WO2011124014A1 - 确定和调整链路分段的目标分组延迟的方法、设备和节点 - Google Patents

确定和调整链路分段的目标分组延迟的方法、设备和节点 Download PDF

Info

Publication number
WO2011124014A1
WO2011124014A1 PCT/CN2010/071564 CN2010071564W WO2011124014A1 WO 2011124014 A1 WO2011124014 A1 WO 2011124014A1 CN 2010071564 W CN2010071564 W CN 2010071564W WO 2011124014 A1 WO2011124014 A1 WO 2011124014A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet delay
segment
link
target packet
target
Prior art date
Application number
PCT/CN2010/071564
Other languages
English (en)
French (fr)
Inventor
郑武
赵群
刘继民
冷晓冰
沈钢
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔股份有限公司
Priority to KR1020127028212A priority Critical patent/KR101457347B1/ko
Priority to PCT/CN2010/071564 priority patent/WO2011124014A1/zh
Priority to EP10849251.3A priority patent/EP2557837A4/en
Priority to JP2013502978A priority patent/JP5667285B2/ja
Priority to BR112012025353A priority patent/BR112012025353A2/pt
Priority to CN201080064957.2A priority patent/CN102783205B/zh
Priority to US13/639,157 priority patent/US20130028127A1/en
Priority to TW100110984A priority patent/TWI544818B/zh
Publication of WO2011124014A1 publication Critical patent/WO2011124014A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of relay technologies, and in particular, to a method, device and network node for determining target packet delay of each segment of a link and a method for adjusting target packet delay of a segment of a link , devices, and network nodes.
  • operators can provide users with a variety of services, such as multimedia phones, mobile TV, online games, and the like.
  • services such as multimedia phones, mobile TV, online games, and the like.
  • Each of these services has its own characteristics, and different types of services have different performance requirements for performance such as bit rate and packet delay.
  • a QoS guarantee mechanism for service levels for different QoS Class Identifiers is provided in the 3GPP specifications.
  • the QCI is a scalar that can be pre-configured by the base station, and the QCI can serve as a reference for setting the packet forwarding process control parameters of the network node, wherein the packet forwarding process control parameters can be used for control, such as scheduling weights, admission thresholds, Queue management thresholds, link layer protocol configurations, and more.
  • each service data stream is associated with one and only one QCI, and each QCI has a corresponding QoS requirement, such as priority, packet delay budget ( PDB), Packet Error Loss Rate (PELR).
  • PDB packet delay budget
  • PELR Packet Error Loss Rate
  • Multi-hop relay technology was introduced in the 3rd Generation Partnership Project Subsequent Long Term Evolution (3GPP LTE-A).
  • Multi-hop relay technology is a good technical solution for coverage expansion and throughput enhancement under relatively low capital expenditure (CapEX) and operating cost (OpEX), which has been accepted by LTE-A Rel-10 .
  • CapEX capital expenditure
  • OFEX operating cost
  • data transmission between the user equipment and the base station is subject to forwarding by one or more relay stations.
  • the present invention provides a technical solution for determining a target packet delay of each segment of a link for QoS guarantee of a multi-hop relay system such as 3GPP LTE-A.
  • a method for determining a target packet delay for each segment of a link can include: collecting parameters affecting packet delay; and determining a score based on a relationship between a packet delay of each segment and an overall packet delay of the link, based on collected parameters and overall requirements for packet delay of the link The target grouping delay of the segment.
  • determining the target packet delay of each segment may include: targeting the achieveability of the target packet delay of each segment and maximizing the utilization of the radio resource, with the foregoing relationship, overall requirements, and collection.
  • the parameters are constraints to perform an optimization operation to obtain the target packet delay for each segment.
  • determining the target packet delay for each segment is performed at one of the network nodes associated with the link. And in this embodiment, the method may further include: transmitting the determined target packet delay to each network node associated with the link, so that each network node performs a scheduling operation based on the target packet delay. In another embodiment in accordance with the invention, determining the target packet delay for each segment is performed at each of the network nodes associated with the link based on the same rules. In an implementation manner, the method may further include: acquiring, at each network node, a parameter related to the packet delay that is related to each other; and transmitting, to other network nodes related to the link, the acquired parameter that affects the packet delay, so as to share the parameter. .
  • the foregoing parameter may be a statistical parameter based on a period of time, and may be one of a network deployment characteristic parameter, a user service characteristic parameter, a system parameter configuration characteristic parameter, and a distribution characteristic parameter of the user equipment. Or a variety.
  • the method of at least may further comprise triggering a re-determination of a target packet delay for each segment in response to the target packet delay of the segment being unsatisfiable.
  • the method may further include: acquiring packet delay related information of the previous segment; determining an actual target packet delay of the segment based on the packet delay related information and the target packet delay of the segment .
  • packet delay related information is embedded in packets transmitted on the previous segment.
  • the packet delay related information includes an actual packet delay of a previous segment; an actual packet delay of the previous segment and a target packet delay; an actual packet delay and target of the previous segment The difference in packet delay; and one or more of the automatic retransmission request configuration parameters.
  • a method for adjusting a target packet delay for each segment of a link is provided.
  • the method is used to dynamically adjust or correct the target packet delay of the segment during the execution of the data transmission in order to obtain a more stringent packet delay guarantee.
  • the method can include obtaining packet delay related information for a previous segment of the segment; determining an actual target packet delay for the segment based on the packet delay related information and the target packet delay of the segment. Additionally, the method can further include: transmitting, to the subsequent network node, packet delay related information associated with the segment for use in determining an actual target packet delay for the subsequent segment.
  • a device with a target packet delay may include: a parameter collection device configured to collect parameters affecting packet delay; and a target determining device configured to determine a relationship between a packet delay of each segment and an overall packet delay of the link, based on the collected parameters And the overall requirement for packet delay for the link, determining the target packet delay for each segment.
  • an apparatus for adjusting a target packet delay of each segment of a link may include: information acquiring means configured to acquire packet delay related information of a previous segment of the segment; and actual target determining means configured to determine, based on the packet delay related information and the target packet delay of the segment The actual target packet delay of the i-segment segment.
  • the device may further include: an information sending device configured to send, to the subsequent network node, packet delay related information related to the forgoing segment to be used when determining the actual target packet delay of the subsequent segment.
  • a network node comprising the apparatus according to the third aspect of the invention.
  • a network node comprising the apparatus according to the fourth aspect of the invention.
  • a seventh aspect of the invention there is also provided a computer program product comprising computer program code for performing the method according to the first aspect of the invention when the code is loaded into the computer.
  • a multi-hop relay system is provided with a solution for determining and adjusting the target packet delay of each segment of the link, by which the overall packet delay of the multi-hop relay system can be guaranteed. And in a preferred embodiment in accordance with the present invention, the target packet delay can be dynamically corrected based on the packet delay information of the previous segment during data transmission, thereby further improving performance.
  • the technical solution of the present invention has a very large scalability and can be easily extended to support a relay system having any hop count.
  • the technical solution provided by the present invention aims to optimize QoS control within the scope of a Radio Access Network (RAN), which is directed to the core.
  • RAN Radio Access Network
  • the heart network (CN) is transparent and does not have any effect on the CN.
  • the current 3GPP LTE-A specification is very smallly modified, and thus has good backward compatibility, and is also transparent to the LTE Rel-8/9/10 user equipment, and will not It has an impact on it.
  • Figure la shows a schematic diagram of an exemplary segmentation configuration of a two-hop relay system in accordance with the present invention
  • Figure lb and Figure lc illustrate schematic diagrams of exemplary motion segmentation adjustments of a two-hop relay system in accordance with the present invention
  • FIG. 2 shows a flow chart of a method for determining a target packet delay for each segment of a link in accordance with one embodiment of the present invention
  • FIG. 3 illustrates a method for adjusting a target packet delay of a link segment in accordance with an embodiment of the present invention
  • FIG. 4 is a diagram showing the operation of a downlink QoS guarantee of a multi-hop relay system according to an embodiment of the present invention
  • FIG. 5 is a diagram showing the operation of an uplink QoS guarantee of a multi-hop relay system according to an embodiment of the present invention
  • FIG. 6 shows a block diagram of an apparatus for determining a target packet delay for each segment of a link in accordance with an embodiment of the present invention
  • Figure 7 is a block diagram showing an apparatus for determining a target packet delay for each segment of a link in accordance with another embodiment of the present invention.
  • FIG. 8 is a block diagram showing an apparatus for adjusting a target packet delay of a link segment according to still another embodiment of the present invention. detailed description Hereinafter, methods, apparatuses, and network nodes for determining and adjusting target packet delays of respective segments of a link according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • FIG. 1a a two-hop relay system is illustrated that includes a backhaul link eNB-RN and an access link RN-UE.
  • the backhaul link and the access link can be regarded as two links connected in series. Therefore, based on the nature of the i-thin PDB index, it can be determined that the overall packet delay tsum of the entire link and the packet delays of the backhaul link and the access link ⁇ and t 2 satisfy the following relationship:
  • parameters affecting each segment PDB related to each segment may also be collected before service initialization, wherein the parameters affecting the delay of the backhaul link packet are generally represented by P1, which affects the delay of the access link packet.
  • P1 parameters affecting the delay of the backhaul link packet
  • P2 parameters affecting the delay of the access link packet
  • the target packet delay for each link that is, the PDB for each segment
  • the PDB for each segment can be determined based on the relationship, parameters P 1 and P2, and the overall requirements for the link PDB. Further, coordination between the eNB and the RN can be performed based on the determined PDB for each segment to implement its PDB on each link, thereby ensuring end-to-end QoS requirements.
  • the present invention further contemplates dynamically adjusting the target packet delay in actual transmission.
  • the packet delay case of the previous segment can be considered, and the actual PDB is determined for the current segment based on the case of the previous segment to provide further improvements to the PDB guarantee.
  • Figure lb and Figure 1c show a schematic diagram of an exemplary dynamic segmentation adjustment of a two-hop relay system in accordance with the present invention.
  • the difference A of the actual packet delay of the previous segment with its target packet delay can be obtained, and the actual target packet delay of the next segment is determined based on the difference.
  • FIG. 1b it shows that the data is received in advance as compared with the predetermined PDB.
  • w represents the overall requirement for the PDB of the link; represents the packet delay of the first segment; represents the number of segments of the overall link or the number of hops of the relay system; ⁇ . represents the parameters affecting the segment.
  • embodiments of the present invention provide a technical solution for determining and adjusting target packet delays for respective segments of a link.
  • a technical solution for determining a target packet delay of each segment of a link according to the present invention will be described first with reference to FIG. 2 shows a flow chart of a method for determining a target packet delay for each segment of a link in accordance with an embodiment of the present invention.
  • step S201 parameters affecting the packet delay are collected. This is the network deployment feature parameter, the user's service feature parameter, the system parameter configuration feature parameter, and the user device's distribution feature parameter.
