WO2011124741A1 - Uso de un medio de cultivo condicionado por células madre mesenquimales para la diferenciación de células madre pluripotentes humanas - Google Patents

Uso de un medio de cultivo condicionado por células madre mesenquimales para la diferenciación de células madre pluripotentes humanas Download PDF

Info

Publication number
WO2011124741A1
WO2011124741A1 PCT/ES2011/070236 ES2011070236W WO2011124741A1 WO 2011124741 A1 WO2011124741 A1 WO 2011124741A1 ES 2011070236 W ES2011070236 W ES 2011070236W WO 2011124741 A1 WO2011124741 A1 WO 2011124741A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cmps
differentiation
use according
cmm
Prior art date
Application number
PCT/ES2011/070236
Other languages
English (en)
French (fr)
Inventor
Pablo MENÉNDEZ BUJÁN
Verónica RAMOS MEJÍA
Pedro J. Real Luna
Clara Bueno Uroz
Gertrudis LIGERO MARTÍN
Laura SÁNCHEZ CONTRERAS
Iván GUTIÉRREZ ARANDA
Original Assignee
Fundación Progreso Y Salud
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Progreso Y Salud filed Critical Fundación Progreso Y Salud
Publication of WO2011124741A1 publication Critical patent/WO2011124741A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)

