WO2011012046A1 - 确定及维护多跳网络服务质量参数的方法、装置和系统 - Google Patents

确定及维护多跳网络服务质量参数的方法、装置和系统 Download PDF

Info

Publication number
WO2011012046A1
WO2011012046A1 PCT/CN2010/075103 CN2010075103W WO2011012046A1 WO 2011012046 A1 WO2011012046 A1 WO 2011012046A1 CN 2010075103 W CN2010075103 W CN 2010075103W WO 2011012046 A1 WO2011012046 A1 WO 2011012046A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
relay
transmission path
qos
maintained
Prior art date
Application number
PCT/CN2010/075103
Other languages
English (en)
French (fr)
Inventor
常宁娟
王可
彭炎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP10803879.5A priority Critical patent/EP2448354B1/en
Publication of WO2011012046A1 publication Critical patent/WO2011012046A1/zh
Priority to US13/361,203 priority patent/US8681652B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/062Generation of reports related to network traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • H04W84/22Self-organising networks, e.g. ad-hoc networks or sensor networks with access to wired networks

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a method, apparatus and system for determining and maintaining multi-hop network service quality parameters. Background technique
  • a relay node After a relay node (RN) is introduced in the Long Term Evolution (LTE) system, the user equipment (User Equipment, UE for short) may need to access the base station through the RN, and the base station is an evolved Node B ( Evolved Node B (abbreviated as eNB), so that the air interface (referred to as air interface) of the UE to the eNB is changed from single hop to multi-hop.
  • Evolved Node B abbreviated as eNB
  • the maintenance of the Quality of Service (QoS) for the air interface from the UE to the eNB is generally implemented by scheduling.
  • the scheduling is mainly performed by the eNB for uplink and downlink scheduling.
  • the general scheduling mainly considers the following parameters: channel quality, QoS parameter information, UE sleep period and measurement time slot (GAP), service status information, and system parameters ( Such as system bandwidth).
  • the policy and charging rule function (PCRF) first uses the policy and charging control (PCC) decision mechanism to determine the QoS parameters carried by the Evolved Packet System (EPS), in the core network.
  • PCC policy and charging control
  • the device sends the QoS parameters of the EPS bearer to the eNB by using the bearer setup request message.
  • the eNB After receiving the bearer setup request message, the eNB maps the QoS parameters of the EPS bearer to the QoS parameters of the radio bearer (Radio Bear, RB for short).
  • the corresponding RB configuration is performed and used as a scheduling entry for the air interface.
  • the eNB When the UE accesses the eNB through a single hop, the eNB only needs to combine and combine the QoS parameters of the RB.
  • Other scheduling entries are scheduled for single-hop links to implement QoS maintenance for bearers.
  • the air interface will change from single hop to multi-hop. Different from the scheduling of UE to eNB link in single hop, in the case of multi-hop, scheduling is divided into centralized scheduling and distributed scheduling. It is assumed that the transmission path of the UE to the eNB is UE ⁇ ->RN1 ⁇ ->RN2 ⁇ ->eNB, that is, the UE to the eNB passes two RNs, and the air interface is three hops; wherein, " ⁇ ->,” is a double arrow, indicating The link between the left node of the double arrow and the node on the right side can exchange signaling and data information between the two nodes.
  • the eNB In the distributed scheduling mode, the eNB is responsible for the scheduling of the RN2 ⁇ ->eNB link, and the RN2 is responsible for the pair. RN1 ⁇ —> scheduling of the RN2 link, the RN1 is responsible for scheduling the UE ⁇ ->RN1 link.
  • the parameters considered for the scheduling of the UE to the eNB link in the single hop will no longer be applicable. For example, the most obvious one is the delay parameter in the QoS parameter.
  • the service data introduces considerable delay in the process of each hop relay, and for time division duplex mode (TDD) and frequency division duplex mode (FDD). The system has different degrees of impact.
  • the existing eNB determines the QoS parameters to be maintained by the RN for the link that the RN is responsible for according to the QoS parameters to be maintained on the UE ⁇ -> eNB transmission path, and Delivered to each RN to implement the responsibility of each RN Link scheduling, to maintain QoS mechanism would not meet the maintenance requirements for QoS of multi-hop scenarios.
  • Embodiments of the present invention provide methods, apparatuses, and systems for determining and maintaining multi-hop network quality of service parameters.
  • An embodiment of the present invention provides a method for determining a quality of service parameter of a multi-hop network, including: acquiring a quality of service QoS parameter of a relay link on the transmission path during a data transmission process on a transmission path from the user equipment to the base station a statistical value, the statistic value of the QoS parameter of the relay link is a statistical value obtained by performing statistics on the changed QoS parameters on the relay link;
  • the embodiment of the present invention further provides a method for maintaining quality of service of a multi-hop network, including: receiving a quality of service QoS to be learned by the hop link sent by the base station during data transmission on a transmission path of the user equipment to the base station a parameter, the QoS parameter to be learned by the local hop link is a QoS parameter statistic value of the relay link on the transmission path obtained by the base station, combined with the QoS parameter to be maintained on the transmission path, and the transmission Determining, by the air interface topology information on the path, the local hop link is a direct link of the user equipment to each of the relay nodes between the relay nodes on the transmission path, the local hop The link includes an access link and the relay link on the transmission path;
  • the embodiment of the invention further provides a base station, including:
  • an obtaining module configured to obtain, in a data transmission process on a transmission path of the user equipment to the base station, a QoS parameter statistic value of the relay link on the transmission path, where the relay chain is calculated;
  • a determining module configured to determine, according to the QoS parameter statistics value of the relay link acquired by the acquiring module, combined with the QoS parameter to be maintained on the transmission path and the air interface topology information on the transmission path, The access link on the transmission path and the QoS parameters to be learned by the relay link.
  • the embodiment of the invention further provides a relay node, including:
  • a receiving module configured to receive, during a data transmission process on a transmission path of the user equipment to the base station, a quality of service QoS parameter to be learned by the local hop link sent by the base station, where the QoS parameter to be learned by the local hop link is Determining, by the base station, the QoS parameter statistics of the relay link on the transmission path, and combining the QoS parameters to be maintained on the transmission path with the QoS parameters on the transmission path Determined by the air interface topology information, the local hop link is a direct link of the user equipment to each of the relay nodes between the relay nodes on the transmission path, and the local hop link includes An access link and the relay link on the transmission path;
  • An acquiring module configured to be learned according to the local hop link received by the receiving module
  • a scheduling module configured to perform scheduling decision on the local hop link to maintain a QoS of a service flow corresponding to the QoS parameter according to the QoS parameter to be maintained by the hop link obtained by the acquiring module.
  • the embodiment of the invention further provides a multi-hop network service quality maintenance system, comprising: the base station as described above, and the relay node as described above.
  • the method, the device and the system for determining and maintaining the multi-hop network service quality parameter in the embodiment of the present invention can achieve the following technical effects: in the data transmission process on the transmission path of the user equipment to the base station, When the actual transmission situation changes, the eNB can learn a changed QoS parameter statistics value, and calculate the QoS parameters to be maintained by each link on the transmission path, so that the eNB can determine its transmission path to the UE in real time. QoS parameters to be maintained for each link.
  • the eNB may also send the QoS parameters to be maintained by each of the above-mentioned calculated links to each RN, so that the RN can obtain the QoS information required for scheduling the local hop link in real time, thereby real-time realizing the QoS of the service flow. maintain. DRAWINGS
  • FIG. 1 is a schematic diagram of a network architecture after an LTE system is introduced in an LTE system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of an embodiment of a method for determining a multi-hop network service quality parameter according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart diagram of an embodiment of a method for maintaining quality of a multi-hop network service according to an embodiment of the present invention.
  • FIG. 5 is a signaling flowchart of a two-hop uplink distributed scheduling process according to an embodiment of the present invention.
  • FIG. 6 is a signaling flowchart of a three-hop downlink distributed scheduling process according to an embodiment of the present invention.
  • FIG. 7 is a signaling flowchart of a three-hop uplink distributed scheduling process according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a relay node according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a multi-hop network monthly good quality maintenance system according to an embodiment of the present invention. Detailed ways
  • FIG. 1 is a schematic diagram of a network architecture after an LTE system is introduced in an LTE system according to an embodiment of the present invention.
  • the UE may access the eNB through one or more RNs, for example, UE1 accesses the eNB through RN3, and UE2 accesses the eNB through R1 and R2.
  • the link between the eNB and the R and the RN and the RN is called a relay link
  • the link between the RN and the UE and between the eNB and the UE is called an access link.
  • the R involved in the embodiment of the present invention has the following characteristics: It has scheduling capability for UEs within its attached range.
  • the link between the UE, the RN1, the RN2, and the eNB is represented as UE ⁇ ->RN1 ⁇ ->R 2 ⁇ ⁇ >eNB, where “ ⁇ >” is a double arrow, indicating the link between the left node of the double arrow and the node on the right, and can exchange signaling and data information between the two nodes.
  • the eNB is only responsible for the resource scheduling allocation on the last hop link RN2 ⁇ -> eNB link on the transmission path of the UE ⁇ ->eNB, and the intermediate RN2 is responsible for the RN1 ⁇ ->RN2 link.
  • Resource scheduling allocation the access RN1 is responsible for resource scheduling allocation on the UE ⁇ ->RN1 link, and resource scheduling for each hop link is required.
  • the QoS requirements that need to be met on the entire air interface ie, the transmission path from the UE to the eNB
  • a link that each node (including R and eNB) is responsible for may be referred to as a local hop link. Therefore, in the distributed scheduling mode for maintaining the QoS, the RN needs to perform the scheduling decision of the hop link according to the QoS parameters that the hop link that is responsible for the hop is required to be maintained, where the QoS parameter is the RN performing the hop link.
  • the scheduling decision is a kind of scheduling parameter that needs to be obtained, that is, the QoS parameter to be maintained by the hop link. Therefore, the RN needs to obtain the QoS parameters that need to be maintained on the hop link that it is responsible for before scheduling. Then, according to the scheduling mechanism in the LTE system, the RN makes scheduling decisions according to the QoS parameters that need to be maintained on the hop link that it is responsible for. .
  • the multi-hop network service quality maintenance method can adjust the QoS parameters to be maintained by the RN responsible for scheduling the link in real time by interacting with the eNB in the data transmission process, thereby coordinating and maintaining the UE ⁇ ->eNB. QoS on the transmission path.
  • FIG. 2 is a schematic flowchart of an embodiment of a method for determining a multi-hop network service quality parameter according to an embodiment of the present invention. Referring to the network architecture shown in Figure 1, it is assumed that the UE needs to go through one RN or two RNs to access the eNB. As shown in Figure 2, the method includes the following parts.
  • the eNB acquires the UE ⁇
  • the statistic value of the QoS parameter of the relay link is a statistical value obtained by counting the changed QoS parameters on the relay link.
  • the delay statistics parameter after counting the multiple delay parameters that are changed on the obtained relay link for a period of time.
  • the eNB determines the access link and the relay link on the transmission path according to the obtained QoS parameter statistics of the relay link, combined with the QoS parameters to be maintained on the transmission path and the air interface topology information on the transmission path.
  • the statistic value of the QoS parameter may be: a statistic value of the QoS parameter that is obtained, for example, a delay statistic parameter, when the actual transmission condition changes during the transmission of the data on the transmission link.
  • the QoS parameters to be learned by the access link and the relay link determined by the eNB may be QoS parameters to be maintained by the access link and the relay link, or may be in addition to the access link and For each direct link of the UE to each R between the Rs, the present hop link includes an access link (UE ⁇ ->R) and a relay link (R ⁇ ->RN or R ⁇ ->eNB) .
  • the respective direct links of the RNs are:
  • the direct link of the RN2 is RN1 ⁇ ->RN2, and the direct link of the RN1 For UE ⁇ ->RN1.
  • the scheduling decision controls the data transmission on the link through the parameters acquired by the node responsible for scheduling a certain link, and the parameters to be considered in the scheduling include: channel quality, QoS information, sleep period of the UE, and measurement GAP, Status information and system parameters (such as system bandwidth) of the service.
  • the parameters to be considered in the scheduling include: channel quality, QoS information, sleep period of the UE, and measurement GAP, Status information and system parameters (such as system bandwidth) of the service.
  • how to obtain the QoS information required for scheduling the local hop link in real time according to the change of the QoS parameter is mainly introduced in the data transmission process.
  • QoS parameters mentioned in the embodiment of the present invention are all QoS parameters for a certain service flow, and the following embodiments are also the same and will not be further described.
  • the method for determining the multi-hop network service quality parameter provided by the embodiment in the data transmission process on the transmission path of the user equipment to the base station, when the actual transmission situation changes, the eNB can obtain a changed QoS parameter statistics value.
  • the QoS parameters to be maintained by the links on the transmission path are calculated, so that the eNB can determine the QoS parameters to be maintained on each link of the transmission path to the UE in real time.
  • the eNB may further include the eNB separately sending the QoS parameters to be learned by the access link and the relay link to the responsible scheduling.
  • Each RN of the access link and the relay link is accessed so that the RN can schedule the updated QoS parameters in real time.
  • FIG. 3 is a schematic flowchart of an embodiment of a method for maintaining quality of a multi-hop network service according to an embodiment of the present invention. From the R side, corresponding to the foregoing method for determining a multi-hop network service quality parameter, as shown in FIG. 3, the method for maintaining multi-hop network service quality includes the following parts.
  • the RN receives the QoS parameter to be learned by the local hop link sent by the eNB.
  • the QoS parameter to be learned by the hop chain is based on the QoS parameter statistics of the relay link on the transmission path of the acquired UE ⁇ ->eNB, and combined with the QoS parameters and the transmission path to be maintained on the transmission path.