  • the network deployment characteristic parameter may be an error rate of each segment, such as a bit error rate, a bit error rate, a symbol error rate, a packet error rate, a packet error loss rate, or may be an interference condition of each segment.
  • the user's service characteristic parameters may be the average throughput of each segment, the efficiency of wireless resource usage, and the like.
  • the system parameter configuration characteristic parameter may be the number of subframes allocated for transmission to each segment.
  • the configuration of the subframes for each link affects the HARQ acknowledgement and the negative acknowledgement feedback, which has a certain impact on the time required for retransmission. For example, the fewer subframes allocated to the backhaul link, the time interval for data retransmission caused by erroneous transmission increases, and the larger the PDB required for the backhaul link; conversely, the more subframes allocated to the backhaul link More, the smaller the PDB required for the backhaul link.
  • the distribution characteristic parameter of the user equipment may be a distribution status of the user equipment.
  • the distribution of user equipment refers to how many user equipments and how much data is directly served by the base station, and how many user equipments and how much data volume needs to be served by the relay station under the indirect support of the base station. The more user equipment served by the relay station, the larger the amount of data, the larger the PDB required on the backhaul link. Therefore, in order to guarantee the PDB, the PDB of the access link and the backhaul link needs to be carefully designed.
  • step S202 based on the relationship between the packet delay of each segment and the overall packet delay of the link, the target packet delay of each segment is determined based on the collected parameters and the overall requirements for the packet delay of the link.
  • the achievability of the target packet delay and the maximum utilization of the radio resources of each segment may be targeted, with the aforementioned relationship, the overall requirement, and the collected parameters as constraints.
  • the specific optimization operation can be designed for the situation of the system, and those skilled in the art can fully realize the optimization operation according to the teachings herein and the technical knowledge they have mastered. Therefore, in order to make the present invention clearer, the details herein will not be described again.
  • the actual packet status of each segment can be considered, and the target packet delay that can be achieved can be set for it. This way of determining the target packet delay is more efficient.
  • the above parameters that can affect the packet delay budget are preferably based on a statistical value over a longer period of time, ie based on an average over a period of time. This means that the semi-static configuration process is performed for each segment of the link, ie, not with the change of the above parameters.
  • the configuration is performed in a state where it is not maintained after the configuration is performed based on the above parameters (this will be described in further detail below).
  • the above determined process may be performed at one of the various network nodes associated with the link, for example at the e NB, or at any one of the relay nodes in a centralized manner. Therefore, after determining the target packet delay for each segment, the target packet delay may be further sent to each of the network nodes associated with the link, so that each network node performs an appropriate scheduling operation based on the target packet delay.
  • the above-described operation of determining the target packet delay may be separately performed at each of the network nodes associated with the link.
  • each network node needs to perform the target packet delay determination operation based on the same rule.
  • parameter sharing is required between the various network nodes.
  • parameters associated with each other that affect the packet delay budget can be obtained at respective network nodes, said parameters being the parameters described above, which can be obtained by measurement and/or calculation. The acquired parameters affecting the packet delay budget can then be sent to other network nodes associated with the link to share these parameters.
  • each network node can determine the same target packet delay for each segment based on the same rules and the same parameters.
  • each network node only needs to perform link adaptation and scheduling operations based on its own target packet delay without having to send the determined other target packet delays to other network nodes.
  • the centralized implementation is different from the distributed based implementation in that the centralized implementation is characterized by centralized collection of parameters, centralized determination of target packet delay, and determined target values can be sent to other network nodes for sharing.
  • a distributed-based implementation is characterized by parameter sharing, which performs a determination process based on the same rules.
  • the network node responsible for centrally determining the target value collects parameters from other network nodes, and according to the distributed implementation, each network node sends each acquired parameter to each other. This allows all relevant network nodes to get the parameters needed to perform the determination.
  • Each network node can be based on ammonium after obtaining a target packet delay for itself
  • the target packet is delayed, and the appropriate scheduling operation is performed to achieve the target packet delay by performing appropriate scheduling in the time domain, the air domain, and the frequency domain.
  • the target packet delay can be achieved according to the target packet delay, using appropriate modulation and coding, power allocation/control, HARQ mechanism, ARQ mechanism, frequency selective scheduling, spatial diversity techniques, and the like.
  • Performing link adaptation and scheduling operations to achieve target packet delay is a technique known in the art and will not be further described herein.
  • the above-described operation of determining the target packet delay of each segment may also be referred to as a process of configuring the packet delay of the segment.
  • the inventors have also noticed the following cases: In practical applications, the state of link conditions, system parameter configuration, network deployment, and the like are all dynamically changed.
  • the initially determined target packet delay may not be able to adapt to the new situation after a period of time, and some network nodes may not be able to achieve the target packet delay specified for it anyway, performing link adaptation and scheduling operations.
  • step S203 in response to the target packet delay of the segment being unsatisfiable, triggering the re-determination of each segment of the link Target packet delay.
  • the actual packet delay of the relevant segment is measured at each network node, and if it is found that the target packet delay cannot be satisfied within a period of time, a message may be sent to determine the target packet delay for each segment.
  • Network node requesting reconfiguration. After receiving the reconfiguration request, the network node can re-collect the required parameters and re-determine the appropriate target packet delay for each segment.
  • each network node may also periodically send parameters that determine the packet delay to the network node that determines the target packet delay for each segment, so that the network node determines whether the configuration needs to be re-executed.
  • the target packet delay of each segment may be re-determined based on the received parameters.
  • the technical solution provided by the preferred embodiment is a process of performing semi-static configuration for each segment of a link.
  • the process and the change with the above parameters The dynamic configuration mode of the configuration execution is different from the static configuration mode that maintains this configuration after the configuration is executed. It is a technical solution for performing reconfiguration based on observation for a period of time. Therefore, the configuration method can reduce various overheads required for dynamic configuration, and at the same time overcome the disadvantage that the static configuration cannot adapt to the change of the situation.
  • the present invention also provides a method for dynamically adjusting or correcting the target delay budget during data transmission.
  • each network node can adjust or correct the target packet delay of the subsequent segment based on the packet delay related information of the previous segment.
  • FIG. 3 is a flow chart showing a method for dynamically adjusting a target packet delay according to an embodiment of the present invention.
  • the packet delay related information of the previous segment may be acquired in step S310.
  • the packet delay related information may be information related to the actual packet delay of the previous segment, such as the difference between the actual packet delay and the target packet delay described above.
  • the actual packet delay of the previous segment and the target packet delay may be the actual packet delay.
  • the packet delay related information may relate to: a time at which the data packet is held in the queue of the network node since receiving the data packet; a difference between the network node and the agreed target packet delay for the time before and after the scheduling of the correctly received data packet Value and so on.
  • the packet delay related information may be included in the data packet transmitted on the previous segment. For example, it can be placed in the first byte of the payload (Radio Link Control Layer Protocol Data Unit, RLC-PDU) transmitted on the previous segment.
  • RLC-PDU Radio Link Control Layer Protocol Data Unit
  • the UE device does not actually need to perform the work of transmitting the packet delay related information, because the RN can obtain the packet delay related information by calculation according to the information it knows, for example, the RN can be based on the user equipment.
  • the time at which the resource is requested to be allocated and, in addition, the read packet delay related information may further be related to the automatic repeat request configuration parameter, such as the HARQ or ARQ configured wireless parameters.
  • the actual target packet delay of the segment may be determined based on the packet delay related information and the target packet delay of the segment.
  • emergency scheduling can be performed.
  • the scheduling priority can be increased based on the overall situation, such as placing the corresponding data packet to the previous position of the queue that follows the first-in, first-out principle, rather than placing it directly at the end of the queue.
  • the read target value can still be achieved by ensuring that the packet delay budget of the current segment is reduced.
  • the target packet delay for each segment is determined for different services.
  • the target packet delay of each segment may be different because of the parameters and parameters affecting the uplink packet delay.
  • the parameters that affect the packet delay of the downlink may be different. Therefore, the determination operation of the target packet delay of each segment is performed separately for the uplink and the downlink.
  • FIGS. 4 and 5 respectively illustrate an operation of downlink and uplink QoS guarantees for a three-hop relay system in accordance with an embodiment of the present invention. Intention.
  • the PDB of the entire link is guaranteed by outer loop control and inner loop control to meet QoS requirements.
  • the outer loop control is illustrated in FIG. 4 and FIG. 5 by a one-dot chain line, which is primarily responsible for performing service initialization and determining the target packet delay for each link (C410 and C510) based on the method described in the foregoing of the present invention. And reconfiguring the target packet delay for each link in response to relatively long-term measurements and reports from the relevant network node (eg, base station eNB or relay node RN), ie, re-determining the target packet delay (C41 1 and C51 1).
  • the relevant network node eg, base station eNB or relay node RN
  • the inner loop control (C420 to C429, and C520 to C530) is shown in solid lines in Figures 4 and 5, which is responsible for performing some link adaptation and suitable scheduling, for example, adaptive modulation and coding, power allocation / Control, HARQ, ARQ, frequency selective scheduling, spatial diversity techniques, etc., to achieve target packet delay, thereby ensuring the overall PDB of the entire link.
  • some link adaptation and suitable scheduling for example, adaptive modulation and coding, power allocation / Control, HARQ, ARQ, frequency selective scheduling, spatial diversity techniques, etc.
  • the target packet delay can be adjusted based on the packet delay related information of the previous segment.
  • each segment (access link) is determined according to the method described above in connection with FIG. And backhaul link) Target packet delay (ie PDB) for the downlink.
  • PDB Target packet delay
  • the eNB performs a suitable scheduling operation based on the downlink target packet delay between the eNB and the RN 2, and performs service data transmission at C421.
  • the packet delay information related to the segment may also be included in the data packet and sent to K2.
  • the packet delay related information may be the information described above, which may be included in a payload (RLC SDU), for example, the first byte of the payload (RLC SDU) may be used to indicate packet delay related information.
  • the eNB can calculate the average packet delay at C422 and measure the parameters that affect the packet delay, which are used for possible reconfiguration in the future.