Definitions

  • the present invention falls within the field of biomedicine in particular, the present invention relates to the use of a culture medium conditioned by mesenchymal stem cells (CMM) for the differentiation of pluripotent stem cells (CMP) to hematopoietic cells and other mesodermal cells.
  • CCM mesenchymal stem cells
  • CMP pluripotent stem cells
  • Pluripotent stem cells are undifferentiated, immature and self-renewing cells capable of differentiating into cells that constitute tissues derived from any of the three embryonic layers, the ectoderm, the endoderm and the mesoderm, which will give rise to the tissues and structures known in the superior animals.
  • These cells can be obtained either from an adult somatic cell on which the expression of certain genes is induced in order to generate a type of stem cell with pluripotential characteristics (induced CMP, iPS) or by isolating them from the internal cell mass of an embryo in a state of blastocyst, that is, one week or 5 days (embryonic stem cells, ESC), to create in vitro cultured cell lines, which will be able to deliver large amounts of cells.
  • CMP induced CMP
  • ESC embryonic stem cells
  • the undifferentiated maintenance of CMPs can be performed in systems with or without feeder cell stratum.
  • the feeder feeder cells used for the quantitative CM P human are the embryonic fibroblasts (MEFs) (Chadwick et al., 2003 Blood 102 (3): 906-15). These cells release nutrients to the medium and form a monolayer, acting as a cellular support on which the CMPs are placed.
  • MEFs embryonic fibroblasts
  • MEFs medium conditioned by feeders
  • CMPs Due to the ability of CMPs to grow indefinitely and differentiate in vitro into multiple cell types and / or tissues, these cells have enormous therapeutic potential. It is expected that in the future they can be used in regenerative medicine to treat various diseases currently without a cure. In addition to the potential clinical applications, human CMPs have generated high expectations in the field of drug testing and toxicity as well as in the development of disease models.
  • hematopoietic stem cell and progenitor cells have been routinely transplanted from bone marrow, mobilized peripheral blood and umbilical cord.
  • This transplant represents the first therapeutic approach based on the use of cellular therapies since it simply consists of infusing autologous or allogeneic HSPCs in myeloablatively conditioned patients (chemotherapy).
  • chemotherapy myeloablatively conditioned patients
  • the use of HSPCs in practice is very limited because, although umbilical cord blood represents an excellent source of HSPCs with low immunogenic capacity, the volume of blood in the umbilical cord makes it only indicated for use in pediatric / pediatric transplants.
  • pluripotent cells The specific differentiation of pluripotent cells is crucial to obtain a pure and free progeny of contaminated undifferentiated cells that not only form post-transplant teratomas but make it difficult to implement drug screening and toxicology trials in pure populations, constituting serious barriers. for future possible clinical applications.
  • the present invention relates to the use of a culture medium conditioned by CMM for the differentiation of CMP to hematopoietic cells and other mesodermal cells. Also, the present invention relates to the method for the differentiation of CMP to hematopoietic cells and other mesodermal cells where said method comprises culturing the CMP cells in said culture medium conditioned by the CMM.
  • the present invention provides a method for the differentiation of CMP to specialized cells by the use of a culture medium conditioned by CMMs (In advance, the term CM M-CM may be used to refer to said conditioned medium) which, where this medium has so far been developed with the objective of keeping the CMPs undifferentiated in the crops and, contrary to expected, in the present invention it is demonstrated that the medium is also capable of giving rise to the differentiation of these cells, thereby contributing a technological advance relevant to the state of the art. It is noteworthy that in the present invention it is further revealed that the differentiating potential possessed by CMPs that have previously been incubated in medium conditioned by CMM, increases very significantly with respect to conventional means.
  • the present invention solves the technical problem posed by the specific differentiation of the CMPs to obtain a pure and free progeny of contaminated undifferentiated cells that cause the formation of post-transplant teratomas, among other consequences, constituting serious barriers to the application of CMPs in clinics and, because CMPs represent an unlimited source of pluripotent cells capable of generating tissues from the three germ layers, the specific differentiation of these cells to specific cells such as hematopoietic cells, finds great advantages in clinical, and, among other applications: ⁇ Understand in depth the cellular and molecular mechanisms responsible for the specification, differentiation and maturation of the hematopoietic system, preferably in humans.
  • one aspect of the present invention relates to the use of a culture medium conditioned by CMM for the differentiation of pluripotent stem cells.
  • Said conditioned culture medium is obtainable by the process comprising:
  • step (c) collection of the culture medium from step (c) conditioned by the CMM.
  • conditioned culture medium or “conditioned medium” refers to a culture medium comprising the compounds secreted by the cells found in said culture medium but not the cells that have excreted them. That is, it is the medium that comprises the secret of the cells that have remained in said medium.
  • secretoma refers to compounds secreted by cells into the extracellular space where said compounds are primarily proteins but not exclusively. In the present invention, the cells that provide said secretoma are CMMs.
  • CMM expansion refers to the increase in the number of CMMs at a specific time with respect to an initial moment, that is, the multiplication of CMMs with which cells with the same characteristics are obtained than the CMMs they come from.
  • Stem cells can be classified according to their differentiation potential: totipotential (or totipotent) stem cells are capable of producing embryonic and extra-embryonic tissue; pluripotential (or multipotent) stem cells have the ability to differentiate into tissues from any of the three embryonic layers and, finally, multipotential (or multipotent) stem cells, are able to differentiate into different cell types from the same layer embryonic (Weissman et al., 2001. Annu Rev Cell Dev Biol, 17: 387-403).
  • CMM mesenchymal stem cell
  • a preferred embodiment of the present invention relates to the use of said conditioned culture medium where said CMMs originate from a mammal, more preferably the mammal is a human.
  • Another preferred embodiment relates to the use of said conditioned culture medium where the CMMs come from adipose tissue.
  • the adipose tissue is postnatal. Adipose tissue comes from liposuction processes. Said adipose tissue includes white or brown fat, preferably the CMMs come from adipose tissue of white fat.
  • Another preferred embodiment relates to the use of the conditioned culture medium in which the CMMs expand to reach 70% to 90% confluence in the expansion medium.
  • a confluence is reached in the expansion medium of between 75% and 89%, more preferably a confluence of between 80% and 88% is reached and even more preferably a confluence of between 83% and 87%
  • CMMs refers to the number of cells in a cell culture and refers to the degree to which the cells cover the surface (solid culture medium) or volume of a cell culture. Confluence is measured in%. For example, a confluence of 100% means that the plate or container in which the cells grow is completely covered with cells, that is, it is the moment when the cells have covered the entire surface or volume of the space in which They grow.
  • irradiation of CMMs refers to the application of electromagnetic radiation to CMMs.
  • the radiation used is ionizing radiation, that is, with sufficient energy to ionize matter. Ionizing radiation can come from radioactive substances, which emit these radiations spontaneously.
  • the radiation used is gamma radiation, a type of very penetrating electromagnetic ionizing radiation because the photons have no electrical charge.
  • Gamma radiation proceeds, in general, but not limited to radio-226, cesium-137 or cobalt-60.
  • the cells are irradiated with gamma radiation from Cs-137.
  • a preferred embodiment relates to the use of the conditioned culture medium in which the CMMs, according to step (b), are irradiated with gamma radiation at an exposure dose of between 3000 and 5000 centiGrays (cGy).
  • the exposure dose is between 3600 and 4600 cGy, or between 3800 and 4500 cGy, between 3900 and 4300 cGy, or between 4000 and 4200 cGy.
  • the term "Gray” refers to the unit of measurement in the International System of the dose of ionizing radiation absorbed by a body. 1 gray equals 1 J-kg "1 .
  • the culture medium of step (c) for the maintenance of irradiated CMMs comprises at least one carbohydrate, at least one amino acid, at least one inorganic salt and at least one vitamin.
  • This culture medium may be, by way of example, the DMEM medium (Dulbelcco's Modified Eagle Medium), which also comprises the NaCI, NaHC0 3 , KCI, CaCI 2 , MgS0 4 , NaH 2 P0 4 H salts. 2 0, Fe (N0 3 ) 3 9H 2 0.
  • DMEM medium Dulbelcco's Modified Eagle Medium
  • This medium is known in the state of the art and has been used by the inventors of the present invention.
  • the carbohydrate is selected from the list comprising, but not limited to: glucose, sucrose, lactose, starch or dextrin.
  • the carbohydrate is glucose and more preferably D-glucose.
  • the amino acid is selected from the list comprising, but not limited to: alanine, arginine, asparagine, aspartate or acidic or aspartic, cysteine, phenylalanine, glycine, glutamate or glutamic acid, glutamine, histidine, isoleucine, leucine, lysine, methionine, proline , serine, tyrosine, threonine, tryptophan or valine.
  • the amino acid is a levogyre enantiomer.
  • the inorganic salt is selected from the list comprising, but not limited to: magnesium sulfate, sodium phosphate, potassium chloride, ferric nitrate, sodium bicarbonate, sodium chloride or calcium chloride and,
  • the vitamin is selected from the list comprising riboflavin, choline, vitamin B5, thiamine, myo-inositol, folic acid, vitamin B6, nicotinamide or any of its precursor derivatives or salts.
  • the term "maintenance of CMMs" refers to the conservation of CMMs in an undifferentiated state.
  • the medium in which the cellular expansion of the CMM of step (a) and the maintenance medium of the irradiated CMM according to step (c) occurs also comprises glutamine, at least one disulfide bond reducer and at least one growth factor.
  • the glutamine is L-glutamine.
  • the disulfide bond reducer is beta-mercaptoethanol.
  • growth factor refers to a protein, polypeptide or complex of polypeptides that are produced by a cell and can have an effect on the same cell or on others. Generally, growth factors affect the growth and / or differentiation of cells.
  • the growth factor is selected from the list comprising, but not limited to: epithelial growth factor (EGF), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), alpha and beta transformer growth factor (TGF- ⁇ and ⁇ ), bone-derived growth factor (BDGF), cartilage-derived growth factor (CDF), Human skeleton growth (hSGF) or bone morphogenic protein (BMP) among others.
  • EGF epithelial growth factor
  • VEGF vascular endothelial growth factor
  • FGF fibroblast growth factor
  • PDGF platelet-derived growth factor
  • IGF insulin-like growth factor
  • TGF- ⁇ and ⁇ alpha and beta transformer growth factor
  • BDGF bone-derived growth factor
  • CDF cartilage-derived growth factor
  • hSGF Human skeleton growth
  • BMP bone morphogenic protein
  • the collection of the culture medium conditioned by the CMMs is preferably carried out once a day.
  • the culture medium that is collected is conditioned by the secrecy of the CMMs during the 24 hours that it remains in contact with said CMMs.
  • pluripotent stem cell refers to the undifferentiated cell that has the ability to divide indefinitely without losing its properties.
  • the pluripotent stem cell is capable of forming any type of cell corresponding to the three embryonic lineages (endoderm, ectoderm and mesoderm), as well as the germinal and yolk sac.
  • the cell lines with which their differentiation has been tested by co-cultivation with the conditioned medium described are H9 (from the early embryo), H13C (human embryonic carcinoma cell line), iPS (induced pluripotent cell cell line), and AND-1 (from the early embryo). Therefore, the pluripotential stem cells of the present invention do not come from the destruction of an embryo but from cell lines conserved in stem cell banks that are kept preserved in order not to destroy embryos for obtaining and for the proposed differentiation in the present invention.
  • Another preferred embodiment of the present invention relates to the use of the conditioned medium, where the CMPs are differentiated to mesodermal cells.
  • a preferred embodiment refers to said conditioned culture medium where the CMPs are differentiated to hemangioblasts.
  • meodermal cells refers to cells that come from or are found in the mesoderm.
  • hemangioblast refers to embryonic mesodermal cells that come from the mesoderm and form immediately after gastrulation forming aggregates in the yolk sac. Differentiation of hemangioblasts gives rise to vascular endothelial cells and hematopoietic cells.
  • another preferred embodiment of the present invention relates to the use of conditioned culture medium, where CMPs are differentiated to endothelial cells.
  • endothelial cell refers to a type of cell that lines the inside of blood vessels and capillaries, forming part of its wall. In another preferred embodiment the CMPs are differentiated to hematopoietic cells.
