableau ci-dessous :
Figure imgf000015_0001
Les oligosaccharides de faible poids moléculaire selon la présente invention (0,5% en poids) ont induits un effet significatif (p<0, 05 test de Wilcoxon Rank Sum) sur la vitesse de consommation d'oxygène. La stimulation des respirations basale et mitochondriale se traduit par des augmentations de la vitesse de consommation d'oxygène respectivement de 27% et de 22%.
Étape 2
Recherche de l'effet des oligosaccharides de faible poids moléculaire selon la présente invention sur le métabolisme énergétique des cellules en culture. Dosage des nucléotides adényliques cellulaires (ATP, ADP, AMP) et calcul de la charge énergétique des cellules traitées pendant 5 jours avec 0,5% d'oligosaccharides de faible poids moléculaire selon la présente invention, exprimé en nanomoles de nucléotides adényliques par milligramme de protéines. Les résultats sont présentés dans le tableau ci-dessous :
Figure imgf000016_0001
Les oligosaccharides de faible poids moléculaire selon la présente invention incubés à la concentration de 0,5% (en poids) avec les cellules ont induits une augmentation significative (p<0,05) de la synthèse des nucléotides adényliques (ATP, ADP, AMP) traduisant ainsi une augmentation de l'activité métabolique des cellules. Par ailleurs, la charge énergétique reste constante, traduisant ainsi un équilibre énergétique stable entre les nucléotides adényliques.
Le maintien d'une charge énergétique stable permet d'équilibrer les processus de catabolisme et d'anabolisme, retardant ainsi d'autant le vieillissement cellulaire.
Exemple 3 - Activité sur le métabolisme énergétique et physiologique
L'activité des oligosaccharides de faible poids moléculaire selon la présente invention sur le métabolisme cellulaire et respiratoire a été évaluée par la métabolisation du glucose par les cellules de l'épiderme dans des conditions d'hypoxie. En effet, les conditions d'hypoxie in-vitro entraînent des altérations profondes des fonctions électromécaniques cellulaires, accompagnées d'une augmentation de la production de lactate, d'une chute des teneurs en ATP et ADP, d'une fuite de LDH (lactate deshydrogénase). La réoxygénation des cellules hypoxiées (stade réversible) normalise la perte de lactate, entraîne une resynthèse d' ATP et une atténuation de la libération de LDH. La diminution de l'activité superoxyde dismutase et glutathion peroxydase est atténuée. Pour démontrer ces effets au niveau de l'épiderme, la respiration et la viabilité des cellules ont été évaluées par le dosage du relargage du 14C02. Cette étude est réalisée sur des épidermes reconstitués. L'activité des oligosaccharides de faible poids moléculaire selon la présente invention sur le métabolisme cellulaire et celle sur son pouvoir oxygénant ont été évaluées par le métabolisme du D-[14C]- glucose-6-phosphate (288 mCi/mmol, NEN, France) et le dosage du 14C02.
L'asphyxie des épidermes a été réalisée par une privation de l'oxygène 24 heures avant le traitement par les oligosaccharides de faible poids moléculaire selon la présente invention.
L'essai est conduit en duplicate après 24 heures de contact des oligosaccharides de faible poids moléculaire selon la présente invention avec les épidermes.
Les épidermes reconstitués sont divisés en 6 lots :
• Lot 1 : épidermes témoins négatifs ne recevant aucun produit
• Lot 2 : épidermes traités avec les oligosaccharides de faible poids moléculaire selon la présente invention à 0,1% (en poids)
• Lot 3 : épidermes traités avec les oligosaccharides de faible poids moléculaire selon la présente invention à 0,5% (en poids)
• Lot 4 : épidermes témoins ne recevant aucun oligosaccharide de faible poids moléculaire selon la présente invention (Asphyxie 24 heures)
• Lo t 5 : épidermes traités recevant les oligosaccharides de faible poids moléculaire selon la présente invention à 0,1 % (en poids) (Asphyxie 24 heures)
• Lo t 6 : épidermes traités recevant les oligosaccharides de faible poids moléculaire selon la présente invention à 0,5%> (en poids) (Asphyxie 24 heures) Le 14C02 libéré à partir du métabolisme du D-[14C]-glucose-6-phosphate a été évalué par la capture du 14C02 sur des filtres placés au-dessus des épidermes. Le D-[14C]- glucose-6-phosphate est mis au contact des épidermes pendant toute la durée du traitement par les oligosaccharides de faible poids moléculaire selon la présente invention (24 heures). A la fin du temps du traitement les filtres sont récupérés puis la radioactivité comptée à l'aide d'un compteur à scintillation. Les résultats obtenus sont présentés dans le tableau ci-dessous :
Figure imgf000018_0001
Significativement différent par rapport au témoin négatif (p<0,05)
Significativement différent par rapport au témoin positif (p<0,05)
Les oligosaccharides de faible poids moléculaire selon la présente invention (0,1 % et 0,5%>) augmentent la libération du 14C02 respectivement de 15% et 18% dans les conditions physiologiques et de 23% et 24% dans les conditions d'asphyxie. Ce résultat montre que les oligosaccharides de faible poids moléculaire selon la présente invention stimulent le métabolisme cellulaire en métabolisant le glucose.