  • the RN2 may acquire the packet delay related information in the data packet at C423, and determine the actual target packet delay based on the packet delay related information and the target packet delay according to the method described above with reference to FIG. 3, and according to The determined actual target packet delay is used to perform the scheduling.
  • RN2 sends the service data and the packet delay related information to RN1 at C424.
  • RN2 performs an average packet delay calculation and a measurement of parameters affecting the packet delay at C425.
  • RN1 determines the actual target packet delay of the downlink access link based on the packet delay related information and the target packet delay in the received packet data in step C426, and performs scheduling.
  • the service data transmission is then performed at C427, and the service data is transmitted to the user equipment UE. Since this is the access link to the user equipment, there is no other link that needs to dynamically adjust the packet delay, so there is no need to transmit the packet delay related parameters.
  • RN1 calculates the average packet delay and measures the parameters affecting the packet delay in step C428.
  • the measured parameters and the calculated average packet delay may be reported or exchanged between R 1, RN 2 and the eNB after completion of a downlink data transmission, or at any other appropriate time, using event-triggered or periodic reporting. To determine if a reconfiguration is required.
  • the packet delay budget for each segment can be re-determined based on the new parameters in step C41 1 .
  • service initialization is first performed at C510 to determine a target packet delay for each segment uplink. Determining the process of uplink target packet delay and determining the downlink target score The process of group delay is completely similar, but is performed based on different parameters.
  • the resource request and allocation process (C520) is first performed between the UE and the RN1 to obtain the radio resources and the like required for transmitting the service data.
  • the UE transmits a Buffer Status Report (BSR) to the RN 1, for example, at the granularity of the logical channel group to request radio resources for traffic transmission. If the UE has not obtained the uplink resource for the BSR, the scheduling request may be triggered before the BSR is sent, and the RN1 is requested to allocate resources for the BSR.
  • BSR Buffer Status Report
  • the RN1 After receiving the BSR, the RN1 performs scheduling, allocates uplink access link resources for transmitting the service data to the UE to satisfy the target packet delay of the uplink access link, and indicates to the UE about the modulation and coding mechanism and the allocated wireless within a predetermined time.
  • Resource refers to information.
  • the information indicated to the UE may not involve a logical channel, but rather the UE decides which logical channel to use for transmission.
  • the UE selects an appropriate logical channel for transmission of service data in accordance with the instruction of RN1 at C521.
  • the RN1 can obtain the packet delay related information of the uplink access link.
  • the packet delay related information is not transmitted by the previous network node, but the RN derives the time from when the UE sends the BSR to when it correctly receives the service data. In other words, it can be calculated to determine how many PDBs the uplink access link actually uses, and the amount of difference between the actual packet delay and the predetermined target packet delay.
  • the actual target packet delay that can be used by the uplink between RN1 and RN2 can be determined.
  • the RN1 then performs a scheduling request (C522) based on the read actual target packet delay to satisfy the guaranteed target packet delay.
  • a resource request and allocation process (C523) will be performed between RN1 and RN2.
  • the process of forgitting is similar to the resource request and allocation process between the UE and RN1 and will not be described in detail here.
  • traffic transmission is performed at C524, and similar to the downlink transmission, packet delay related information relating to the uplink between RN1 and RN2 is included in the packet and transmitted to RN2.
  • the packet delay related information is similar to the packet delay related information transmitted in the downlink, and may include, in, for example, a payload (RLC SDU), using a first byte of a payload (RLC SDU) to indicate packet delay related information.
  • RN1 can calculate the packet delay average and measure the packet delay in C525. Parameters, these parameters are used for possible PDB reconfiguration in the future.
  • the actual target packet delay may be determined based on the packet delay related information included in the service data and the uplink target packet delay between the RN2 and the eNB at C526. And delay the execution of the scheduling request based on the actual target packet.
  • a resource request and allocation process similar to C520 and C523 (C527) is then performed between RN2 and the eNB. Thereafter, the transmission of the business data is performed at C528. Since it is the last hop, there is no need to send packet delay related information to the network node eNB.
  • the average packet delay can be calculated at C529 and the parameters affecting the packet delay can be measured.
  • the foregoing BSR may adopt a multi-level mechanism for indicating different urgency levels of scheduling, for example, three levels, that is, a 30 ms level, a 60 ms level, and a 90 ms level.
  • Different BSR levels can be specified for different services.
  • the upper-level network nodes (such as the eNB and the RN) can allocate suitable radio resources and implement more efficient uplink scheduling for the lower-level network node (RN) or user equipment (UE) according to the BSR level.
  • the technical solution for dynamically adjusting the target packet delay of the segment based on the packet delay related information needs to occupy a certain transmission resource, and thus can be performed for a service that is demanding for packet delay.
  • the operation of the group delay and the measured parameters is performed after the end of one transmission, but the present invention is not limited thereto. Instead, the time interval for reporting/swapping operations can be determined based on actual conditions. This is preferably based on a longer period of time, which can significantly reduce overhead and can also be adapted to changes in the situation.
  • a multi-hop relay system is provided with a technology for determining and adjusting a packet delay budget of each segment of a link, thereby providing a packet delay budget guarantee for the multi-hop relay system.
  • suitable target packet delays are determined for each segment by outer loop control and can be further adjusted by semi-static configuration.
  • demanding services for packet delay budgets can further improve performance by dynamically adjusting target packet delays within the inner loop control, providing a more adequate PDB guarantee.
  • the technical solution of the present invention has a very large scalability and can be easily extended to support a relay system having any hop count.
  • the technical solution provided by the present invention aims to optimize QoS control within the scope of the Radio Access Network (RAN), which is transparent to the core network (CN) and does not have any impact on the CN.
  • RAN Radio Access Network
  • the current 3GPP LTE-A specification is very smallly modified, and thus has good backward compatibility, and is also transparent to the LTE Rel-8/9/10 user equipment, and will not be correct. It has any effect.
  • the present invention also provides an apparatus for determining a target packet delay for each segment of a link.
  • description will be made with reference to Figs. 6 to 8.
  • Figure 6 illustrates an apparatus 600 for determining a target packet delay for each segment of a link, in accordance with one embodiment of the present invention.
  • the apparatus 600 can include: a parameter collection device 601 configured to collect parameters affecting packet delays; and a target determining device 602 configured to determine a relationship between a packet delay of each segment and an overall packet delay of the link, based on The collected parameters and the overall requirements for packet delay for the link determine the target packet delay for each segment.
  • the target determining means 602 can be configured to target the achieveability of the target packet delay and the maximum utilization of the radio resources of the respective segments, in accordance with the aforementioned relationship, overall requirements, and collection.
  • the parameters are constrained,
  • the optimization operation is performed to obtain the target packet delay of each segment.
  • the target determining means 602 can be configured to determine a target packet delay for each segment of the link for the uplink and the downlink, respectively.
  • the iHai target determining means 602 can be configured to determine a target packet delay for each segment of the link at one of the network nodes associated with the link.
  • the device 600 may further include a target value transmitting device 603 (shown in a dashed box indicating an optional device) configured to send the determined target packet delay to each network node associated with the link, In order for each network node to perform link adaptation and scheduling operations based on the target packet delay.
  • the apparatus 600 may further include: a re-determination triggering device 604 (shown in dashed box indicating an optional device) configured to delay a target packet in response to the segmentation Unsatisfied, the target determining means 601 is triggered to redetermine the target packet delay for each segment.
  • a re-determination triggering device 604 shown in dashed box indicating an optional device configured to delay a target packet in response to the segmentation Unsatisfied, the target determining means 601 is triggered to redetermine the target packet delay for each segment.
  • the collected parameters are based on statistical parameters of a period of time, and the parameters may be one or more of the following: network deployment characteristic parameters; user service characteristic parameters; system parameter configuration characteristic parameters ; and the distribution characteristics of the user equipment.
  • the apparatus 600 may further comprise means for adjusting the segmentation of the link, the target packet delay budget.
  • the device will be described in detail below with reference to FIG.
  • FIG. 7 illustrates an apparatus for determining a target packet delay for each segment of a link in accordance with another embodiment of the present invention.
  • the device 700 may include a parameter collection device 701, a target determination device 702, and an optional re-determination trigger device 704, which respectively correspond to the parameter collection device 601 and the target determination device 602 shown in FIG.
  • the triggering device 604 is determined.
  • Figure 6 for a similar device to Figure 6 and related embodiments, reference is made to Figure 6 for the sake of clarity, and no further details are provided herein for clarity.
  • the target determining device 701 shown in FIG. 7 can be configured.
  • a target packet delay for each segment is determined based on the same rules at respective network nodes associated with the link.
  • the device may further include: a parameter obtaining means 705 configured to acquire, at each network node, a parameter related to each of the network delays affecting the packet delay; and a parameter sending means 706 configured to be associated with the link The other network nodes send the acquired parameters affecting the packet delay in order to share the parameters.
  • Figure 8 also shows an apparatus for adjusting the target packet delay of each segment of a link in accordance with the present invention.
  • the device 800 may include: an information acquiring device 801 configured to acquire packet delay related information of a previous segment; an actual target determining device 802 configured to perform scheduling based on packet delay related information and segmentation Target packet delay, determining the actual target packet delay for the segment.
  • the apparatus 800 may further include: an information sending apparatus 803 configured to send, to a subsequent network node, packet delay related information related to the segment, to determine the next segment.
  • the actual target packet is used when delayed.
  • the packet delay related information can be embedded in the packet transmitted on the previous segment.
  • the packet delay related information includes an actual packet delay of a previous segment; an actual packet delay of the previous segment and a target packet delay; an actual packet delay and target of the previous segment The difference in packet delay; and one or more of the automatic retransmission request configuration parameters.
  • the present invention may also provide a network node comprising the apparatus of any of the embodiments described with reference to Figures 6-8.
  • the network node can be a relay node or a base station.
  • the present invention can also be implemented by a computer program.
  • the present invention also provides a computer program product comprising computer program code for performing a method for determining a target packet delay for each segment of a link according to the present invention when the code is loaded into a computer .
  • a computer program product comprising computer program code for performing the method of the present invention for adjusting a target packet delay of a segment of a link when the code is loaded into a computer.
  • embodiments of the invention may be implemented in software, hardware or a combination of software and hardware.
  • the hardware portion can be implemented using dedicated logic; the software portion can be stored in memory and executed by a suitable instruction execution system, such as a microprocessor or dedicated design hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