  • hematopoietic differentiation refers to the process in which CMPs are transformed to a type of hematopoietic cell.
  • the hematopoietic differentiation process is described as a hierarchy of progenitor cells, in which each successive stage is distinguished from the next by a characteristic phenotype. Therefore, the relationships between parents and their progeny, which define the beginning of the irreversible differentiation of said parents towards a specific hematopoietic lineage, is determined primarily by plasma membrane markers. The expression or not of These markers distinguish the different parents during hematopoietic maturation and differentiation as shown in the examples section of the present invention.
  • Figures 2 and 3 of the present invention demonstrate the potentiating effect of the conditioned culture medium of the invention on the hematopoietic differentiation of human CMPs. These figures show the great increase obtained from both hemogenic progenitors and primitive hematopoietic cells as well as mature hematopoietic cells in all CMP lines tested when cultured in the conditioned medium of the invention versus when the cells are grown in HEF- CM.
  • Hematopoietic stem cell progenitor cells can be, but not limited to, committed hematopoietic progenitors capable of differentiating to a myelocytic or lymphopoietic cell line, erythrocytes, platelets, granulocytes (neutrophils, basophils, eosinophils), monocytes or lymphocytes.
  • cells derived from hematopoietic stem cells can be any of the precursors of erythrocytes, platelets, granulocytes, monocytes or lymphocytes.
  • Another preferred embodiment of the present invention relates to the use of conditioned culture medium, where the pluripotent stem cells originate from a non-human mammal.
  • culture medium of the present invention or “culture medium of the invention” can be used.
  • Another aspect of the present invention relates to the method for differentiation of CMPs, wherein said method comprises: a Cultivate pluripotent stem cells in the culture medium of the present invention conditioned by the CMM,
  • embryonic body refers to aggregates of cells derived from pluripotent stem cells in the process of differentiation.
  • the culture of these embryonic bodies under different culture conditions gives rise to the different types of differentiated cells.
  • the formation of embryonic bodies is carried out by any technique described in the state of the art and known to the person skilled in the art.
  • Example 1 of the present invention describes one of the techniques that can be used for its formation.
  • a preferred embodiment of the present invention relates to the method for the differentiation of CMPs, where the cell differentiation inducing agent of step (d) is a growth factor and / or at least one cytokine.
  • said growth factor is a bone morphogenetic protein (BMP).
  • BMP bone morphogenetic protein
  • the term "bone morphogenetic protein” refers to a growth factor that belongs to the family of transforming growth factors TGF-beta, a family of proteins with the ability to strongly induce the formation of new bone, cartilage or connective tissue. . More preferably the BMP is BMP-4.
  • cytokine refers to the biological molecule that regulates the function of the cells that produce it or other cell types, thus being essential for intercellular communication. They are produced by several cell types, mainly by the Immune System. Cytokine is a pro-inflammatory cytokine (acts in the innate, nonspecific or inflammation immune response), a cytokine that favors the development of cellular and / or cytotoxic immunity, a cytokine that favors the production of the various classes of immunoglobulins or Humoral Immunity , or a cytokine with extra functions immunological and / or homeostatic.
  • the cytokine can be selected from the list comprising SCF, Flt, IL-3, IL-6 or G-CSF.
  • Another preferred embodiment relates to the method for differentiation of CMPs, where pluripotent stem cells are differentiated to mesodermal cells, preferably these mesodermal cells are hemangioblasts. In another preferred embodiment the pluripotent stem cells are differentiated to endothelial cells. In another preferred embodiment the pluripotent stem cells are differentiated to hematopoietic cells. Another preferred embodiment relates to the method for differentiation of CMPs, where the CMPs originate from a non-human mammal.
  • Another aspect of the present invention relates to the cells obtained according to any of the uses of the conditioned culture medium, or according to the method for the differentiation of CMPs, described in previous paragraphs.
  • Another aspect of the present invention relates to the cell population comprising the cells according to the previous aspect.
  • the cell population may be formed by cells obtained by the use of the conditioned medium or by the method of the present invention, described in the previous aspect, in combination with each other, or in combination with other cell lines not obtained by the use or method of the present invention
  • FIG. 1 Shows the phenotypic characterization of CMPh at confluence (after 5-7 days of exponential growth).
  • pluripotency-associated markers SSEA-3, Tra-1 -60 and Oct3 / 4
  • CMPh lines H9, H13C, AND1 and iPS-
  • MSUH pluripotency-associated markers
  • FIG. 2. Shows the phenotypic characterization of hematopoietic cells derived from CMPh.
  • % HP refers to the percentage of hemogenic progenitors (hemangioblasts: bipotent cells capable of originating both endothelium and blood) phenotypically defined as CD31 + CD45-.
  • % PB refers to the percentage of primitive hematopoietic cells phenotypically defined as CD45 + CD34 +.
  • % MB refers to the percentage of mature hematopoietic cells phenotypically defined as CD45 + CD34-.
  • CMPh lines have been maintained in CMM-CM (white bars) or in HEF-CM (black bars).
  • the analysis has been performed in triplicate.
  • 2D It shows a representative image (AND-1 line) of how these cell populations are identified by flow cytometry. Data taken on day 15 of the process of development / differentiation of embryonic bodies (EB).
  • EB embryonic bodies
  • FIG. 3 Shows the emergency phenotypic and kinetic characterization of hematopoietic cells derived from CMPh.
  • % HP refers to the percentage of hemogenic progenitors (hemangioblasts: bipotent cells capable of originating both endothelium and blood) phenotypically defined as CD31 + CD45-.
  • % PB refers to the percentage of primitive hematopoietic cells phenotypically defined as CD45 + CD34 +.
  • % MB refers to the percentage of mature hematopoietic cells phenotypically defined as CD45 + CD34-.
  • FIG. 4 Shows the analysis of gene expression for transcription factors associated with mesoendoderm and early and late hematopoiesis. It shows the analysis of the expression levels of 6 transcription factors by quantitative RT-PCR: Brachyury and MixL1 (associated with the specialization towards the mesoendoderm), RunX1 and SCL (emerge during the early stages of hematopoietic development), GATA1 and PU. 1 (are regulated in late hematopoietic stages). Data taken on day 0, day 7 and day 15 (X-axis or abscissa) of the development of embryonic bodies from H9 and AN D-1 maintained in CMM-CM medium (white bars) or HEF-CM medium (black bars).
  • the ordinate axis represents the relative expression (Expr.) Of the transcription factors. Gene expression is relative to the cells themselves in an undifferentiated and normalized state against the "housekeeping" GAPDH gene.
  • the invention is based on the use of a medium conditioned by human CMM for the differentiation of CMPh to mesoderm tissues and, in particular, blood lineage.
  • EXAMPLE 1 Generation of the medium of the invention CMM-CM and use thereof for the differentiation of the CMPh.
  • the adipose tissue was washed several times in PBS and the samples were disintegrated and digested with 1 mg / ml_ of P collagenase (Roche, Indianapolis, IN) in DMEM (37 ° C, 1 hour). Enzymatic activity was inhibited by the addition of DMEM + 10% fetal bovine serum (Gibco, Carlsbad, CA). The samples were centrifuged for 5 minutes at 600 g and the resulting cell suspension was filtered using 40 ⁇ nylon filters (Becton Dickinson, San Jose, CA). The cells were seeded in culture plates at a density of 10 5 cells / cm 2 in CMM-specific medium (Advanced-DMEM + 10% albumin) and left 24 hours to allow adhesion.
  • the CMMs were grown in DMEM-Advance medium with 10% Bovine Fetal Serum (FBS) + 1% L-Glutamine + 1% Penicillin-Streptomycin (P / E). Then, the culture medium was removed, a PBS wash was made, the PBS was removed and a 0.25% trypsin treatment was done for 5 minutes in the incubator at 37 ° C and 5% C0 2 . After the incubation time, 5 ml of culture medium was added to inactivate the action of trypsin and everything was collected in a conical tube, centrifuged at 1200 rpm.
  • FBS Bovine Fetal Serum
  • P / E Penicillin-Streptomycin
  • the cell pellet was resuspended in 50ml of CMM medium in a 50 ml conical tube. to proceed to the irradiation process.
  • the irradiator that was used was the Gamma Mark 1 Radiator model 30 and the dose needed to irradiate the CMM was 4200 centiGy (cGy). This process was carried out in 20-25 minutes. After irradiation, the pellet was resuspended in the medium so that the cell concentration was uniform and the cells were counted using the Neubauer chamber.
  • the irradiated CMMs were seeded in a T225 culture bottle (2.5 x 10 6 cells / cm 2 ), CMM culture medium was added and left in the incubator by shaking the bottle from right to left and from back to front so that they will be distributed evenly throughout the entire surface.
  • CMM medium was replaced by CMPh (80% DMEM-KO, 20% KO SR, 1% L-Glutamine, 1% Non-essential amino acids and 0.2% 2-Mercaptoethanol, supplemented with 4ng / ml Basic Fibroblast Growth Factor (bFGF)).
  • CMPh Basic Fibroblast Growth Factor
  • CMPh were grown on matrigel, a matrix rich in proteins and in different extracellular growth factors necessary for the undifferentiated maintenance of these cells.
  • the culture jars were covered the previous night with 1-2 mL of Matrigel diluted 1: 15.
  • the CMM-CM in which these cells grew was changed daily as was the bFGF that was added to the fresh culture medium each day (8ng / ml for the CMPh).
  • the CMPh were passed 1: 2 or 1: 3 when the confluence of the culture was 80-90% (once a week approximately).
  • the pass procedure was as follows: the culture medium was removed, a PBS wash was performed, collagenase IV 1 mg / ml was added covering the entire surface of the bottle and incubated at 37 ° C and 5% C0 2 for 5 minutes Then collagenase IV was removed and new medium was added. The colonies were lifted with the help of a "cell scraper" scratching the colonies from left to right and from top to bottom in order to disintegrate the colonies. Finally, the cells were distributed in the new culture bottles that had been previously treated with matrigel. The morphology was evaluated daily and the phenotype of the cultures was analyzed every 2-3 weeks.
  • the CMPhs were transferred to culture plates covered with a 1: 6 dilution of Matrigel® in KO-DMEM.
  • the culture medium added was changed with 8ng / ml FGF and 1/5 of the volume of Matrigel® diluted 1: 6 was added.
  • the CMPh manifested a high degree of confluence and were ready for embryonic body formation.
  • the CMPh colonies were detached from the plate by adding collagenase V (200 U / ml) for 5 minutes at 37 ° C.
  • the cells were resuspended with EBs medium (80% KO-DMEM, 20% Bovine Fetal Serum (not inactivated), 10mM non-essential amino acids, 1 mM L-glutamine and 0.1 mM ⁇ -mercaptoethanol). Subsequently, the cells were transferred to ultra low adhesion culture plates and incubated at 37 ° C.
  • the embryonic bodies were transferred to a tube, centrifuged at 129g for 5 minutes and the culture medium was replaced with 4 ml of EBs medium supplemented with 25ng / ml BMP4 and hematopoietic cytokines (300 ng / ml hSCF, 300 ng / ml hFlt-3 L, 10 ng / ml hlL-3, hlL-6, and 50 ng / ml hG-CSF).
  • the culture medium added with BMP4 and hematopoietic cytokines was changed every three days.
  • a cell suspension was first obtained by treatment of the cultures with 0.05% trypsin and subsequent washing in PBS with 10% FBS.
  • the cells were incubated for 15 minutes in the dark with 5 ⁇ of the following monoclonal antibodies: anti-TRA-1-60 conjugated with phycoerythrin (PE), anti-SSEA3 conjugated with PE and anti-Oct3 / 4 conjugated with fluorescein (FITC) all obtained from BD (Becton Dickinson Biosciences). After the incubation period ended, the cells were washed with PBS and resuspended in 500 ⁇ of PBS. For the identification of living cells, 5 ⁇ of 7-actinomycin-D (7AAD) was added. The cells were acquired in a flow cytomer FACS Canto-ll (BD). The analysis was performed with the FACS Diva (BD) program. The results obtained are shown in Figure 1.
  • embryonic bodies were incubated for 2 hours in the presence of collagenase B (Roche) (0.4U / ml) at 37 ° C. After this time collagenase B was removed by centrifugation. The embryonic bodies were then incubated with Cell Dissociation Buffer (Invitrogen) for 10 minutes at 37 ° C in a water bath. Finally, the cells were washed and resuspended in PBS with 10% FBS. The suspended cells were incubated for 1 5 minutes in the dark with 5 ⁇ of the following monoclonal antibodies: anti-CD34-FITC, anti-CD34-PE and anti CD45-APC (all of them from Miltenyi Biotech, Germany).
  • hemogenic progenitors hemangioblasts: bipotent cells capable of originating both endothelium and blood
  • CD31 + CD45- hemogenic progenitors
  • EXAMPLE 3 Analysis of gene expression for transcription factors associated with mesoendoderm and early and late hematopoiesis.
  • the embryonic body suspension of 0, 7 or 15 days is washed in PBS and centrifuged at 800 rpm.
  • the resulting pellet was dissolved and homogenized in 1 ml of Trizol (Invitrogen) and allowed to stand for 5 minutes at room temperature.
  • the resulting cDNA was diluted in water and used for the real-time PCR reaction with the Brilliant SYBR Green Master Mix (Stratagene) solution in an Mx3005P thermocycler (Stratagene) using the GAPDH gene as a normalizer.