  • the air interface topology information is determined.
  • the hop link is a direct link of each relay node between the RNs on the transmission path of the UE to the UE ⁇ ->eNB, and the hop link may include an access link (UE ⁇ ->RN) and Following the link (RN ⁇ ->RN or RN ⁇ ->eNB).
  • the RN obtains the QoS parameters to be maintained by the hop link according to the QoS parameters to be learned by the hop link, and performs scheduling decision on the hop link to maintain the QoS of a service flow corresponding to the QoS parameter.
  • the method for maintaining the service quality of the multi-hop network provided by the embodiment, in the data transmission process on the transmission path of the user equipment to the base station, when the actual transmission situation changes, the eNB can obtain a change statistic value of the QoS parameter, and The QoS parameters to be maintained by each link on the transmission path are calculated, and the eNB sends the QoS parameters to be maintained to each RN by the eNB, so that the RN can acquire the hop link in real time. The QoS information is thus maintained in real time for the QoS of the traffic flow.
  • the technical solutions of the above embodiments are described in detail in the following four cases.
  • the four scenarios include: a two-hop downlink distributed scheduling process, a two-hop uplink distributed scheduling process, a multi-hop downlink distributed scheduling process, and a multi-hop uplink distributed scheduling process.
  • Many of the processes take three hops as an example.
  • the transmission process the following steps are performed only when the actual transmission condition changes and the QoS parameters to be maintained on a hop link need to be recalculated. Otherwise, the RN responsible for scheduling each hop link still uses the previous allocation.
  • the QoS parameter schedules the hop link. As shown in Figure 4, the following sections are included.
  • the RN measures a reference signal (Reference Signal, referred to as RS) sent by the eNB, and feeds back to the eNB through a channel quality indicator (CQI) in the form of a measurement result through an uplink channel at a next moment.
  • RS Reference Signal
  • CQI channel quality indicator
  • the eNB acquires the QoS parameter statistics value of the relay link (eNB_>RN) on the transmission path of the eNB->UE.
  • the 402 is the eNB that knows the QoS parameter statistics of the direct relay link on the transmission path, and the direct relay link is the direct relay link eNB->RN of the eNB and the RN.
  • the direct relay link is the direct relay link eNB->RN of the eNB and the RN.
  • a one-way arrow indicating that the left node of the one-way arrow sends a unidirectional link of signaling messages and data information to the right node.
  • the data is sent from the eNB to the RN, and then the RN returns a response message to the eNB, so that the eNB can learn that the eNB sends the data to the RN before the transmission.
  • the QoS parameter statistic value, the QoS parameter statistic value in the embodiment is as follows.
  • the eNB determines, according to the obtained downlink delay statistical parameter, the QoS parameter to be maintained on the transmission path and the air interface topology information on the transmission path, to determine the access link (RN->UE) and the eNB->RN to be learned. QoS parameters.
  • the QoS parameters (the delay parameters in this embodiment) to be learned by the RN->UE and the eNB->RN include: RN->UE and eNB->delay parameters to be maintained by the RN itself; or RN->UE Knowing the other relay links except RN->the UE's own delay parameters to be maintained, ie the delay parameters to be maintained by the eNB->RN, and the eNB->RN to know that the eNB->RN itself needs to maintain Delay parameter outside the parameter RN->UE to be maintained.
  • the eNB sends the QoS parameters to be learned by the RN->UE to the RN responsible for scheduling the RN->UE.
  • the eNB->RN is responsible for scheduling by the eNB, so the eNB only needs to send the QoS parameters to be learned by the RN->the UE that the RN is responsible for scheduling to the RN.
  • the sending process may be performed by the eNB periodically or by event triggering the QoS parameter to be learned by the eNB in the bearer update process to the RN responsible for scheduling the RN->UE, the RN->UE
  • the QoS parameters to be learned can be carried in a Radio Resource Control (RRC) message.
  • the event triggering may be a change in the statistical downlink delay statistical parameter. Triggered when the threshold is reached.
  • the eNB performs scheduling decision according to the QoS parameter to be maintained by the eNB->RN determined in 403, and combined with various other scheduling parameters.
  • the eNB indicates an available downlink shared channel (DL-SCH) resource, a modulation and coding scheme, an antenna selection scheme, and the like to the RN through a Down Link Assignment message.
  • DL-SCH downlink shared channel
  • the eNB sends downlink data to the RN.
  • the UE measures the RS sent by the RN, and feeds back to the RN through the CQI in the form of a measurement result through the uplink channel at the next moment.
  • the RN obtains the QoS parameter to be maintained by the hop link according to the QoS parameter that the eNB obtains from the eNB, that is, the RN->UE.
  • the QoS parameter that may be maintained by the eNB may also be the QoS parameter to be maintained by other links except the hop link.
  • the RN needs to maintain the QoS parameters according to other received links.
  • the QoS parameters to be maintained on the transmission path and the air interface topology information on the transmission path are calculated to obtain the QoS parameters to be maintained by the hop link.
  • the RN performs a scheduling decision according to the obtained QoS parameter to be maintained by the local hop link, and combines various other scheduling parameters to maintain the QoS of the service flow on the RN->UE.
  • the RN indicates available DL-SCH resources, modulation and coding schemes, antenna selection schemes, and the like to the UE through a downlink assignment message.
  • the RN sends downlink data to the UE.
  • the eNB determines the QoS parameters to be maintained by the RN for the scheduled access link by using the obtained QoS parameter statistics, and sends the QoS parameters to the RN before the next scheduling decision in the data transmission process. To adjust the scheduling of the RN to the access link in real time. As shown, the following sections are included.
  • the R sends the RS sent by the UE to obtain the status of the uplink channel, and also needs to receive the Buffer Status Report (BSR) sent by the UE, and obtain the current traffic information reported by the UE.
  • BSR Buffer Status Report
  • the UE needs to send a Schedule Request (SR) message to the RN every time there is data transmission, and the message is used to obtain an uplink shared channel (UL-SCH) resource.
  • SR Schedule Request
  • UL-SCH uplink shared channel
  • the RN periodically reports the QoS parameter statistics of the relay link (RN_>eNB) on the transmission path to the eNB.
  • R Before the RN performs the current scheduling and data transmission on the access link (UE->RN), assuming that the actual transmission situation has changed, then before the current scheduling decision, R will The obtained QoS parameter statistics of the R->eNB are reported to the eNB.
  • the reporting process is triggered periodically or by an event, that is, the reporting is not necessarily performed at the location of 503, as long as it is at any time before the scheduling decision.
  • This embodiment takes 503 as an example;
  • the RN->eNB's QoS parameter statistics obtained by the RN exceeds the threshold and is triggered.
  • the reported RN->eNB QoS parameter statistics may be carried in the RRC message for reporting in the bearer update process.
  • the QoS parameter statistics value in the embodiment is an example of the above-mentioned row delay statistical parameter.
  • the eNB After receiving the uplink delay statistics parameter of the RN_>eNB on the transmission path of the UE->eNB that is reported by the eNB, the eNB combines the obtained uplink delay statistics parameter with the QoS parameter to be maintained on the transmission path. And the air interface topology information on the transmission path determines the QoS parameters to be learned by the UE->RN and RN->eNB.
  • the QoS parameters (the delay parameters in this embodiment) to be learned by the UE->R and R_>eNB include: UE->RN and RN->the delay parameter to be maintained by the eNB itself; or UE->RN Obtaining the delay parameters of the RN->eNB to be maintained in addition to the delay parameters to be maintained by the UE->RN, and the RN->eNB should be aware of the delay parameters to be maintained by the RN->eNB itself.
  • the eNB sends the QoS parameter to be learned by the UE->R to the R that is responsible for scheduling the UE->R.
  • the RN->eNB is responsible for scheduling by the eNB, so the eNB only needs to send the QoS parameters to be learned by the UE->RN that the RN is responsible for scheduling to the RN.
  • the sending process may be that, during the bearer update process, the eNB sends the QoS parameter learned by the access chain to the RN responsible for scheduling the access link periodically or by an event.
  • the QoS parameter to be learned may be carried in the RRC message, where the event triggering may be triggered when the change of the received uplink delay statistical parameter reaches the threshold.
  • the RN obtains the QoS parameters maintained by the hop chain according to the QoS parameters that the hop link obtained from the eNB, that is, the UE->RN, is learned.
  • the QoS parameters that may be obtained from the eNB, that is, the hop chain maintenance may also be the QoS parameters to be maintained by other links except the hop link.
  • the RN needs to maintain the QoS parameters according to other received links.
  • the QoS parameters to be maintained on the transmission path and the air interface topology information on the transmission path are calculated to obtain the QoS parameters to be maintained by the hop link.
  • the RN performs scheduling decisions according to the QoS parameters to be maintained by the hop link obtained by the RN, and combined with other scheduling parameters.
  • the RN indicates, by using an uplink grant (UL grant), an available UL-SCH resource, a modulation and coding mode, and an antenna selection scheme.
  • UL grant uplink grant
  • available UL-SCH resource available UL-SCH resource
  • modulation and coding mode a modulation and coding mode
  • antenna selection scheme an antenna selection scheme
  • the UE sends uplink data to the RN.
  • the eNB measures the RS sent by the R to obtain the status of the uplink channel, and also needs to receive the BSR sent by the RN, and obtain the current traffic information reported by the RN.
  • the RN needs to send an SR message to the eNB each time there is data transmission, and the message is used to obtain a UL-SCH resource. 512.
  • the eNB performs scheduling decision according to the determined hop link, that is, the QoS parameter to be maintained by the RN->eNB, and combined with other scheduling parameters.
  • the eNB indicates, by using an uplink 4 grant (UL grant), an available UL-SCH resource, a modulation and coding scheme, an antenna selection scheme, and the like.
  • UL grant uplink 4 grant
  • UL-SCH resource available UL-SCH resource
  • modulation and coding scheme an antenna selection scheme, and the like.
  • the RN sends uplink data to the eNB.
  • the eNB determines the QoS parameters to be maintained by the RN for the scheduled access link by using the obtained QoS parameter statistics, and sends the QoS parameters to the RN before the next scheduling decision in the data transmission process. To adjust the scheduling of the RN to the access link in real time.
  • FIG. 6 is a signaling flowchart of a three-hop downlink distributed scheduling process according to an embodiment of the present invention. During the data transmission process, the following steps are performed only when the actual transmission situation changes and the QoS parameters to be maintained on a hop link need to be recalculated. Otherwise, the RN responsible for scheduling each hop link still uses the previous allocation. The QoS parameters are scheduled for the hop link. As shown in Figure 6, the following sections are included.
  • the RN2 measures the RS sent by the eNB, and feeds back to the eNB through the CQI in the form of the measurement result through the uplink channel at the next moment.
  • the RN2 reports the QoS parameter statistics of the relay link (RN2 -> RN1) on the transmission path to the eNB periodically or by an event.
  • the RN2 before the eNB starts the scheduling decision and data transmission to the eNB->RN2, assuming that the actual transmission situation changes, the RN2 will acquire the RN2_> before the scheduling decision.
  • the QoS parameter statistics of RN1 are uploaded to the eNB.
  • the capping process is triggered periodically or by an event, that is, the upper >3 ⁇ 4 is not necessarily performed at the position of 602, as long as it is at any time before the current scheduling decision, this embodiment takes 602 as an example.
  • the event triggers, for example, the R 2 -> RN1 QoS parameter statistics obtained by R 2 exceeds the threshold value, that is, triggers.
  • the statistics of the QoS parameters of the RN2 -> RN1 of the upper ⁇ can be carried in the RRC message for reporting in the 7- load update process.
  • the QoS parameter statistics value in this embodiment is exemplified by the following line delay statistics parameter. 603.
  • the eNB acquires downlink delay statistics parameters of the relay links (eNB->RN2 and R2->R1) on the eNB->UE transmission path.
  • Other relay links that is, RN2 -> RN2 reported RN2 -> RN1 downlink delay statistics parameters, other relay links are relay links except direct relay links.
  • the eNB determines the access link according to the obtained eNB->RN2 and RN2->RN1 downlink delay statistics parameters, and combines the QoS parameters to be maintained on the transmission path and the air interface topology information on the transmission path. QoS parameters to be learned by RN1 -> UE), RN2 -> RN1 and eNB -> RN2 respectively.
  • the QoS parameters (the delay parameters in this embodiment) to be learned by the RN1 -> UE, RN2 -> RN1 and eNB -> RN2 respectively include: R 1 -> UE, RN2 -> RN1 and eNB -> R 2 Delay parameter to be maintained by itself; or RN1—> UE should know the delay of other relay links except RN1—>the delay parameter to be maintained by the UE itself, ie the delay to be maintained by RN2—>RN1 and eNB—>RN2 Parameters, RN2 -> RN1 should know the delay parameters to be maintained by RN1 -> UE and eNB -> RN2 except for the delay parameters to be maintained by RN2 -> RN1, and eNB -> RN2 should know eNB -> RN2 The delay parameters to be maintained by RN1 -> UE and RN2 -> RN1 outside the delay parameters to be maintained by itself.
  • the eNB sends the QoS parameters learned by RN2->RN1 to the RN2 responsible for scheduling the RN2->RN1, and sends the QoS parameters to be learned by the RN1->UE to the RN1 responsible for scheduling the RN1->UE.
  • the eNB->RN2 is the eNB responsible for scheduling, so the eNB only needs to send the QoS parameters to be learned by the RN2->RN1 that R2 is responsible for scheduling to R2, and the RN1->UE that the RN1 is responsible for scheduling
  • the learned QoS parameters are sent to RN1.
  • the sending process may be that, during the bearer update process, the eNB periodically or through an event triggers sending RN2—>R1 and R1—> the QoS parameters to be learned by the UE to the R 2 and RN1 responsible for scheduling, the QoS.
  • the parameters can be carried in the RRC message.
  • the event triggering may be triggered when the statistical downlink delay statistical parameter changes to a threshold value.
  • the eNB performs scheduling decision according to the QoS parameter to be maintained by the eNB->R2 determined in 604, and combined with various other scheduling parameters.
  • the eNB indicates available DL-SCH resources, a modulation and coding scheme, an antenna selection scheme, and the like to the RN2 through a Down Link Assignment message.
  • the eNB sends downlink data to the RN2.
  • the RN1 measures the RS sent by the RN2, and feeds back to the RN2 through the CQI in the form of the measurement result through the uplink channel at the next moment.
  • the RN2 obtains the QoS parameter to be maintained by the hop link according to the QoS parameter that is acquired by the eNB in the 605, that is, the QoS parameter to be learned by the RN2->RN1.
  • the QoS parameter that may be obtained from the eNB may also be the QoS parameter to be maintained by other links except the hop link.
  • the B' RN needs to be based on other received
  • the QoS parameters to be maintained on the link, the QoS parameters to be maintained on the transmission path, and the air interface topology information on the transmission path are calculated to obtain the QoS parameters to be maintained by the hop link.