Claims

REVENDICATIONS
1. Utilisation cosmétique comme agent énergisant d 'un ou p lusieurs oligosaccharide(s) de formule générale (I)
Figure imgf000019_0001
dans laquelle :
R1, R3, R4 et R6 à R14 sont choisis indépendamment les uns des autres comme étant un atome d'hydrogène ; ou un groupe hydroxy, alkyloxy, alkoxycarbonyl, acyloxy, sulfate ou phosphate; ou un groupement -OCH2Ra, dans lequel Ra représente un groupe hydroxy, alkyloxy, acyloxy, sulfate ou phosphate;
R2 et R5 sont choisis indépendamment les uns des autres comme étant un atome d'hydrogène ; ou un groupe alkyl, alkylcarbonyl, acyl, sulfate ou phosphate; ou un groupement -CH2Ra, dans lequel Ra représente un groupe hydroxy, alkyloxy, acyloxy, sulfate ou phosphate ; et
n est choisi de manière à ce que le poids moléculaire soit majoritairement inférieur ou égal à 100.000 Daltons ;
ainsi que son sel pharmaceutiquement acceptable.
2. Utilisation selon la revendication 1, caractérisée en ce que l'oligosaccharide est de formule générale (I-a) :
Figure imgf000020_0001
dans laquelle :
R15 à R28 sont choisis indépendamment les uns des autres comme étant un atome d'hydrogène ; ou un groupe, alkyl, acyl, sulfate ou phosphate ; ou un groupement -CH2Ra, dans lequel Ra représente un groupe hydroxy, alkyloxy, acyloxy, sulfate ou phosphate ; et
n est choisi de manière à ce que le poids moléculaire soit majoritairement inférieur ou égal à 100.000 Daltons ;
ainsi que son sel pharmaceutiquement acceptable.
3. Utilisation selon la revendication 2, caractérisée en ce que l'oligosaccharide est de formule générale (I-b) :
Figure imgf000021_0001
(I-b) dans laquelle :
- Ac désigne un groupe acétyle ; et
- n est choisi de manière à ce que le poids moléculaire soit inférieur ou égal à 100.000 Daltons ;
ainsi que son sel pharmaceutiquement acceptable.
4. Utilisation selon l'une quelconque des revendications 1 à 3, caractérisée en ce que n est choisi de manière à ce que le poids moléculaire de l'oligosaccharide soit supérieur ou égal à 5.000 Daltons et inférieur ou égal à 100.000 Daltons.
5. Utilisation selon la revendication 4, caractérisée en ce que n est choisi de manière à ce que le poids moléculaire de l'oligosaccharide soit supérieur ou égal à 5.000 Daltons et inférieur ou égal à 50.000 Daltons.
6. Utilisation selon la revendication 5, caractérisée en ce que n est choisi de manière à ce que le poids moléculaire de l'oligosaccharide soit supérieur ou égal à 5.000 Daltons et inférieur ou égal à 10.000 Daltons.
7. Utilisation selon l'une quelconque des revendications 1 à 6 dans le cadre de la prévention et/ou du traitement des signes de vieillissement cutané et/ou capillaire intrinsèques et/ou extrinsèques, notamment l'altération des structures et des fonctions cutanées et/ou capillaires, l'altération de la régénération tissulaire, le relâchement tissulaire, l'altération de la micro circulation cutanée et/ou capillaire, l'altération de la détoxifïcation cutanée, la perte de l'uniformité, de l'éclat et de la brillance de la teinte, l'altération de la texture de surface cutanée et/ou capillaire, l'altération de l'architecture cutanée et/ou capillaire.
8. Utilisation selon la revendication 7 dans le cadre de la prévention et/ou du traitement de la cassure et/ou de la chute des cheveux.
PCT/FR2011/050795 2010-04-09 2011-04-08 Utilisation de composés oligosaccharides dérivés du xanthane comme agent énergisant WO2011124861A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1052699A FR2958648B1 (fr) 2010-04-09 2010-04-09 Nouveaux composes oligosaccharides et utilisation comme agent energisant
FR10/52699 2010-04-09
FR10/54792 2010-06-17
FR1054792 2010-06-17

Publications (2)

Publication Number Publication Date
WO2011124861A2 true WO2011124861A2 (fr) 2011-10-13
WO2011124861A3 WO2011124861A3 (fr) 2011-12-01

Family

ID=44583671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050795 WO2011124861A2 (fr) 2010-04-09 2011-04-08 Utilisation de composés oligosaccharides dérivés du xanthane comme agent énergisant

Country Status (1)

Country Link
WO (1) WO2011124861A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102838683A (zh) * 2012-09-18 2012-12-26 江苏神华药业有限公司 一种低分子量黄原胶及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082380A1 (fr) 2003-03-14 2004-09-30 Laboratoires Goëmar S.A. Procede pour la potentialisation et la stimulation des defenses naturelles des plantes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874854A (en) * 1985-10-08 1989-10-17 Merck & Co., Inc. Low viscosity heteropolysaccharides
US5055209A (en) * 1989-05-01 1991-10-08 Osca, Inc. Reduction of the viscosity of solutions viscosified with Xanthan gum polymers
DE69129608T2 (de) * 1990-07-02 1998-10-15 Aqualon Co Niedrigviskose-Polysaccharidzusammensetzung mit hohem Festkörpergehalt
DE10231468A1 (de) * 2002-07-08 2004-02-26 Coty B.V. Anti-Hautalterungskosmetikum
FR2915385B1 (fr) * 2007-04-27 2012-09-28 Vincience Utilisation d'un principe actif issu de l'amarante (amaranthus) pour preparer une composition destinee a activer l'energie cellulaire et a proteger la peau des dommages oxydatifs.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082380A1 (fr) 2003-03-14 2004-09-30 Laboratoires Goëmar S.A. Procede pour la potentialisation et la stimulation des defenses naturelles des plantes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATKINSON DE.: "The energy charge of adenylate pool as a regulatory parameter. Interaction with feedback modifiers", BIOCHEMISTRY, vol. 7, no. 11, November 1968 (1968-11-01), pages 4030 - 4034
BJORN E. CHRISTENSEN: "Degradation of double-stranded xanthan by hydrogen peroxide in the presence of ferrous ions : comparison to acid hydrolysis", CARBOHYDRATES RESEARCH, vol. 280, 1996, pages 85 - 99, XP004018835, DOI: doi:10.1016/0008-6215(95)00289-8

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102838683A (zh) * 2012-09-18 2012-12-26 江苏神华药业有限公司 一种低分子量黄原胶及其制备方法

Also Published As

Publication number Publication date
WO2011124861A3 (fr) 2011-12-01

Similar Documents

Publication Publication Date Title
EP0399909B1 (fr) Composition cosmétique s&#39;opposant au vieillissement de la peau
FR2842201A1 (fr) Nouvel oligosaccharide, compositions cosmetiques et/ou dermatologiques en contenant et ses applications
EP1021161A1 (fr) Utilisation de l&#39;acide ellagique et de ses derives en cosmetique et en dermatologie
EP1299081B1 (fr) Utilisation d&#39;oligosaccharides pour stimuler la production de beta-endorphine
EP2326708B1 (fr) Microorqanismes photosynthétiques enrichis en sélénium à partir de composés séléno-hydroxyacides, leurs applications en nutrition, cosmétique et pharmacie
EP2986347B1 (fr) Applications cosmetiques de lactobacillus pentosus
TW201210633A (en) Agent for promoting hyaluronic acid production
EP1743628A1 (fr) Composition cosmétique comprenant un extrait d&#39;algue rouge comprenant une association de floridoside et d&#39;acide iséthionique.
WO2011117547A1 (fr) Oligosaccharide extrait d&#39;halymenia durvillaei, procede pour preparer un tel oligosaccharide et son utilisation cosmetique
EP2833863A1 (fr) Nouveaux composés oligosaccharides et leur utilisation cosmétique
FR2685202A1 (fr) Nouvelle methode de traitement pharmaceutique et cosmetique pour la regulation de la seborrhee, de l&#39;acne et de la flore cutanee.
FR2988606A1 (fr) Composition topique comprenant des oligosaccharides sulfates bioactifs et utilisations cosmetiques
FR2958648A1 (fr) Nouveaux composes oligosaccharides et utilisation comme agent energisant
FR2981847A1 (fr) Compositions a visee cosmetique ou pharmaceutique d&#39;un exopolysaccharide issu d&#39;une bacterie marine
WO2004078789A1 (fr) Nouvel agent stimulant la liberation des beta-endorphines, compositions cosmetiques et/ou dermatologiques en contenant et leurs applications
WO2011124861A2 (fr) Utilisation de composés oligosaccharides dérivés du xanthane comme agent énergisant
FR3055550B1 (fr) Nouvel actif immunomodulateur et composition le comprenant
FR2973381A1 (fr) Nouveaux composes oligosaccharides et leur utilisation cosmetique
JP3802011B2 (ja) 美白剤
WO2018146066A1 (fr) Extraits de la liane marsdenia cundurango, compositions cosmetiques les comprenant et leurs utilisations cosmétiques
JP6521211B2 (ja) セロビオースリピッドを有効成分とする賦活化剤
JP4390259B2 (ja) 硫酸多糖類、その製造方法及びそれを有効成分とする物質
FR3011248A1 (fr) Procede d&#39;obtention d&#39;oligosaccharides bioactifs clives, micro-organisme pour sa mise en œuvre, oligosaccharides obtenus et leur utilisation cosmetique
JP2006241095A (ja) フィラグリン合成促進剤および紫外線傷害緩和剤
FR2845596A1 (fr) Utilisation d&#39;au moins une amide ou un ester de sucre et d&#39;acide linoleique pour generer de l&#39;acide 13-hydroxyoctadecadienoique dans l&#39;epiderme cutane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11730351

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11730351

Country of ref document: EP

Kind code of ref document: A2