确定和调整链路分段的目标分组延迟的方法、 设备和节点 技术领域
本发明涉及中继技术领域, 特别地涉及一种用于确定链路的各 个分段的目标分组延迟的方法、 设备和网络节点以及一种用于调整 链路的分段的目标分组延迟的方法、 设备和网络节点。 背景技术
在当前的通信系统中, 运营商可以为用户提供多元化的服务, 例如, 多媒体电话、 移动电视、 在线游戏等等。 这些服务各自具有 各自的特点, 且不同类型的服务对于诸如比特率和分组延迟等性能 具有不同的性能需求。
这一问题可以通过超量配置来解决。 但是, 在蜂窝接入网絡中, 传输容量, 特别是来自基站的无线频谱和回程的传输容量, 成本相 对较高, 所以这种超量配置的技术方案通常是不经济的。 因此, 需 要一种简单和有效的标准化服务质量(QoS )机制, 以允许接入运营 商能够支持服务差异化并且能够控制特定服务的分组业务的性能。
在 3GPP规范中提供了针对不同 QoS等级标识符(QCI )的服务 等级的 QoS保证机制。 QCI是一个标量, 其可以由基站进行预配置, 并且 QCI可以作为设置网络节点的分組转发处理控制参数的基准, 其中该分组转发处理控制参数可以用于控制, 诸如, 调度权重、 准 入阈值、 队列管理阈值、 链路层协议配置等等。 例如, 在第三代合 作伙伴计划 (3GPP ) 规范中, 每个服务数据流 (SDF ) 与一个且仅 一个 QCI相关联,并且每个 QCI具有相应的 QoS要求,例如优先级、 分组延迟预算 (PDB ) 、 分组差错丢失率 (PELR ) 。
在当前的 3GPP规范中,采用的是直接从基站至用户设备的单跳 技术。 因此, 在 3GPP规范中, 设计了针对单跳的 QoS保证, 例如 针对 QCI #1其对应的 PDB为 100ms,因此在去除了策略和计费执行 功能 (PCEF ) 与无线基站之间的 20ms 平均延迟后, 在下行链路上 只要能够保证 80ms内的延迟就可以满足 QCI #1所要求的 PDB。
在第三代合作伙伴计划后续长期演进 (3GPP LTE-A ) 中, 引入 了多跳中继技术。 多跳中继技术是用于在相对较低的资本支出 ( CapEX ) 和运营成本 (OpEX ) 下覆盖扩大和吞吐量增强的一种良 好的技术方案, 其已经被 LTE- A Rel-10所接受。根据多跳中继技术, 在用户设备与基站之间的数据传输要经过一个或多个中继站的转 发。
然而, 在现有技术中并不存在针对多跳中继情况的 QoS保证。 如何在多跳中继系统保证 PDB 要求是本技术领域中亟需解决的问 题。 发明内容
有鉴于此, 本发明提供了一种用于确定链路的各个分段的目标 分组延迟的技术方案, 以用于例如 3GPP LTE-A的多跳中继系统的 QoS保证。
根据本发明的一个方面, 提供了一种用于确定链路的各个分段 的目标分组延迟的方法。 该方法可以包括: 收集影响分组延迟的参 数; 以及根据各个分段的分组延迟与链路的总体分组延迟之间的关 系, 基于收集的参数和对链路的分組延迟的总体要求, 确定各个分 段的目标分组延迟。
在一个优选的实施方式中, 确定各个分段的目标分组延迟可以 包括: 以各个分段的目标分组延迟的可实现性和无线资源利用率最 大化为目标, 以前述的关系、 总体要求和收集的参数为约束条件, 来执行优化操作, 从而获得各个分段的目标分組延迟。
在根据本发明的一个实施方式中, 确定各个分段的目标分组延 迟在与链路相关的网络节点其中之一处执行。 并且在该实施方式中, 还可以包括: 向与链路相关的各个网络节点发送确定的目标分组延 迟, 以便各个网絡节点基于该目标分组延迟来执行调度操作。 在根据本发明的另一实施方式中, 确定各个分段的目标分组延 迟基于相同的规则在与链路相关的各个网络节点处执行。 在谅实施 方式中, 还可以进一步包括: 在各个网络节点获取与各自相关的、 影响分组延迟的参数; 以及向与链路相关的其他网络节点发送所获 取的影响分组延迟的参数, 以便共享参数。
在根据本发明的实施方式中, 前述参数可以是基于一段时期的 统计参数, 并且可以是网络部署特性参数、 用户的业务特性参数、 系统参数配置特性参数以及用户设备的分布特性参数其中的一种或 者多种。
在根据本发明的另一实施方式中, 谅方法可以进一步包括响应 于分段的目标分组延迟不能被满足, 触发重新确定各个分段的目标 分组延迟。
在根据本发明的又一实施方式中, 所述方法可以进一步包括: 获 取前一分段的分组延迟相关信息; 基于分组延迟相关信息和分段的 目标分组延迟, 确定分段的实际目标分组延迟。 在根据本发明的一 个实施方式中, 分组延迟相关信息嵌入在前一分段上传输的分组中。 在根据本发明的另一实施方式中, 所述分组延迟相关信息包括前一 分段的实际分组延迟; 前一分段的实际分組延迟和目标分组延迟; 前一分段的实际分组延迟与目标分组延迟的差值; 以及自动重传请 求配置参数其中的一种或者多种。
根据本发明的第二方面, 提供了一种用于调整链路的各个分段 的目标分组延迟的方法。 该方法用于在执行数据传输期间动态地调 整或者修正分段的目标分组延迟, 以便得到更加严格的分组延迟保 证。 该方法可以包括获取该分段的前一分段的分组延迟相关信息; 基于分组延迟相关信息和谅分段的目标分组延迟, 确定该分段的实 际目标分组延迟。 另外, 该方法还可以包括: 向后一网络节点发送 与该分段相关的分组延迟相关信息, 以在确定后一分段的实际目标 分组延迟时使用。
根据本发明的第三方面,提供另一种用于确定链路的各个分段的 目标分组延迟的设备。 谅设备可以包括: 参数收集装置, 配置用于 收集影响分组延迟的参数; 以及目标确定装置, 配置用于根据各个 分段的分组延迟与链路的总体分组延迟之间的关系, 基于收集的参 数和对链路的分组延迟的总体要求, 确定各个分段的目标分组延迟。
根据本发明的第四方面,提供了一种用于调整链路的各个分段的 目标分组延迟的设备。 所述设备可以包括: 信息获取装置, 配置用 于获取分段的前一分段的分组延迟相关信息; 实际目标确定装置, 配置用于基于分组延迟相关信息和该分段的目标分组延迟, 确定 i玄 分段的实际目标分组延迟。 此外, 该设备还可以包括: 信息发送装 置, 配置用于向后一网络节点发送与谅分段相关的分组延迟相关信 息, 以在确定后一分段的实际目标分组延迟时使用。
根据本发明的第五方面, 提供了一种网络节点, 包括根据本发明 第三方面的设备。
根据本发明的第六方面, 提供了一种网络节点, 包括根据本发明 第四方面的设备。
根据本发明的第七方面, 还提供了一种计算机程序产品, 其上 包括有计算机程序代码, 当代码被装载到计算机中时执行根据本发 明的第一方面的方法。
根据本发明的第八方面, 还提供了另一计算机程序产品, 其上 包括有计算机程序代码, 当代码被装载到计算机中时执行根据本发 明的第二方面的方法。
通过本发明提供的技术方案, 为多跳中继系统提供了一种确定 和调整链路的各个分段的目标分组延迟的解决方案, 通过该方案可 以保证多跳中继系统的总体分组延迟。 并在根据本发明的优选实施 方式中, 可以在数据传输的过程中, 基于前一分段的分组延迟信息 来动态地修正目标分组延迟, 从而进一步提高了性能。
另外, 本发明的技术方案具有非常大的可扩展性, 可以容易地 扩展至支持具有任何跳数的中继系统。 而且, 本发明提供的技术方 案其目标是在无线接入网 (RAN ) 的范围内优化 QoS控制, 其对核 心网络 (CN ) 是透明的, 不会对 CN造成任何影响。 此外, 根据本 发明的技术方案对当前的 3GPP LTE- A规范进行非常小的修改, 因 而具有良好的后向兼容性, 并且对于 LTE Rel-8/9/l O 用户设备也是 透明的, 不会对其造成影响。 附图说明
通过参考附图对本发明的实施方式进行详细说明, 本发明的上 述以及其他特征将更加明显。 在本发明的附图中, 相同的标号表示 相同或相似的部件。 在附图中,
图 la示出了根据本发明的两跳中继系统的示例性分段配置的示 意图;
图 lb和图 l c示出了根据本发明的两跳中继系统的示例性动悉分 段调整的示意图;
图 2 示出了根据本发明的一个实施方式用于确定链路各个分段 的目标分组延迟的方法的流程图;
图 3 示出了根据本发明的一个实施方式用于调整链路分段的目 标分组延迟的方法;
图 4 示出了根据本发明的一个实施方式的多跳中继系统的下行 链路 QoS保证的操作的示意图;
图 5 示出了根据本发明的一个实施方式的多跳中继系统的上行 链路 QoS保证的操作的示意图;
图 6 示出了根据本发明的一个实施方式用于确定链路各个分段 的目标分组延迟的设备的方框图;
图 7 示出了根据本发明的另一实施方式用于确定链路各个分段 的目标分組延迟的设备的方框图; 以及
图 8 示出了根据本发明的再一实施方式用于调整链路分段的目 标分组延迟的设备的方框图。 具体实施方式 在下文中, 将参考附图详细描述根据本发明的实施方式用于确 定和调整链路的各个分段的目标分组延迟的方法、 设备和网络节点。
如前所述, 在现有技术中并不存在用以保证多跳系统的 PDB的 技术方案。 因此, 为了满足整条 eNB-RN- UE链路的 PDB要求, 应 当设计新的机制来提供 PDB保证。
首先,将参考图 l a至图 lc来示例性地描述本发明的实施方式所 基于的基本原理。 如图 l a所示, 示出了两跳中继系统, 其包括回程 链路 eNB-RN和接入链路 RN- UE。 根据中继的特点, 可以将回程链 路和接入链路看作是串联连接的两条链路。 因此, 基于 i玄 PDB指标 的性质可以确定整条链路的总体分组延迟 tsum与回程链路和接入链 路的分组延迟 ^和 t2满足下述关系:
tsum
Figure imgf000008_0001
+ 式子 1 此外, 还可以在服务初始化之前收集与各个分段相关的影响各 个分段 PDB的参数,其中影响回程链路分组延迟的参数整体上用 P1 表示, 影响接入链路分组延迟的参数整体上由 P2表示。
在确定了关系式后, 可以根据该关系式、 参数 P 1 和 P2和对链 路 PDB的总体要求, 来确定每段链路的目标分組延迟, 即每个分段 的 PDB。 进而, 可以基于为各个分段的确定的 PDB, 在 eNB与 RN 之间进行协调, 以在每个链路上实现其 PDB, 从而保证端到端 QoS 需求。
另外, 本发明还进一步考虑在实际的传输中来动态地调整目标 分组延迟。 例如, 可以考虑前一分段的分组延迟情况, 并基于前一 分段的情况为将当前分段确定实际的 PDB , 以便为 PDB保证提供进 一步改进。
图 lb和图 lc示出了才艮据本发明的两跳中继系统的示例性动态分 段调整的示意图。 根据图 lb和图 lc, 可以获得前一分段的实际分组 延迟与其目标分组延迟的差值量 At, 并基于该差值量确定下一分段 的实际的目标分组延迟。
如图 lb所示, 其示出了与预定的 PDB相比提前 At接收到数据 分组的情况。 在该情况下, 就可以将前一分段节省的 PDB分配给随 后的分段, 即, 使谅分段的目标分组延迟 (即分组延迟预算) 增加 △t, 即 t2,=t2+ \t。 与之相反, 图 l c示出了与预定的 PDB相比延迟 △t接收到数据分组的情况, 因此在这种情况下, 可以使随后分段的 分组延迟预算减少 Δι, 即 t2,=t2-At。
多于两跳的情况与两跳的情况类似, 因此基于上面的描述, 可 以容易地扩展至多于两跳的情形。 例如, 对于多于两跳的中继场景, 其关系式的函数可以是如下关系式:
, ^满足 Λ 式子 2
Figure imgf000009_0001
其中, w表示对链路的 PDB的总体要求; 分别表示第 分段的分 组延迟; 表示整体链路的分段数目或者中继系统的跳的数目; Λ. 表示影响第 分段的参数。
基于上述的基本原理, 本发明的实施方式提供了一种用于确定 和调整链路的各个分段的目标分組延迟的技术方案。 接下来, 将首 先参考图 2 来描述根据本发明的用于确定链路的各个分段的目标分 组延迟的技术方案。 其中, 图 2 示出了根据本发明的一个实施方式 用于确定链路各个分段的目标分组延迟的方法的流程图。
如图 2所示, 首先在步骤 S201, 收集影响分组延迟的参数。 这 是网絡部署特性参数、 用户的业务特性参数、 系统参数配置特性参 数以及用户设备的分布特性参数等等。
网络部署特性参数可以是各个分段的差错率, 如误比特率、 误 码率、 误符号率、 分組差错率、 分组差错丢失率, 或者可以是各个 分段的干扰状况。 分段的差错率越大, 会造成更多的数据重传, 其 所需的 PDB就越大, 另外干扰越大也会引起差错率大, 进而造成需 要较大的 PDB。
用户的业务特性参数可以是各个分段的平均吞吐量、 无线资源 使用效率等。 链路的各个分段的吞吐量越高或者无线资源使用率越 大, 可能意味着链路需要越大的 PDB , 反之各个分段的吞吐量越低 或无线资源使用率越小, 则可能意味着越小的 PDB。