  • the RN2 performs a scheduling decision according to the acquired QoS parameters of the local hop link, and combines various other scheduling parameters to maintain the QoS of the service flow on the access link.
  • the RN2 indicates the available DL-SCH resources, modulation coding mode, antenna selection scheme, and the like to the RN1 through the downlink assignment message.
  • the RN2 sends downlink data to the RN1.
  • the UE measures the RS sent by the RN1, and feeds back to the RN1 through the CQI in the form of the measurement result through the uplink channel at the next moment.
  • the RN1 obtains the QoS parameter to be maintained by the hop link according to the QoS parameter that the RN1-> UE needs to learn according to the MME obtained in the 605.
  • the QoS parameters that may be maintained by the eNB that is, the QoS parameters to be maintained by the hop link, may also be the QoS parameters to be maintained by other links except the hop link.
  • the RN1 needs to be based on other links received.
  • the QoS parameters to be maintained, the QoS parameters to be maintained on the transmission path, and the air interface topology information on the transmission path are calculated to obtain the QoS parameters to be maintained by the hop link.
  • the RN1 performs a scheduling decision according to the acquired QoS parameters to be maintained by the local hop link, and combines various other scheduling parameters to maintain the QoS of the service flow on the access link.
  • the RN1 indicates the available DL-SCH resources, modulation coding mode, antenna selection scheme, and the like to the UE through a downlink assignment message.
  • the RN1 sends downlink data to the UE.
  • the eNB determines the QoS parameters to be maintained by the RN1 and the RN2 for the scheduled access link by using the obtained QoS parameter statistics, and sends the next scheduling decision in the data transmission process. For RN1 and RN2, adjust the scheduling of the links that RN1 and RN2 are responsible for in real time.
  • FIG. 7 is a signaling flowchart of a three-hop uplink distributed scheduling process according to an embodiment of the present invention. As shown in Figure 7, the following sections are included.
  • the RN1 measures the RS sent by the UE to obtain the status of the uplink channel, and further needs to receive the BSR sent by the UE, and obtain the current traffic information reported by the UE.
  • the UE needs to send an SR message to the RN1 every time there is data transmission, and the message is used to obtain a UL-SCH resource.
  • the RN1 and the RN2 report the QoS parameter statistics of the relay links (R1 -> RN2 and R2 -> eNB) on the transmission path to the eNB periodically or through event triggering.
  • RN1 and R2 Before the RN1 performs the current scheduling decision and data transmission on the access link (UE->RN1), assuming that the actual transmission situation changes, before the current scheduling decision, RN1 and R2 The QoS of R 1 — > R 2 and R 2 — > eNB obtained separately The parameter statistics are reported to the eNB.
  • the reporting process is triggered periodically or by an event, that is, the reporting is not necessarily performed at the location of 703, and may be reported at any time before the scheduling decision.
  • This embodiment takes 703 as an example;
  • the statistics of the QoS parameters of the RN1 -> RN2 and RN2 -> eNBs may be carried in the RRC message for reporting in the bearer update process.
  • the QoS parameter statistics value in the embodiment is an example of the above-mentioned row delay statistical parameter.
  • the eNB receives the uplink delay statistics parameters of the RN1 —> RN2 and the RN2 —> eNB on the transmission path of the UE->eNB reported by the RN1 and the RN2, and the eNB combines the obtained uplink delay statistics parameter according to the obtained uplink delay statistics parameter.
  • the QoS parameters to be maintained on the path and the air interface topology information on the transmission path determine the QoS parameters to be learned by UE->RN1, RN1->RN2 and RN2->eNB.
  • the QoS parameters (the delay parameters in this embodiment) to be learned by the UE -> R 1 , R 1 -> RN2 and R 2 -> eNB include: UE -> RN1, RN1 -> RN2 and RN2 - > eNB itself Delay parameter to be maintained; or UE->RN1 to know the delay parameters to be maintained by RN1 -> RN2 and RN2 -> eNB except for the delay parameter to be maintained by UE->RN1 itself, RN1-> RN2 need to know In addition to the delay parameters of the RN1 -> RN2 itself to be maintained, the delay parameters of the UE -> RN1 and RN2 -> eNB, and the RN2 -> eNB need to know the delay parameters to be maintained by the RN2 -> eNB itself.
  • the eNB sends the QoS parameter to be learned by the UE->RN1 to the RN1 responsible for scheduling the UE->RN1.
  • the sending process may be: in the bearer update process, the eNB periodically or through an event triggers sending the QoS parameter to be learned by the UE->RN1 to the RN1 responsible for scheduling the UE->RN1, and the UE->RN1 is to be learned.
  • the QoS parameters can be carried in the RRC message.
  • the event triggering may be triggered when the change of the received uplink delay statistical parameter reaches the threshold.
  • the RN1 obtains the QoS parameter of the current hop chain according to the QoS parameter that the hop link obtained from the eNB, that is, the UE->RN1, is learned.
  • the QoS parameter that may be maintained by the eNB, that is, the QoS parameter to be maintained by the hop link may be the QoS parameter to be maintained by other links except the hop link.
  • RN1 needs to be based on other links received.
  • the QoS parameters to be maintained, the QoS parameters to be maintained on the transmission path, and the air interface topology information on the transmission path are calculated to obtain the QoS parameters to be maintained by the hop link.
  • the RN1 performs a scheduling decision according to the QoS parameters to be maintained by the hop link obtained by the RN1, and in combination with other scheduling parameters.
  • the RN1 indicates, by using an uplink grant (UL grant), an available UL-SCH resource, a modulation and coding mode, an antenna selection scheme, and the like.
  • the UE sends uplink data to the RN1.
  • the R2 measures the RS sent by the RN1 to obtain the status of the uplink channel, and needs to receive the BSR sent by the RN1 to obtain the current traffic information reported by the RN1.
  • RN1 needs to send an SR message to RN2 every time there is data transmission, and the message is used to obtain UL-SCH resources.
  • the eNB sends the QoS parameters to be learned by RN1 -> RN2 to RN2 responsible for scheduling RN1 -> RN2.
  • the sending process may be: in the bearer update process, the eNB periodically or through an event triggers sending the QoS parameter to be learned by the RN1 -> RN2 to the RN2 responsible for scheduling the RN1 -> RN2, the RN1 -> RN2 to be learned
  • the QoS parameters can be carried in the RRC message.
  • the event triggering may be triggered when the change of the received uplink delay statistical parameter reaches the threshold.
  • R2 obtains the QoS parameter that is obtained from the eNB, that is, the QoS parameter to be learned by R1—>R2, and obtains the QoS parameter of the current hopping chain.
  • the QoS parameter that may be maintained by the eNB may also be the QoS parameter to be maintained by other links except the hop link.
  • the QoS parameters to be maintained by other links except the local hop link that is, the QoS parameters to be maintained by the UE -> R 1 and RN2 -> eNB
  • R 2 needs to be based on other received
  • the QoS parameters to be maintained on the link, the QoS parameters to be maintained on the transmission path, and the air interface topology information on the transmission path are calculated to obtain the QoS parameters to be maintained by the hop link.
  • the RN2 performs scheduling decisions according to the QoS parameters to be maintained by the hop link obtained by the RN2, and in combination with other scheduling parameters.
  • the RN2 indicates, by using an uplink grant (UL grant), an available UL-SCH resource, a modulation and coding scheme, an antenna selection scheme, and the like to the RN1.
  • UL grant uplink grant
  • available UL-SCH resource a modulation and coding scheme
  • antenna selection scheme and the like to the RN1.
  • the RN1 sends uplink data to the RN2.
  • the eNB measures the RS sent by the RN2 to obtain the status of the uplink channel, and also needs to receive the BSR sent by the RN2 to obtain the current traffic information reported by the RN2.
  • the RN2 needs to send an SR message to the eNB each time there is data transmission, and the message is used to obtain a UL-SCH resource.
  • the eNB performs scheduling decision according to the determined hop link, that is, the QoS parameter to be maintained by the RN2->eNB, and combined with other scheduling parameters.
  • the eNB indicates, by using an uplink 4 grant (UL grant), an available UL-SCH resource, a modulation and coding scheme, an antenna selection scheme, and the like to the RN2.
  • UL grant uplink 4 grant
  • available UL-SCH resource available UL-SCH resource
  • modulation and coding scheme an antenna selection scheme, and the like
  • the RN2 sends uplink data to the eNB.
  • the eNB determines the QoS parameters to be maintained by the RN1 and the RN2 for the scheduled access link by using the obtained QoS parameter statistics, and sends the next scheduling decision in the data transmission process. For RN1 and RN2, adjust the scheduling parameters of RN1 and RN2 to the access link in real time.
  • the eNB calculates the QoS parameters that need to be maintained on a certain link according to the parameters obtained by the eNB.
  • the specific implementation method includes but not For example, in this example, the delay parameter of a certain link is taken as an example, including:
  • the downlink delay statistics parameters of the relay link RN2 -> RN1 reported by the RN2 received by the eNB and the eNB are the i4v 2 and d legs respectively, and the eNB also learns the relay chain of the above two moments by itself.
  • the downlink delay statistics parameters of the eNB->R 2 are respectively ⁇ , d e 2 NB , where the superscript indicates the time of reporting; the eNB can know the downlink of the access link RN1 -> UE according to ⁇ 4 ⁇ 2 , d Delay statistics parameters, respectively .
  • the eNB calculates a delay statistical average d leg, d eNB in a time period between the two moments.
  • the eNB combines the transmission change of the service on each hop link in the time period (such as the mean square error of the delay), and combines the topology of the air interface (such as the hop count of the transmission link) to each hop link.
  • the eNB sets delay parameters DD 2 and D 3 that are required to be maintained by each hop link.
  • the step of the RN acquiring the QoS parameters to be maintained on the transmission path and the air interface topology information on the transmission path is further included.
  • the SI interface of the Mobility Management Entity (MME) of the core network is terminated on the eNB, so that in the bearer setup process, the eNB receives the QoS parameters of the EPS bearer sent by the MME.
  • the eNB carries the QoS parameters and the air interface topology information to be maintained in the RRC connection reconfiguration message or other RRC messages, and sends the QoS parameters to the RNs corresponding to each hop link.
  • the RN directly connected to the eNB, and then the RN forwards the QoS parameters and the air interface topology information to be maintained on the transmission path to the next-level R.
  • the S1 interface of the MME of the core network terminates on the access R, so that during the setup process, the RN can Directly accepting the QoS parameters of the EPS bearer from the MME, and mapping the QoS parameters of the EPS bearer to the QoS parameters of the RB, where the QoS parameters of the RB are to be maintained on the transmission path of the UE ⁇ ->eNB in the embodiment of the present invention.
  • the QoS parameters are obtained, and the air interface topology information is obtained from the eNB.
  • the access RN also needs to transmit back the QoS parameters of the EPS bearer it receives to the eNB.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station includes: an obtaining module 81 and a determining module 82.
  • the obtaining module 81 is configured to obtain the statistic value of the QoS parameter of the relay link on the transmission path during the data transmission process on the transmission path of the user equipment to the base station;
  • the determining module 82 is configured to use the obtaining module 81 according to the obtaining module 81.
  • the base station in this embodiment may further include: a sending module 83 and a requesting module 84.
  • the sending module 83 is configured to separately send the QoS parameters to be learned by the access link and the relay link determined by the determining module 82 to the respective relay nodes responsible for scheduling the access link and the relay link; the requesting module 84 A request for obtaining a QoS parameter statistic value of the relay link on the transmission path is sent to each relay node, so that the obtaining module 81 obtains the QoS parameter statistics value of the relay link.
  • the eNB can learn a changed QoS parameter statistics value and calculate each channel on the transmission path.
  • the QoS parameters to be maintained by the link so that the eNB can determine in real time the QoS parameters to be maintained for each link on the transmission path to the UE.
  • FIG. 9 is a schematic structural diagram of a relay node according to an embodiment of the present invention.
  • the relay node includes: a receiving module 91, an obtaining module 92, and a scheduling module 93.
  • the receiving module 91 The QoS parameter to be learned by the local hop link received by the base station is received by the base station according to the data transmission process on the transmission path of the user equipment to the base station.
  • the QoS parameter statistic value of the relay link on the transmission path is determined by combining the QoS parameter to be maintained on the transmission path and the air interface topology information on the transmission path, where the local hop link is The user equipment to a respective direct link of each of the relay nodes between the relay nodes on the transmission path, the local hop link includes an access link on the transmission path and the middle link
  • the obtaining module 92 is configured to obtain the QoS parameter to be maintained by the local hop link according to the QoS parameter to be learned by the local hop link received by the receiving module 91.
  • the scheduling module 93 is configured to use the acquiring module 92. Obtaining a QoS parameter to be maintained by the local hop link, and performing scheduling decision on the local hop link to maintain a QoS of a service flow corresponding to the QoS parameter.
  • the relay node in this embodiment may further include: an upper >3 ⁇ 4 module 94, configured to periodically report the QoS parameter statistics of the relay link on the transmission path to the base station by using an event.
  • the eNB can learn a changed QoS parameter statistics value and calculate the transmission path.
  • the QoS parameters to be maintained by the eNB are obtained by the eNB, and the eNB can obtain the QoS parameters required for scheduling the local hop link in real time. Real-time maintenance of QoS for service flows.
  • FIG. 10 is a schematic structural diagram of a multi-hop network service quality maintenance system according to an embodiment of the present invention.
  • the multi-hop network quality of service maintenance system includes: a base station 101 and a relay node 102 for multi-hop network quality of service maintenance.
  • the base station 101 for maintaining multi-hop network service quality includes the modules and functions in the foregoing embodiment of FIG. 8;
  • the relay node 102 includes the modules and functions in the foregoing embodiment of FIG. 9; details are not described herein again.
  • the eNB when the actual transmission situation changes during the data transmission process on the transmission path from the user equipment to the base station, the eNB can learn a changed QoS parameter statistics value and calculate The QoS parameters to be maintained by each link on the transmission path, so that the eNB can determine the QoS parameters to be maintained by each link on the transmission path to the UE in real time; the eNB can also calculate the various chains obtained above.
  • the QoS parameters to be maintained are sent to the RNs, so that the RN can obtain the QoS information required for scheduling the hop link in real time, so as to maintain the QoS of the service flow in real time.
  • the program may be implemented by a computer program to instruct related hardware, and the program may be stored in a computer-accessible storage medium, and when executed, the program may include a flow of an embodiment of the methods as described above.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