Abstract

Uso de un medio de cultivo condicionado por células madre mesenquimales para la diferenciación de células madre pluripotentes humanas. La presente invención, se refiere al uso de un medio de cultivo condicionado por células madre mesenquimales (CMM) procedentes de tejido adiposo, para la diferenciación de células madre pluripotentes (CMP) a células hematopoyéticas así como a otras células mesodérmicas. Asimismo, la presente invención se refiere a un método para la diferenciación de dichas CMP, que comprende cultivar CMP en un medio de cultivo condiconado por las CMM procedentes de tejido adiposo, hasta obtener entre el 70% y 100% de confluencia en el cultivo, preparar los cuerpos embrionarios (EB) y tratar los EBs con al menos un agente inductor de la diferenciación celular.

Description

USO DE UN MEDIO DE CULTIVO CONDICIONADO POR CÉLULAS MADRE MESENQUIMALES PARA LA DIFERENCIACIÓN DE CÉLULAS MADRE PLURIPOTENTES HUMANAS La presente invención se encuadra dentro del campo de la biomedicina en concreto, la presente invención se refiere al uso de un medio de cultivo condicionado por células madre mesenquimales (CMM) para la diferenciación de células madre pluripotentes (CMP) a células hematopoyéticas y otras células mesodérmicas. ESTADO DE LA TÉCNICA ANTERIOR
Las células madre pluripotentes son células indiferenciadas, inmaduras y con capacidad de autorrenovación capaces de diferenciarse a células que constituyen tejidos derivados de cualquiera de las tres capas embrionarias, el ectodermo, el endodermo y el mesodermo, que darán lugar a los tejidos y estructuras conocidas en los animales superiores.
Estas células se pueden obtener bien de una célula somática adulta sobre la cual se induce la expresión de ciertos genes con la finalidad de generar un tipo de célula madre con características pluripotenciales (CMP inducidas, iPS) o aislándolas de la masa celular interna de un embrión en estado de blastocisto, es decir, de una semana o de 5 días (células madre embrionarias, ESC), para crear líneas celulares cultivadas in vitro, que podrán suministrar grandes cantidades de células. Todavía existe mucha controversia acerca de cuáles son los métodos más eficaces de derivación y reprogramación celular y cuáles son las condiciones de cultivo in vitro que permiten a las CMPs mantener su estado indiferenciado de forma ilimitada de tal forma que las CMPs puedan ser dirigidas a un linaje/tejido celular concreto de forma específica y reproducible. El mantenimiento indiferenciado de CMPs puede ser realizado en sistemas con o sin estrato de células alimentadoras. Las células alimentadoras (feeders) más em pleadas para el cu ltivo de CM P h u manas son los fibroblastos m u rinos embrionarios (MEFs) (Chadwick et al., 2003 Blood 102(3):906-15). Estas células liberan nutrientes al medio y forman una monocapa, actuando como soporte celular sobre el que se colocan las CMP. Actualmente, se han empezado a usar sistemas de cultivo más "limpios", es decir sin feeders (sistemas feeder-free). En estos sistemas se produce medio condicionado por los feeders, como por ejemplo medio condicionado por MEFs (MEF-CM). Sin embargo, se ha ido descartando en mayor grado el uso de feeders y medio condicionado por los feeders no humanos (MEFs y MEF-CM) por el posible alto contenido de agentes tóxicos y virus murinos (Cobo et al., 2008. Cloning Stem Cells, 17: 255-67; Findikli et al., 2006. Fertility and Sterility, 86(3): S512) a la vez que se ha ido pasando a sistemas más "humanizados" donde tanto los feeders como el medio condicionado por los feeders sea de origen humano, como por ejemplo, HEFs (fibroblastos embrionarios humanos) y HEF-CM (Montes et al., 2009. Cell Research, 19(6): 698-709). Otros avances producidos en medios de cultivo son el desarrollo de medios de cultivo sin suero (serum-free) y en algún caso sin componentes xenobióticos (xeno-free).
Debido a la capacidad que tienen las CMP para crecer indefinidamente y diferenciarse in vitro en múltiples tipos celulares y/o tejidos, estas células encierran un enorme potencial terapéutico. Se espera que en el futuro puedan ser usadas en medicina regenerativa para tratar diversas enfermedades actualmente sin cura. Además de las potenciales aplicaciones clínicas, las CMP humanas han generado grandes expectativas en el campo del testaje y toxicidad de fármacos así como en el desarrollo de modelos de enfermedades.
El principal desafío para la aplicación futura de estas células en terapias de reemplazo celular es poder controlar su diferenciación a tejidos específicos. Debido a la multitud de métodos de derivación, estrategias de reprogramación, contenido genético y perfil epigenético así como métodos de cultivo, la definición de protocolos de diferenciación específica a un tejido que sea reproducible a nivel intra- e inter-laboratorio y partiendo de distintas líneas celulares pluripotentes resulta difícil. La obtención de células hematopoyéticas puede ser una de las múltiples aplicaciones de la diferenciación de las CMP. Desde hace ya más de 40 años se realiza de forma rutinaria el transplante de células madre y progenitoras hematopoyéticas (HSPCs) de médula ósea, sangre periférica movilizada y cordón umbilical. Dicho transplante representa la primera aproximación terapéutica basada en el uso de terapias celulares dado que consiste simplemente en infundir HSPCs autólogas o alogénicas en pacientes condicionados de forma mieloablativa (quimioterapia). Sin embargo, el uso de HSPCs en la práctica está muy limitado debido a que, aunque la sangre de cordón umbilical representa una fuente excelente de HSPCs con baja capacidad inmunogénica, el volumen de sangre en el cordón umbilical hace que sólo esté indicado su uso para transplantes infantiles/pediátricos.
A pesar de las investigaciones dirigidas a determinar combinaciones de citoquinas y factores hematopoyéticos que permitan la expansión in vitro de las HSPCs con el fin de obtener HSPCs en número suficiente para poder afrontar el transplante hematopoyético con garantías (Chadwick et al., 2003. Blood, 102(3): 906-915; Bueno et al. 2010. Stem Cell Rev & Rep, en prensa ), la expansión in vitro de HSPCs ha ido acompañada de la diferenciación de las HSPCs CD34+ que tras 7-20 días se convierten en células maduras CD34- sin capacidad de implantar y reconstituir la hematopoyesis en el receptor. Por ello, la búsqueda de procedimientos que optimicen la producción/generación de HSPCs a partir de una fuente celular ilimitada como son las células madre pluripotentes humanas (CMPh) permitiría que el transplante hematopoyético fuese una práctica clínica factible.
La diferenciación específica de las células pluripotentes es crucial para obtener una progenie pura y libre de células indiferenciadas contaminantes que no sólo forman teratomas post-transplante sino que dificultan la implantación de ensayos de "screening" de fármacos y toxicología en poblaciones puras, constituyendo serias barreras para futuras posibles aplicaciones clínicas.
EXPLICACIÓN DE LA INVENCIÓN La presente invención se refiere al uso de un medio de cultivo condicionado por CMM para la diferenciación de CMP a células hematopoyéticas y otras células mesodérmicas. Asimismo, la presente invención se refiere al método para la diferenciación de CMP a células hematopoyéticas y otras células mesodérmicas donde dicho método comprende cultivar las células CMP en dicho medio de cultivo condicionado por las CMM.
La presente invención provee un procedimiento para la diferenciación de CMP a células especializadas mediante el uso de un medio de cultivo condicionado por CMMs (En ad elante pod rá em plea rse el térm i n o C M M-CM para referirse a dicho medio condicionado) que, donde dicho medio hasta el momento ha sido desarrollado con el objetivo de mantener indiferenciadas las CMPs en los cultivos y, en contra de lo esperado, en la presente invención se demuestra que el medio es también capaz de dar lugar a la diferenciación de estas células, aportando con ello un avance tecnológico relevante al estado de la técnica. Es de destacar que en la presente invención se revela, además, que el potencial diferenciador que poseen las CMPs que previamente han sido incubadas en medio condicionado por CMM, aumenta muy significativamente respecto de los medios convencionales. Por otra parte, también se ha comprobado la capacidad del método usado en la presente invención para dirigir distintas cepas independientes de CMPs hacia un linaje o tejido celular concreto de forma específica y reproducible, aunque los ejemplos de diferenciación específica que se muestran en los ejemplos de la presente invención, no suponen una limitación de la capacidad de diferenciación de dicho medio sino una ilustración de su capacidad de diferenciación. Por tanto, la presente invención resuelve el problema técnico que plantea la diferenciación específica de las CMPs para obtener una progenie pura y libre de células indiferenciadas contaminantes que provocan la formación de teratomas post-transplante, entre otras consecuencias, constituyendo serias barreras para la aplicación de las CMPs en clínica y, debido a que las CMPs representan una fuente ilimitada de células pluripotentes capaces de generar tejidos de las tres capas germinales, la diferenciación específica de estas células a células concretas como por ejemplo, células hematopoyéticas, encuentra grandes ventajas en clínica, y, permite entre otras aplicaciones: · Entender en profundidad los mecanismos celulares y moleculares responsables de la especificación, diferenciación y maduración del sistema hematopoyético, preferiblemente en humanos.
• Desarrollar modelos de enfermedad. En concreto, existen muchos subtipos de leucemias infantiles donde se conoce que las anomalías cromosómicas tienen su origen en útero (durante el desarrollo prenatal) y muchos aspectos de la etiología y patogénesis de la enfermedad no puede ser estudiada en humanos por razones logísticas. El hecho de que la transformación celular (oncogénesis) se manifieste como un bloqueo o alteración de la diferenciación sugiere que estudios in vitro e in vivo de la diferenciación de las CMPs pueden constituir sistemas de enorme utilidad para estudiar el origen de eventos oncogénicos tempranos y caracterizar los mecanismos que conllevan a la producción de hematopoyesis leucémica en vez de hematopoyesis normal.
• Producir células hematopoyéticas para futuros fines terapéuticos.
• Producir células hematopoyéticas para desarrollar ensayos de "screening" de fármacos y estudios de toxicología encaminados a valorar el efecto genotóxico de distintos componentes químicos o medioambientales en el desarrollo normal y leucémico de la hematopoyesis a partir de CMPs humanas (Bueno et al. 2008. Drug Discov Today: Ds Models, 4: 53-59; Catalina et al., 2009. Leuk Res, 33: 980- 990; Bueno et al., 2009. Carcinogenesis, 30: 1628-1637).
Así, un aspecto de la presente invención se refiere al uso de un medio de cultivo condicionado por CMM para la diferenciación de células madre pluripotentes. Dicho medio de cultivo condicionado es obtenible por el procedimiento que comprende:
a. Expansión de CMM aisladas.
b. irradiacción de las CMM obtenidas según el paso (a) con radiación gamma.
c. mantenimiento de las CMM irradiadas del paso (b) en un medio de cultivo que comprende al menos un hidrato de carbono, al menos un aminoácido, al menos una sal inorgánica y al menos una vitamina, durante un periodo de entre 7 y 10 días, y
d. recolección del medio de cultivo del paso (c) condicionado por las CMM.
La expresión "medio de cultivo condicionado" o "medio condicionado" se refiere a un medio de cultivo que comprende los compuestos secretados por las células que se encuentran en dicho medio de cultivo pero no las células que los han excretado. Es decir, es el medio que comprende el secretoma de las células que han permanecido en dicho medio. El término "secretoma" se refiere a los compuestos secretados por las células al espacio extracelular donde dichos compuestos son fundamentalmente proteínas pero no exclusivamente. En la presente invención, las células que aportan dicho secretoma son CMMs.