系统参数配置特性参数可以是分配给各个分段的用于传输的子 帧数目。 对各个链路的子帧的配置会影响到 HARQ肯定应答和否定 应答反馈, 这对于重传所需的时间具有一定的影响。 例如, 分配给 回程链路的子帧越少, 错误传输而造成的数据重传的时间间隔会增 力口, 回程链路需要的 PDB就越大; 反之, 分配给回程链路的子帧越 多, 回程链路需要的 PDB就越小。
另外, 用户设备的分布特性参数可以是用户设备的分布状况。 用户设备的分布状况是指有多少个用户设备和多大的数据量直接由 基站服务, 以及多少用户设备和多大的数据量需要在基站的间接支 持下由中继站服务。 由中继站服务的用户设备越多, 数据量越大, 在回程链路所需的 PDB就越大, 因此为了保证 PDB , 就需要对接入 链路和回程链路的 PDB进行精心设计。
接着, 在步驟 S202, 根据各个分段的分组延迟与链路的总体分 组延迟之间的关系, 基于收集的参数和对链路的分组延迟的总体要 求, 确定各个分段的目标分组延迟。
在根据本发明的一个优选实施方式中, 可以以各个分段的目标 分组延迟的可实现性和无线资源利用率最大化为目标, 以前述的关 系、 总体要求和收集的参数为约束条件, 来执行优化操作, 以获得 各个分段最适合的目标分组延迟。 具体的优化操作可以针对系统的 情况进行设计, 本领域技术人员根据此处的教导和其所掌握的技术 知识完全能够实现谅优化操作。 因此, 为了使本发明更加清楚, 此 处对于优化操作不再赘述。
这样, 在确定各个分段的目标值时, 可以考虑到各个分段的实 际状况, 为其设定能够实现的目标分組延迟。 这种目标分組延迟的 确定方式具有较高的效率。
上述能够影响分组延迟预算的参数优选的是基于一段较长时间 的统计值, 即, 基于一段时间的平均值。 这意味着是针对链路的各 个分段执行半静态的配置过程, 即, 并非是随着上述参数的改变动 态地执行配置, 也并非是在基于上述参数执行完配置后一直维持该 配置 (这将在下文中进一步详细描述) 。
根据本发明的一个实施方式, 可以在与链路相关的各个网络节 点其中之一处执行上述确定的过程, 例如在 eNB处, 或者任何一个 中继节点处以集中的方式实现。 因此, 在确定各个分段的目标分组 延迟后, 可以进一步将向与链路相关的各个网络节点发送目标分组 延迟, 以便各个网络节点基于目标分组延迟执行适当的调度操作。
此外, 根据本发明的另一实施方式, 可以在与链路相关的各个 网络节点处分别执行上述确定目标分组延迟的操作。 在这种情况下, 需要保证每个网络节点所确定的目标分组延迟的一致性, 每个网络 节点需要基于相同的规则来执行目标分组延迟确定操作。 另外, 还 需要在各个网络节点之间实现参数共享。 为此, 根据该实施方式, 可以在各个网络节点获取与各自相关的、 影响分组延迟预算的参数, 所述的参数是上文中所描述的参数, 这些参数可以通过测量和 /或计 算得到。 随后, 可以向与链路相关的其他网络节点发送获取的影响 分组延迟预算的参数, 以便共享这些参数。 这样, 各个网絡节点就 可以基于相同规则和相同参数为各个分段确定出相同的目标分组延 迟。 因而各个网絡节点只需基于针对自己的目标分组延迟执行链路 自适应和调度操作, 无需将确定的其他目标分组延迟发送到其他网 络节点。
基于集中式的实施方式与基于分布式的实施方式的不同之处在 于, 基于集中式的实施方式其特点在于集中收集参数, 集中确定目 标分组延迟, 而确定的目标值可以发送其他网络节点以便共享; 基 于分布式的实施方式其特点在于参数共享, 基于相同规则执行确定 过程。 特别地, 根据基于集中式的实施方式, 负责集中确定目标值 的网絡节点收集来自其他网络节点的参数, 而根据基于分布式的实 施方式, 各个网络节点向其他网络节点互相发送各自获取的参数, 从而使所有相关网络节点都可以得到执行确定所需的参数。
各个网络节点在获得针对自己的目标分组延迟后, 可以基于铵 目标分组延迟, 执行适 ^调度操作, 以便通过在时域、 空域和频域 上进行适合的调度来实现目标分组延迟。 例如, 可以根据目标分组 延迟, 采用适当的调制和编码、 功率分配 /控制、 HARQ机制、 ARQ 机制、 频率选择性调度、 空间分集技术等等, 从而来达到该目标分 组延迟。 执行链路自适应和调度操作以实现目标分组延迟是本领域 已知的技术, 此处不再进一步赘述。
上述确定各个分段的目标分组延迟的操作也可以称之为对分段 的分组延迟进行配置的过程。
另外, 本发明人还注意到以下情况: 在实际的应用中, 链路状 况、 系统参数配置、 网络部署等状态都是动态变化的。 初始确定的 目标分组延迟可能经过一段时间后就无法适应于新的情况, 一些网 络节点可能无论如何执行链路自适应和调度操作都无法实现为其指 定的目标分组延迟。
基于上述情况, 本发明人提出了一种重配置机制。 根据本发明 的一个优选实施方式,在以虛线框(表示可选步骤)示出的步骤 S203 中, 进一步响应于分段的目标分组延迟不能被满足, 触发重新确定 链路的各个分段的目标分组延迟。
根据本发明的一个优选实施方式, 在各个网络节点处测量相关 分段实际的分组延迟, 如果发现在一段时间内不能满足该目标分组 延迟, 则可以发送消息给为各个分段确定目标分組延迟的网络节点, 请求重新配置。 该网絡节点接到重新配置请求后, 可以重新收集所 需的参数, 并重新为各个分段确定适合的目标分组延迟。 此外, 各 个网络节点也可以将决定分组延迟的参数定期发送到为各个分段确 定目标分组延迟的网络节点, 以便由该网络节点来确定是否需要重 新执行配置。 在该网络节点根据其他网络节点发送的参数确定需要 重新配置时, 则可以基于接收到的这些参数来重新确定各个分段的 目标分组延迟。
因此, 该优选实施方式所提供的技术方案是一种针对链路的各 个分段执行半静态配置的过程。 该过程与随着上述参数的改变而动 态地执行配置的动态配置方式和与执行完配置后一直维持此配置的 静态配置方式均不同, 是一种基于一段时间的观察而执行重新配置 的技术方案。 因此, 该配置方式能够降低动态配置所需的各种开销, 同时又能够克服静态配置不能适应情况变化的缺点。
除了上述确定各个分段的目标分组延迟的配置机制和重配置机 制外, 本发明还提供了一种在数据传输过程中动态调整或者修正目 标延迟预算的方法。 每个网络节点在数据传输的过程中, 可以基于 前一分段的分组延迟相关信息, 对随后分段的目标分组延迟进行调 整或修正。
在下文中, 将参考图 3 来详细描述本发明提供的对目标分组延 迟进行动态调整的技术方案, 其中图 3 出了根据本发明的一个实施 方式用于动态调整目标分组延迟的方法的流程图。
如图 3所示, 可以在步骤 S310, 获取前一分段的分组延迟相关 信息。 该分组延迟相关信息可以是与前一分段的实际分组延迟相关 的信息, 例如是上文所述实际分组延迟与其目标分組延迟的差值量
At, 前一分段的实际分组延迟和目标分组延迟, 或者在每个网络节 点也知道其他网络节点的目标分组延迟的情况下, 可以是实际分组 延迟。 例如, 该分组延迟相关信息可以涉及: 自接收到数据分组开 始数据分组在网絡节点的队列中保持的时间; 网絡节点针对正确接 收到数据分组在调度之前和之后的时间与约定目标分组延迟的差值 等等。 该分组延迟相关信息可以包括于在前一分段上传输的数据分 組中。 例如, 可以放置于在前一分段上传输的有效载荷 (无线链路 控制层层议数据单元, RLC-PDU ) 的第一字节中。 然而, 对于上行 接入链路, UE设备实际上无需执行发送分组延迟相关信息的工作, 这是因为 RN 可以根据其了解的信息通过计算的方式获得分組延迟 相关信息, 例如, RN可以根据用户设备请求分配资源的时间以及接 此外, 读分组延迟相关信息也进一步可以与自动重传请求配置 参数相关, 例如 HARQ或者 ARQ配置的无线参数。在第一跳链路上
Π 出现错误时, 通常会执行自动重传, 因此对于第二跳调度, 就需要 基于自动重传配置参数来减少一些的 PDB , 即减小目标分组延迟。 例如, 对于 HARQ操作, 可以考虑由复用模式、 TDD帧配置、 中继 帧配置等定义的 HARQ时间线 (timeline ) , 从而确定适当的 PDB。 对于 ARQ重传, 如果启用无线链路控制层确认模式 (RLC AM ) 模 式, 则需要在重传前重新设置分组延迟相关信息且将其放置在重传 的数据分组中。
接着, 可以在步骤 S302, 基于分组延迟相关信息和分段的目标 分组延迟, 确定段的实际目标分组延迟。
这样, 就可以基于前一分段的分组延迟相关信息来修正目标分 组延迟。 例如, 如图 lb和图 lb所示, 使分组延迟预算增加 Δί, 即 t2'=t2+At; 与之相反, 或者使随后分段的分组延迟预算减少 At, 即 t2'=t2-At0
此外, 在当前分段的实际目标分组延迟相对于预定的目标分组 延迟减少的情况下, 可以执行紧急调度。 例如, 可以根据总体情况 提高调度优先级, 例如将相应的数据分组放置到遵循先入先出原则 的队列的较前的位置, 而不是直接放置在队列的尾部。 由此来确保 当前分段的分组延迟预算减少的情况下仍然可以实现读目标值。
需要说明的, 对于不同的服务, 与其对应的 QCI等级不同, 因 此对链路的分组延迟的总体要求也不同。 因此要针对不同的服务来 确定各个分段的目标分组延迟。
另外, 需要说明的是, 对于上行链路和下行链路, 即使针对相 同的分组延迟要求, 各个分段的目标分组延迟也可能是不同的, 这 是因为影响上行链路的分组延迟的参数和影响下行链路的分组延迟 的参数可能是不同的。 因此, 要针对上行链路和下行链路来分别执 行各个分段的目标分组延迟的确定操作。
接下来, 将参考图 4和图 5来说明根据本发明的用于保证 QoS 的具体实现方式。 图 4和图 5分别示出了根据本发明的一个实施方 式的针对三跳中继系统的下行链路和上行链路 QoS保证的操作的示 意图。
如图 4和图 5所示, 通过外环控制和内环控制来保证整个链路 的 PDB, 以便满足 QoS需求。 外环控制在图 4和图 5中以单点划线 示出, 其主要负责执行服务初始化并基于在本发明的前文中描述的 方法来确定每段链路的目标分组延迟( C410和 C510 ) , 以及响应于 来自相关网络节点 (例如基站 eNB或者中继节点 RN ) 的相对长期 的测量和报告来进行对每段链路的目标分组延迟进行重新配置, 即 重新确定目标分组延迟( C41 1和 C51 1 )。 内环控制( C420至 C429, 以及 C520至 C530 ) 在图 4和图 5 中以实线示出, 其负责执行一些 链路自适应和适合的调度, 例如, 自适应调制和编码、 功率分配 /控 制、 HARQ、 ARQ、 频率选择性调度、 空间分集技术等等, 来达到目 标分组延迟, 从而保证整条链路的总体 PDB。 此外, 在内环控制中, 还提供了动态调整目标分组延迟的方案中, 例如可以基于前一分段 的分组延迟相关信息来调整目标分组延迟。
从图 4和图 5 可以看出, 由于下行链路的数据发送方(即 eNB) 和上行链路的数据发送方 (用户设备) 的性质不同, 上行链路和下 行链路的内环控制存在一些差异。
首先, 将参考图 4来描述下行链路的情况。 如图 4所示, 首先 在 C410 中, 执行服务初始化, 基于对 eNB-RN2-RNl-UE的分组延 迟的总体要求,根据上文中结合图 2描述的方法来确定各个分段(接 入链路和回程链路 ) 下行链路的目标分组延迟 (即 PDB ) 。
接着, 在 C420中, eNB基于 eNB与 RN2之间的下行链路目标 分组延迟, 执行适合的调度操作, 并在 C421执行业务数据传输。 并 且在 C421 中还可以将与该分段相关的分组延迟信息包括在数据分 组中发送到 K 2。 该分组延迟相关信息可以是上文中描述信息, 其 可以包括在有效负荷(RLC SDU )中, 例如可以使用有效负荷 ( RLC SDU ) 的第一个字节来指示分组延迟相关信息。 此外, eNB 可以在 C422, 计算平均的分组延迟, 并测量影响分组延迟的参数, 这些参 数用于将来可能进行的重新配置。 RN2在接收到业务数据后,可以在 C423获取数据分组中的分组 延迟相关信息, 并按照上面参考图 3 描述的方法, 基于分组延迟相 关信息和目标分组延迟, 来确定实际目标分组延迟, 而且根据确定 的实际目标分组延迟来执行调度。 接着与步骤 C421 类似, RN2 在 C424 在将业务数据以及分组延迟相关信息一起发送到 RN1。 并且 RN2在 C425执行平均分组延迟计算和影响分组延迟的参数的测量。