确定及维护多跳网络服务盾量参数的方法、 装置和系统 本申请要求于 2009 年 7 月 31 日提交中国专利局、 申请号为 200910165457.7、 发明名称为 "确定及维护多跳网络服务质量参数的方法、 装置和系统" 的中国专利申请的优先权, 其全部内容通过引用结合在本申 请中。 技术领域
本发明涉及通信技术领域 , 特别涉及确定及维护多跳网络服务质量参 数的方法、 装置和系统。 背景技术
在长期演进( Long Term Evolution , LTE )系统中引入中继节点( Relay Node, 简称 RN )之后, 用户设备 ( User Equipment, 简称 UE )可能需要 通过 RN接入基站 , 该基站为演进型节点 B ( evolved Node B, 简称 eNB ), 从而使得 UE到 eNB的空中接口 (简称空口) 由单跳变成了多跳。
现有的 LTE 系统中, 对 UE 到 eNB 的空口的月良务质量(Quality of Service, 简称 QoS ) 的维护一般通过调度来实现。 调度主要是由 eNB进行 上行链路和下行链路的调度, 一般调度主要考虑以下参数: 信道质量、 QoS 参数信息, UE 的睡眠周期和测量时隙 (GAP )、 业务的状态信息和系统参 数(如系统带宽) 等。 在承载建立流程中, 首先由策略和计费规则功能 ( PCRF )运用策略与计费控制 (PCC ) 判决机制决策出演进分组系统 ( Evolved Packet System, 简称 EPS )承载的 QoS参数, 核心网中的设备通 过承载建立请求消息将 EPS承载的 QoS参数发送到 eNB, eNB在接收到该 承载建立请求消息后, 会将 EPS承载的 QoS参数映射为无线承载(Radio Bear, 简称 RB )的 QoS参数, 以进行相应的 RB配置并用作空口的调度入 参。 当 UE通过单跳接入 eNB时 , eNB仅需要根据 RB的 QoS参数并结合 其它调度入参进行单跳链路的调度, 从而实现对承载的 QoS维护。
在 LTE系统中引入 R 后, 空口将由单跳变为多跳。 不同于单跳中 UE 到 eNB链路的调度, 在多跳的情况下, 调度又分为集中式调度和分布式调 度两种方式。假设 UE到 eNB的传输路径为 UE<— >RN1<— >RN2<— >eNB, 即 UE到 eNB经过了两个 RN, 空口为三跳; 其中, "<—>,, 为双箭头, 表 示双箭头左侧节点和右侧节点间的链路 , 可以在两个节点间交互信令和数 据信息。在分布式调度方式中,由 eNB负责 RN2<—>eNB链路的调度, RN2 负责对 RN1<—>RN2链路的调度, RN1负责对 UE<—>RN1链路的调度。 在该分布式调度方式中, 单跳中的 UE到 eNB链路的调度所考虑的参数将 不再适用, 例如, 最显而易见的就是 QoS参数中的时延参数, 业务数据在 每跳中继的过程中, 都会引入可观的时延, 并且对于时分双工模式(TDD ) 和频分双工模式(FDD ) 系统而言, 影响的程度也不尽相同。 因此, 现有 的 eNB根据 UE<— >eNB传输路径上要维护的 QoS参数来确定各个 RN对 其负责的链路要维护的 QoS参数, 并下发到各个 RN上来实现各个 RN对 其负责的链路的调度, 以维护 QoS的机制将不能满足多跳情况下对 QoS的 维护需求。 发明内容
本发明实施例提供了确定及维护多跳网络服务质量参数的方法、 装置 和系统。
本发明实施例提供一种确定多跳网络服务质量参数的方法, 包括: 在用户设备到基站的传输路径上的数据传输过程中, 获取所述传输路 径上的中继链路的服务质量 QoS参数统计值, 所述中继链路的 QoS参数统 计值为对所述中继链路上变化的 QoS参数进行统计后的统计值;
根据所述中继链路的 QoS参数统计值, 并结合所述传输路径上要维护 的 QoS参数和所述传输路径上的空口拓朴信息, 确定所述传输路径上的接 入链路和所述中继链路要获知的 QoS参数。
本发明实施例还提供一种维护多跳网络服务质量的方法, 包括: 在用户设备到基站的传输路径上的数据传输过程中, 接收所述基站发 送的本跳链路要获知的服务质量 QoS参数, 所述本跳链路要获知的 QoS参 数是基站根据获取的所述传输路径上的中继链路的 QoS参数统计值, 并结 合所述传输路径上要维护的 QoS参数和所述传输路径上的空口拓朴信息确 定的 , 所述本跳链路为所述用户设备到所述传输路径上的各个中继节点间 的所述各个中继节点各自的直达链路, 所述本跳链路包括所述传输路径上 的接入链路和所述中继链路;
根据接收到的所述本跳链路要获知的 QoS参数, 获取所述本跳链路要 维护的 QoS参数, 对所述本跳链路进行调度决策以维护所述 QoS参数对应 的一业务流的 QoS。
本发明实施例还提供一种基站, 包括:
获取模块, 用于在用户设备到基站的传输路径上的数据传输过程中, 获取所述传输路径上的中继链路的服务质量 QoS参数统计值, 所述中继链 计值;
确定模块, 用于根据所述获取模块获取的所述中继链路的 QoS参数统 计值, 并结合所述传输路径上要维护的 QoS参数和所述传输路径上的空口 拓朴信息, 确定所述传输路径上的接入链路和所述中继链路要获知的 QoS 参数。
本发明实施例还提供一种中继节点, 包括:
接收模块, 用于在用户设备到基站的传输路径上的数据传输过程中, 接收所述基站发送的本跳链路要获知的服务质量 QoS参数, 所述本跳链路 要获知的 QoS参数是基站根据获取的所述传输路径上的中继链路的 QoS参 数统计值, 并结合所述传输路径上要维护的 QoS参数和所述传输路径上的 空口拓朴信息确定的 , 所述本跳链路为所述用户设备到所述传输路径上的 各个中继节点间的所述各个中继节点各自的直达链路, 所述本跳链路包括 所述传输路径上的接入链路和所述中继链路;
获取模块, 用于根据所述接收模块接收到的所述本跳链路要获知的
QoS参数, 获取所述本跳链路要维护的 QoS参数;
调度模块, 用于根据所述获取模块获取的所述本跳链路要维护的 QoS 参数, 对所述本跳链路进行调度决策以维护所述 QoS参数对应的一业务流 的 QoS。
本发明实施例还提供一种多跳网络服务质量维护系统, 包括: 如上所 述的基站, 以及如上所述的中继节点。
由以上技术方案可知 , 本发明实施例的确定及维护多跳网络服务质量 参数的方法、 装置和系统, 可以实现如下的技术效果: 在用户设备到基站 的传输路径上的数据传输过程中, 当实际传输情况发生变化时, eNB可以获 知到一个变化的 QoS参数统计值,并计算出传输路径上的各条链路要维护的 QoS参数, 从而达到 eNB可以实时确定其到 UE的传输路径上的各条链路要 维护的 QoS参数。 进一步, eNB还可以将上述计算得到的各条链路要维护的 QoS参数下发至各个 RN, 从而实现 RN可以实时获取调度本跳链路所需要的 QoS信息, 从而对业务流的 QoS进行实时维护。 附图说明
图 1为本发明实施例 LTE系统引入 RN后的网络架构示意图。
图 2为本发明实施例确定多跳网络服务质量参数的方法的实施例的流 程示意图。
图 3 为本发明实施例维护多跳网络服务质量的方法的实施例的流程示 意图。 图 5为本发明实施例的两跳上行分布式调度过程的信令流程图。
图 6为本发明实施例的三跳下行分布式调度过程的信令流程图。
图 7为本发明实施例的三跳上行分布式调度过程的信令流程图。
图 8为本发明实施例的基站的结构示意图。
图 9为本发明实施例的中继节点的结构示意图。
图 10为本发明实施例的多跳网络月良务质量维护系统的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
图 1为本发明实施例 LTE系统引入 RN后的网络架构示意图。 如图 1 所示 , UE可能要经过一个或多个 RN接入到 eNB, 如 UE1通过 RN3接入 eNB, UE2通过 R 1和 R 2接入 eNB。 在本发明实施例中 , eNB和 R 之 间以及 RN和 RN之间的链路称为中继链路, RN和 UE之间以及 eNB和 UE间的链路称为接入链路。 本发明实施例中涉及的 R 具有以下特性: 对 其附着范围内的 UE具有调度能力。
在分布式调度方式下 , 以 UE和 eNB之间经过两个中继节点的链路为 例, UE、 RNl , RN2和 eNB之间的链路表示为 UE<— >RN1<— >R 2<― >eNB, 其中, "<一>" 为双箭头, 表示双箭头左侧节点和右侧节点间的链 路,可以在两个节点间交互信令和数据信息。如图 1所示, eNB仅负责 UE< — >eNB的传输路径上的最后一跳链路 RN2<— >eNB链路上的资源调度分 配, 由中间 RN2负责 RN1<—>RN2链路上的资源调度分配, 由接入 RN1 来负责 UE<—>RN1链路上的资源调度分配,对于每一跳链路的资源调度需 要充分考虑到整个空口 (即 UE到 eNB的传输路径 )上需要满足的 QoS需 求。 在本发明实施例中, 可以将各个节点 (包括 R 和 eNB ) 负责的链路 称为本跳链路。 因此, 在用以维护 QoS的分布式调度方式中, RN需要根 据其负责的本跳链路需要维护的 QoS参数进行本跳链路的调度决策, 其中 该 QoS参数是 RN进行本跳链路的调度决策是所需要获得的一种调度参数, 即本跳链路要维护的 QoS参数。 所以, RN在调度之前需要获取到其负责 的本跳链路上需要维护的 QoS参数; 然后根据 LTE系统中的调度机制, RN 根据其负责的本跳链路上需要维护的 QoS参数作出调度决策。
本发明实施例提供的多跳网络服务质量维护方法可以通过在数据传输 过程中 RN与 eNB的交互, 来实时调整 RN负责调度的链路要维护的 QoS 参数, 从而相互协调维护 UE<—>eNB的传输路径上的 QoS。
图 2为本发明实施例确定多跳网络服务质量参数的方法的实施例的流 程示意图。 结合图 1所示的网络架构, 假设 UE接入到 eNB需要经过一个 RN或两个 RN。 如图 2所示, 该方法包括如下部分。
201、 在 UE<—>eNB的传输路径上的数据传输过程中 , eNB获取 UE<
— >eNB的传输路径上的中继链路的 QoS参数统计值, 该中继链路的 QoS 参数统计值为对中继链路上变化的 QoS参数进行统计后的统计值。
例如, 对一段时间内, 对获取到的中继链路上变化的多个时延参数进 行统计后的时延统计参数。
202、 eNB根据获得的中继链路的 QoS参数统计值,并结合传输路径上 要维护的 QoS参数和传输路径上的空口拓朴信息, 确定传输路径上的接入 链路和中继链路要获知的 QoS参数。
其中, QoS 参数统计值可以为: 数据在传输链路上的传输过程中, 当 实际传输情况发生变化时, 所获知到的变化的 QoS参数统计值, 例如可以 为时延统计参数。 eNB确定的接入链路和中继链路要获知的 QoS参数可以 为接入链路和中继链路所要维护的 QoS参数, 也可以是除了接入链路和中 为 UE到各个 R 间的各个 R 各自的直达链路,该本跳链路包括接入链路 ( UE<— >R )和中继链路 ( R <— >RN或 R <—>eNB )。例如 UE到 eNB 之间的 UE<— >RN1<— >RN2<— >eNB传输路径上,各个 RN各自的直达链 路为: RN2的直达链路为 RN1<—>RN2, RN1的直达链路为 UE<—>RN1。
调度决策为负责调度某一链路的节点通过其获取到的参数来控制调整 该链路上的数据传输, 调度所要考虑的参数包括有: 信道质量、 QoS信息、 UE的睡眠周期和测量 GAP、业务的状态信息和系统参数(如系统带宽)等。 本发明实施例中主要介绍在数据传输过程中, 如何根据 QoS参数的变化来 实时获取调度本跳链路所需要的 QoS信息。
需要说明的是, 在本发明实施例中提到的 QoS参数均为针对某一业务 流的 QoS参数, 下面的各个实施例也相同, 不再另作说明。
本实施例提供的确定多跳网络服务质量参数的方法 , 在用户设备到基 站的传输路径上的数据传输过程中, 当实际传输情况发生变化时, eNB 可 以获知到一个变化的 QoS参数统计值, 并计算出传输路径上的各条链路要 维护的 QoS参数, 从而实现 eNB可以实时确定其到 UE的传输路径上的各 条链路要维护的 QoS参数。
在上述实施例中, 对应步驟 202、 确定接入链路和中继链路要获知的 QoS参数,还可以包括 eNB将接入链路和中继链路要获知的 QoS参数分别 发送至负责调度接入链路和中继链路的各个 RN, 从而使得 RN可以实时采 用更新的 QoS参数进行调度。
图 3 为本发明实施例维护多跳网络服务质量的方法的实施例的流程示 意图。从 R 侧来说, 对应上述的确定多跳网络服务质量参数的方法, 如图 3所示, 该维护多跳网络服务质量的方法包括如下部分。
301、 在 UE<—>eNB的传输路径上的数据传输过程中, RN接收 eNB 发送的本跳链路要获知的 QoS参数。 其中, 本跳链 要获知的 QoS参数是 eNB根据获取的 UE<— >eNB的 传输路径上的中继链路的 QoS 参数统计值, 并结合传输路径上要维护的 QoS参数和传输路径上的空口拓朴信息确定的。 本跳链路为 UE到 UE<— >eNB的传输路径上的各个 RN间的各个中继节点各自的直达链路, 本跳链 路可以包括接入链路(UE<—>RN )和中继链路 ( RN<— >RN 或 RN<— >eNB )。