El término "expansión de CMM" tal como se emplea en la presente invención se refiere al aumento del número de CMMs en un momento concreto respecto de un momento inicial, es decir, la multiplicación de CMMs con la que se obtiene células con las mismas características que las CMMs de las que proceden. Las células madre se pueden clasificar según su potencial de diferenciación: las células madre totipotenciales (o totipotentes) son capaces de producir tejido embrionario y extraembrionario; las células madre pluripotenciales (o multipotentes) tienen la habilidad de diferenciarse en tejidos procedentes de cualquiera de las tres capas embrionarias y, por último, las células madre multipotenciales (o multipotentes), son capaces de diferenciarse en distintos tipos celulares procedentes de la misma capa embrionaria (Weissman et al., 2001. Annu Rev Cell Dev Biol, 17: 387-403).
El término "célula madre mesenquimal" (CMM), tal y como se utiliza en la presente descripción, se refiere a la célula que es capaz de diferenciarse en distintos tipos celulares procedentes de la misma capa embrionaria, es decir, procedentes del mesodermo.
Una realización preferida de la presente invención se refiere al uso de dicho medio de cultivo condicionado donde dichas CMMs proceden de un mamífero, más preferiblemente el mamífero es un humano. Otra realización preferida se refiere al uso de dicho medio de cultivo condicionado donde las CMM proceden de tejido adiposo. Según una realización más preferida, el tejido adiposo es posnatal. El tejido adiposo procede de los procesos de liposucción. Dicho tejido adiposo incluye grasa blanca o marrón, preferiblemente las CMMs proceden de tejido adiposo de grasa blanca.
Otra realización preferida se refiere al uso del medio de cultivo condicionado en el que las CMM se expanden hasta alcanzar entre el 70% y el 90% de confluencia en el medio de expansión. Preferiblemente se alcanza una confluencia en el medio de expansión de entre el 75% y el 89%, más preferiblemente se alcanza una confluencia de entre el 80% y el 88% y aún más preferiblemente se alcanza una confluencia de entre el 83% y el 87%.
El término "confluencia" hace referencia al número de células en un cultivo celular y se refiere al grado en el que las células cubren la superficie (medio de cultivo sólido) o volumen de un cultivo celular. La confluencia se mide en %. Por ejemplo, una confluencia del 100% significa que la placa o el recipiente en el que crecen las células está completamente cubierto de células, es decir, es el momento en el que las células han cubierto toda la superficie o volumen del espacio en el que crecen. El término "irradiación de las CMMs" se refiere a la aplicación de radiación electromagnética a las CMMs. Preferiblemente la radiación empleada es radiación ionizante, es decir, con energía suficiente para ionizar la materia. La radiación ionizante puede provenir de sustancias radiactivas, que emiten dichas radiaciones de forma espontánea. La radiación usada es radiación gamma, un tipo de radiación ionizante electromagnética muy penetrante debido a que los fotones no tienen carga eléctrica. La radiación gamma procede, en general, pero sin limitarse a radio-226, cesio-137 ó cobalto- 60. Preferiblemente las células se irradian con radiación gamma procedente de Cs-137. Una realización preferida se refiere al uso del medio de cultivo condicionado en el que las CMMs, según el paso (b), son irradiadas con radiación gamma a una dosis de exposición de entre 3000 y 5000 centiGrays (cGy). Preferiblemente la dosis de exposición es de entre 3600 y 4600 cGy, o de entre 3800 y 4500 cGy, de entre 3900 y 4300 cGy, o de entre 4000 y 4200 cGy. El término "Gray" hace referencia a la unidad de medida en el Sistema Internacional de la dosis de radiación ionizante absorbida por un cuerpo. 1 gray equivale a 1 J-kg"1.
El medio de cultivo del paso (c) para el mantenimiento de las CMMs irradiadas comprende al menos un hidrato de carbono, al menos un aminoácido, al menos una sal inorgánica y al menos una vitamina. Este medio de cultivo puede ser, a modo de ejemplo, el medio DMEM (de las siglas en inglés Dulbelcco's Modified Eagle Médium), que además comprende las sales NaCI, NaHC03, KCI, CaCI2, MgS04, NaH2P04 H20, Fe(N03)3 9H20. Este medio es conocido en el estado de la técnica y ha sido usado por los inventores de la presente invención.
El hidrato de carbono se selecciona de la lista que comprende, pero sin limitarse: glucosa, sacarosa, lactosa, almidón o dextrina. Preferiblemente el hidrato de carbono es glucosa y más preferiblemente D-glucosa. El aminoácido se selecciona de la lista que comprende, pero sin limitarse: alanina, arginina, asparagina, aspartato o ácid o aspártico, cisteína, fenilalanina, glicina, glutamato o ácido glutámico, glutamina, histidina, isoleucina, leucina, lisina, metionina, prolina, serina, tirosina, treonina, triptófano o valina. Preferiblemente el aminoácido es un enantiómero levógiro. La sal inorgánica se selecciona de la lista que comprende, pero sin limitarse: sulfato de magnesio, fosfato de sodio, cloruro de potasio, nitrato férrico, bicarbonato sódico, cloruro de sodio o cloruro de calcio y, La vitamina se selecciona de la lista que comprende riboflavina, colina, vitamina B5, tiamina, mio-inositol, ácido fólico, vitamina B6, nicotinamida o cualquiera de sus derivados precursores o sales. El término "mantenimiento de las CMM" se refiere a la conservación de las CMMs en estado indiferenciado.
Otra realización preferida de la presente invención se refiere al uso del medio de cultivo condicionado, donde el medio en el que se produce la expansión celular de las CMM del paso (a) y el medio de mantenimiento de las CMM irradiadas según el paso (c) además comprende glutamina, al menos un reductor de enlaces disulfuro y al menos un factor de crecimiento. Preferiblemente la glutamina es L-glutamina. En una realización preferida el reductor de enlaces disulfuro es beta-mercaptoetanol. El término "factor de crecimiento" hace referencia a una proteína, polipéptido o complejo de polipéptidos que son producidos por una célula y pueden tener efecto sobre la misma célula o sobre otras. Generalmente, los factores de crecimiento afectan al crecimiento y/o diferenciación de las células. El factor de crecimiento se selecciona de la lista que comprende, pero sin limitarse: factor de crecimiento epitelial (EGF), factor de crecimiento del endotelio vascular (VEGF), factor de crecimiento fibroblástico (FGF), factor de crecimiento derivado de las plaquetas (PDGF), factor de crecimiento de tipo insulina (IGF), factor de crecimiento transformadores alfa y beta (TGF-α y β), factor de crecimiento derivado del hueso (BDGF), factor de crecimiento derivado del cartílago (CDF), factor de crecimiento del esqueleto humano (hSGF) o proteína morfogénica ósea (BMP) entre otros. Preferiblemente el factor de crecimiento es bFGF (del término en inglés "basic fibroblast growth factor", también conocido como FGF2 o FGF-β).
La recolección del medio de cultivo condicionado por las CMMs se realiza, preferiblemente, una vez al día. En este caso, el medio de cultivo que se recolecta es condicionado por el secretoma de las CMMs durante las 24 horas que permanece en contacto con dichas CMMs.
El término "célula madre pluripotente" (CMP) hace referencia a la célula indiferenciada que tiene la capacidad de dividirse indefinidamente sin perder sus propiedades. La célula madre pluripotente es capaz de formar cualquier tipo de célula correspondiente a los tres linajes embrionarios (endodermo, ectodermo y mesodermo), así como el germinal y el saco vitelino. Tal como se muestra en los ejemplos de la presente invención, las líneas celulares con las que se ha ensayado su diferenciación mediante su cocultivo con el medio condicionado descrito son H9 (del embrión temprano), H13C (línea celular de carcinoma embrionario humano), iPS (línea celular de células pluripotentes inducidas), y AND-1 (del embrión temprano). Por tanto, las células madre pluripotenciales de la presente invención no proceden de la destrucción de un embrión sino de líneas celulares conservadas en bancos de células madre que se mantienen conservadas con el objeto de no destruir embriones para su obtención y para la diferenciación que se propone en la presente invención.
Otra realización preferida de la presente invención se refiere al uso del medio condicionado, donde las CMPs se diferencian a células mesodérmicas. Una realización preferida se refiere a dicho medio de cultivo condicionado donde las CMPs se diferencian a hemangioblastos.
El término "células mesodérmicas" hace referencia a las células procedentes del mesodermo o que se encuentran en el mismo. El término "hemangioblasto" hace referencia a las células mesodérmicas embrionarias que proceden del mesodermo y se forman inmediatamente después de la gastrulacion formando agregados en el saco vitelino. La diferenciación de los hemangioblastos da lugar a células del endotelio vascular y a células hematopoyéticas. Así pues, otra realización preferida de la presente invención se refiere al uso del medio de cultivo condicionado, donde las CMPs se diferencian a células endoteliales. El término "célula endotelial" hace referencia a un tipo de célula que recubre el interior de los vasos sanguíneos y los capilares, formando parte de su pared. En otra realización preferida las CMPs se diferencian a células hematopoyéticas.
El término "diferenciación hematopoyética" hace referencia al proceso en el que las CMPs se transforman a un tipo de célula hematopoyética. El proceso de diferenciación hematopoyética se describe como una jerarquía de células progenitoras, en la que cada estadio sucesivo se distingue del siguiente por un fenotipo característico. Por ello, las relaciones entre progenitores y su progenie, que definen el inicio de la diferenciación irreversible de dichos progenitores hacia un linaje hematopoyético concreto, se determina fundamentalmente por marcadores de la membrana plasmática. La expresión o no de estos marcadores distingue a los distintos progenitores durante la maduración y diferenciación hematopoyéticas tal como se muestra en el apartado de ejemplos de la presente invención. El perfil de expresión de marcadores de superficie que presentan los elementos celulares pertenecientes al sistema hematopoyético y que permite distinguirlos unos de otros, puede ser analizado mediante citometría de flujo. En las figuras 2 y 3 de la presente invención se demuestra el efecto potenciador del medio de cultivo condicionado de la invención en la diferenciación hematopoyética de CMPs humanas. Estas figuras muestran el gran aumento que se obtienen tanto de progenitores hemogénicos como de células hematopoyéticas primitivas como de células hematopoyéticas maduras en todas las líneas de CMPs ensayadas cuando se cultivan en el medio condicionado de la invención frente a cuando las células se cultivan en HEF-CM. Por otro lado, un análisis de expresión génica (Figura 4) para los factores de transcripción asociados a mesoendodermo y a hematopoyesis temprana y tardía, ratifica el efecto inductor que posee el medio condicionado de la invención en la generación de células hematopoyéticas a partir de CMPs humanas.
Las células progenitoras de las células madre hematopoyéticas pueden ser, pero sin limitarse, progenitores hematopoyéticos comprometidos capaces de diferenciarse a una línea celular mielocítica o linfopoyética, eritrocitos, plaquetas, granulocitos (neutrófilos, basófilos, eosinófilos), monocitos o linfocitos. Asimismo las células derivadas de las células madre hematopoyéticas pueden ser cualquiera de los precursores de los eritrocitos, plaquetas, granulocitos, monocitos o linfocitos.
Otra realización preferida de la presente invención, se refiere al uso del medio de cultivo condicionado, donde las células madre pluripotentes proceden de un mamífero no humano.
En adelante, para hacer referencia al medio de cultivo condicionado que se obtiene por cualquier procedimiento descrito en párrafos anteriores se puede emplear el término "medio de cultivo de la presente invención" o "medio de cultivo de la invención".
Otro aspecto de la presente invención se refiere al método para la diferenciación de CMPs, donde dicho método comprende: a Cultivar células madre pluripotentes en el medio de cultivo de la presente invención condicionado por las CMM,
b obtener entre el 70 y 100 % de confluencia en el cultivo de las células madre pluripotentes del paso (a),
c preparar cuerpos embrionarios (EB), a partir de las células madre pluripotentes del paso (b), y
d tratar los EBs del paso (c) con al menos un agente inductor de la diferenciación celular. El término "cuerpo embrionario" hace referencia a los agregados de células derivados de células madre pluripotentes en proceso de diferenciación. El cultivo de estos cuerpos embrionarios bajo diferentes condiciones de cultivo da lugar a los diversos tipos de células diferenciadas. La formación de los cuerpos embrionarios se realiza por cualquier técnica descrita en el estado de la técnica y que conoce el experto en la materia. En el ejemplo 1 de la presente invención se describe una de las técnicas que puede ser usada para su formación.
Una realización preferida de la presente invención se refiere al método para la diferenciación de CMPs, donde el agente inductor de la diferenciación celular del paso (d) es un factor de crecimiento y/o al menos una citoquina.
Preferiblemente dicho factor de crecimiento es una proteína morfogenética del hueso (BMP). El término "proteína morfogenética del h ueso" se refiere a u n factor de crecimiento que pertenece a la familia de los factores de crecimiento transformantes TGF-beta, una familia de proteínas con la capacidad de inducir fuertemente la formación de hueso nuevo, cartílago o tejido conjuntivo. Más preferiblemente la BMP es BMP-4.
El término "citoquina" hace referencia a la molécula biológica que regula la función de las células que la produce u otros tipos celulares, siendo por tanto esenciales para comunicación intercelular. Son producidas por varios tipos celulares, principalmente por el Sistema Inmune. La citoquina es una citoquina pro-inflamatoria (actúa en la respuesta inmune innata, inespecífica o inflamación), una citoquina que favorece el desarrollo de inmunidad celular y/o citotóxica, una citoquina que favorece la producción de las diversas clases de inmunoglobulinas o Inmunidad Humoral, o una citoquina con funciones extra- inmunológicas y/o homeostáticas. Preferiblemente la citoquina se puede seleccionar de la lista que comprende SCF, Flt, IL-3, IL-6 o G-CSF.
Otra realización preferida se refiere al método para la diferenciación de CMPs, donde las células madre pluripotentes se diferencian a células mesodérmicas, preferiblemente estas células mesodérmicas son hemangioblastos. En otra realización preferida las células madre pluripotentes se diferencian a células endoteliales. En otra realización preferida las células madre pluripotentes se diferencian a células hematopoyéticas. Otra realización preferida se refiere al método para la diferenciación de CMPs, donde las CMPs proceden de un mamífero no humano.
Otro aspecto de la presente invención se refiere a las células obtenidas según cualquiera de los usos del medio de cultivo condicionado, o según el método para la diferenciación de CMPs, descritos en párrafos anteriores. Otro aspecto de la presente invención se refiere a la población celular que comprende las células según el aspecto anterior. La población celular puede estar formada por células obtenidas por el uso del medio condicionado o por método de la presente invención, descritas en el aspecto anterior, en combinación entre sí, o en combinación con otras líneas celulares no obtenidas mediante el uso o método de la presente invención.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
DESCRIPCIÓN DE LAS FIGURAS
FIG. 1. Muestra la caracterización fenotípica de CMPh en confluencia (tras 5-7 días de crecimiento exponencial).
Se muestran los niveles de expresión de marcadores asociados a pluripotencia (SSEA-3, Tra-1 -60 y Oct3/4) de cuatro líneas de CMPh independientes (H9, H13C, AND1 y iPS- MSUH) que han sido mantenidas en medio CMM-CM (barras blancas) o en medio HEF- CM (barras negras).
FIG. 2. Muestra la caracterización fenotípica de células hematopoyéticas derivadas de CMPh.
Muestra los resultados extraídos del análisis fenotípico, en cinco líneas de CM Ph independientes (H9, H 1 3C, AN D 1 , iPS-MSUH y HS181 ), de tres subpoblaciones celulares que comprenden progenitores comprometidos a serie hematopoyética:
2A. % HP se refiere al porcentaje de progenitores hemogénicos (hemangioblastos: células bipotentes capaces de originar tanto endotelio como sangre) fenotípicamente definidos como CD31 +CD45-.
2B. % PB se refiere al porcentaje de células hematopoyéticas primitivas definidas fenotípicamente como CD45+CD34+.
2C. % MB se refiere al porcentaje de células hematopoyéticas maduras definidas fenotípicamente como CD45+CD34-.
Las líneas CMPh han sido mantenidas en CMM-CM (barras blancas) o en HEF-CM (barras negras). El análisis ha sido realizado por triplicado.
2D. Muestra una imagen representativa (línea AND-1 ) de cómo se identifican estas poblaciones celulares mediante citometría de flujo. Datos tomados en el día 15 del proceso del desarrollo/diferenciación de cuerpos embrionarios (EB).
FIG. 3. Muestra la caracterización fenotípica y cinética de emergencia de células hematopoyéticas derivadas de CMPh.
Se muestra la cinética de emergencia de células con capacidad hemangioblástica (CD45- CD31 +) y células hematopoyéticas (CD45+) y el porcentaje que estas células representan dentro de los cuerpos embrionarios en diferenciación, en dos líneas de CMP humanas independientes (H 13C y HS181 ) mantenidas en medio CMM-CM o en medio HEF-CM. Datos tomados durante los días 7 (barras blancas), 1 1 (barras grises), 15 (barras negras) y 22 (barras rayadas) del proceso de diferenciación.
% HP se refiere al porcentaje de progenitores hemogénicos (hemangioblastos: células bipotentes capaces de originar tanto endotelio como sangre) fenotípicamente definidos como CD31 +CD45-.
% PB se refiere al porcentaje de células hematopoyéticas primitivas definidas fenotípicamente como CD45+CD34+.
% MB se refiere al porcentaje de células hematopoyéticas maduras definidas fenotípicamente como CD45+CD34-.
FIG. 4. Muestra el análisis de la expresión génica para factores de transcripción asociados a mesoendodermo y hematopoyesis temprana y tardía. Muestra el análisis de los niveles de expresión de 6 factores de transcripción por RT-PCR cuantitativa: Brachyury y MixL1 (asociados a la especialización hacia el mesoendodermo), RunX1 y SCL (emergen durante las fases tempranas del desarrollo hematopoyético), GATA1 y PU.1 (se regulan en estadios hematopoyéticos tardíos). Datos tomados el día 0, el día 7 y el día 15 (eje X o de abscisas) del desarrollo de cuerpos embrionarios a partir de H9 y AN D-1 mantenidas en medio CMM-CM (barras blancas) o en medio HEF-CM (barras negras).
El eje de ordenadas representa la expresión relativa (Expr.) de los factores de transcripción. La expresión génica es relativa a las propias células en estado indiferenciado y normalizado contra el gen "housekeeping" GAPDH.
EJEMPLOS La invención se basa en el uso de un medio condicionado por CMM humanas para la diferenciación de CMPh a tejidos del mesodermo y, en particular a linaje sanguíneo.
A lo largo de los distintos ejemplos se demuestra no sólo que este medio es capaz de mantener indiferenciadas las CMPh, manteniendo todas sus propiedades pluripotentes, como ya ha sido documentado, sino que, comparado con otros medios actualmente usados para la diferenciación, el CMM-CM posee un enorme y reproducible efecto potenciador en la diferenciación de las CMPh (todos los ejemplos han sido realizados por distintos investigadores obteniendo los mismos resultados). A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores que describen cómo se obtiene el medio de cultivo condicionado de la invención (CMM-CM) donde son cultivadas las CMPh para su diferenciación a la línea hematopoyética así como a otros tejidos del mesodermo mediante la formación de cuerpos embrionarios. Asimismo, también se describen los ensayos que son realizados tanto con las C M Ph en el med io C M M-CM, como con los cuerpos embrionarios diferenciados a partir de CMPh cultivados en CMM-CM.
Además, también se muestra cómo el potencial de diferenciación del medio CMM-CM aumentó de forma muy significativa frente a los datos que se obten ían cuando los cuerpos embrionarios diferenciados a partir de CMPh eran mantenidos en HEF-CM.
EJEMPLO 1. Generación del medio de la invención CMM-CM y uso del mismo para la diferenciación de las CMPh.
1.1 Obtención de CMM. Las CMM humanas fueron obtenidas de grasa blanca procedente de (i) pacientes sometidos a cirugía no oncológica en el Hospital Niño Jesús de Madrid. Todos los pacientes firmaron el consentimiento informado pertinente establecido por el comité ético del Hospital Niño Jesús de Madrid, (ii) de la Fundación Inbiomed, San Sebastián. España.
El tejido adiposo fue lavado varias veces en PBS y las muestras se disgregaron y digirieron con 1 mg/ml_ de colagenasa P (Roche, Indianapolis, IN) en DMEM (37°C, 1 hora). La actividad enzimática fue inhibida mediante la adición de DMEM + 10% de suero bovino fetal (Gibco, Carlsbad, CA). Las muestras se centrifugaron durante 5 minutos a 600 g y la suspensión celular resultante fue filtrada usando filtros de nylon de 40 μηη (Becton Dickinson, San José, CA). Las células se sembraron en placas de cultivo a una densidad de 105 células/cm2 en medio específico para CMM (Advanced-DMEM + 10% albúmina) y se dejaron 24 horas para permitir su adhesión. Tras 24 horas, las células no adheridas se eliminaron y las células adheridas se lavaron con PBS y se mantuvieron en cultivo en medio fresco. Cuando los cultivos alcanzaron una confluencia del 85% las células adherentes se tripsinizaron y lavaron en PBS, replantándose de nuevo a una concentración de 5x103 células/cm2.
1.2 Producción del medio condicionado CMM-CM.
Las CMM se cultivaron en medio DMEM-Advance con 10% de Suero Fetal Bovino (FBS) + 1 % de L-glutamina + 1% de Penicilina-Estreptomicina (P/E). A continuación, se retiró el medio de cultivo, se hizo un lavado con PBS, se retiró el PBS y se hizo un tratamiento con tripsina 0.25% durante 5 minutos en el incubador a 37°C y 5% de C02. Pasado el tiempo de incubación se añadieron 5ml de medio de cultivo para inactivar la acción de la tripsina y se recogió todo en un tubo cónico, se centrifugó a 1200 rpm. durante 4 minutos, se desechó el sobrenadante y se resuspendió el pellet de células en 50ml de medio de CMM en un tubo cónico de 50 mi. para proceder al proceso de irradiación. El irradiador que se utilizó fue el Irradiador Gamma Mark 1 modelo 30 y la dosis necesaria para irradiar las CMM fue de 4200 centiGy (cGy). Este proceso se llevó a cabo en 20-25 minutos. Tras la irradiación, se resuspendió el pellet en el medio para que la concentración de células fuera uniforme y se procedió al recuento de células utilizando la cámara de Neubauer. Las CMM irradiadas se sembraron en un frasco de cultivo de T225 (2.5 x 10 6 células/cm2), se añadió medio de cultivo de CMM y se dejaron en el incubador agitando el frasco de derecha a izquierda y desde atrás hacia delante para que se distribuyeran de manera uniforme a lo largo de toda la superficie.
Al día siguiente, se reemplazó el medio de CMM por medio de CMPh (80% DMEM-KO, 20% KO SR, 1 %L-Glutamina, 1% Aminoácidos no esenciales y 0.2% de 2-Mercaptoetanol, suplementado con 4ng/ml de Basic Fibroblast Growth Factor (bFGF)). Este medio se mantuvo en el cultivo de CMM durante 24 horas; pasado este tiempo, se recogió en botellas estériles y se almacenó a -80°C, entonces se volvió a añadir medio de CMPh y se repitió este procedimiento sucesivamente durante 9 días. El medio recogido durante 9 días se almacenó a -80°C estéril y chequeado para micoplasma.