与步骤 C423类似, RN1在步骤 C426根据接收的分组数据中的 分组延迟相关信息和目标分组延迟, 来确定下行接入链路的实际目 标分组延迟, 并执行调度。 随后在 C427进行业务数据传输, 将业务 数据发送到用户设备 UE。 由于这是至用户设备的接入链路, 随后没 有其他链路需要动态调整^ I标分组延迟, 所以无需进行分组延迟相 关参数的传输。 类似地, RN1在步骤 C428计算平均分组延迟并测量 影响分组延迟的参数。
可以在完成一个下行链路数据传输后, 或者在其他任何适当的 时间, 利用事件触发或者周期性的报告方式, 在 R 1、 RN2和 eNB 之间报告或交换测量的参数以及计算的平均分组延迟, 以便确定是 否需要重新配置。
在确定需要重新配置的情况下, 可以在步骤 C41 1 , 基于新的参 数重新确定各个分段的分组延迟预算。
在上文中结合三跳中继系统描述了下行链路的 QoS 保证的方 式。 根据上述公开, 本领域技术人员很容易将本发明扩展到任何跳 数的中继系统。 例如, 对于两跳中继系统, 可以略去图 4 中的 RN2 及其所有操作, eNB直接发送业务数据和分组延迟相关信息给 RN1 ; 其他操作与所示三跳的情形完全类似。 此外, 对于多于三跳的中继 系统,在 eNB和 RN1之间的所有中间中继节点执行的操作与图 4所 示的中间中继节点 RN2的操作完全类似。
接下来, 将参考图 5来描述上行链路的 QoS保证。 如图 5所示, 首先在 C510执行服务初始化,确定针对每个分段上行链路的目标分 组延迟。 确定上行链路目标分组延迟的过程与确定下行链路目标分 组延迟的过程完全类似, 只不过基于不同的参数执行。
在 UE要发送业务数据时, 首先在 UE与 RN1之间执行资源请 求和分配过程(C520 ) , 以便获得传输业务数据所需的无线资源等。 UE例如以逻辑信道组的粒度将緩冲器状态报告( BSR )发送至 RN 1 , 以请求用于业务传输的无线资源。 如果 UE尚未获得用于 BSR的上 行链路资源, 则可以在发送 BSR之前触发调度请求, 请求 RN1为其 分配用于 BSR的资源。 RN1接收到 BSR后执行调度, 为 UE分配用 于传输业务数据的上行接入链路资源以便满足上行接入链路的目标 分组延迟,并在预定的时间内向 UE指示关于调制编码机制和分配无 线资源指等信息。 向 UE 指示的信息可以不涉及逻辑信道, 而是由 UE来决定使用哪个逻辑信道进行传输。
接着, UE在 C521按照 RN1的指示选择适当的逻辑信道进行业 务数据的传输。 在业务数据到达 RN1后, RN1可以获取上行接入链 路的分组延迟相关信息。 此处与下行链路不同, 该分组延迟相关信 息并非是上一网络节点传送过来的, 而是 RN根据 UE发送 BSR的 时间至其正确接收到业务数据的时间推算出来的。 换句话说, 可以 通过计算来确定上行接入链路实际使用了多少 PDB , 以及实际分组 延迟与预定目标分组延迟的差值量。 根据该差值量和在 RN1与 RN2 之间的上行链路的目标分组延迟,可以确定出 RN1至 RN2之间的上 行链路可以使用的实际目标分组延迟。 然后 RN1基于读实际目标分 组延迟执行调度请求 (C522 ) , 以便满足保证该调整后的目标分组 延迟。 类似地, 将在 RN1 和 RN2 之间执行资源请求和分配过程 ( C523 ) 。 谅过程与 UE和 RN1之间的资源请求和分配过程类似, 此处不再详述。 此后在 C524进行业务传输, 并且与下行链路传输类 似,将涉及 RN1与 RN2之间的上行链路的分组延迟相关信息包括在 分组中传输给 RN2。 该分组延迟相关信息与下行链路中传输的分组 延迟相关信息类似, 可以包括在例如有效负荷 (RLC SDU ) 中, 使 用有效负荷 (RLC SDU ) 的第一个字节来指示分组延迟相关信息。 此外 RN1可以在 C525计算分组延迟平均值并测量影响分组延迟的 参数, 这些参数用于将来可能进行的 PDB重新配置。
在 RN2接收到 RN1传输来的业务数据和分组延迟相关信息时, 可以在 C526 基于业务数据中包括的分组延迟相关信息和 RN2 与 eNB 之间的上行链路的目标分组延迟确定实际的目标分组延迟, 并 基于实际目标分组延迟执行调度请求。接着在 RN2与 eNB之间执行 与 C520 和 C523 类似的资源请求和分配过程 (C527 ) 。 此后, 在 C528进行业务数据的传输。 由于是最后一跳, 因此无需发送分组延 迟相关信息给网络节点 eNB。 此外, 可以在 C529计算平均分组延迟 并测量影响分组延迟的参数。
接着可以与下行链路的 C429和 C41 1类似, 在 C530和 C51 1执 行参数信息交换或报告操作并响应于需要执行重配置, 重新确定各 个分段的目标分组延迟。
需要说明的是, 上述的 BSR可以采用多级机制, 用于指示调度 的不同紧急程度,例如三级, 即 30ms级别、 60ms级别和 90ms级别。 针对不同的服务可以指定不同的 BSR级别。上级网络节点(例如 eNB 和 RN ) 可以根据 BSR级别来为下级网络节点 (RN ) 或者用户设备 ( UE ) 分配适合的无线资源并实现更较有效的上行链路调度。
在上文中, 结合三跳中继系统描述了上行链路的 QoS保证的方 式。 对于例如两跳中继系统, 本领域技术人员可以理解, 其中 RN2 的所有操作可以省略, RN1 直接发送业务数据给 eNB, 而无需考虑 分组延迟相关信息, 其他操作与所示三跳的情形完全类似。 另外, 对于多于三跳的情形,在 eNB和 RN1之间的所有中继节点执行的操 作与 RN2类似, 只是在下一网络节点不是 eNB时, 需要发送分组延 迟相关信息。 因此根据上述公开, 本领域技术人员很容易将本发明 扩展到任何跳数的中继系统。
需要说明的是, 基于分组延迟相关信息来动态调整分段的目标 分组延迟的技术方案需要占用一定的传输资源, 因此可以针对对于 分组延迟要求苛刻的服务来执行。
此外, 在图 4和图 5中示例性地示出了报告 /交换计算的平均分
] 6 组延迟和所测量的参数的操作是在一次传输结束后执行, 然而本发 明并不限于此。 而是可以根据实际情况来确定报告 /交换操作的时间 间隔。 优选地基于较长一段时间, 这样可以显著降低开销, 并且也 可以适应于情况的变化。
通过本发明提供的技术方案, 为多跳中继系统提供了一种确定 和调整链路的各个分段的分组延迟预算的技术, 从而为多跳中继系 统提供了一种分组延迟预算保证的技术方案。 根据本发明, 通过外 环控制为各个分段确定了适合的目标分组延迟, 并且可以进一步通 过半静态配置来进行调整。 此外, 对于分组延迟预算要求苛刻的服 务还可以通过在内环控制动态调整目标分组延迟来进一步提高性 能, 从而提供更加充分的 PDB保证。
另外, 本发明的技术方案具有非常大的可扩展性, 可以容易地 扩展至支持具有任何跳数的中继系统。 而且, 本发明提供的技术方 案其目标是在无线接入网 (RAN ) 的范围内优化 QoS控制, 其对核 心网络 (CN ) 是透明的, 不会对 CN造成任何影响。 此外, 根据本 发明的技术方案对当前的 3GPP LTE-A规范进行非常小的修改, 因 而具有良好的后向兼容性, 并且对于 LTE Rel- 8/9/10 用户设备也是 透明的, 不会对其造成任何影响。
除此之外, 本发明还提供了一种用于确定链路的各个分段的目 标分组延迟的设备。 下面, 将参考图 6至图 8来进行描述。
首先参考图 6 , 图 6示出了根据本发明的一个实施方式的用于确 定链路的各个分段的目标分组延迟的设备 600。 该设备 600 可以包 括: 参数收集装置 601 , 配置用于收集影响分组延迟的参数; 以及目 标确定装置 602,配置用于根据各个分段的分组延迟与链路的总体分 組延迟之间的关系, 基于收集的参数和对链路的分组延迟的总体要 求, 确定各个分段的目标分组延迟。
在根据本发明的一个实施方式中, 该目标确定装置 602 可以配 置用于以各个分段的目标分组延迟的可实现性和无线资源利用率最 大化为目标, 以前述的关系、 总体要求和收集的参数为约束奈件, 来执行优化操作, 从而获得各个分段的目标分组延迟。
在根据本发明另一实施方式中, 该目标确定装置 602 可以配置 用于针对上行链路和下行链路分别确定链路的各个分段的目标分组 延迟。
根据本发明的再一个实施方式, i亥目标确定装置 602 可以配置 用于在与链路相关的网络节点其中之一处, 确定链路的各个分段的 目标分组延迟。 在该实施方式中, 该设备 600 还可以包括目标值发 送装置 603 (以虛线框示出, 表示可选装置) , 配置用于向与链路相 关的各个网络节点发送确定的目标分组延迟, 以便各个网络节点基 于目标分组延迟执行链路自适应和调度操作。
在才艮据本发明的另一实施方式中, 该设备 600可以进一步包括: 重新确定触发装置 604 (以虛线框示出, 表示可选装置) , 配置用于 响应于分段的目标分组延迟不能被满足, 触发目标确定装置 601 以 重新确定各个分段的目标分组延迟。
在根据本发明的实施方式中, 所收集的参数是基于一段时期的 统计参数, 这些参数可以是以下其中的一种或者多种: 网絡部署特 性参数; 用户的业务特性参数; 系统参数配置特性参数; 以及用户 设备的分布特性参数。
此外, 根据本发明的设备 600 还可以进一步包括用于调整链路 的分段的, 目标分组延迟预算的设备。 在设备将在下文中参考图 8 伴细描述。
此外, 图 7 示出了根据本发明的另一实施方式的用于确定链路 的各个分段的目标分组延迟的设备。 如图 7所示, 该设备 700可以 包括参数收集装置 701、 目标确定装置 702、 可选的重新确定触发装 置 704, 其分别对应于图 6所示的参数收集装置 601、 目标确定装置 602, 重新确定触发装置 604。 关于图 7中与图 6相似的装置以及相 关的实施方式请参考图 6进行的描述, 此处为了清楚起见, 不再对 其进行赘述。
与图 6所示不同的是, 图 7所示的目标确定装置 701 可以配置 用于在与链路相关的各个网络节点处基于相同的规则确定各个分段 的目标分组延迟。 在该实施方式中, 谅设备还可以包括: 参数获取 装置 705, 配置用于在各个网络节点获取与各自相关的、 影响分组延 迟的参数; 以及参数发送装置 706 , 配置用于向与链路相关的其他网 络节点发送所获取的影响分组延迟的参数, 以便共享参数。
此外,图 8还示出了根据本发明的用于调整链路的各个分段的目 标分组延迟的设备。 800如图 8所示, 设备 800可以包括: 信息获取 装置 801 , 配置用于获取前一分段的分组延迟相关信息; 实际目标确 定装置 802 ,配置用于基于分组延迟相关信息和分段的预定目标分组 延迟, 确定分段的实际目标分组延迟。 在根据本发明的一个实施方 式中, 所示设备 800还可以进一步包括: 信息发送装置 803 , 配置用 于向后一网络节点发送与分段相关的分组延迟相关信息, 以在确定 后一分段的实际目标分组延迟时使用。 谅分组延迟相关信息可以嵌 入在前一分段上传输的分组中。 在根据本发明的另一实施方式中, 所述分组延迟相关信息包括前一分段的实际分组延迟; 前一分段的 实际分组延迟和目标分组延迟; 前一分段的实际分组延迟与目标分 组延迟的差值; 以及自动重传请求配置参数其中的一种或者多种。
此外, 本发明还可提供了一种网络节点, 其包括参考图 6至图 8 描述的任一实施方式的设备。 该网络节点可以是中继节点或者基站。
另外, 本发明还可以通过计算机程序来实现。 为此, 本发明还 提供了一种计算机程序产品, 其上包括有计算机程序代码, 当代码 被装载到计算机中时执行根据本发明的用于确定链路的各个分段的 目标分组延迟的方法。 此外还提供了一种计算机程序产品, 其上包 括有计算机程序代码, 当代码被装载到计算机中时执行本发明的用 于调整链路的分段的目标分組延迟的方法。
关于参考图 6至图 8描述的各个实施方式中各个装置的具体操 作, 可以参考上面结合图 1 至图 5对于根据本发明实施的用于确定 链路的各个分段的目标分组延迟的方法和用于调整链路的分段的目 标分组延迟的描述。 在上文中主要参考 3GPP系统描述了本发明,然而本领域技术人 员可以理解, 本发明也可以用于其它具有类似情况的通信网络中。
还需要说明的是, 本发明的实施方式可以以软件、 硬件或者软 件和硬件的结合来实现。 硬件部分可以利用专用逻辑来实现; 软件 部分可以存储在存储器中, 由适当的指令执行系统, 例如微处理器 或者专用设计硬件来执行。
虽然已经参考目前考虑到的实施方式描述了本发明, 但是应该 理解本发明不限于所公开的实施方式。 相反, 本发明旨在涵盖所附 权利要求的精神和范围内所包括的各种修改和等同布置。 以下权利 要求的范围符合最广泛解释, 以便包含所有这样的修改及等同结构 和功能。