302、 RN根据接收到的本跳链路要获知的 QoS参数, 获取本跳链路要 维护的 QoS参数, 对本跳链路进行调度决策以维护 QoS参数对应的一业务 流的 QoS。
本实施例提供的维护多跳网络服务质量的方法, 在用户设备到基站的 传输路径上的数据传输过程中, 当实际传输情况发生变化时, eNB 可以获 知到一个变化的 QoS参数统计值, 并计算出传输路径上的各条链路要维护 的 QoS参数, eNB将上述计算得到的各条链路要维护的 QoS参数下发至 各个 RN,从而实现 RN可以实时获取调度本跳链路所需要的 QoS信息,从 而对业务流的 QoS进行实时维护。
下面分别从如下四种情况详细介绍上述实施例的技术方案。 四种情况 包括: 两跳下行分布式调度过程、 两跳上行分布式调度过程、 多跳下行分 布式调度过程、 多跳上行分布式调度过程。 其中多条过程以三跳为例。 据传输过程中, 只有当实际传输情况发生变化, 需要重新计算某一跳链路 要维护的 QoS参数时, 才会执行如下步驟, 否则, 负责调度各跳链路的 RN 仍然采用之前一次分配的 QoS参数对本跳链路进行调度。 如图 4所示, 包 括如下部分。
401、 RN测量 eNB发出的参考信号 ( Reference Signal, 筒称 RS ), 并 在下一时刻通过上行信道以测量结果的形式通过信道质量指示 ( Channel Quality Indicator, 简称 CQI )反馈给 eNB。 402 eNB获取 eNB—>UE的传输路径上的中继链路 ( eNB— >RN )的 QoS参数统计值。
该 402即 eNB获知传输路径上的直达中继链路的 QoS参数统计值,该 直达中继链路为 eNB与 RN的直达的中继链路 eNB—>RN。 其中 , 为单向箭头, 表示该单向箭头左侧节点向右侧节点发送信令消息和数据信 息的单向链路。
在本实施例的数据传输过程中 ,数据是从 eNB下发到 RN的 ,之后 RN 会返回响应消息至 eNB,从而 eNB可获知此次传输之前 eNB向 RN下发数 据时该 eNB—>RN上的 QoS参数统计值,本实施例中的该 QoS参数统计值 以下行时延统计参数为例。
403 eNB根据获得的下行时延统计参数, 并结合传输路径上要维护的 QoS参数和传输路径上的空口拓朴信息,确定接入链路( RN— >UE )和 eNB 一 >RN要获知的 QoS参数。
该 RN—>UE和 eNB—>RN要获知的 QoS参数 (本实施例中为时延参 数) 包括: RN—>UE和 eNB—>RN自身要维护的时延参数; 或 RN—>UE 要获知除 RN—>UE 自身要维护的时延参数外的其他中继链路, 即 eNB— >RN要维护的时延参数,以及 eNB— >RN要获知除 eNB— >RN自身要维护 的时延参数外的 RN—>UE要维护的时延参数。
404 eNB将 RN—>UE要获知的 QoS参数发送至负责调度 RN—>UE 的 RN
在本实施例中, eNB—>RN是 eNB 负责调度的, 因此 eNB仅需要将 RN负责调度的 RN—>UE要获知的 QoS参数发送给 RN即可。 另夕卜, 该发 送过程可以是在承载更新过程中 由 eNB周期性地或通过事件触发发送该 RN—>UE要获知的 QoS参数至负责调度该 RN—>UE的 RN,该 RN—>UE 要获知的 QoS参数可以承载在无线资源控制 (Radio Resource Control, 简 称 RRC ) 消息中。 其中, 事件触发可以是统计下行时延统计参数的变化达 到门限值时触发。
405、 eNB根据 403中确定的 eNB—>RN要维护的 QoS参数, 并结合 各种其他调度入参执行调度决策。
在 405中, eNB通过下行链路分配( Down Link assignment )消息向 RN 指示可用的下行共享信道( DL Share Channel, 简称 DL-SCH ) 资源、 调制 编码方式和天线选择方案等。
406、 eNB向 RN发送下行数据。
407、 UE测量 RN发出的 RS, 并在下一时刻通过上行信道以测量结果 的形式通过 CQI反馈给 RN。
408、 RN根据 404中从 eNB获取到的本跳链路, 即 RN— >UE要获知 的 QoS参数, 获取本跳链路要维护的 QoS参数。
该 408中 , 可能从 eNB获取到的即为本跳链路要维护的 QoS参数, 也 可能是除本跳链路外其他链路要维护的 QoS参数。
在本实施例中,若为除本跳链路外其他链路要维护的 QoS参数,即 eNB 一 >RN要维护的 QoS参数, 则 RN还需要根据接收到的其他链路要维护的 QoS参数、 传输路径上要维护的 QoS参数和传输路径上的空口拓朴信息, 计算获得本跳链路要维护的 QoS参数。
409、 RN根据获取的本跳链路要维护的 QoS参数, 并结合各种其他调 度入参执行调度决策, 以维护该 RN—>UE上的业务流的 QoS。
RN通过下行链路分配消息向 UE指示可用的 DL-SCH资源、调制编码 方式和天线选择方案等。
410、 RN向 UE发送下行数据。
本实施例提供的两跳下行分布式调度过程, eNB通过获取的 QoS参数 统计值确定 RN负责调度的接入链路要维护的 QoS参数, 并在数据传输过 程中下一次调度决策前发给 RN, 以实时调整 RN对接入链路的调度入参。 所示, 包括如下部分。
501、 R 测量 UE发出的 RS来获得上行信道的状况, 且还需要接收 UE发送的緩存状态报告 ( Buffer Status Report, 简称 BSR ), 获得 UE上报 的当前业务量信息。
502、 在动态调度的情况下, UE在每次有数据发送时还需要向 RN发 送一个调度请求( Schedule Request, 简称 SR )消息, 该消息用以获得上行 共享信道(UL-SCH ) 资源。
503、 RN周期性地或通过事件触发向 eNB上报传输路径上的中继链路 ( RN— >eNB ) 的 QoS参数统计值。
在本实施例中, 在 RN对接入链路 ( UE— >RN )进行本次调度决策和 数据传输之前, 假设实际的传输情况发生了改变, 那么在本次调度决策之 前, R 会将其获取的 R —>eNB的 QoS参数统计值上报至 eNB。 该上报 过程周期性地或通过事件来触发, 即该上报不一定在 503的位置进行上报, 只要在本次调度决策之前任意一时刻上 即可, 本实施例以 503 为例; 其 中事件触发例如 RN获取的 RN—>eNB的 QoS参数统计值超过了门限值即 触发。 该上报的 RN—>eNB的 QoS参数统计值可以在承载更新过程中携带 在 RRC消息中进行上报。本实施例中的该 QoS参数统计值以上行时延统计 参数为例。
504、 eNB接收到 RN上报的 UE— >eNB的传输路径上的 RN— >eNB 的上行时延统计参数后, eNB根据获得的该上行时延统计参数, 并结合传 输路径上要维护的 QoS参数和传输路径上的空口拓朴信息,确定 UE—>RN 和 RN—>eNB要获知的 QoS参数。
该 UE—>R 和 R _>eNB要获知的 QoS参数 (本实施例中为时延参 数) 包括: UE—>RN和 RN—〉 eNB自身要维护的时延参数; 或 UE—>RN 要获知除 UE—>RN 自身要维护的时延参数外的 RN—>eNB要维护的时延 参数, 以及 RN—>eNB要获知除 RN—>eNB 自身要维护的时延参数外的 UE— >RN和 RN—>eNB要维护的时延参数。
505、 eNB将 UE—>R 要获知的 QoS参数发送至负责调度 UE—>R 的 R 。
在本实施例中, RN—>eNB是 eNB 负责调度的, 因此 eNB仅需要将 RN负责调度的 UE—>RN要获知的 QoS参数发送给 RN即可。 另夕卜, 该发 送过程可以是在承载更新过程中 , 由 eNB周期性地或通过事件触发发送该 接入链 ^"获知的 QoS参数至负责调度该接入链路的 RN, 该接入链路要 获知的 QoS参数可以承载在 RRC消息中。其中, 事件触发可以是统计接收 到的上行时延统计参数的变化达到门限值时触发。
506、 RN才艮据其从 eNB获取到的本跳链路,即 UE—>RN要获知的 QoS 参数, 获取本跳链 维护的 QoS参数。
该 506中, 可能从 eNB获取到的即为本跳链^"维护的 QoS参数, 也 可能是除本跳链路外其他链路要维护的 QoS参数。
在本实施例中,若为除本跳链路外其他链路要维护的 QoS参数,即 RN —>eNB要维护的 QoS参数,则 RN还需要根据接收到的其他链路要维护的 QoS参数、 传输路径上要维护的 QoS参数和传输路径上的空口拓朴信息, 计算获得本跳链路要维护的 QoS参数。
507、 RN根据其获取到的本跳链路要维护的 QoS参数, 并结合其他调 度入参执行调度决策。
508、 RN通过上行链路授权 ( UL grant )向 UE指示可用的 UL-SCH资 源、 调制编码方式和天线选择方案等。
509、 UE向 RN发送上行数据。
510、 eNB测量 R 发出的 RS来获得上行信道的状况, 且还需要接收 RN发送的 BSR, 获得 RN上报的当前业务量信息。
511、 在动态调度的情况下, RN在每次有数据发送时还需要向 eNB发 送一个 SR消息 , 该消息用以获得 UL-SCH资源。 512、 eNB根据其确定的本跳链路, 即 RN—>eNB要维护的 QoS参数, 并结合其他调度入参执行调度决策。
513、 eNB通过上行链路 4受权 ( UL grant )向 RN指示可用的 UL-SCH 资源、 调制编码方式和天线选择方案等。
514、 RN向 eNB发送上行数据。
本实施例提供的两跳上行分布式调度过程, eNB通过获取的 QoS参数 统计值确定 RN负责调度的接入链路要维护的 QoS参数, 并在数据传输过 程中下一次调度决策前发给 RN, 以实时调整 RN对接入链路的调度入参。
图 6为本发明实施例的三跳下行分布式调度过程的信令流程图。 在数 据传输过程中, 只有当实际传输情况发生变化, 需要重新计算某一跳链路 要维护的 QoS参数时, 才会执行如下步驟, 否则, 负责调度各跳链路的 RN 仍然采用之前一次分配的 QoS参数对本跳链路进行调度。 如图 6所示, 包 括如下部分。
601、 RN2测量 eNB发出的 RS, 并在下一时刻通过上行信道以测量结 果的形式通过 CQI反馈给 eNB。
602、 RN2周期性地或通过事件触发向 eNB上报传输路径上的中继链 路( RN2—>RN1 )的 QoS参数统计值。
在本实施例中, 在 eNB对 eNB—>RN2开始进行本次调度决策和数据 传输之前, 假设实际的传输情况发生了改变, 那么在本次调度决策之前, RN2会将其获取的 RN2—>RN1的 QoS参数统计值上艮至 eNB。 该上艮过 程周期性地或通过事件来触发, 即该上 >¾不一定在 602 的位置进行上 ·¾, 只要在本次调度决策之前任意一时刻上 即可, 本实施例以 602为例; 其 中事件触发例如 R 2获取的 R 2—>RN1的 QoS参数统计值超过了门限值 即触发。 该上 ^艮的 RN2—>RN1的 QoS参数统计值可以在7 载更新过程中 携带在 RRC消息中进行上报。本实施例中的该 QoS参数统计值以下行时延 统计参数为例。 603、 eNB获取 eNB— >UE的传输路径上的中继链路 ( eNB— >RN2和 R 2— >R 1 ) 的下行时延统计参数。
该 603即 eNB自身获知传输路径上的直达中继链路 ( eNB— >R 2 )的 下行时延统计参数, 直达中继链路为 eNB与 RN2的直达的中继链路, 以及 接收负责调度其他中继链路, 即 RN2— >RN1的 RN2上报的 RN2—>RN1 的下行时延统计参数, 其他中继链路为除直达中继链路外的中继链路。
604、 eNB才艮据获得的 eNB— >RN2和 RN2—〉 RN1的下行时延统计参 数, 并结合传输路径上要维护的 QoS参数和传输路径上的空口拓朴信息, 确定接入链路(RN1—>UE )、 RN2— >RN1 和 eNB—>RN2 分别要获知的 QoS参数。
该 RN1—>UE、: RN2—>RN1和 eNB—>RN2分别要获知的 QoS参数(本 实施例中为时延参数) 包括: R 1—>UE、 RN2—>RN1和 eNB—>R 2 自 身要维护的时延参数; 或 RN1—>UE要获知除 RN1—>UE自身要维护的时 延参数外的其他中继链路, 即 RN2— >RN1和 eNB—>RN2要维护的时延参 数, RN2—>RN1要获知除 RN2—>RN1 自身要维护的时延参数外的 RN1 — >UE和 eNB—>RN2要维护的时延参数,以及 eNB—>RN2要获知除 eNB — >RN2自身要维护的时延参数外的 RN1— >UE和 RN2—>RN1要维护的时 延参数。
605、 eNB将 RN2—>RN1获知的 QoS参数发送至负责调度该 RN2— >RN1的 RN2, 将 RN1—>UE要获知的 QoS参数发送至负责调度该 RN1— >UE的 RN1。