1 .3 Mantenimiento de las CMPh.
Se emplearon 5 líneas celulares distintas, todas ellas correspondientes a CMPh: H9, H13C, iPS-MSUH, AND1 y HS181.
Las CMPh se cultivaron sobre matrigel, una matriz rica en proteínas y en distintos factores de crecimiento extracelulares necesarios para el mantenimiento indiferenciado de estas células. Los frascos de cultivo se cubrieron la noche anterior con 1 -2 mL de matrigel diluido 1 :15. El CMM-CM en el cual crecían estas células se cambió a diario al igual que el bFGF que se añadió al medio de cultivo fresco cada día (8ng/ml para las CMPh).
Las CMPh se pasaron 1 :2 ó 1 :3 cuando la confluencia del cultivo fue del 80-90% (una vez a la semana aproximadamente). El procedimiento del pase fue el siguiente: se retiró el medio de cultivo, se realizó un lavado con PBS, se añadió colagenasa IV 1 mg/ml cubriendo toda la superficie del frasco y se incubó a 37°C y 5% C02 durante 5 minutos. Seguidamente se retiró la colagenasa IV y se añadió medio nuevo. Se levantaron las colonias con ayuda de un "cell scraper" rascando las colonias de izquierda a derecha y de arriba hacia abajo con el fin de disgregar las colonias. Por último, se distribuyeron las células en los nuevos frascos de cultivo que se habían tratado previamente con matrigel. La morfología se evaluó a diario y el fenotipo de los cultivos se analizó cada 2-3 semanas.
1 .4 Diferenciación de las CMPh a línea hematopovética mediante la formación de cuerpos embrionarios
1.4.1 Preparación de las CMPh para la formación de cuerpos embrionarios.
Una semana antes de formar los cuerpos embrionarios las CMPh se pasaron a placas de cultivo cubiertas con una dilución 1 :6 de Matrigel® en KO-DMEM. Al día 3 o 4 después del subcultivo, se cambió el medio de cultivo adicionado con 8ng/ml FGF y se añadió 1/5 del volumen de Matrigel® diluido 1 :6. Aproximadamente el día 7 después del subcultivo, las CMPh manifestaron un alto grado de confluencia y estaban listas para la formación de cuerpos embrionarios.
1 .4.2 Formación de cuerpos embrionarios.
Las colonias de CMPh se despegaron de la placa agregando colagenasa V (200 U/ml) durante 5 minutos a 37°C. Las células se resuspendieron con medio de EBs (80% KO- DMEM, 20% Suero Fetal Bovino (no inactivado), 10mM aminoácidos no esenciales, 1 mM L-glutamina y 0.1 mM β-mercaptoetanol). Posteriormente, las células se transfirieron a placas de cultivo de ultra baja adherencia y se incubaron a 37°C. Al día siguiente, los cuerpos embrionarios se transfirieron a un tubo, se centrifugaron a 129g durante 5 minutos y se sustituyó el medio de cultivo por 4 mi de medio de EBs suplementado con 25ng/ml BMP4 y citoquinas hematopoiéticas (300 ng/ml hSCF, 300 ng/ml hFlt-3 L, 10 ng/ml hlL-3, hlL-6, y 50 ng/ml hG-CSF). El medio de cultivo adicionado con BMP4 y citoquinas hematopoyéticas se cambió cada tres días.
EJEMPLO 2. Análisis citométrico de marcadores asociados a pluripotencia y hematopoyesis. Para comprobar que el medio de la presente invención (CMM-CM) es igualmente válido para el mantenimiento de las células pluripotentes en estado indiferenciado tal y como se detalla en Montes R et al., 2009. Cell Res 19, 698-709, como para su diferenciación, el presente ejemplo mostró cómo después de 60 pases in vitro todas las cepas de células pluripotentes se mantienen indiferenciadas y mantienen todas sus propiedades de pluripotencia (Figura 1 ). Por otro lado, y debido a que el verdadero interés de este medio es su enorme y reproducible efecto potenciador en la diferenciación de las células pluripotentes, la Figura 2 mostró la efectividad del medio para llevar a cabo la diferenciación de las distintas cepas pluripotentes ensayadas a linaje sanguíneo (hematopoyesis). 2.1 Caracterización fenotípica de CMPh.
En el caso de las CMPh primero se obtuvo una suspensión celular mediante tratamiento de los cultivos con tripsina 0.05% y posterior lavado en PBS con 10% FBS. Las células se incubaron durante 15 minutos en oscuridad con 5μΙ de los siguientes anticuerpos monoclonales: anti-TRA-1 -60 conjugado con ficoeritrina (PE), anti-SSEA3 conjugado con PE y anti-Oct3/4 conjugado con fluoresceina (FITC) todos obtenidos de BD (Becton Dickinson Biosciences). Una vez finalizado el periodo de incubación las células se lavaron con PBS y se resuspendieron en 500 μΙ de PBS. Para la identificación de células vivas se añadieron 5μΙ de 7-actinomicina-D (7AAD). Las células se adquirieron en un citómtero de flujo FACS Canto-ll (BD). El análisis se realizó con el programa FACS Diva (BD). Los resultados obtenidos se muestran en la Figura 1 .
Se observó que después de 60 pases in vitro todas las cepas pluripotentes ensayadas mantienen todas sus propiedades pluripotentes. Como vemos en la Figura 1 , todas las líneas CMPh mantienen niveles de expresión de marcadores asociados a pluripotencia tales como SSEA-3, Tra-1 -60 y Oct3/4 superiores a los niveles previamente descritos en otros medios tales como el HEF-CM. Además, los cultivos de CMPh mantenidos en este medio, CMM-CM mostraron una morfología típica de colonias pluripotentes: expresaron los factores de transcripción asociados a pluripotencia Nanog, Sox2, Rex1 y Oct3/4 y se diferenciaron en tipos celulares que representan las tres capas germinales tanto in vitro (formación de cuerpos embrionarios) como in vivo (teratomas).
2.2 Caracterización fenotípica de células hematopoyéticas derivadas de CMPh.
Para la obtención de células en suspensión procedentes de los cuerpos embrionarios, se incubaron los cuerpos embrionarios durante 2 horas en presencia de colagenasa B (Roche) (0.4U/ml) a 37°C. Después de este tiempo se eliminó la colagenasa B mediante centrifugación. Seguidamente se incubaron los cuerpos embrionarios con Cell- Dissociation Buffer (Invitrogen) durante 10 minutos a 37°C en baño de agua. Finalmente, las células se lavaron y se resuspendieron en PBS con 10% FBS. Las células en suspensión se incubaron durante 1 5 minutos en oscuridad con 5μΙ de los siguientes anticuerpos monoclonales: anti-CD34-FITC, anti-CD34-PE y anti CD45-APC (todos ellos de Miltenyi Biotech, Alemania). Posteriormente se retiró el exceso de anticuerpo con un lavado en PBS. Para la exclusión de células muertas antes de la adquisición en el citómetro se añadieron 5μΙ de 7AAD. La adquisición de las muestras se realizó en un citómetro de flujo FACS Canto-ll (Becton Dickinson Biosciences) y el análisis se realizó con el software FACS DIVA de Becton Dickinson. Los resultados obtenidos se muestran en las Figuras 2 y 3.
Mediante esta técnica se evaluaron por duplicado o triplicado hasta 5 líneas de CMPh comprobando en todos los casos que el medio de la invención, CMM-CM, podía aumentar la diferenciación a linaje sanguíneo a lo largo del desarrollo embrionario hematopoyético. Para ello, se analizaron las tres subpoblaciones celulares que comprenden progenitores comprometidos a serie hematopoyética:
• los progenitores hemogénicos (hemangioblastos: células bipotentes capaces de originar tanto endotelio como sangre) fenotípicamente definidos como CD31 +CD45-,
· las células hematopoyéticas primitivas definidas fenotípicamente como CD45+CD34+ y
• las células hematopoyéticas maduras definidas fenotípicamente como CD45+CD34-. Como se observa en la Figura 2, cuando las distintas líneas de CMPh se mantuvieron en CMM-CM se aumentó entre 2-1 1 veces de forma consistente (p-valor <0.05) el potencial y capacidad de generación de células hematopoyéticas: tanto para progenitores hemangioblásticos (Figura 2A) como para células hematopoyéticas primitivas (Figura 2B) como maduras (Figura 2C). La Figura 2D muestra una imagen representativa de cómo se identifican estas poblaciones celulares mediante citometría de flujo. Estos datos fueron realizados por diferentes investigadores obteniendo los mismos resultados, lo que demuestra la reproducibilidad del método. Además, se quiso profundizar en la cinética de emergencia de células con capacidad hemangioblástica (CD45-CD31 +) y células hematopoyéticas (CD45+) y de nuevo en dos líneas de CMPh independientes (H13C y HS181 ). En la Figura 3 se puede observar que el mantenimiento de estas CMPh en CMM-CM aumentó de forma consistente y muy significativamente (p-valor <0.05) la cinética de aparición de hemangioblastos y células hematopoyéticas así como el porcentaje que estos representan dentro de los cuerpos embrionarios en diferenciación.
EJEMPLO 3. Análisis de la expresión génica para factores de transcripción asociados a mesoendodermo y hematopoyesis temprana y tardía.
Para comprobar el claro efecto potenciador del CMM-CM en la diferenciación dirigida de CMPh hacía linaje sanguíneo, se realiza un análisis de la expresión génica de los factores de transcri pción que estaban expresados en los cuerpos embrionarios diferenciados a partir de CMPh mantenidas en CMM-CM frente a las CMPh mantenidas en HEF-CM (Figura 4).
Para el análisis de expresión génica se obtuvo ARN total de cuerpos embrionarios de 0, 7 y 15 días cultivados en medio de diferenciación a linaje hematopoyético utilizándose células CMPh indiferenciadas como normalizador. La suspensión de cuerpos embrionarios de 0, 7 ó 15 días es lavada en PBS y centrifugada a 800 rpm. El pellet resultante se disolvió y homogeneizó en 1 mi de Trizol (Invitrogen) y se dejó reposar durante 5 minutos a temperatura ambiente. A continuación se añadieron 200 μΙ de una solución Cloroformo:alcohol isoamílico (24:1 ), se mezcló bien por inversión y se centrifugó a 13.000 rpm y 4° C durante 15 minutos. La fase acuosa resultante se mezcló con 0.5 mi de isopropanol y se incubó 10 minutos a temperatura ambiente. Se centrifugaron 30 minutos a 13.000 rpm y se lavó el precipitado en etanol 70% en agua DEPC. Se dejó secar y se resuspendió el ARN total resultante en agua DEPC. Seguidamente se cuantificó la cantidad total de ARN en el espectrofotómetro (Nanodrop). Se empleó 1 μg de ARN total para la reacción de retrotranscripción siguiendo las recomendaciones del fabricante Superscript First Strand Synthesis System for RT-PCR (Invitrogen). El ADNc resultante se diluyó en agua y se empleó para la reacción de PCR a tiempo real con la solución Brilliant SYBR Green Master Mix (Stratagene) en un termociclador Mx3005P (Stratagene) utilizando el gen GAPDH como normalizador.
La secuencia de los cebadores de los genes analizados se presenta en la siguiente tabla:
Figure imgf000022_0001
Todas las secuencias se muestran en la orientación 5' a 3'.
Los resultados obtenidos se muestran en la Figura 4 donde finalmente se comprobó a nivel de expresión génica el claro efecto potenciador del CMM-CM en la diferenciación dirigida de CMPh hacía linaje sanguíneo. Se analizaron los niveles de expresión de 6 factores de transcripción por RT-PCR cuantitativa: dos factores de transcripción asociados a la especificación hacía mesoendodermo (Brachyury y MixLI ), otros dos que emergen durante las fases tempranas del desarrollo hematopoyético (RunX1 y SCL) y finalmente, otros dos (GATA1 y PU.1 ) que se regulan en estadios hematopoyéticos tardíos. Como muestra la Figura 4, ya en fases tempranas del desarrollo/diferenciación (cuerpos embrionarios al día 7) los niveles de expresión de Brachyury y MixL1 fueron 30 y 12 veces superiores, respectivamente, en las CMPh mantenidas en CMM-CM frente a HEF- CM. Igualmente, los niveles de SCL y RunX1 estaban regulados entre 0.5-10 veces en la progenie diferenciada a partir de CMPh mantenidas en CMM-CM frente a HEF-CM y, los factores asociados a hematopoyesis tardía PU.1 y GATA1 estaban sobre-expresados entre 80-400 veces más en la progenie diferenciada a partir de CMPh mantenidas en CMM-CM frente a HEF-CM.
Estos datos de expresión génica correlacionan con el fenotipo mostrado en la Figura 2 y ponen de manifiesto el claro efecto inductor del CMM-CM en la generación de células hematopoyéticas a partir de CMPh.

Claims

REIVINDICACIONES
1 . Uso de un medio de cultivo condicionado por células madre mesenquimales (CMM), obtenible por el procedimiento que comprende: a. Expansión de CMM aisladas.
b. irradiación de las CMM obtenidas según el paso (a) con radiación gamma. c. mantenimiento de las CMM irradiadas del paso (b) en un medio de cultivo que comprende al menos un hidrato de carbono, al menos un aminoácido, al menos una sal inorgánica y al menos una vitamina, durante un periodo de entre 7 y 10 días, y
d. recolección del medio de cultivo del paso (c) condicionado por las CMM. para la diferenciación de células madre pluripotentes (CMP).
2. Uso según la reivindicación 1 , donde las CMM del paso (a) proceden de un mamífero.
3. Uso según la reivindicación 2, donde el mamífero es un humano.
4. Uso según cualquiera de las reivindicaciones 1 a 3, donde las CMM proceden de tejido adiposo.
5. Uso según la reivindicación 4, donde el tejido adiposo es posnatal.
6. Uso según cualquiera de las reivindicaciones 1 a 5, donde las CMM según el paso (a) se expanden hasta alcanzar entre el (70-90%) de confluencia en el medio de expansión.
7. Uso según cualquiera de las reivindicaciones 1 a 6, donde las células son irradiadas según el paso (b) con radiación gamma a una dosis de exposición de entre 3000 y 5000 centigrays.
8. Uso según cualquiera de la reivindicaciones 1 a 7, donde el medio de cultivo en el que se produce la expansión celular de las CMM del paso (a) y el medio de mantenimiento de las CMM irradiadas según el paso (c) además comprende glutamina, al menos un reductor de enlaces disulfuro y al menos un factor de crecimiento.
9. Uso según la reivindicación 8, donde el reductor es mercaptoetanol.
10. Uso según la reivindicación 8, donde el factor de crecimiento es bFGF.
1 1 . Uso según cualquiera de las reivindicaciones 1 a 10, donde las CMP se diferencian a células mesodérmicas.
12. Uso según la reivindicación 1 1 , donde las células mesodérmicas a las que se diferencian las CMP son hemangioblastos.
13. Uso según cualquiera de las reivindicaciones 1 a 1 1 , donde las CMP se diferencian a células endoteliales.
14. Uso según cualquiera de las reivindicaciones 1 a 1 1 , donde las CMP se diferencian a células hematopoyéticas.
15. Uso según cualquiera de las reivindicaciones 1 a 14, donde las CMP proceden de un mamífero no humano.
16. Método para la diferenciación de CMP que comprende: a. Cultivar CMP en el medio de cultivo condicionado por las CMM obtenible por el procedimiento que se describe en cualquiera de las reivindicaciones 1 a 15,
b. obtener entre el 70 y 100 % de confluencia en el cultivo de las células madre pluripotentes del paso (a),
c. preparar cuerpos embrionarios (EB) a partir de las CMP del paso (b), y d. tratar los EBs del paso (c) con al menos un agente inductor de la diferenciación celular.
17. Método según la reivindicación 16, donde el agente inductor de la diferenciación según el paso (c) es un factor de crecimiento y/o al menos una citoquina.
18. Método según cualquiera de las reivindicaciones 16 ó 17, donde las CMP se diferencian a células mesodérmicas.
19. Método según la reivindicación 18, donde las células mesodérmicas a las que se diferencian las CMP son hemangioblastos.
20. Método según cualquiera de las reivindicaciones 16 a 19, donde las CMP se diferencian a células endoteliales.
21 . Método según cualquiera de las reivindicaciones 16 a 19, donde las CMP se diferencian a células hematopoyéticas.
22. Método para la diferenciación de células madre pluripotentes según cualquiera de las reivindicaciones 16 a 21 , donde las CMP proceden de un mamífero no humano.
23. Células obtenidas por el uso según cualquiera de las reivindicaciones 1 a 15, o por el método según cualquiera de las reivindicaciones 16 a 21 .
24. Población celular que comprende las células según la reivindicación 23.
PCT/ES2011/070236 2010-04-08 2011-04-07 Uso de un medio de cultivo condicionado por células madre mesenquimales para la diferenciación de células madre pluripotentes humanas WO2011124741A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201030512 2010-04-08
ES201030512 2010-04-08

Publications (1)

Publication Number Publication Date
WO2011124741A1 true WO2011124741A1 (es) 2011-10-13

Family

ID=44762051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070236 WO2011124741A1 (es) 2010-04-08 2011-04-07 Uso de un medio de cultivo condicionado por células madre mesenquimales para la diferenciación de células madre pluripotentes humanas

Country Status (1)

Country Link
WO (1) WO2011124741A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014011407A2 (en) * 2012-07-12 2014-01-16 Imstem Biotechnology, Inc. Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof
CN106381283A (zh) * 2016-10-18 2017-02-08 广州赛莱拉干细胞科技股份有限公司 一种成脂诱导培养基及成脂分化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030021771A1 (en) * 2001-07-06 2003-01-30 Chunhui Xu Osteoblast precursors from human embryonic stem cells
US20050076396A1 (en) * 1999-03-10 2005-04-07 Katz Adam J. Adipose-derived stem cells and lattices
KR20090050022A (ko) * 2007-11-14 2009-05-19 주식회사 엠씨티티 전분화능 줄기세포의 내배엽 세포로의 분화방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050076396A1 (en) * 1999-03-10 2005-04-07 Katz Adam J. Adipose-derived stem cells and lattices
US20030021771A1 (en) * 2001-07-06 2003-01-30 Chunhui Xu Osteoblast precursors from human embryonic stem cells
KR20090050022A (ko) * 2007-11-14 2009-05-19 주식회사 엠씨티티 전분화능 줄기세포의 내배엽 세포로의 분화방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200966, Derwent World Patents Index; AN 2009-K21730 *
LU, S.-J. ET AL.: "Robust generation of hemangioblastic progenitors from human embryonic stem cells.", REGENERATIVE MEDICINE., vol. 3, no. 5, September 2008 (2008-09-01), pages 693 - 704, XP002744078, DOI: doi:10.2217/17460751.3.5.693 *
MONTES, R. ET AL.: "Feeder-free maintenance of hESC in mesenchymal stem cell-conditioned media: distinct requirements for TGF-beta and IGF-11.", CELL RESEARCH., vol. 19, no. 6, June 2009 (2009-06-01), pages 698 - 709, XP009120467, DOI: doi:10.1038/cr.2009.35 *
XU, C. ET AL.: "Feeder-free growth of undifferenciated human embryonic stem cells.", NATURE BIOTECHNOLOGY, vol. 19, no. 10, October 2001 (2001-10-01), pages 971 - 974 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014011407A2 (en) * 2012-07-12 2014-01-16 Imstem Biotechnology, Inc. Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof
WO2014011407A3 (en) * 2012-07-12 2014-04-17 Imstem Biotechnology, Inc. Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof
US9745551B2 (en) 2012-07-12 2017-08-29 Imstem Biotechnology, Inc. Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof
US10557122B2 (en) 2012-07-12 2020-02-11 Imstem Biotechnology, Inc. Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof
CN106381283A (zh) * 2016-10-18 2017-02-08 广州赛莱拉干细胞科技股份有限公司 一种成脂诱导培养基及成脂分化方法

Similar Documents

Publication Publication Date Title
JP6983195B2 (ja) 間葉系間質細胞及びその関連用途
JP2024001145A (ja) 養子免疫療法における免疫細胞調節のための組成物および方法
US20220090008A1 (en) Colony forming medium and use thereof
ES2962325T3 (es) Método para inducir la diferenciación osteogénica tridimensional de células madre con hidrogel
CN105101965A (zh) 用于干细胞活动化、归巢、扩增和分化的组合物及其使用方法
JP2022511786A (ja) 新規芳香族化合物によるナチュラルキラー細胞およびilc3細胞の増殖
Ivanovic et al. Anaerobiosis and stemness: an evolutionary paradigm for therapeutic applications
WO2014188680A1 (ja) Nk細胞の調製方法
Mohammadi-Sangcheshmeh et al. Isolation, characterization, and mesodermic differentiation of stem cells from adipose tissue of camel (Camelus dromedarius)
Kok et al. Dental pulp stem cell heterogeneity: Finding superior quality “needles” in a dental pulpal “Haystack” for regenerative medicine-based applications
Lin et al. Allogeneic human umbilical cord Wharton’s jelly stem cells increase several-fold the expansion of human cord blood CD34+ cells both in vitro and in vivo
JP6164650B2 (ja) Nk細胞の調製方法
WO2011124741A1 (es) Uso de un medio de cultivo condicionado por células madre mesenquimales para la diferenciación de células madre pluripotentes humanas
Beksac et al. Modalities to improve cord blood engraftment
CA3055872A1 (en) Method for obtaining differentiated cells from muscle derived progenitor cells
Lawrence Human iPS cells for clinical applications and cellular products
Ren et al. Umbilical cord blood hematopoietic stem cell expansion ex vivo
KR102275454B1 (ko) 전능성 줄기세포로부터 중간엽 줄기세포를 분화시키는 방법
Bhattacharyya Advances and applications in stem cell biology
ES2734733B2 (es) Procedimiento para prolongar la vida media de celulas progenitoras neurales neonatales con suramina
JP2024067032A (ja) 間葉系間質細胞及びその関連用途
Phruksaniyom et al. Effect of Culture Conditions on Colony-Forming Ability of Stem Cells from Human Exfoliated Deciduous Teeth.
CN116057171A (zh) 羊膜样上皮细胞的产生
Lopez et al. 445. cGMP Compliant Production for Human Embryonic Stem Cell Derived Retinal Pigment Epithelial Cells on a Synthetic Substrate for the Treatment of Non-Neovascular Age-Related Macular Degeneration for Phase I Clinical Study
Momin et al. Stem Cells: An Emerging Future in Dentistry.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765123

Country of ref document: EP

Kind code of ref document: A1