Claims

权 利 要 求 书
1. 一种用于确定链路的各个分段的目标分组延迟的方法, 包括: 收集影响分组延迟的参数; 以及
根据所述各个分段的分组延迟与所述链路的总体分组延迟之间 的关系, 基于所述参数和对所述链路的分组延迟的总体要求, 确定 所述各个分段的目标分组延迟。
2. 根据权利要求 1 所述的方法, 其中, 所述确定所述各个分段 的目标分组延迟包括:
以各个分段的目标分组延迟的可实现性和无线资源利用率最大 化为目标, 以所述关系、 所述总体要求和所述参数为约束条件, 来 执行优化操作, 从而获得各个分段的目标分组延迟。
3. 根据权利要求 1 所述的方法, 其中, 所述确定所述各个分段 的目标分组延迟在与所述链路相关的网络节点其中之一处执行, 且 所述方法还包括:
向与所述链路相关的各个网络节点发送所述目标分组延迟,以便 各个网络节点基于所述目标分组延迟来执行调度操作。
4. 根据权利要求 1 所述的方法, 其中所述确定所述各个分段的 目标分组延迟基于相同的规则在与所述链路相关的各个网絡节点处 执行。
5. 根据权利要求 4所述的方法, 进一步包括:
在所述各个网络节点获取与各自相关的、影响所述分组延迟的参 数; 以及
向与所述链路相关的其他网络节点发送所获取的影响所述分组 延迟的参数, 以便共享所述参数。
6. 根据权利要求 1所述的方法, 进一步包括:
响应于所述分段的目标分组延迟不能被满足,触发重新确定所述 各个分段的目标分组延迟。
7. 根据权利要求 1 所述的方法, 其中所述参数是基于一段时期 的统计参数, 并且是以下其中的一种或者多种: 网絡部署特性参数;
用户的业务特性参数;
系统参数配置特性参数; 以及
用户设备的分布特性参数。
8. 根据权利要求 1所述的方法, 进一步包括:
获取前一分段的分组延迟相关信息;
基于所述分组延迟相关信息和分段的所述目标分组延迟,确定所 述分段的实际目标分组延迟。
9. 根据权利要求 8 所述的方法, 其中所述分组延迟相关信息嵌 入在前一分段上传输的分组中。
10. 根据权利要求 8所述的方法, 其中所述分组延迟相关信息包 括以下其中的一种或者多种:
前一分段的实际分组延迟;
前一分段的实际分组延迟和目标分组延迟;
前一分段的实际分组延迟与目标分组延迟的差值; 以及
自动重传请求配置参数。
1 1. 一种用于调整链路的分段的目标分组延迟的方法, 包括: 获取所述分段的前一分段的分组延迟相关信息;
基于所述分组延迟相关信息和所述分段的目标分组延迟,确定所 述分段的实际目标分组延迟。
12. 根据权利要求 1 1所述的方法, 还包括:
向后一网络节点发送与所述分段相关的分组延迟相关信息,以在 确定后一分段的实际目标分组延迟时使用。
13. 一种用于确定链路的各个分段的目标分组延迟的设备, 包括 配置用于执行根据权利要求 1至 10所述的方法的装置。
14. 一种用于调整链路的分段的目标分组延迟的设备, 包括: 信息获取装置,配置用于获取所述分段的前一分段的分组延迟相 关信息;
实际目标确定装置,配置用于基于所述分组延迟相关信息和所述 分段的目标分組延迟, 确定所述分段的实际目标分组延迟。
15. 根椐权利要求 14所述的设备, 还包括:
信息发送装置,配置用于向后一网络节点发送与所述分段相关的 分组延迟相关信息, 以在确定后一分段的实际目标分组延迟时使用。
16. 一种网络节点, 包括根据权利要求 13所述的设备。
17. —种网络节点, 包括根据权利要求 14或 15所述的设备。
PCT/CN2010/071564 2010-04-06 2010-04-06 确定和调整链路分段的目标分组延迟的方法、设备和节点 WO2011124014A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020127028212A KR101457347B1 (ko) 2010-04-06 2010-04-06 링크 서브섹션들의 목표 패킷 지연을 결정하고 조정하기 위한 방법, 장치 및 노드
PCT/CN2010/071564 WO2011124014A1 (zh) 2010-04-06 2010-04-06 确定和调整链路分段的目标分组延迟的方法、设备和节点
EP10849251.3A EP2557837A4 (en) 2010-04-06 2010-04-06 METHOD, EQUIPMENT AND NODE FOR DEFINING AND ADJUSTING TARGET PACKAGE DELAYS OF CONNECTION SUB-SECTIONS
JP2013502978A JP5667285B2 (ja) 2010-04-06 2010-04-06 リンク・セグメントについてのターゲット・パケット遅延を決定するための、また調整するための方法、装置およびノード
BR112012025353A BR112012025353A2 (pt) 2010-04-06 2010-04-06 método, aparelho e nó para determinar e ajustar o atraso de pacote alvo de um segmento de ligação
CN201080064957.2A CN102783205B (zh) 2010-04-06 2010-04-06 确定和调整链路分段的目标分组延迟的方法、设备和节点
US13/639,157 US20130028127A1 (en) 2010-04-06 2010-04-06 Methods, apparatuses and nodes for determining and adjusting target packet delay of a link segment
TW100110984A TWI544818B (zh) 2010-04-06 2011-03-30 Methods and devices for determining and adjusting the target packet delay for link segments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/071564 WO2011124014A1 (zh) 2010-04-06 2010-04-06 确定和调整链路分段的目标分组延迟的方法、设备和节点

Publications (1)

Publication Number Publication Date
WO2011124014A1 true WO2011124014A1 (zh) 2011-10-13

Family

ID=44762007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071564 WO2011124014A1 (zh) 2010-04-06 2010-04-06 确定和调整链路分段的目标分组延迟的方法、设备和节点

Country Status (8)

Country Link
US (1) US20130028127A1 (zh)
EP (1) EP2557837A4 (zh)
JP (1) JP5667285B2 (zh)
KR (1) KR101457347B1 (zh)
CN (1) CN102783205B (zh)
BR (1) BR112012025353A2 (zh)
TW (1) TWI544818B (zh)
WO (1) WO2011124014A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239272A (ja) * 2013-06-06 2014-12-18 京セラ株式会社 移動体通信システムおよび基地局
CN105849571A (zh) * 2013-06-24 2016-08-10 Zte维创通讯公司 用于调整对时间要求严格的功能的最大持续时间的方法及系统
US9961695B2 (en) 2012-11-05 2018-05-01 Telefonaktiebolaget L M Ericsson (Publ) Scheduling in mobile communications systems
WO2023109743A1 (zh) * 2021-12-17 2023-06-22 华为技术有限公司 传输数据的方法和通信装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441172B2 (ja) * 2010-05-19 2014-03-12 日本電気株式会社 無線ネットワーク中継装置及び無線ネットワーク中継装置の変調方法並びにコンピュータプログラム
US8948007B2 (en) * 2011-06-13 2015-02-03 Verizon Patent And Licensing Inc. Interoperable quality of service pre-negotiation
CN103369559A (zh) * 2012-03-28 2013-10-23 中兴通讯股份有限公司 获取时延的最小化路测方法及装置
US9276873B2 (en) * 2012-11-23 2016-03-01 Verizon Patent And Licensing Inc. Time-based QoS scheduling of network traffic
US10153816B2 (en) * 2013-05-09 2018-12-11 Intel IP Corporation Small data communications
CN104602356B (zh) * 2013-10-31 2018-03-27 普天信息技术有限公司 多通道无线通信系统上行数据传输方法及设备
TWI528755B (zh) 2013-12-06 2016-04-01 財團法人工業技術研究院 軟體定義網路中用於延遲量測之網路控制器、延遲量測系統及延遲量測方法
CN105592554B (zh) * 2014-10-23 2020-07-03 中兴通讯股份有限公司 一种上行业务的调度方法和基站
US10587373B1 (en) * 2016-12-08 2020-03-10 Sprint Spectrum L.P. Controlling transmission based on acknowledgement delay
US20180279319A1 (en) * 2017-03-23 2018-09-27 Nokia Technologies Oy Dynamic provisioning of quality of service for end-to-end quality of service control in device-to-device communication
CN112470432A (zh) * 2018-07-26 2021-03-09 联想(新加坡)私人有限公司 监视数据连接的qos参数
WO2020088529A1 (en) * 2018-10-30 2020-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for quality of service management
KR20220099975A (ko) * 2019-11-15 2022-07-14 삼성전자주식회사 정보 송신 방법 및 장치
WO2022028873A1 (en) * 2020-08-04 2022-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Mechanism for adapting a packet delay budget
CN114071564B (zh) * 2020-08-05 2024-04-09 大唐移动通信设备有限公司 用户终端与网络进行通信的方法、终端、网络设备及装置
CN115473825A (zh) * 2022-09-14 2022-12-13 中国电信股份有限公司 业务服务等级协议保障方法和系统、控制器和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1943267A (zh) * 2004-04-13 2007-04-04 西门子公司 确定自适应路径光网络中的延迟的方法
CN101166073A (zh) * 2006-10-17 2008-04-23 株式会社Ntt都科摩 一种应用于多跳通信系统的协作分集通信方法
US20100061264A1 (en) * 2008-09-11 2010-03-11 Verizon Business Network Services Inc. Method and system for identifying network paths

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122921B1 (en) * 2000-02-02 2005-11-30 Telefonaktiebolaget LM Ericsson (publ) Circuit and method for providing a digital data signal with pre-distortion
US7978673B1 (en) * 2000-12-29 2011-07-12 Intel Corporation Channel allocation based on random plus planned processes
JP2008167141A (ja) * 2006-12-28 2008-07-17 Nec Corp データ伝送方法および装置、それを用いた通信システム
US8149726B2 (en) * 2007-01-04 2012-04-03 Industrial Technology Research Institute Wireless communication system and method
CN101355497B (zh) * 2007-04-06 2013-08-21 中兴通讯美国公司 用于无线中继网络中的多播/广播业务的数据同步
KR101400753B1 (ko) * 2008-01-02 2014-05-29 연세대학교 산학협력단 서비스 패킷의 서비스 품질 레벨에 따라 동작하는 중계기및 중계기의 동작 방법
US7978796B2 (en) * 2008-07-31 2011-07-12 Freescale Semiconductor, Inc. Recovering symbols in a communication receiver
JP2010199657A (ja) * 2009-02-23 2010-09-09 Oki Electric Ind Co Ltd 時分割多重符号化送信信号生成方法及び時分割多重符号化送信信号生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1943267A (zh) * 2004-04-13 2007-04-04 西门子公司 确定自适应路径光网络中的延迟的方法
CN101166073A (zh) * 2006-10-17 2008-04-23 株式会社Ntt都科摩 一种应用于多跳通信系统的协作分集通信方法
US20100061264A1 (en) * 2008-09-11 2010-03-11 Verizon Business Network Services Inc. Method and system for identifying network paths

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9961695B2 (en) 2012-11-05 2018-05-01 Telefonaktiebolaget L M Ericsson (Publ) Scheduling in mobile communications systems
EP2915361B1 (en) * 2012-11-05 2018-10-24 Telefonaktiebolaget LM Ericsson (publ) Scheduling in mobile communications systems
JP2014239272A (ja) * 2013-06-06 2014-12-18 京セラ株式会社 移動体通信システムおよび基地局
CN105849571A (zh) * 2013-06-24 2016-08-10 Zte维创通讯公司 用于调整对时间要求严格的功能的最大持续时间的方法及系统
WO2023109743A1 (zh) * 2021-12-17 2023-06-22 华为技术有限公司 传输数据的方法和通信装置

Also Published As

Publication number Publication date
CN102783205B (zh) 2016-08-24
CN102783205A (zh) 2012-11-14
US20130028127A1 (en) 2013-01-31
JP2013526131A (ja) 2013-06-20
EP2557837A1 (en) 2013-02-13
KR101457347B1 (ko) 2014-11-03
JP5667285B2 (ja) 2015-02-12
TWI544818B (zh) 2016-08-01
TW201208406A (en) 2012-02-16
KR20130001304A (ko) 2013-01-03
EP2557837A4 (en) 2013-12-04
BR112012025353A2 (pt) 2016-06-28

Similar Documents

Publication Publication Date Title
TWI544818B (zh) Methods and devices for determining and adjusting the target packet delay for link segments
JP6635350B2 (ja) デュアルコネクティビティのための効率的アップリンクスケジューリングメカニズム
KR102630472B1 (ko) 통합된 액세스 및 백홀 베어러 관리를 위한 방법, 장치 및 시스템
JP6050265B2 (ja) 無線通信システムでバッファー状態報告を伝送する方法及び装置
US11496923B2 (en) Data transmission method and apparatus used in wireless backhaul network
TWI514899B (zh) A method, a device, and a node for determining the quality of service of each segment of the link
JP6208756B2 (ja) ソフトセルアップリンク優先順位付けのための方法及びノード
WO2011012046A1 (zh) 确定及维护多跳网络服务质量参数的方法、装置和系统
CN113259987A (zh) 无线通信系统中递送中继的缓冲区状态报告的方法和设备
WO2021065763A1 (ja) 通信制御方法
WO2012037819A1 (zh) 下行中继回程资源分配设备和方法
US20220225383A1 (en) Communication control method and relay apparatus
JP6790508B2 (ja) データ流量制御方法、無線基地局装置、サーバ装置、中継装置、通信システム、プログラム
WO2020256606A1 (en) Methods and radio access network nodes of an integrated access and backhaul communication network
JP7309890B2 (ja) 通信制御方法及び中継装置
US20240031822A1 (en) Communication control method
WO2022239707A1 (ja) 通信制御方法
CN116530136A (zh) 用于管理无线通信网络中的服务质量的方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064957.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849251

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010849251

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13639157

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013502978

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127028212

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 9335/CHENP/2012

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012025353

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012025353

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121004