在本实施例中, eNB—>RN2是 eNB负责调度的, 因此 eNB仅需要将 R 2负责调度的 RN2—>RN1要获知的 QoS参数发送给 R 2,将 RN1负责 调度的 RN1—>UE要获知的 QoS参数发送给 RN1即可。 另外, 该发送过 程可以是在承载更新过程中, 由 eNB周期性地或通过事件触发发送 RN2— >R 1和 R 1—>UE要获知的 QoS参数至负责调度的 R 2和 RN1 ,该 QoS 参数可以承载在 RRC消息中。 其中, 事件触发可以是统计下行时延统计参 数的变化达到门限值时触发。
606、 eNB根据 604中确定的 eNB—>R 2要维护的 QoS参数, 并结合 各种其他调度入参执行调度决策。
在 606中, eNB通过下行链路分配( Down Link assignment )消息向 RN2 指示可用的 DL-SCH资源、 调制编码方式和天线选择方案等。
607、 eNB向 RN2发送下行数据。
608、 RN1测量 RN2发出的 RS, 并在下一时刻通过上行信道以测量结 果的形式通过 CQI反馈给 RN2。
609、 RN2根据 605中从 eNB获取到的本跳链路, 即 RN2— >RN1要获 知的 QoS参数, 获取本跳链路要维护的 QoS参数。
该 609中, 可能从 eNB获取到的即为本跳链^"维护的 QoS参数, 也 可能是除本跳链路外其他链路要维护的 QoS参数。
在本实施例中,若为除本跳链路外其他链路要维护的 QoS参数,即 eNB — >RN2和 RN1—>UE要维护的 QoS参数, 贝' J RN还需要根据接收到的其 他链路要维护的 QoS参数、传输路径上要维护的 QoS参数和传输路径上的 空口拓朴信息, 计算获得本跳链路要维护的 QoS参数。
610、 RN2根据获取的本跳链路要维护的 QoS参数, 并结合各种其他 调度入参执行调度决策, 以维护该接入链路上的业务流的 QoS。
RN2通过下行链路分配消息向 RN1指示可用的 DL-SCH资源、调制编 码方式和天线选择方案等。
611、 RN2向 RN1发送下行数据。
612、 UE测量 RN1发出的 RS, 并在下一时刻通过上行信道以测量结 果的形式通过 CQI反馈给 RN1。
613、 RN1根据 605中从 eNB获取到的本跳链路, 即 RN1— >UE要获 知的 QoS参数, 获取本跳链路要维护的 QoS参数。 该 61 3中, 可能从 eNB获取到的即为本跳链路要维护的 QoS参数, 也 可能是除本跳链路外其他链路要维护的 QoS参数。
在本实施例中,若为除本跳链路外其他链路要维护的 QoS参数,即 eNB — >RN2和 RN2—>RN1要维护的 QoS参数, 则 RN1还需要根据接收到的 其他链路要维护的 QoS参数、传输路径上要维护的 QoS参数和传输路径上 的空口拓朴信息, 计算获得本跳链路要维护的 QoS参数。
614、 RN1根据获取的本跳链路要维护的 QoS参数, 并结合各种其他 调度入参执行调度决策, 以维护该接入链路上的业务流的 QoS。
RN1通过下行链路分配消息向 UE指示可用的 DL-SCH资源、 调制编 码方式和天线选择方案等。
615、 RN1向 UE发送下行数据。
本实施例提供的多跳下行分布式调度过程, eNB通过获取的 QoS参数 统计值确定 RN1和 RN2负责调度的接入链路要维护的 QoS参数, 并在数 据传输过程中下一次调度决策前发给 RN1和 RN2 ,以实时调整 RN1和 RN2 对其负责的链路的调度入参。
图 7为本发明实施例的三跳上行分布式调度过程的信令流程图。如图 7 所示, 包括如下部分。
701、 RN1测量 UE发出的 RS来获得上行信道的状况, 且还需要接收 UE发送的 BSR, 获得 UE上报的当前业务量信息。
702、 在动态调度的情况下, UE在每次有数据发送时还需要向 RN1发 送一个 SR消息, 该消息用以获得 UL-SCH资源。
703、 RN1和 RN2周期性地或通过事件触发向 eNB上报传输路径上的 中继链路 ( R 1— > RN2和 R 2— >eNB )的 QoS参数统计值。
在本实施例中, 在 RN1对接入链路(UE—>RN1 )进行本次调度决策 和数据传输之前, 假设实际的传输情况发生了改变, 那么在本次调度决策 之前, RN1和 R 2会将其分别获取的 R 1— > R 2和 R 2— >eNB的 QoS 参数统计值上报至 eNB。 该上报过程周期性地或通过事件来触发, 即该上 报不一定在 703 的位置进行上报, 只要在本次调度决策之前任意一时刻上 报即可,本实施例以 703为例;其中事件触发例如 R 2获取的 RN2—>eNB 的 QoS参数统计值超过了门限值即触发。 该上才艮的 RN1—〉 RN2和 RN2— >eNB的 QoS参数统计值可以在承载更新过程中携带在 RRC消息中进行上 报。 本实施例中的该 QoS参数统计值以上行时延统计参数为例。
704、 eNB接收到 RN1和 RN2上报的 UE—>eNB的传输路径上的 RN1 — > RN2和 RN2—>eNB的上行时延统计参数后, eNB根据获得的该上行时 延统计参数, 并结合传输路径上要维护的 QoS参数和传输路径上的空口拓 朴信息, 确定 UE—>RN1、 RN1— > RN2和 RN2—>eNB要获知的 QoS参 数。
该 UE— >R 1、 R 1— > RN2和 R 2— >eNB要获知的 QoS参数 (本 实施例中为时延参数) 包括: UE— >RN1、 RN1— > RN2和 RN2— >eNB自 身要维护的时延参数; 或 UE—>RN1要获知除 UE—>RN1 自身要维护的时 延参数外的 RN1— > RN2和 RN2— >eNB要维护的时延参数, RN1—> RN2 要获知除 RNl—> RN2 自身要维护的时延参数外的 UE—>RN1和 RN2— >eNB要维护的时延参数, 以及 RN2— >eNB要获知除 RN2— >eNB 自身要 维护的时延参数外的 UE—>RN1和 RNl—> RN2要维护的时延参数。
705、 eNB将 UE—>RN1要获知的 QoS参数发送至负责调度 UE—>RN1 的 RN1。
该发送过程可以是在承载更新过程中 , 由 eNB周期性地或通过事件触 发发送该 UE—>RN1要获知的 QoS参数至负责调度该 UE—>RN1的 RN1 , 该 UE—>RN1要获知的 QoS参数可以承载在 RRC消息中。 其中, 事件触 发可以是统计接收到的上行时延统计参数的变化达到门限值时触发。
706、 RN1才艮据其从 eNB获取到的本跳链路, 即 UE— >RN1要获知的 QoS参数, 获取本跳链^"维护的 QoS参数。 该 706中, 可能从 eNB获取到的即为本跳链路要维护的 QoS参数, 也 可能是除本跳链路外其他链路要维护的 QoS参数。
在本实施例中 ,若为除本跳链路外其他链路要维护的 QoS参数,即 RN1 — >RN2和 RN2—>eNB要维护的 QoS参数, 则 RN1还需要根据接收到的 其他链路要维护的 QoS参数、传输路径上要维护的 QoS参数和传输路径上 的空口拓朴信息, 计算获得本跳链路要维护的 QoS参数。
707、 RN1根据其获取到的本跳链路要维护的 QoS参数, 并结合其他 调度入参执行调度决策。
708、 RN1通过上行链路授权(UL grant ) 向 UE指示可用的 UL-SCH 资源、 调制编码方式和天线选择方案等。
709、 UE向 RN1发送上行数据。
710、 R 2测量 RN1发出的 RS来获得上行信道的状况, 且还需要接收 RN1发送的 BSR, 获得 RN1上报的当前业务量信息。
711、 在动态调度的情况下, RN1 在每次有数据发送时还需要向 RN2 发送一个 SR消息, 该消息用以获得 UL-SCH资源。
712、 eNB将 RN1—>RN2要获知的 QoS参数发送至负责调度 RN1— >RN2的 RN2。
该发送过程可以是在承载更新过程中 , 由 eNB周期性地或通过事件触 发发送该 RN1—>RN2要获知的 QoS 参数至负责调度该 RN1—>RN2 的 RN2 , 该 RN1— >RN2要获知的 QoS参数可以承载在 RRC消息中。 其中, 事件触发可以是统计接收到的上行时延统计参数的变化达到门限值时触 发。
713、 R 2 居其从 eNB获取到的本跳链路, 即 R 1—>R 2要获知的 QoS参数, 获取本跳链 ^"维护的 QoS参数。
该 713中, 可能从 eNB获取到的即为本跳链路要维护的 QoS参数, 也 可能是除本跳链路外其他链路要维护的 QoS参数。 在本实施例中,若为除本跳链路外其他链路要维护的 QoS参数, 即 UE — >R 1和 RN2—>eNB要维护的 QoS参数, 则 R 2还需要根据接收到的 其他链路要维护的 QoS参数、传输路径上要维护的 QoS参数和传输路径上 的空口拓朴信息, 计算获得本跳链路要维护的 QoS参数。
714、 RN2根据其获取到的本跳链路要维护的 QoS参数, 并结合其他 调度入参执行调度决策。
715、 RN2通过上行链路授权 ( UL grant )向 RN1指示可用的 UL-SCH 资源、 调制编码方式和天线选择方案等。
716、 RN1向 RN2发送上行数据。
717、 eNB测量 RN2发出的 RS来获得上行信道的状况, 且还需要接收 RN2发送的 BSR, 获得 RN2上报的当前业务量信息。
718、 在动态调度的情况下, RN2在每次有数据发送时还需要向 eNB 发送一个 SR消息, 该消息用以获得 UL-SCH资源。
719、 eNB根据其确定的本跳链路,即 RN2— >eNB要维护的 QoS参数, 并结合其他调度入参执行调度决策。
720、 eNB通过上行链路 4受权 ( UL grant )向 RN2指示可用的 UL-SCH 资源、 调制编码方式和天线选择方案等。
721、 RN2向 eNB发送上行数据。
本实施例提供的多跳上行分布式调度过程, eNB通过获取的 QoS参数 统计值确定 RN1和 RN2负责调度的接入链路要维护的 QoS参数, 并在数 据传输过程中下一次调度决策前发给 RN1和 RN2,以实时调整 RN1和 RN2 对接入链路的调度入参。
其中, eNB如何根据其获得的参数计算得到某一链路需要维护的 QoS 参数, 以上述实施例中的 604为例, 给出一具体实现方法, 需要说明的是, 该具体实现方法包括但不限于本示例所述方法, 本示例中以计算某一链路 的时延参数为例, 包括: SI、 eNB收到的某两个时刻的 RN2上报的中继链路 RN2—>RN1的下行 时延统计参数, 分别为 i4v2、 d腿 , eNB还通过自身获知上述两个时刻的 中继链路 eNB— >R 2的下行时延统计参数, 分别为 ^、 de 2 NB , 其中, 上 标表示上报的时刻; eNB根据 ί4ν2、 d 可以得知接入链路 RN1 ->UE 的下行时延统计参数, 分别为
Figure imgf000022_0001
.
52、根据两个时刻的下行时延统计参数, eNB计算得到在这两个时刻之 间的时间段内的一个时延统计平均值 d腿 、 deNB
53、 eNB根据该时间段内每一跳链路上该业务的传输变化情况(如时延 的均方差) , 结合空口的拓朴结构 (如传输链路的跳数)对每一跳链路的 时延统计平均值设定一余量 d腿 + v、 d腿 + a2、 deNR + a3 , 从而使得 {dRm + {) + {dRN2 + 2) + {deNB + 3) = PDB , 其中, PDB为 UE<― >eNB的 传输链路上要维护的时延参数。
54、 eNB设置各跳链路所需要维护的时延参数 D D2和 D3 , 使
=
Figure imgf000022_0002
= deNB + "3
在 408、 506、 609、 613、 706和 713中, 还包括 RN获取传输路径上要 维护的 QoS参数和传输路径上的空口拓朴信息的步骤。 包括两种情况: 一种情况为 , 核心网的移动管理实体 ( Mobility Management Entity, 简 称 MME )的 SI接口终止在 eNB上, 这样, 在承载建立过程中 , eNB接收 MME发送的 EPS承载的 QoS参数, 并将该 EPS承载的 QoS参数映射到 RB的 QoS参数, 该 RB的 QoS参数, 即本发明实施例中的 UE<—>eNB的 传输路径上要维护的 QoS参数。然后, eNB会将该传输路径上要维护的 QoS 参数以及空口拓朴信息承载在 RRC连接重配置消息或其他 RRC消息中, 并分别下发给每一跳链路对应的各个 RN, 或者下发给与 eNB直连的 RN, 然后由该 RN将该传输路径上要维护的 QoS参数以及空口拓朴信息依次转 发给下一级的 R 。 另一种情况为, 在两跳的传输链路(UE<—>RN<—>eNB )上, 核心网 的 MME的 S1接口终止在接入 R 上, 这样, 在 载建立过程中 , RN可 以直接接受来自 MME的 EPS承载的 QoS参数, 并将该 EPS承载的 QoS 参数映射到 RB的 QoS参数,该 RB的 QoS参数,即本发明实施例中的 UE< ->eNB的传输路径上要维护的 QoS参数, 并从 eNB获取空口拓朴信息。 此外, 该接入 RN还需要将其接收的 EPS承载的 QoS参数回传给 eNB。
图 8为本发明实施例的基站的结构示意图。 如图 8所示, 该基站包括: 获取模块 81和确定模块 82。 其中, 获取模块 81用于在用户设备到基站的 传输路径上的数据传输过程中, 获取传输路径上的中继链路的 QoS参数统 统计后的统计值;确定模块 82用于根据获取模块 81获取的中继链路的 QoS 参数统计值, 并结合传输路径上要维护的 QoS参数和传输路径上的空口拓 朴信息, 确定传输路径上的接入链路和中继链路要获知的 QoS参数。
本实施例中的基站还可以包括: 发送模块 83和请求模块 84。 其中, 发 送模块 83用于将确定模块 82确定的接入链路和中继链路要获知的 QoS参 数分别发送至负责调度接入链路和中继链路的各个中继节点; 请求模块 84 用于向各个中继节点发送获取传输路径上的中继链路的 QoS参数统计值的 请求, 以便获取模块 81获取到中继链路的 QoS参数统计值。
本实施例提供的基站所实现的实时确定传输路径上的接入链路和中继 链路要获知的 QoS参数的方法参见上述的方法实施例, 在此不再赘述。
本实施例提供的基站, 在用户设备到基站的传输路径上的数据传输过 程中, 当实际传输情况发生变化时, eNB可以获知到一个变化的 QoS参数 统计值,并计算出传输路径上的各条链路要维护的 QoS参数,从而实现 eNB 可以实时确定其到 UE的传输路径上的各条链路要维护的 QoS参数。
图 9为本发明实施例的中继节点的结构示意图。 如图 9所示, 该中继 节点包括: 接收模块 91、 获取模块 92和调度模块 93。 其中, 接收模块 91 用于在用户设备到基站的传输路径上的数据传输过程中, 接收所述基站发 送的本跳链路要获知的服务质量 QoS参数, 所述本跳链路要获知的 QoS参 数是基站根据获取的所述传输路径上的中继链路的 QoS参数统计值, 并结 合所述传输路径上要维护的 QoS参数和所述传输路径上的空口拓朴信息确 定的, 所述本跳链路为所述用户设备到所述传输路径上的各个中继节点间 的所述各个中继节点各自的直达链路, 所述本跳链路包括所述传输路径上 的接入链路和所述中继链路; 获取模块 92用于根据接收模块 91接收到的 所述本跳链路要获知的 QoS参数, 获取所述本跳链路要维护的 QoS参数; 调度模块 93用于根据获取模块 92获取的所述本跳链路要维护的 QoS参数, 对所述本跳链路进行调度决策以维护所述 QoS 参数对应的一业务流的 QoS。
本实施例中的中继节点还可以包括: 上>¾模块 94, 用于周期性地或通 过事件触发向所述基站上报所述传输路径上的中继链路的 QoS 参数统计 值。
本实施例提供的中继节点所实现的获取调度本跳链路所需要的 QoS信 息的方法参见上述的方法实施例, 在此不再赘述。
本实施例提供的中继节点, 在用户设备到基站的传输路径上的数据传 输过程中, 当实际传输情况发生变化时, eNB可以获知到一个变化的 QoS 参数统计值, 并计算出传输路径上的各条链路要维护的 QoS 参数, eNB 将上述计算得到的各条链路要维护的 QoS参数下发至各个 RN, 从而实现 RN可以实时获取调度本跳链路所需要的 QoS信息, 从而对业务流的 QoS 进行实时维护。
图 10为本发明实施例的多跳网络服务质量维护系统的结构示意图。 如 图 10所示, 该多跳网络服务质量维护系统包括: 用于多跳网络服务质量维 护的基站 101和中继节点 102。其中, 多跳网络服务质量维护的基站 101包 括上述图 8所述实施例中的模块及功能; 用于多跳网络服务质量维护的中 继节点 102包括上述图 9所述实施例中的模块及功能; 在此不再赘述。 本实施例提供的多跳网络服务质量维护系统, 在用户设备到基站的传 输路径上的数据传输过程中, 当实际传输情况发生变化时, eNB 可以获知 到一个变化的 QoS参数统计值, 并计算出传输路径上的各条链路要维护的 QoS参数, 从而达到 eNB可以实时确定其到 UE的传输路径上的各条链路 要维护的 QoS参数; eNB还可以将上述计算得到的各条链路要维护的 QoS 参数下发至各个 RN, 从而实现 RN可以实时获取调度本跳链路所需要的 QoS信息, 从而对业务流的 QoS进行实时维护。 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储 于一计算机可获取存储介质中, 该程序在执行时, 可包括如上述各方法的 实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体
RAM )等。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利 要求
1、 一种确定多跳网络服务质量参数的方法, 包括:
在用户设备到基站的传输路径上的数据传输过程中 , 获取所述传输路 径上的中继链路的服务质量 QoS参数统计值, 所述中继链路的 QoS参数统 计值为对所述中继链路上变化的 QoS参数进行统计后的统计值;
根据所述中继链路的 QoS参数统计值, 并结合所述传输路径上要维护 的 QoS参数和所述传输路径上的空口拓朴信息, 确定所述传输路径上的接 入链路和所述中继链路要获知的 QoS参数。
2、 根据权利要求 1所述的方法,其中,所述获取所述传输路径上的中 继链路的 QoS参数统计值包括:
获知所述传输路径上的直达中继链路的 QoS参数统计值; 或
在接收到数据反馈响应时获知所述传输路径上的直达中继链路的 QoS 参数统计值, 以及接收负责调度其他中继链路的各个中继节点上报的所述 其他中继链路的 QoS参数统计值;
其中, 所述直达中继链路为所述基站与所述传输路径上的一中继节点 间的直达的中继链路 , 所述其他中继链路为除所述直达中继链路外的所述 传输路径上的中继链路。
3、 根据权利要求 1所述的方法,其中,所述获取所述传输路径上的中 继链路的 QoS参数统计值包括:
接收各个中继节点上报的所述中继链路的 QoS参数统计值。
4、 根据权利要求 1、 2或 3所述的方法, 其中, 所述接入链路和所述 中继链 获知的 QoS参数包括:
所述接入链路和所述中继链路要维护的 QoS参数; 或
所述接入链路要获知除所述接入链路要维护的 QoS参数外的所述传输 路径上的其他中继链路要维护的 QoS参数, 以及所述中继链路要获知除所 述中继链路要维护的 QoS参数外的所述接入链路和所述其他中继链路要维 护的 QoS参数。
5、 根据权利要求 1所述的方法,所述方法还包括:对应确定所述传输 路径上的接入链路和所述中继链路要获知的 QoS参数, 将所述接入链路和 所述中继链路要获知的 QoS参数分别发送至负责调度所述接入链路和所述 中继链路的各个中继节点。
6、 根据权利要求 5所述的方法,其中,所述将所述接入链路和所述中 继链路要获知的 QoS参数分别发送至负责调度所述接入链路和所述中继链 路的各个中继节点包括:
在承载更新过程中 , 周期性地或通过事件触发发送所述接入链路和所 述中继链路要获知的 QoS参数至负责调度所述接入链路和所述中继链路的 各个中继节点, 所述接入链路和所述中继链路要获知的 QoS参数承载在无 线资源控制消息中。
7、 根据权利要求 2、 3、 5或 6所述的方法, 所述方法还包括: 对应获取所述传输路径上的中继链路的 QoS参数统计值, 向所述各个 中继节点发送获取所述传输路径上的中继链路的 QoS参数统计值的请求。
8、 一种维护多跳网络服务质量的方法, 包括:
在用户设备到基站的传输路径上的数据传输过程中, 接收所述基站发 送的本跳链路要获知的服务质量 QoS参数, 所述本跳链路要获知的 QoS参 数是基站根据获取的所述传输路径上的中继链路的 QoS参数统计值, 并结 合所述传输路径上要维护的 QoS参数和所述传输路径上的空口拓朴信息确 定的, 所述本跳链路为所述用户设备到所述传输路径上的各个中继节点间 的所述各个中继节点各自的直达链路, 所述本跳链路包括所述传输路径上 的接入链路和所述中继链路;
根据接收到的所述本跳链路要获知的 QoS参数, 获取所述本跳链路要 维护的 QoS参数, 对所述本跳链路进行调度决策以维护所述 QoS参数对应 的一业务流的 QoS。
9、 根据权利要求 8所述的方法, 所述方法还包括:
对应接收所述基站发送的本跳链路要获知的 QoS参数, 所述各个中继 节点周期性地或通过事件触发向所述基站上报所述传输路径上的中继链路 的 QoS参数统计值。
10、 根据权利要求 8或 9所述的方法, 其中, 所述本跳链路要获知的 服务质量 QoS参数包括:
所述本跳链路自身要维护的 QoS参数; 或
除所述本跳链路自身要维护的 QoS参数外的所述传输路径上的其他链 ^^维护的 QoS参数。
11、 根据权利要求 10所述的方法,其中,所述根据接收到的所述本跳 链路要获知的 QoS参数, 获取所述本跳链路要维护的 QoS参数包括:
根据接收到的所述其他链路要维护的 QoS参数、 所述传输路径上要维 护的 QoS参数和所述传输路径上的空口拓朴信息, 所述各个中继节点计算 获得所述本跳链路要维护的 QoS参数。
12、 根据权利要求 11所述的方法,所述方法还包括所述各个中继节点 获取所述传输路径上要维护的 QoS参数的步驟, 包括:
所述各个中继节点接收所述基站发送的所述传输路径上要维护的 QoS 参数, 所述基站从核心网发送的承载建立请求消息中获取所述传输路径上 要维护的 QoS参数; 或者
所述各个中继节点接收核心网发送的承载建立请求消息 , 并从所述承 载建立请求消息中获取所述传输路径上要维护的 QoS参数。
13、 一种基站, 包括:
获取模块, 用于在用户设备到基站的传输路径上的数据传输过程中, 获取所述传输路径上的中继链路的服务质量 QoS参数统计值, 所述中继链 计值; 确定模块, 用于根据所述获取模块获取的所述中继链路的 QoS参数统 计值, 并结合所述传输路径上要维护的 QoS参数和所述传输路径上的空口 拓朴信息, 确定所述传输路径上的接入链路和所述中继链路要获知的 QoS 参数。
14、 根据权利要求 13所述的基站, 还包括: 发送模块, 用于将所述确 定模块确定的所述接入链路和所述中继链路要获知的 QoS参数分别发送至 负责调度所述接入链路和所述中继链路的各个中继节点。
15、 根据权利要求 14所述的基站, 还包括:
请求模块, 用于向所述各个中继节点发送获取所述传输路径上的中继 链路的 QoS参数统计值的请求。
16、 一种中继节点, 包括:
接收模块, 用于在用户设备到基站的传输路径上的数据传输过程中, 接收所述基站发送的本跳链路要获知的服务质量 QoS参数, 所述本跳链路 要获知的 QoS参数是基站根据获取的所述传输路径上的中继链路的 QoS参 数统计值, 并结合所述传输路径上要维护的 QoS参数和所述传输路径上的 空口拓朴信息确定的 , 所述本跳链路为所述用户设备到所述传输路径上的 各个中继节点间的所述各个中继节点各自的直达链路, 所述本跳链路包括 所述传输路径上的接入链路和所述中继链路;
获取模块, 用于根据所述接收模块接收到的所述本跳链路要获知的 QoS参数, 获取所述本跳链路要维护的 QoS参数;
调度模块, 用于根据所述获取模块获取的所述本跳链路要维护的 QoS参 数, 对所述本跳链路进行调度决策以维护所述 QoS 参数对应的一业务流的 QoS。
17、 根据权利要求 16所述的中继节点, 还包括:
上报模块, 用于周期性地或通过事件触发向所述基站上报所述传输路 径上的中继链路的 QoS参数统计值。 8、 一种多跳网络服务质量维护系统, 包括: 如权利要求 13-15任一 项所述的基站, 以及如权利要求 16-17任一项所述的中继节点。
PCT/CN2010/075103 2009-07-31 2010-07-12 确定及维护多跳网络服务质量参数的方法、装置和系统 WO2011012046A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10803879.5A EP2448354B1 (en) 2009-07-31 2010-07-12 Method, device and system for determining and maintaining quality of service (qos) parameters of multi-hop network
US13/361,203 US8681652B2 (en) 2009-07-31 2012-01-30 Method, apparatus, and system for determining and maintaining quality of service parameters on a multi-hop network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101654577A CN101990325B (zh) 2009-07-31 2009-07-31 确定及维护多跳网络服务质量参数的方法、装置和系统
CN200910165457.7 2009-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/361,203 Continuation US8681652B2 (en) 2009-07-31 2012-01-30 Method, apparatus, and system for determining and maintaining quality of service parameters on a multi-hop network

Publications (1)

Publication Number Publication Date
WO2011012046A1 true WO2011012046A1 (zh) 2011-02-03

Family

ID=43528760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075103 WO2011012046A1 (zh) 2009-07-31 2010-07-12 确定及维护多跳网络服务质量参数的方法、装置和系统

Country Status (4)

Country Link
US (1) US8681652B2 (zh)
EP (1) EP2448354B1 (zh)
CN (1) CN101990325B (zh)
WO (1) WO2011012046A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284828B1 (ko) * 2011-12-07 2013-07-10 주식회사 케이티 사용자 채널 상태에 따른 반-지속 스케줄링 방법 및 그 방법을 수행하는 기지국 장치
US20130336175A1 (en) * 2012-06-14 2013-12-19 Electronics And Telecommunications Research Institute Method and apparatus for duplex in cognitive radio communication system
CN102946609B (zh) * 2012-10-23 2015-05-13 汕头大学 一种多用户双向中继通信系统的数据通信方法
WO2014148801A1 (en) * 2013-03-19 2014-09-25 Lg Electronics Inc. Method and apparatus for transmitting aggregated qos information in wireless communication system
EP2835927B1 (en) * 2013-08-07 2016-11-30 Samsung Electronics Co., Ltd Method and apparatus for scheduling resources at relay station (RS) in mobile communication network
EP2887732B1 (en) * 2013-12-19 2017-06-14 Sony Corporation Method for operating a user equipment in a wireless radio network
CN105207787B (zh) * 2015-08-28 2018-09-11 华为技术有限公司 一种业务QoS控制方法及网络设备
WO2017152932A1 (en) 2016-03-07 2017-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and scoring node for estimating a user's quality of experience for a delivered service
CN108632308B (zh) * 2017-03-17 2020-07-14 电信科学技术研究院 控制方法、装置、smf、upf、ue、pcf及an
EP3759961A1 (en) * 2018-03-27 2021-01-06 Sony Corporation Methods and infrastructure equipment
SG11202011138UA (en) 2018-05-22 2020-12-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Access method and transmission point
CN110809293B (zh) * 2018-08-06 2022-05-24 大唐移动通信设备有限公司 一种无线回程路径的资源调度方法和设备
US11076348B2 (en) * 2019-01-03 2021-07-27 Samsung Electronics Co., Ltd. Method of neighbor discovery and wireless inter-connection for cellular mesh network
CN111836329B (zh) * 2019-04-19 2022-04-22 Oppo广东移动通信有限公司 数据传输方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1558637A (zh) * 2004-01-19 2004-12-29 深圳市思杰科技有限公司 一种提高移动应用系统端到端QoS的方法
CN101263695A (zh) * 2005-07-19 2008-09-10 高通股份有限公司 用于服务质量处理的系统、方法和设备
CN101345903A (zh) * 2007-07-13 2009-01-14 中国移动通信集团上海有限公司 Umts或grps通信网络告知业务平台当前无线承载信息的方法
EP2066143A1 (en) * 2007-11-29 2009-06-03 Nokia Siemens Networks Oy Radio cell performance monitoring and/or control based on user equipment positioning data and radio quality parameters

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366027C (zh) 2003-06-26 2008-01-30 华为技术有限公司 实现帧中继网络中传输帧可靠传输的方法
CN100488083C (zh) 2004-04-21 2009-05-13 华为技术有限公司 光通信网络中的业务调度装置及其方法
CN1332576C (zh) 2004-06-11 2007-08-15 华为技术有限公司 实现集群业务动态创建用户组的方法及系统
CN100531191C (zh) 2004-09-06 2009-08-19 华为技术有限公司 Ngn网络传送层业务实现方法和系统
CN100563281C (zh) 2005-01-27 2009-11-25 华为技术有限公司 一种实现未完成来电短消息通知业务的设备及方法
CN100488217C (zh) 2005-03-30 2009-05-13 华为技术有限公司 一种回铃音测试系统及方法
CN101199216B (zh) * 2005-06-10 2011-06-08 株式会社日立制作所 无线通信系统和数据包流的通信品质保证方法
CN100515116C (zh) * 2005-11-10 2009-07-15 华为技术有限公司 一种传递服务质量参数的方法和系统
CN1996991B (zh) * 2006-01-06 2012-02-29 华为技术有限公司 WiMAX网络中服务流策略的配置方法
CN101043700A (zh) 2006-03-22 2007-09-26 华为技术有限公司 一种寻呼空闲模式下终端的方法
US8483123B2 (en) * 2006-06-30 2013-07-09 Nokia Corporation QoS request and information distribution for wireless relay networks
CN101237374A (zh) 2007-02-02 2008-08-06 北京三星通信技术研究有限公司 自适应的多跳时分复用调度方法
GB2447883A (en) * 2007-03-02 2008-10-01 Fujitsu Ltd Bandwidth allocation in multi-hop wireless communication systems
CN101335971B (zh) 2007-06-28 2011-04-27 联想(北京)有限公司 基于中继站的多跳无线网络的资源调度方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1558637A (zh) * 2004-01-19 2004-12-29 深圳市思杰科技有限公司 一种提高移动应用系统端到端QoS的方法
CN101263695A (zh) * 2005-07-19 2008-09-10 高通股份有限公司 用于服务质量处理的系统、方法和设备
CN101345903A (zh) * 2007-07-13 2009-01-14 中国移动通信集团上海有限公司 Umts或grps通信网络告知业务平台当前无线承载信息的方法
EP2066143A1 (en) * 2007-11-29 2009-06-03 Nokia Siemens Networks Oy Radio cell performance monitoring and/or control based on user equipment positioning data and radio quality parameters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2448354A4 *

Also Published As

Publication number Publication date
EP2448354A1 (en) 2012-05-02
EP2448354B1 (en) 2019-01-02
US8681652B2 (en) 2014-03-25
CN101990325A (zh) 2011-03-23
CN101990325B (zh) 2013-04-24
US20120127883A1 (en) 2012-05-24
EP2448354A4 (en) 2012-05-02

Similar Documents

Publication Publication Date Title
WO2011012046A1 (zh) 确定及维护多跳网络服务质量参数的方法、装置和系统
US11950124B2 (en) Methods, apparatus and systems for integrated access and backhaul bearer management
CN107431946B (zh) 具有基站和中继节点的网络中的拥塞避免
JP5667285B2 (ja) リンク・セグメントについてのターゲット・パケット遅延を決定するための、また調整するための方法、装置およびノード
US9107228B2 (en) Radio communication system and control method of radio resource allocation
TWI514899B (zh) A method, a device, and a node for determining the quality of service of each segment of the link
WO2016192466A1 (zh) 一种进行调度的方法和设备
JP4734335B2 (ja) ネットワークアレイ、転送装置及び転送装置の動作方法
JP2013515420A (ja) リレーにおけるサービス品質の制御
JP2008532382A (ja) 無線メッシュネットワークにおいてデータフロー制御をサポートする方法および装置
KR20230035038A (ko) 근접 기반 서비스 원격 및 중계 엔티티 서비스 품질 관리
Şekercioğlu et al. A survey of MAC based QoS implementations for WiMAX networks
US20220256435A1 (en) Methods, wireless communications networks and infrastructure equipment
WO2022202835A1 (ja) 通信制御方法
WO2016074419A1 (zh) 下行带宽分配方法及装置
JP6482677B2 (ja) 無線端末、プロセッサ及びネットワーク装置
Lin et al. A dynamic flow control algorithm for LTE-Advanced relay networks
WO2022239707A1 (ja) 通信制御方法
WO2022153989A1 (ja) 通信制御方法
WO2022151107A1 (zh) 信号的发送和接收方法、装置和通信系统
TWI558237B (zh) 演進節點b及流量調度方法
WO2022238043A1 (en) Communications devices and methods
CN116530136A (zh) 用于管理无线通信网络中的服务质量的方法和装置
KR20230048028A (ko) 흐름 제어를 위한 방법 및 장치
Mach et al. Efficient routing of data for femtocells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10803879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010803879

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE