WO2011122650A1 - 歯車およびその製造方法 - Google Patents

歯車およびその製造方法 Download PDF

Info

Publication number
WO2011122650A1
WO2011122650A1 PCT/JP2011/057934 JP2011057934W WO2011122650A1 WO 2011122650 A1 WO2011122650 A1 WO 2011122650A1 JP 2011057934 W JP2011057934 W JP 2011057934W WO 2011122650 A1 WO2011122650 A1 WO 2011122650A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
mass
less
carburizing
layer
Prior art date
Application number
PCT/JP2011/057934
Other languages
English (en)
French (fr)
Inventor
巧治 大林
圭太 田口
加藤 進
小澤 修司
久保田 学
裕司 安達
裕和 佐藤
Original Assignee
アイシン・エィ・ダブリュ株式会社
新日本製鐵株式会社
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, 新日本製鐵株式会社, 愛知製鋼株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to RU2012134192/02A priority Critical patent/RU2507298C1/ru
Priority to EP11762874.3A priority patent/EP2505684B1/en
Priority to KR1020147032757A priority patent/KR20140143460A/ko
Priority to JP2012508355A priority patent/JP5301728B2/ja
Priority to CN201180011200.1A priority patent/CN102770569B/zh
Publication of WO2011122650A1 publication Critical patent/WO2011122650A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a gear used for transmission of torque that is high enough to stress not only the surface layer portion but also the core portion, such as a diff ring gear in a driving system of an automobile, and a method for manufacturing the same. More specifically, the present invention relates to a gear made of steel and hardened through processes such as carburizing and quenching, and a manufacturing method thereof.
  • Steel members such as gears are often subjected to carburizing and quenching as a process for increasing the surface hardness while maintaining toughness.
  • a steel member that has been subjected to carburizing treatment as appropriate is referred to as a carburized steel member.
  • Carburizing and quenching treatment is performed in order to ensure the toughness of the core part and to increase the surface hardness after performing the carburizing treatment to increase the carbon concentration on the surface with the steel member heated to the austenitizing temperature or higher. It is processing of.
  • Various methods have been proposed for producing steel members by applying carburizing and quenching. For example, in Patent Document 1, a steel material containing Cr or Mo is subjected to processes such as carburization, slow cooling, and quenching by high frequency heating.
  • Mo content is high (for example, 0.1% by mass or more), although not as much as in the case of Cr, it causes hardness unevenness for the same reason. This is because Mo also forms carbides during slow cooling after carburizing. That is, in order to obtain a uniform quenched structure in the case of a steel material having a high content of Cr or Mo, it is necessary to perform high-frequency heating after slow cooling at a relatively high temperature.
  • the surface layer portion is required to have high hardness, while the inner layer portion is required to be tougher than hardness. Furthermore, high shape accuracy is also required.
  • induction hardening must be performed in a short time with high output. By keeping the heating time short, the heat conduction to the inner layer portion is suppressed and contour heating is performed. Since the heating output is high accordingly, the surface layer is relatively hot. In particular, the tip of the tooth may melt.
  • gears are used for applications that transmit very high torque, such as automobile drive systems, especially diff ring gears.
  • stress is applied not only to the surface layer portion of the gear but also to the inside of the tooth portion.
  • hardness is required not only in the surface layer portion but also in a deeper layer portion deeper than that. Therefore, not only the surface layer portion but also the deep layer portion, particularly the inside of the tooth portion, must be heated to the austenite transformation temperature or higher during quenching.
  • austenite transformation is performed at a relatively low temperature during quenching. For this reason, when the content ratio of Cr and Mo is high, Cr carbide and Mo carbide may remain in the matrix without being dissolved even by heating during quenching. This carbide residue causes a decrease in hardness and hardness unevenness.
  • the present invention has been made in view of such a problem, and an object thereof is to provide a gear having no hardness unevenness, not only a surface layer portion but also a deep layer portion having a high hardness, and a high shape accuracy, and a manufacturing method thereof. To do.
  • One aspect of the present invention made for the purpose of solving this problem is as a gear steel, C: 0.1 to 0.40 mass%, Si: 0.35 to 3.0% by mass, Mn: 0.1 to 3.0% by mass, Cr: less than 0.2% by mass, Mo: 0.1% by mass or less, P: 0.03 mass% or less, S: 0.15 mass% or less, Al: 0.05% by mass or less, N: 0.03 mass% or less, Fe and inevitable impurities: balance, The chemical component is used.
  • the gear of the present invention has a disc portion and a plurality of teeth that are discretely formed on the disc portion in a circumferential shape, and is carburized after molding and then baked by high-density energy heating.
  • the chemical composition of the material steel is as described above,
  • the surface layer portion of the tooth portion and the surface layer portion of the tooth root portion which is a portion between the tooth portions in the disk portion are made to have a C concentration higher than the C concentration of the material steel by carburizing treatment, It is the first quench hardened layer including the site structure, A portion of the tooth portion other than the portion that is the first quench hardened layer, a portion of the disc portion below the first quench hardened layer of the tooth base portion, and the disc portion And the second quench hardened layer containing the martensite structure is formed while the C concentration is the C concentration of the material steel over the lower part of the tooth portion, A region deeper than the second quench hardened layer in the disk portion is a non-quenched layer that does not contain a marten
  • Another aspect of the present invention is a method of manufacturing a gear having a disc portion and a plurality of teeth that are discretely formed on the disc portion.
  • the material steel the one with the above chemical composition is used.
  • a carburizing step in which a gear formed of the material steel is heated to a temperature equal to or higher than the austenitizing temperature of the material steel in a carburizing atmosphere having an oxygen concentration lower than the oxygen concentration in the atmosphere to form a carburized layer on the surface;
  • By heating the gear after the cooling step by high-density energy heating the core in the disk part is not heated to a temperature equal to or higher than the austenitizing temperature of the material steel.
  • the region shallower than the part and the tooth part are heated to a temperature equal to or higher than the austenitizing temperature of the raw steel, and from that state, the raw steel is cooled at a cooling rate equal to or higher than a cooling rate at which martensitic transformation is performed.
  • This is a method for manufacturing a gear by performing a quenching step of forming a martensite structure in a region shallower than the core portion in the disc portion and the tooth portion.
  • the present invention provides a carburized steel member produced through a carburizing step performed under reduced pressure, a cooling step of gradual cooling under the specific conditions, and a quenching step employing heating at the high density energy.
  • This gear is specialized in the gear and its manufacturing method.
  • the chemical component of the said range was employ
  • the content of Cr and Mo is limited to an impurity content level or even if added, the content is limited to less than 0.2% and 0.1% or less, respectively.
  • Cr is an effective element for improving hardenability and increasing temper softening resistance when added in an amount of less than 0.2%.
  • Cr carbide is generated in the pearlite and ferrite in the carburized layer during the slow cooling after the carburizing treatment. If this Cr carbide is not dissolved in the matrix in the subsequent quenching step, it causes a non-uniform quenching structure and causes unevenness in hardness.
  • it is difficult to dissolve Cr carbide in the matrix.
  • the content is limited to less than 0.2%.
  • carbonized_material at the time of above-mentioned slow cooling is suppressed. Therefore, even if the heating means in the quenching step is heating using high-density energy, even if Cr carbide is present before heating, it can be reliably dissolved in the matrix, Organizational unevenness can be reduced. In addition, by reducing the amount of expensive Cr added, the material cost can be reduced.
  • Mo is an element effective for improving hardenability and increasing temper softening resistance.
  • Si or Mn particularly Si
  • a uniform martensite structure can be obtained without depending on the effect of improving the hardenability by Mo. . Therefore, as described above, by limiting the heating means in the quenching process to heating using high-density energy, the material cost can be reduced while improving the carburizing process productivity.
  • Mo content when the Mo content is large, Mo carbides are formed, which may be combined with the above-described structure unevenness due to Cr to further deteriorate the structure unevenness. Therefore, the addition of Mo is suppressed to a small amount of 0.1% or less, thereby reducing the unevenness of the structure.
  • the following effects are obtained by the material steel and the manufacturing method described above.
  • grain boundary oxidation is suppressed by carburizing in a carburizing atmosphere having a lower oxygen concentration than the atmosphere.
  • second quench hardened layer not only the surface layer (first quench hardened layer) but also the portion below it (second quench hardened layer) is made to have a quenching effect.
  • the quenching heating itself is made relatively low temperature and relatively long so that the deeper region than the second quench hardened layer becomes a non-quenched layer, thereby suppressing distortion and improving fatigue strength. ing.
  • the gear obtained by the present invention reduces the unevenness of the hardness by reducing the unevenness of the structure and has excellent cost performance.
  • FIG. 2 is an enlarged view of a part of the gear of FIG. 1.
  • It is sectional drawing which shows stress distribution at the time of use of the gearwheel which concerns on embodiment.
  • It is sectional drawing which shows distribution of the carburized layer and the hardening hardening layer in the gearwheel which concerns on embodiment.
  • It is explanatory drawing which shows the structure of the heat processing equipment used in the Example. It is a heat pattern of a reduced pressure carburizing process and a reduced pressure slow cooling process. It is a heat pattern of a quenching process. It is a temperature rising chart in the temperature rising period of a quenching process. It is another example of the heat pattern of a hardening process. It is a graph which shows the relationship between hardness and depth after a hardening process. It is a figure which is another example of the gearwheel which can apply this invention.
  • C 0.1 to 0.40%
  • C is an element added to secure the strength of the steel material, particularly the strength of the deep layer. Therefore, in the present invention, the inner strength is ensured by setting the lower limit of the addition amount of C to 0.1%.
  • the amount of C exceeds 0.40%, there are the following two disadvantages. One is that toughness decreases while hardness increases. The other is that the machinability of steel materials deteriorates. For this reason, the upper limit of the amount of C added is set to 0.40%. A more preferable range of the addition amount is 0.15 to 0.3%.
  • Si 0.35 to 3.0%
  • Si is an element effective for deoxidation in the steelmaking process, and is an element effective for imparting necessary strength and hardenability to the steel material and improving temper softening resistance.
  • the present invention is characterized by the fact that expensive Cr and Mo can be greatly reduced.
  • the CrMo steel which is a conventional steel, is compared with the CrMo steel. Reduction of Mo and Mo may be disadvantageous. Therefore, in order to obtain the necessary temper softening resistance even when Cr and Mo are reduced, Si is contained in an amount of 0.35% or more. However, since this effect due to the inclusion of Si is saturated at about 3.0%, there is no positive meaning of adding Si any more. If the Si content exceeds 3.0%, the hardness is rather increased and the machinability of the material is deteriorated. Therefore, the Si content needs to be in the range of 0.35% to 3.0%. A more preferable range is more than 0.45% to 1.5%.
  • the present invention employs a process of performing a carburizing process in a carburizing atmosphere in which the oxygen concentration is reduced by reducing the pressure. As a result, the problem of grain boundary oxidation can be eliminated as will be described later. For this reason, it is possible to use a steel material with a positive Si content.
  • Mn 0.1 to 3.0%
  • Mn is an element effective for deoxidation in the steelmaking process and an element effective for improving the hardenability.
  • the content is less than 0.1%, the effect is insufficient.
  • this effect due to the inclusion of Mn is saturated at about 3.0%, there is no positive meaning of containing Mn any more. If the Mn content exceeds 3.0%, the hardness is rather increased and the machinability of the material is deteriorated. Therefore, the Mn content needs to be in the range of 0.1% to 3.0%. A more preferred range is 0.5% to 1.5%.
  • P 0.03% or less
  • P segregates at grain boundaries in steel and has the effect of reducing toughness. For this reason, it is necessary to reduce as much as possible. Although it is difficult to make it 0, it is necessary to limit it to 0.03% or less.
  • S 0.15% or less
  • S Since S forms MnS in steel, it is an element added for the purpose of improving the machinability of the material. However, since this effect due to the inclusion of S is saturated at about 0.15%, there is no positive meaning of further containing S. If the S content exceeds 0.15%, grain boundary segregation is rather caused and grain boundary embrittlement is caused. For this reason, the S content needs to be 0.15% or less. If the S content is less than 0.001%, the effect of improving the machinability is not remarkable. For this reason, if the lower limit is specified, the content is made 0.001% or more. A more preferred range is in the range of 0.005 to 0.06%.
  • Al 0.05% or less, Al is precipitated and dispersed in the steel as a nitride. For this reason, Al is considered to be an effective element for preventing coarsening of the austenite structure during carburizing. However, if it exceeds 0.05%, the precipitates become coarse and the steel becomes brittle. For this reason, 0.05% is made the upper limit. Note that recrystallization occurs at the site where the high-density energy quenching is performed, and the coarsened austenite structure is refined. For this reason, it is not essential to contain Al when high intensity
  • the content is made 0.005% or more.
  • a more preferred range is 0.02 to 0.04%.
  • N 0.03% or less
  • N forms various nitrides and has the effect of preventing coarsening of the austenite structure during carburizing and high-density energy quenching.
  • it exceeds 0.03% the forgeability is remarkably deteriorated.
  • 0.03% is made an upper limit.
  • the inclusion of N is essential only when high strength is required even in a region not heated with high-density energy. In that case, if the N content is less than 0.003%, the effect of preventing coarsening of the austenite structure is insufficient. For this reason, if the lower limit is specified, 0.003% or more is necessary. A more preferred range is 0.005 to 0.02%.
  • Cr less than 0.2%
  • Cr is an effective element for improving hardenability and temper softening resistance when added in an amount of less than 0.2%.
  • the addition amount is 0.2% or more
  • Cr carbide is generated in the pearlite and ferrite in the carburized layer during slow cooling after carburizing. This is particularly noticeable in the case of a hypoeutectoid composition in which the C concentration during carburization is 0.5 to less than 0.8%.
  • a relatively high temperature for example, 950 ° C. or higher
  • this Cr carbide dissolves in the matrix. For this reason, austenite transformation during high frequency heating occurs uniformly, and a uniform quenched structure can be obtained. This makes the hardness uniform.
  • the Cr carbide can be easily dissolved in the matrix when the desired portion is heated to the austenite region with high-density energy in the quenching process. For this reason, the input energy at the time of high-density energy heating (the integrated value of the heating temperature during the period when the temperature is equal to or higher than the transformation point) can be reduced. For this reason, the process can be energy-saving and cost-effective.
  • Mo 0.1% or less
  • One object of the present invention is to reduce Mo, which is a rare metal and is relatively expensive.
  • Mo may be added if the amount is extremely small.
  • Mo is an element effective in improving hardenability and temper softening resistance.
  • the inclusion of a large amount of Mo not only increases the cost, but is not as significant as in the case of Cr, but causes hardness unevenness for the same reason as Cr. This is because Mo also forms carbides during slow cooling after carburizing. For this reason, the upper limit needs to be 0.1%. If other elements can ensure the necessary hardenability and temper softening resistance, it is desirable not to add Mo. In that case, it is good to make it less than 0.01% which is a condition that can be said not to be actively added. As in the case of Cr, the reduction of the Mo content also causes a decrease in hardenability and temper softening resistance. However, in the present invention, this is addressed by the inclusion of Si and Mn as described above. ing.
  • the steel material used in the present invention may further contain Ti: 0.005 to 0.2% and B: 0.0006 to 0.005%.
  • Ti: 0.005 to 0.2% Ti is an element that easily binds to N. For this reason, there exists an effect which prevents that B becomes BN and the hardenability improvement effect of B lose
  • B becomes BN the hardenability improvement effect of B lose
  • the effect is not remarkable if it is less than 0.005%.
  • it exceeds 0.2% the precipitates become coarse and the steel becomes brittle. For this reason, the upper limit was made 0.2%.
  • the most preferable range of the amount of Ti added is 0.01 to 0.03%.
  • B 0.0006 to 0.005%
  • B is an element effective for imparting hardenability and strengthening the grain boundary strength when added.
  • the effect is not remarkable if it is less than 0.0006%.
  • this effect is saturated at about 0.005%, so there is no positive meaning to add more. Therefore, 0.0006% to 0.005% is a preferable range.
  • the most preferred range is 0.001% to 0.003%.
  • the steel material used in the present invention may further contain one or two of Nb: 0.01 to 0.3% and V: 0.01 to 0.2%.
  • Nb: 0.01 to 0.3%, V: 0.01 to 0.2%, Nb and V are elements that precipitate and disperse in the steel as carbonitrides. Therefore, it is effective in preventing the austenite structure from becoming coarse during carburizing and induction hardening.
  • Nb and V are both less than 0.01%, the effect is not remarkable.
  • the amount added is too large, the precipitates become coarse and the steel becomes brittle. For this reason, the upper limit is set to 0.3% for Nb and 0.2% for V.
  • Nb is added in the range of 0.01 to 0.02%
  • V is added in the range of 0.01 to 0.05%.
  • the steel material used in the present invention can further contain Ni: 0.1 to 3.0%.
  • Ni: 0.1-3.0% Ni is an element effective for improving toughness. However, the effect is not remarkable if it is less than 0.1%. However, since this effect is saturated at about 3.0%, there is no positive meaning to add more. If it contains more than 3.0% Ni, rather, the hardness increases and the machinability of the material deteriorates. For this reason, it is necessary to be within the range of 0.1% to 3.0%. The most preferred range is 0.5% to 1.5%.
  • the gear 8 is provided with tooth portions 81 at equal intervals on the periphery of a circular disc portion 82.
  • the disc portion 82 shown in FIG. 1 is an annular shape rather than a disc shape, but such a shape is also included in the “disc”.
  • the tooth portion 81 has a tooth wall surface 811 and a tooth crest surface 812. An angular side between the tooth wall surface 811 and the tooth top surface 812 is referred to as a tooth tip corner portion 813.
  • a tooth root portion 815 exists between the tooth portion 81 and the tooth portion 81.
  • Examples of the use of the gear 8 of the present embodiment include various gears in a driving system of an automobile. In addition to cost reduction, there are strict requirements for the gears of automobile drive systems in terms of strength and shape accuracy, but the present invention is very effective in meeting those requirements. Examples of the gears in the drive system include gears in automatic transmissions, differentials, and the like.
  • FIG. 3 shows a simulation result of stress distribution during use in the cross section of the gear 8.
  • FIG. 3 shows a situation where a driving force is applied to the tooth wall surface 811 on the right side of the tooth portion 81.
  • the region 71 is a region where the strongest stress is applied.
  • the areas 72, 73, and 74 become weaker in stress.
  • Fig. 3 it can be seen that there are two places where stress is concentrated during driving.
  • One location is near the boundary between the tooth wall surface 811 and the tooth root portion 815. This is mainly subjected to bending stress.
  • the other location is a position in the tooth wall surface 811 where the distance from the tooth tip corner portion 813 is slightly shorter than the distance from the tooth root portion 815. This is mainly subject to shear stress.
  • a strong stress is applied not only to the vicinity of the surface layer of the gear 8 but also to a considerably deep part.
  • the region 71 alone is deeper than the general carburized layer depth. Therefore, in the gear 8 used for this type of application, not only the surface hardness of the tooth portion 81 is required, but also the internal toughness of the tooth portion 81 is required.
  • the raw material of the gear 8 of this embodiment is a hot rolled steel material having a chemical component within the above range. Using this raw material steel as a starting material, rough forming is performed by hot forging, followed by annealing, and tooth portions 81 are formed by cutting. Thereby, the gear 8 is completed in terms of the outer shape. However, the gear 8 of the present embodiment is further processed by the following process.
  • Carburizing step This is a step of performing a process of forming a carburized layer on the surface layer portion of the gear 8 by heating the gear 8 in a carburizing atmosphere.
  • Cooling step is a step of cooling the gear 8 after the carburizing step. This cooling must be carried out at least until the structural transformation due to the temperature drop after carburization is completed.
  • the quenching process is a process in which the gear 8 after the cooling process is locally heated to austenite region by high-density energy, and after the heating, it is quenched and hardened.
  • the carburizing process is performed in a carburized gas under reduced pressure that is lower than the atmospheric pressure, that is, a reduced-pressure carburizing process.
  • the carburizing process can be performed with a relatively small amount of carburizing gas while maintaining the inside of the high-temperature carburizing furnace in a reduced pressure state. For this reason, carburizing treatment can be performed more efficiently than before.
  • long-time heat treatment as in the case of using a conventional large heat treatment furnace is unnecessary. For this reason, it is possible to shorten the processing time, reduce the energy consumption, and further reduce the size of the carburizing and quenching equipment itself.
  • the above-described Cr carbide generation may proceed more remarkably when the variation in the degree of carburization is larger than in the case of normal gas carburization.
  • the Cr content is kept low, the formation of such Cr carbide is suppressed.
  • the effect of limiting Cr is particularly effective by adopting a reduced pressure carburizing process.
  • the carburizing atmosphere is depressurized with respect to atmospheric pressure in the carburizing process. For this reason, the oxygen concentration in the atmosphere can be kept low. Thereby, grain boundary oxidation of the carburized layer can be prevented.
  • Carburizing is generally a hydrocarbon gas (carburizing gas such as methane, propane, ethylene, acetylene, etc.) introduced directly into the furnace, and the target steel material (here, gear 8) is introduced into the atmosphere. It is a process of forming a carburized layer by intruding carbon into the surface layer of the target steel material by placing and heating. In this carburizing process, first, during the diffusion phase, carburized gas molecules come into contact with the surface of the steel and decompose, generating active carbon. This active carbon is supplied to the surface of the steel to form carbides. This stores carbon on the surface of the steel.
  • hydrocarbon gas carburizing gas such as methane, propane, ethylene, acetylene, etc.
  • the route of carbon entry is not limited to the route via carbide, but there is also a route of direct dissolution of active carbon into the matrix.
  • the atmospheric pressure in the reduced pressure carburizing process is preferably in the range of 1 to 100 hPa. If the atmospheric pressure in the reduced-pressure carburizing process is reduced to less than 1 hPa, expensive equipment is required to realize and maintain the degree of vacuum. On the other hand, when the pressure is higher than 100 hPa, soot is generated during carburizing. This may cause a problem of uneven carburization.
  • hydrocarbon-type gas such as acetylene, propane, butane, methane, ethylene, ethane, can be applied, for example.
  • the carburized layer has a carbon content equal to or less than that of eutectoid steel. For this reason, the austenite transformation is performed by heating at the time of subsequent quenching, followed by rapid cooling, thereby making it possible to obtain a martensite structure without precipitation of cementite.
  • the gear of the present embodiment has a first part and a second part that have different diffusion rates of carbon that has entered during the carburizing process due to its shape, and the above-described first part (carbon easy diffusion part) is more than the first part.
  • the second part (difficult carbon part) has a shape in which the diffusion rate of carbon that has entered is slower.
  • the carburizing step is preferably performed under the condition that the carbon concentration on the surface of the first portion is in the range of 0.65 ⁇ 0.1%.
  • the tooth wall surface 811, the tooth root portion 815, and the tooth crest surface 812 (not including the tooth tip corner portion 813) correspond to the first portion
  • the tooth tip corner portion 813 corresponds to the second portion. .
  • the reduced pressure carburizing process is a non-equilibrium reaction. For this reason, when the steel member which has an uneven
  • the surface carbon concentration obtained is different between immediately after the carburizing period in which carburizing is carried out and after the diffusion period in which the diffusion of carbon that has penetrated into the interior thereafter is passed. .
  • the carbon concentration of the carburized layer is expressed using the value after the diffusion period. Accordingly, all the carbon concentrations in the carburized layer in the present specification are values of the carbon concentration after the diffusion period, not immediately after the carburization period (hereinafter the same).
  • the conditions for performing the reduced-pressure carburizing step on the gear 8 having the first part (carbon easy diffusion part) and the second part (carbon difficult diffusion part) due to the shape are as described above.
  • the carbon concentration on the surface of the first portion is within the range of 0.65 ⁇ 0.1%.
  • the inventor of the present invention performs the reduced pressure carburizing process under such conditions, so that the second part of the gear 8 obtained, that is, the diffusion rate is slower than the first part, and the carbon concentration on the surface after the carburizing process is reduced.
  • the carbon concentration on the surface of the part higher than the first part can be suppressed to a range of 0.85% or less.
  • the carbon concentration on the almost entire surface of the portion to be surface-modified by the carburizing process of the gear 8 can be kept within the range of 0.60 to 0.85%.
  • a portion where the surface carbon concentration is close to the lower limit (first part) by applying a special quenching process in which the surface carbon concentration is kept within this range, followed by rapid cooling after heating using high-frequency energy.
  • the effect of quenching can be sufficiently obtained, and defects due to excess carbon can be suppressed in the portion where the surface carbon concentration is close to the upper limit (second portion).
  • an excellent modified surface is obtained after quenching.
  • Conditions such as temperature, type of carburizing gas, pressure, and processing time in the reduced-pressure carburizing process are adjusted so that the carbon concentration on the surface of the first part is in the specific range. There is a need. For that purpose, it is preferable to carry out under these conditions by changing these conditions in various ways and conducting a plurality of preliminary experiments to find appropriate conditions. If the gear 8 that is a material to be processed has the same shape, the number of preliminary experiments can be reduced by accumulating data. The determination of the first part and the second part in the gear 8 can be made by actually measuring the carbon concentration at a plurality of places in the preliminary experiment. Moreover, since it can be judged relatively easily from the shape, it may be determined by observing the shape.
  • a carburized layer 91 having a carbon concentration higher than the carbon concentration of steel shown in the cross-sectional view of FIG. 4 is formed. That is, carbon supplied to the surface of the steel penetrates from the surface through diffusion, and a carburized layer 91 is formed on the surface layer portion.
  • the carbon concentration in the carburized layer is within the range of 0.60 to 0.85% on the surface as described above, but gradually decreases to the carbon concentration of the material steel as it goes inside.
  • the carburized layer 91 is formed on the surface layer of the tooth portion 81 and the tooth root portion 815.
  • the thickness of the carburized layer 91 is about 0.7 to 1.3 mm.
  • the hardened and hardened layer 92 is depicted as if it existed under the carburized layer 91. However, the hardened layer 92 is formed through a quenching process to be described later. Therefore, at this stage, the hardened hardening layer 92 is not yet formed.
  • the cooling process is performed under slow cooling conditions. More specifically, the steel material of the gear 8 is cooled to a temperature lower than the temperature at which the structural transformation by cooling is completed at a cooling rate lower than the cooling rate at which the steel material of the gear 8 undergoes martensite transformation during cooling. Thereby, generation
  • the cooling is performed at a cooling rate in the range of 0.1 ° C./second to 3.0 ° C./second at least while the temperature of the gear 8 is equal to or higher than the A1 transformation point temperature of the material steel. It is preferable. If the cooling rate exceeds 3.0 ° C./second before the temperature falls below the A1 transformation point temperature, the effect of suppressing strain generation during cooling may not be sufficiently obtained. On the other hand, when the cooling rate in the cooling step is less than 0.1 ° C./second during a period equal to or higher than the A1 transformation point temperature of the steel member, a long time is required until the temperature falls to the A1 transformation point.
  • the cooling step is preferably performed in a cooling atmosphere reduced in pressure below atmospheric pressure. That is, it is preferable to use a reduced pressure cooling process. Thereby, generation
  • the reason is that the heat exchange rate between the steel and the atmosphere can be reduced. Due to the heat exchange between the steel and the atmosphere, there is a difference in the ambient temperature between the windward and leeward of the wind flow in the atmosphere, and the ambient temperature at the leeward position is higher. If the atmospheric pressure is as high as atmospheric pressure, this temperature difference is significant because the heat exchange rate is fast. For this reason, a temperature difference is caused by a portion in the gear 8 and a thermal distortion is caused.
  • the heat exchange rate becomes slow in the first place by using the reduced pressure cooling process. For this reason, the temperature difference between the windward and leeward is small, and the cooling proceeds relatively uniformly. Therefore, thermal distortion is suppressed.
  • reduced pressure cooling causes less thermal distortion than cooling at atmospheric pressure. This is because the difference in cooling rate due to residence of cooling atmospheres with different temperatures is small.
  • the pressure difference between the two processes is small.
  • the carburizing chamber and the slow cooling chamber can be directly connected to perform both processes continuously. That is, it is not necessary to provide a spare chamber for pressure adjustment between the two chambers. That is, the product that has been subjected to the reduced pressure carburizing process can be subjected to the reduced pressure annealing process without being exposed to the atmospheric pressure state. This also contributes to the reduction of distortion.
  • the atmospheric pressure in the cooling process is preferably in the range of 100 hPa to 650 hPa. If the pressure during cooling is higher than 650 hPa, the effect of the reduced pressure is insufficient. On the other hand, reducing the pressure to less than 100 hPa has a difficulty in equipment configuration. A more preferable range of the pressure during cooling is 100 hPa to 300 hPa.
  • the quenching process of “3.” will be described. What is important in the quenching process is that the desired portion of the gear 8 is partially heated to the austenitizing temperature or higher, and at least the carburized layer portion is martensitic transformed by subsequent rapid cooling. For this reason, it is necessary to perform heating by high-density energy heating. Moreover, it is necessary to perform rapid cooling at a cooling rate higher than the critical cooling rate for martensitic transformation. Examples of the high-density energy heating include heating by irradiating a high-density energy beam such as an electron beam or a laser beam. Alternatively, as other than beam irradiation, high-frequency heating is also included in high-density energy heating. By using high-density energy heating, the heating time is shortened. Further, in this embodiment, a low Cr steel type that is easily austenitized may be used, and the gear 8 can be hardened reliably and sufficiently.
  • high-density energy heating the most preferable is high-frequency heating.
  • high-frequency heating a desired part can be accurately heated by induction heating without contact. It is also highly efficient.
  • a known method can be used as the method of high-frequency heating itself.
  • the rapid cooling in the quenching process is preferably performed by water cooling.
  • the heating before quenching is performed by high-density energy heating instead of gas heating or the like, even if water cooling at a very high cooling rate is performed thereafter, the occurrence of quenching distortion is small. This is because high-density energy heating can accurately heat the gear 8 instead of the entire gear 8.
  • the high quenching effect is obtained by the excellent rapid cooling by water cooling. That is, further strengthening of the quenched portion is achieved.
  • the required strength may be ensured even if the carburizing process is simplified, that is, the carburizing time is shortened, that is, the carburized layer is made thinner. In this case, the entire heat treatment process can be further shortened.
  • the gear 8 is processed by flowing one, and at the time of water cooling after heating, cooling is performed by jetting cooling water from the surroundings toward the gear 8 while rotating the gear 8. In this way, uniform cooling can be achieved. For this reason, generation
  • the high-density energy heating in the quenching process is performed under the condition that the surface of the gear 8 is not melted and is austenitized from the surface to a relatively deep portion.
  • the input energy of the high-density energy heating is made smaller, and the heating time is made a little longer (for example, about 15 to 25 seconds) instead.
  • the heating target temperature is set to a temperature within a relatively low range (for example, 750 ° C. to 960 ° C.) as the austenite region of the steel material, and heating is performed a little longer by that amount. By doing so, the entire region slightly thicker than 2 to 5 mm in depth can be heated by heat conduction from the surface.
  • the quenching effect can be obtained not only in the carburized layer region but also in a deeper region.
  • the quenching effect can be obtained not only in the carburized layer region but also in a deeper region.
  • by suppressing austenitization by high-density energy heating to a relatively low temperature there is also an effect of suppressing distortion during subsequent water cooling.
  • the gear 8 is the object.
  • the object having the protruding tooth portion 81 such as the gear 8 is an object, it is preferable to perform the high-density energy heating under the condition that the entire surface of the tooth portion 81 and the inside thereof are austenitic.
  • the gear 8 is required to have both high surface hardness of the tooth portion 81 and high internal toughness.
  • the shape accuracy of the tooth portion 81 is also high. Therefore, as described above, it is effective to make the heating in the quenching process relatively low temperature and relatively long. This is because the quenching effect is exerted not only on the carburized layer but also on the entire tooth portion 81, and high shape accuracy can be obtained by suppressing distortion.
  • a hardened and hardened layer 92 as shown in FIG. 4 is formed.
  • a hardened and hardened layer 92 exists under the carburized layer 91 on the surface of the gear 8.
  • the entire inside of the tooth portion 81 is a hardened and hardened layer 92.
  • the hardened layer 92 is formed on the surface portion of the tooth root portion 815 below the carburized layer 91 and the portion below the tooth portion 81.
  • the total thickness of the carburized layer 91 and the hardened and hardened layer 92 is about 2 to 5 mm.
  • the hardened and hardened layer 92 contains a martensite structure as described above.
  • the carburized layer 91 is also a layer subjected to quenching effect and includes a martensite structure.
  • the carburized layer 91 is referred to as a “first quench hardened layer”, and the quench hardened layer 92 is referred to as a “second quench hardened layer”.
  • a non-quenched layer 93 exists under the hardened hardening layer 92.
  • the non-quenched layer 93 does not contain a martensite structure. This is because the temperature was not raised to the austenitizing temperature during heating in the quenching process.
  • the C concentration on the surface of the carburized layer 91 is in the range of 0.60 to 0.85% due to carburization as described above. And as it goes inside, the C concentration gradually decreases to the C concentration of the original steel material.
  • the C concentration of the hardened and hardened layer 92 and the non-quenched layer 93 is the C concentration of the original steel material and is in the range of 0.1 to 0.40%.
  • the portion that should become the non-quenched layer 93 is called a “core portion”.
  • the heat treatment including the carburizing step, the cooling step, and the quenching step in the present invention is a treatment method that suppresses the occurrence of distortion. That is, in the cooling process after carburizing, cooling is performed at a cooling rate lower than the cooling rate at which martensitic transformation occurs. Thereby, not only in the carburized layer but also in the core deeper than the carburized layer, a martensite structure is not generated, and either ferrite, pearlite, bainite, or a mixed structure thereof is formed. Therefore, the martensitic transformation distortion does not occur in the cooling in the cooling process, and the shape accuracy of the gear 8 does not deteriorate.
  • high-density energy heating is used for heating in the quenching process after the cooling process.
  • the machined gear 8 was subjected to the carburizing step, the subsequent cooling step, and the subsequent quenching step.
  • the gear 8 after these processes was subjected to material investigation and fatigue test.
  • the heat treatment equipment 5 used in the present embodiment has a pre-cleaning tank 51, a reduced pressure carburizing and slow cooling device 52, an induction hardening machine 53, and a magnetic flaw detection device 54.
  • the pre-washing tank 51 is a part for washing the gear 8 before the heat treatment is started.
  • the reduced-pressure carburizing and slow cooling device 52 includes a heating chamber 521, a reduced-pressure carburizing chamber 522, and a reduced-pressure slow cooling chamber 523.
  • the gear 8 is heated in the heating chamber 521, and then the reduced pressure carburizing in the reduced pressure carburizing chamber 522 and the reduced pressure annealing in the reduced pressure annealing chamber 523 are performed. There is no spare chamber between the reduced pressure carburizing chamber 522 and the reduced pressure annealing chamber 523.
  • the induction hardening machine 53 is a part that performs high frequency heating and subsequent water cooling on the gear 8 after the reduced pressure annealing.
  • the magnetic flaw detector 54 is a part that performs a defect inspection of the gear 8 after quenching.
  • the reduced pressure carburizing process in the reduced pressure carburizing chamber 522 of the reduced pressure carburizing slow cooling device 52 will be described.
  • the carburizing process in this embodiment is a reduced-pressure carburizing process performed in a carburizing gas whose pressure is reduced to a pressure lower than the atmospheric pressure.
  • FIG. 6 shows a heat pattern in this reduced-pressure carburizing process and the subsequent reduced-pressure slow cooling process.
  • the horizontal axis represents time and the vertical axis represents temperature.
  • “a” indicates the heating period in the heating chamber 521.
  • What is indicated by “b1” and “b2” is the holding period in the reduced pressure carburizing chamber 522.
  • the first period “b1” of the holding period is a carburizing period in the carburizing process
  • the subsequent period “b2” is a diffusion period in the carburizing process.
  • the carburizing temperature that is, the holding temperature in the holding periods “b1” and “b2” was set to 950 ° C., which is a temperature higher than the austenitizing temperature of the steel material.
  • the gear 8 was heated to this holding temperature during the heating period “a”.
  • the temperature of the gear 8 was maintained at a constant temperature, that is, the above-described holding temperature.
  • the pressure of the carburizing gas in the reduced pressure carburizing process was set within the range of 1 to 3.5 hPa. Further, acetylene was used as the carburizing gas in the carburizing period “b1”.
  • the carburizing conditions were determined as follows through preliminary experiments. That is, the gear 8 of this embodiment is a diff ring gear, and has a first part (carbon easy diffusion part) and a second part (carbon difficult diffusion part) due to its shape.
  • the tooth root part 815 and the tooth wall surface 811 shown in FIG. 2 are the first part, and the tooth tip corner part 813 is the second part.
  • a condition was adopted in which the carbon concentration of the surface layer of the tooth root portion 815 which is the first part is in the range of 0.65 ⁇ 0.05%.
  • the slow cooling process in the present embodiment is a reduced pressure slow cooling process performed in an atmosphere reduced to a pressure lower than the atmospheric pressure.
  • the period indicated by “c” is the slow cooling period.
  • the atmospheric pressure in the reduced pressure annealing process was set to 600 hPa.
  • the gas type of the atmosphere was N 2 gas.
  • the cooling rate in the reduced pressure gradual cooling treatment was set within the range of 0.1 to 3.0 ° C./second.
  • cooling was performed from a temperature equal to or higher than the austenitizing temperature immediately after the carburizing treatment to 150 ° C., which is lower than the A1 transformation point.
  • the heat pattern shown in FIG. 6 is one example, and can be changed to an optimum condition for the type of steel material to be used by appropriately performing a preliminary test.
  • the quenching process in the induction hardening machine 53 will be described.
  • high-frequency heating was used as a means for high-density energy heating.
  • water cooling was used as a rapid cooling means.
  • the heat pattern of the quenching process of a present Example is shown in FIG.
  • FIG. 7 as in FIG. 6, the horizontal axis represents time and the vertical axis represents temperature.
  • “d1” indicates a temperature rising period
  • “d2” indicates a rapid cooling period.
  • the tooth portion 81 on the outer peripheral side of the gear 8 is heated to a temperature equal to or higher than the austenitizing temperature by high-frequency heating.
  • the gear 8 is rapidly cooled in the carburized layer at a cooling rate equal to or higher than the critical cooling rate by water injection.
  • the critical cooling rate is a cooling rate necessary for the martensitic transformation of the austenitized steel material, particularly the carburized layer.
  • the high-frequency heating in the temperature rising period “d1” was performed by setting the amount of energy input to be smaller than the conditions used in normal high-frequency heating, and the heating time was relatively long for 15 to 25 seconds.
  • the heating time was relatively long for 15 to 25 seconds.
  • not only the vicinity of the surface of the tooth portion 81 but also the entire interior including the inside thereof was set to a temperature in the range of 750 ° C. to 960 ° C.
  • the reached temperature on the surface of the tooth root portion 815 was in the range of 920 ° C. to 940 ° C.
  • FIG. 8 is an actual temperature increase chart on the surface of the tooth root portion 815 in the temperature increase period “d1”.
  • This high-frequency heating was performed individually one by one while flowing (transporting) the gears 8 in units of one.
  • Water cooling in the rapid cooling period “d2” was about 13 seconds, and the cooling rate during that period was 50 to 65 ° C./second.
  • the gear 8 was rotated, and cooling water was sprayed toward the gear 8 from the periphery, thereby cooling one by one.
  • the quenching process was performed by a method that can suppress the occurrence of distortion most.
  • the heat pattern of FIG. 7 is also an example, and can be changed to an optimum condition for the type of steel material to be used by appropriately performing a preliminary test. For example, as shown in FIG. 9, the cooling after the temperature rise may be performed in two stages.
  • the gear 8 was subjected to three types of tests including a machinability test, a material investigation, and a fatigue test.
  • machinability test was performed when the gear 8 was manufactured from hot-rolled steel by machining.
  • the conditions for the machinability test were the conditions for turning in a dry environment with a peripheral speed of 250 m / min, a feed rate of 0.3 mm / rev, and a cutting depth of 1.5 mm using a carbide tool.
  • Ten gears 8 were manufactured under these conditions, and when the chip did not occur in the cemented carbide tool, it was determined as “good”, and when the chip occurred, it was determined as “defective”.
  • ⁇ Material survey> The material investigation was performed on a sample taken from the tooth wall surface 811 of the gear 8 after completion of the heat treatment but not subjected to the fatigue test described later. Two items were examined: hardness and grain size. Regarding the hardness, the Vickers hardness at a load of 2.9 N was measured at each depth of 0.05 mm from the surface of the sample, and the effective hardened layer depth defined by JIS G 0557 was measured. The crystal grain size was evaluated by obtaining the austenite grain size number defined in JIS G 0551 at a location 0.4 mm deep from the surface of the sample.
  • the evaluation of material evaluation was performed according to the following criteria. (Good) Those satisfying all the following three conditions were judged as “good”. -The effective hardened layer depth should be 0.8mm or more. ⁇ There is no unevenness in Vickers hardness. Specifically, the difference between all adjacent measurement points is less than HV50. -Fine grain with austenite grain size number of "6" or more. (Bad) Those that did not satisfy any one of the above three conditions were judged as “defect”, and under which conditions the defect was identified. In the fatigue test described later, the fracture surface was observed with an SEM (scanning electron microscope) to confirm whether it was a grain boundary brittle fracture surface.
  • SEM scanning electron microscope
  • ⁇ Fatigue test> As a fatigue test, the tooth root bending fatigue strength (Nm) and the pitching strength (Nm) were measured with a power circulating gear tester.
  • the specifications of the gear 8 subjected to the test are a module 2.03, a pressure angle of 18 °, and a helix angle of 27 °.
  • the root bending fatigue strength was evaluated based on an input torque that could endure 10 million times under the conditions of a lubricating oil temperature of 80 ° C. and a rotational speed of 2000 rpm.
  • the pitching strength was evaluated by an input torque at which the pitching area ratio became 3% or less of the total tooth contact area after 50 million tests under conditions of a lubricating oil temperature of 120 ° C. and a rotational speed of 4000 rpm. In all cases, ATF (automatic transmission fluid) was used as the lubricating oil.
  • FIG. 10 shows test No. 1 which is one example of the present invention.
  • 3 shows the details of the measurement results of Vickers hardness of No. 3.
  • the vertical axis represents the Vickers hardness
  • the horizontal axis represents the depth from the surface (tooth root portion 815).
  • there is a Vickers hardness of about 800 on the surface and the Vickers hardness decreases as the depth increases.
  • the depth is 2.6 mm or more
  • the Vickers hardness is almost constant. From this, it can be seen that in this example, the effect of quenching is exerted on the portion from the surface to a depth of 2.6 mm, and the portion having a depth of about 2.6 mm or more is the non-quenched layer 93.
  • the carburized layer 91 is in the range from the surface to a depth of 0.9 mm
  • the hardened layer 92 is in the range from a depth of 0.9 mm to a depth of 2.6 mm.
  • test No. There were items with poor results in any of 24-32. In Table 4, the poor results are shown in bold italics. Individually, it is as follows. Test No. In 24, the pitching strength was low. This is probably because the temper softening resistance was not sufficiently improved due to the amount of Si in the steel material being less than 0.35%. Test No. In No. 25, the machinability of the material was poor, and the gear 8 as a test piece could not be manufactured. It is thought that the material was too hard due to the C content in the steel material exceeding 0.40%. Test No. From 26 to 28, hardness unevenness was observed and fatigue strength was low (both tooth root and pitching).
  • Test No. 30 the fatigue strength was remarkably low (both tooth root and pitching). For this reason, the SEM observation of the fracture surface confirmed that it was a grain boundary brittle fracture surface. This is probably because the S content in the steel material exceeds 0.15%, which causes segregation of S grain boundaries and causes grain boundary brittleness. Test No. In 31 and 32, hardness unevenness was seen and the tooth root fatigue strength was low. These comparative examples are those using conventional steel SCM420 (chromoly steel), which is considered to be due to poor penetration of cementite because both Cr and Mo are excessive. In particular, test no. In 33, the pitching strength was slightly low. This is thought to be due to the lack of Si in the steel material.
  • the gear 8 of the present invention and the manufacturing method thereof reduce the material cost by reducing the Cr amount and the Mo amount as compared with the conventional chromoly steel. It was found that the fatigue strength was excellent, and other characteristics were equivalent or better.
  • this Embodiment and an Example are only a mere illustration, and do not limit this invention at all. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.
  • an example of the external gear having the tooth portion 81 formed outward has been described as the gear 8.
  • the present invention is not limited to the external gear.
  • the present invention can also be applied to an internal gear (for example, a ring gear of a planetary gear device) as shown in FIG.
  • it can be applied to a bevel gear.
  • the outer side in the radial direction corresponds to “down” or “deep”.
  • FIG. 11 is a diagram in which a part is omitted, but in actuality, of course, the tooth profile is formed over the entire circumference.

Abstract

 化学成分が,C:0.1~0.40%(質量%),Si:0.35~3.0%,Mn:0.1~3.0%,Cr:0.2%未満,Mo:0.1 %以下,P:0.03%以下,S:0.15%以下,Al:0.05%以下,N:0.03%以下,Feおよび不可避不純物:残部,である素材鋼を用いる。低酸素濃度下で表層に浸炭層を形成する浸炭工程と,浸炭工程後にマルテンサイト変態しない遅い冷却速度で組織変態が完了する温度以下まで冷却する冷却工程と,冷却工程後に高密度エネルギー加熱により加熱して,芯部をオーステナイト化させることなく,芯部より浅い領域と歯部とをオーステナイト化させ,その状態から急冷する焼入工程とを行う。これにより,歯部および歯元部の表層部を浸炭層とし,歯部の残部と,円板部のうち浸炭層の下の部分とを焼き入れ硬化層とし,円板部における焼き入れ硬化層より深い領域を非焼き入れ層とする。

Description

歯車およびその製造方法
 本発明は,例えば自動車の駆動系におけるデフリングギヤのような,表層部ばかりでなく芯部まで応力が掛かるほど高いトルクの伝達に用いられる歯車およびその製造方法に関する。さらに詳細には,鋼を素材とし,浸炭や焼き入れといった工程を経て硬化された歯車およびその製造方法に関するものである。
 歯車等の鋼部材は,靱性を維持しつつ表面硬度を高めるための処理として浸炭焼入れ処理が施される場合が多い。以下,適宜,浸炭処理を施した鋼部材を浸炭鋼部材という。浸炭焼入れ処理は,鋼部材をオーステナイト化温度以上に加熱した状態で表面の炭素濃度を増大させる浸炭処理を行った後に,焼入れ処理を行って芯部の靱性を確保するとともに,表面硬度を高めるための処理である。浸炭焼き入れ処理を適用して鋼部材を製造する方法としては,これまでにも様々な方法が提案されている。例えば特許文献1では,CrやMoを含む鋼素材に浸炭,徐冷,高周波加熱による焼き入れといった工程を施している。
WO2006/118242号公報
 前記従来技術のようにCrの含有率が高い(例えば0.2質量%以上)鋼素材の場合には,浸炭後の徐冷の際に,浸炭層内のパーライト,フェライト中にCr炭化物が生成される。そして,徐冷後の高周波加熱を比較的高温(例えば950℃以上)で行うと,このCr炭化物はマトリックス中に溶解する。このため,高周波加熱時のオーステナイト変態が均一に起こり,均一な焼き入れ組織が得られる。これにより硬度も均一となる。一方,徐冷後の高周波加熱を比較的低温(例えば950℃未満)で行うと,Cr炭化物のマトリックス中への溶解があまり起こらない。このためオーステナイト変態が不均一となり,焼き入れ組織も不均一となる。このことが硬度ムラの発生要因となる。
 また,Moの含有率が高い場合(例えば0.1質量%以上)でも,Crの場合ほどではないが,同じ理由で硬度ムラの発生要因となる。Moも浸炭後の徐冷の際に炭化物を形成するからである。つまり,CrやMoの含有率が高い鋼素材の場合に均一な焼き入れ組織を得るためには,徐冷後の高周波加熱を比較的高温で行う必要があることになる。
 ここで,鋼部材を歯車に用いる場合には,表層部が高硬度であることが求められる一方で,内層部については硬度よりも高靱性であることが求められる。さらに,高い形状精度も求められる。表層部の高硬度と内層部の高靱性とを両立するためには,高周波焼き入れの際,歯車の表層部のみを輪郭状に加熱して焼き入れる必要がある。これを実現するためには,高周波焼き入れを高出力短時間で行う必要がある。加熱時間を短く抑えることにより,内層部への熱伝導を抑制して輪郭状の加熱とするのである。その分加熱の出力が高いので,表層部は比較的高温となる。特に歯先部分は,溶融気味になることもある。
 このような加熱方法を用いると,歯先を含む表層部では,上述のようにCr炭化物やMo炭化物がマトリックス中に溶け込むので均一な焼き入れ組織が得られる。なお,表層部であっても歯元部分は,歯先部に比べればやや低温(例えば950℃程度)となるが,硬度ムラが生じる程ではない。高周波加熱自体を高出力で行うからである。
 ところで歯車には,自動車の駆動系,特にデフリングギヤなど,非常に高いトルクを伝達する用途に用いられるものがある。そのような用途では,歯車の表層部ばかりでなく,歯部の内部まで応力が掛かる。そのため表層部ばかりでなく,それより深い深層部においても硬度が求められる。よって,表層部ばかりでなく深層部,特に歯部の内部も,焼き入れの際にオーステナイト変態温度以上まで昇温させる必要がある。しかしながら,歯車全体をオーステナイト変態温度以上まで昇温させてしまうのは妥当でない。歯車全体をオーステナイト変態させてしまうと,その後の急冷時のマルテンサイト変態に伴う体積膨張により,形状精度が低下するからである。そのため,歯車の使用時におけるノイズの発生等の原因となる。
 そこで,歯車の内層部をオーステナイト変態温度以上まで昇温させることなく,表層とその下の深層部とのやや厚い範囲の部分をオーステナイト変態温度以上まで昇温させることになる。この場合には,表層から深層部への熱伝導を積極的に利用することになる。このため,前述とは逆に加熱時間をある程度長く取る必要があり,加熱の出力はその分下げることとなる。これにより歯先部の過熱が抑制されるので,比較的温度分布のよい加熱となる。
 しかしながらこの場合に,以下の2つの課題が生じる。第1に,焼き入れ時に比較的低い温度でオーステナイト変態させることである。このため,CrやMoの含有率が高い場合に,焼き入れの際の加熱によってもCr炭化物やMo炭化物がマトリックス中に溶けきれずに残留する場合がある。この炭化物の残留は,硬度低下や硬度ムラの原因となる。
 第2に,表層部よりやや深い箇所の問題がある。高周波加熱の場合,深い箇所では表層部より温度が低い。このため,浸炭層の範囲内でも,表層部より深い箇所は,表層部と比較して,前記の炭化物の残留の問題が起こりやすい。このような箇所では表層部と比較して,硬度ムラが発生する可能性が高い。
 本発明は,かかる問題に鑑みてなされたものであって,硬度ムラがなく,表層部ばかりでなく深層部も高硬度であり,形状精度も高い歯車およびその製造方法を提供することを目的とする。
 この課題の解決を目的としてなされた本発明の一態様は,歯車の素材鋼として,
  C :0.1 ~0.40質量%,
  Si:0.35~3.0 質量%,
  Mn:0.1 ~3.0 質量%,
  Cr:0.2 質量%未満,
  Mo:0.1 質量%以下,
  P :0.03質量%以下,
  S :0.15質量%以下,
  Al:0.05質量%以下,
  N :0.03質量%以下,
  Feおよび不可避不純物:残部,
という化学成分のものを用いる。
 しかして本発明の歯車は,円板部と,前記円板部に円周状に離散的に形成された複数の歯部とを有し,成形後に浸炭処理とその後の高密度エネルギー加熱による焼き入れ処理とを経ているものであって,素材鋼の化学成分が前記のものであり,
 前記歯部の表層部,および,前記円板部における前記歯部同士の間の箇所である歯元部の表層部が,浸炭処理によりC濃度が前記素材鋼のC濃度より高くされるとともに,マルテンサイト組織を含む第1焼き入れ硬化層とされており,
 前記歯部のうち前記第1焼き入れ硬化層とされている部分以外の部分と,前記円板部のうち前記歯元部の前記第1焼き入れ硬化層の下の部分と,前記円板部のうち前記歯部の下の部分とにわたり,C濃度が前記素材鋼のC濃度とされるとともに,マルテンサイト組織を含む第2焼き入れ硬化層が形成されており,
 前記円板部における前記第2焼き入れ硬化層より深い領域が,C濃度が前記素材鋼のC濃度とされるとともに,マルテンサイト組織を含まない非焼き入れ層とされているものである。
 また,本発明の他の態様は,円板部と,前記円板部に円周状に離散的に形成された複数の歯部とを有する歯車を製造する方法であって,
 素材鋼として,前記の化学成分のものを用い,
 前記素材鋼で成形された歯車を,大気の酸素濃度より低い酸素濃度の浸炭雰囲気中で,前記素材鋼のオーステナイト化温度以上の温度に加熱して表面に浸炭層を形成する浸炭工程と,
 前記浸炭工程後の前記歯車を,前記素材鋼がマルテンサイト変態する冷却速度より遅い冷却速度で,冷却による組織変態が完了する温度以下の温度まで冷却する冷却工程と,
 前記冷却工程後の前記歯車を高密度エネルギー加熱により加熱することで,前記円板部における芯部を前記素材鋼のオーステナイト化温度以上の温度まで昇温させることなく,前記円板部における前記芯部より浅い領域と前記歯部とを前記素材鋼のオーステナイト化温度以上の温度まで昇温させ,その状態から,前記素材鋼がマルテンサイト変態する冷却速度以上の冷却速度で冷却することにより,前記円板部における前記芯部より浅い領域と前記歯部とにマルテンサイト組織を形成する焼入工程とを行うことにより歯車を製造する方法である。
 本発明は,上記のごとく,減圧下で行う浸炭工程と,上記特定の条件で徐冷する冷却工程と,上記高密度エネルギーでの加熱を採用した焼き入れ工程とを経て作成される浸炭鋼部材の歯車及びその製造方法に特化したものである。そして,本発明では,この製造方法によって歯車を作成する場合に最適な化学成分として,上記範囲の化学成分を採用した。上記化学成分において注目すべき点は,Cr及びMoについて不純物としての含有レベルにとどめるか,添加するとしてもその含有量をそれぞれ0.2%未満及び0.1%以下に制限した点である。
 Crは,0.2%未満の添加量では焼入れ性を向上させると共に焼戻し軟化抵抗を上げるのに有効な元素である。一方,Crが0.2%以上添加された場合には浸炭処理後の徐冷の際に,浸炭層内のパーライト,フェライト中にCr炭化物が生成されてしまう。このCr炭化物は,その後の焼き入れ工程での際にマトリックス中に溶解させないと,不均一な焼き入れ組織を生じさせて硬度ムラの発生原因となる。しかし本発明のような高密度エネルギーを利用した非常に短時間での加熱を行う場合には,Cr炭化物をマトリックス中に固溶させることが困難となる。
 そこで,本発明では,上記のごとく,積極的にCrを任意成分とし,仮に含有させるとしてもその含有量を0.2%未満に制限する。これにより,上記した徐冷時におけるCr炭化物の生成が抑制される。そのため,上記焼き入れ工程の加熱手段が高密度エネルギーを利用した加熱であっても,さらに加熱前にたとえCr炭化物が存在していたとしてもこれをマトリックス中へ確実に固溶させることができ,組織ムラを低減することができる。また,高価なCrの添加量を低減することによって,素材コストを下げることも可能となる。
 また,Moは焼き入れ性向上及び焼き戻し軟化抵抗を上げるのに有効な元素である。しかしながら,本発明では,SiやMn(特にSi)の適量添加によって必要な焼き入れ性を確保しているため,Moによる焼き入れ性向上効果に頼ることなく均一なマルテンサイト組織を得ることができる。従って,上述したとおり,焼き入れ工程の加熱手段を高密度エネルギーを利用した加熱に限定することにより,浸炭処理の生産性向上を可能としつつ,素材コストの低減を図ることができる。また,Mo含有量が多い場合には,Mo炭化物が生成し,これが上記Crによる組織ムラと相俟って,さらに組織ムラを悪化させることがある。そのため,Moの添加を0.1%以下という少量に抑え,それにより組織ムラ低減効果を図っている。
 本発明の歯車では,上記の素材鋼および製造方法により,以下のような効果を得ている。まず,大気より酸素濃度が低い浸炭雰囲気中で浸炭を行うことにより,粒界酸化を抑制していることが挙げられる。また,表層(第1焼き入れ硬化層)ばかりでなくその下の部分(第2焼き入れ硬化層)にも焼き入れの効果が及ぶようにしている。これにより,歯部全体が高強度である歯車を実現している。そして,第2焼き入れ硬化層よりさらに深い領域が非焼き入れ層となるように焼き入れの加熱自体は比較的低温かつ比較的長目とすることで,歪みを抑制し,疲労強度を向上させている。
 したがって,本発明によって得られた歯車は,組織ムラの低減により硬さのムラを低減し,かつ,コストパフォーマンスに優れたものとなる。
実施の形態に係る歯車の全体形を示す斜視図である。 図1の歯車の一部の拡大図である。 実施の形態に係る歯車の使用時における応力分布を示す断面図である。 実施の形態に係る歯車における浸炭層および焼き入れ硬化層の分布を示す断面図である。 実施例で用いた熱処理設備の構成を示す説明図である。 減圧浸炭処理および減圧徐冷処理のヒートパターンである。 焼き入れ工程のヒートパターンである。 焼き入れ工程の昇温期間における昇温チャートである。 焼き入れ工程のヒートパターンの別の例である。 焼き入れ工程後における,硬さと深さとの関係を示すグラフである。 本発明を適用できる歯車の別の例である図である。
 まず,本発明にて使用する鋼素材の化学成分の限定理由について説明する。以下,組成における質量%は,単に%と記載する。
C:0.1~0.40%,
 Cは鋼素材の強度,特に深層部の強度を確保するために添加する元素である。そこで,本発明ではCの添加量の下限を0.1%として内部の強度を確保している。しかし,Cの添加量が0.40%を超えると,次の2点の不利がある。1つは,硬さが増加する一方で靱性が低下することである。もう1つは,鋼素材の切削性が悪化することである。このため,Cの添加量の上限を0.40%とした。より好ましい添加量の範囲は0.15~0.3%である。
Si:0.35~3.0%,
 Siは製鋼過程での脱酸に有効な元素であるとともに,鋼素材に必要な強度,焼入れ性を与え,焼戻し軟化抵抗を向上させるのに有効な元素である。本発明は,高価なCrやMoを大幅に削減できることを特徴としているが,歯車のピッチング強度のように焼き戻し軟化抵抗が必要とされる部品については,従来鋼であるCrMo鋼に対し,CrやMoの削減は不利となる場合がある。よって,CrやMoを削減しても必要とする焼き戻し軟化抵抗を得るために,Siを0.35%以上含有させることとした。しかし,Siの含有によるこの効果は3.0%程度で飽和するので,それ以上Siを含有させる積極的な意味はない。Si含有率が3.0%を超えていると,むしろ硬さの上昇を招き素材の切削性が悪化する。そこでSi含有量を0.35%~3.0%の範囲内にする必要がある。より好ましい範囲は0.45%超~1.5%である。
 また,Siを多く添加した鋼素材を使用すると,ガス浸炭処理で酸化性の雰囲気ガスを使用する場合,当該浸炭工程にて表層に粒界酸化と浸炭異常層が生じる。Siが酸化物を形成しやすいからである。このため,浸炭層の強度が低下して,曲げ疲労強度や面圧疲労強度の低下をきたす。これに対し,本発明では,減圧して酸素濃度を下げた浸炭雰囲気中において浸炭処理を行う工程を採用する。これによって,後述するごとく粒界酸化の問題を無くすことができる。このため,積極的にSi含有量を高めた鋼素材を使用することが可能となっている。
Mn:0.1~3.0%,
 Mnは製鋼過程での脱酸に有効な元素であるとともに,焼き入れ性を向上させるのに有効な元素である。ただし,含有量が0.1%未満ではその効果は不十分である。しかし,Mnの含有によるこの効果は3.0%程度で飽和するので,それ以上Mnを含有させる積極的な意味はない。Mn含有率が3.0%を超えていると,むしろ硬さの上昇を招き素材の切削性が悪化する。そこでMn含有量を0.1%~3.0%の範囲内にする必要がある。より好ましい範囲は0.5%~1.5%である。
P:0.03%以下,
 Pは鋼中で粒界に偏析して靱性を低下させる作用を有する。このため極力低減する必要がある。0にすることは困難であるが,0.03%以下に制限する必要がある。
S:0.15%以下,
 Sは鋼中でMnSを形成するので,これによる素材の切削性の向上を目的として添加される元素である。ただし,Sの含有によるこの効果は,0.15%程度で飽和するので,それ以上Sを含有させる積極的な意味はない。S含有率が0.15%を超えていると,むしろ粒界偏析を起こし粒界脆化を招く。このため,Sの含有量を0.15%以下にする必要がある。なお,S量が0.001%未満であると切削性向上効果が顕著でない。このため,下限を規定するのであれば0.001%以上とする。より好ましい範囲は0.005~0.06%の範囲内である。
Al:0.05%以下,
 Alは窒化物として鋼中に析出分散する。このことによりAlは,浸炭処理時のオーステナイト組織の粗大化を防止するのに有効な元素とされている。ただし,0.05%を超えていると,析出物が粗大化して鋼を脆化させる。このため0.05%を上限とする。なお,高密度エネルギー焼入処理が行われた部位では再結晶が起こり,粗大化したオーステナイト組織が微細化される。このため,高密度エネルギー焼入処理が行われる部位だけ高い強度が必要とされ,高密度エネルギーで加熱しない領域では高い強度が必要とされない場合には,Alを含有させることは必須ではない。しかし,高密度エネルギーで加熱しない領域にも高い強度が必要とされる場合には,Alを含有させる必要性がある。その場合には,Al量が0.005%未満であるとオーステナイト組織の粗大化防止効果が不十分である。このため,下限を規定するのであれば0.005%以上とする。より好ましい範囲は0.02~0.04%である。
N:0.03%以下,
 Nは各種の窒化物を形成して浸炭処理時および高密度エネルギー焼入処理時のオーステナイト組織の粗大化を防止する効果がある。しかし,0.03%を超えていると鍛造性が著しく悪くなる。このため0.03%を上限とする。なお,Alのところで述べたのと同様の理由により,高密度エネルギーで加熱しない領域にも高い強度が必要とされる場合にのみ,Nの含有が必須となる。その場合には,N量が0.003%未満であるとオーステナイト組織の粗大化防止効果が不十分である。このため,下限を規定するのであれば0.003%以上が必要である。より好ましい範囲は0.005~0.02%である。
Cr:0.2%未満,
 Crは,0.2%未満の添加量では焼入れ性,および焼戻し軟化抵抗を向上させるのに有効な元素である。しかし,0.2%以上の添加量では浸炭後の徐冷時に,浸炭層内のパーライト,フェライト中にCr炭化物が生成されてしまう。特に浸炭時のC濃度が0.5~0.8%未満の亜共析組成の場合にこれが顕著である。徐冷後の高密度エネルギーによる加熱を比較的高温(例えば950℃以上)で行うと,このCr炭化物はマトリックス中に溶解する。このため,高周波加熱時のオーステナイト変態が均一に起こり,均一な焼き入れ組織が得られる。これにより硬度も均一となる。一方,徐冷後の高密度エネルギーによる加熱を比較的低温(例えば950℃未満)で行うと,Cr炭化物のマトリックス中への溶解があまり起こらない。このためオーステナイト変態が不均一となり,焼き入れ組織も不均一となる。このことが硬度ムラの発生要因となる。そのため浸炭時のC濃度が0.5~0.8%未満のときはCr量を必要最小限に抑え,Cr炭化物の生成自体を抑えることが好ましい。
 また,Cr量を必要最小限とすることで,焼き入れ工程で高密度エネルギーにより所望部分をオーステナイト領域まで加熱する際に,Cr炭化物のマトリックス中への溶解が容易となる。このため,高密度エネルギー加熱時の投入エネルギー(温度が変態点以上である期間における加熱温度の積分値)を少なくできる。このため同工程を省エネルギ化・低コスト化できる。
 Crの含有量が0.2%以上の場合でも,
[Si%]+[Ni%]+[Cu%]-[Cr%]>0.5
の条件を満たす化学成分とすることで,Cr炭化物の生成をかなり抑制できることが知られている。しかしそれでも,上記硬さムラを抑制するには十分とは言えない。Cr含有量のより好ましい範囲は0.1%以下である。なお,Crの含有量の低減は,焼入れ性および焼戻し軟化抵抗を低下させてしまう要因となるが,本発明では上述の通り,Si,Mnの適量の含有により,焼入れ性および焼戻し軟化抵抗を確保している。
Mo:0.1%以下,
 本発明は,レアメタルでありその中でも比較的高価なMoを削減させることを1つの目的としている。ただし,きわめて少量であればMoを添加してもかまわない。Moは焼入れ性および焼戻し軟化抵抗を向上させるのに有効な元素である。しかし,Moの多量の含有はコストが上昇するだけでなく,Crの場合ほど顕著ではないが,Crと同じ理由で硬度ムラの発生要因となる。Moも浸炭後の徐冷の際に炭化物を形成するからである。このため,上限を0.1%とする必要がある。他の元素によって必要な焼き入れ性や焼戻し軟化抵抗を確保できるのであれば,Moを添加しないことが望ましい。その場合には,積極的には添加していないといえる条件である0.01%未満とするのがよい。なお,Moの含有量の低減も,Crの場合と同様に,焼入れ性および焼戻し軟化抵抗を低下させてしまう要因となるが,本発明では上述の通り,Si,Mnの含有によりこれに対処している。
 また,本発明にて使用する鋼素材は,さらに,Ti:0.005~0.2%,B:0.0006~0.005%を含有していてもよい。
Ti:0.005~0.2%,
 TiはNと結合しやすい元素である。このため,BがBNとなってBの焼き入れ性向上効果が消失するのを防止する効果がある。また,炭窒化物として鋼中に析出分散するので,浸炭処理時及び高周波焼入処理時のオーステナイト組織の粗大化を防止するのに有効な元素である。ただし,0.005%未満ではその効果は顕著でない。しかし,0.2%を超えていると析出物が粗大化して鋼を脆化させる。このため上限を0.2%とした。Tiの添加量の最も好ましい範囲は0.01~0.03%である。
B:0.0006~0.005%,
 Bは,添加することによって焼入れ性を与え,粒界強度を強化するのに有効な元素である。ただし,0.0006%未満ではその効果は顕著でない。しかし,0.005%程度でこの効果は飽和するので,それ以上添加することに積極的な意味はない。よって,0.0006%~0.005%が好ましい範囲である。最も好ましい範囲は0.001%~0.003%である。
 また,本発明で使用する鋼素材は,さらに,Nb:0.01~0.3%,V:0.01~0.2%の1種または2種を含有していてもよい。
Nb:0.01~0.3%,V:0.01~0.2%,
 Nb,Vは炭窒化物として鋼中に析出分散する元素である。このため,浸炭処理時および高周波焼入処理時のオーステナイト組織の粗大化を防止するのに有効である。ただし,Nb,Vともに0.01%未満ではその効果は顕著でない。しかし,添加量が多すぎると析出物が粗大化して鋼を脆化させる。このため上限を,Nbは0.3%,Vは0.2%とした。最も好ましくは,Nbは0.01~0.02%の範囲内で,Vは0.01~0.05%の範囲内で添加するのがよい。
 また,本発明で使用する鋼素材は,さらに,Ni:0.1~3.0%を含有することもできる。
Ni:0.1~3.0%
 Niは靱性を向上させるのに有効な元素である。ただし,0.1%未満ではその効果は顕著でない。しかし,3.0%程度でこの効果は飽和するので,それ以上添加することに積極的な意味はない。3.0%を超えるNiを含んでいるとむしろ,硬さの上昇を招き素材の切削性が悪化する。このため,0.1%~3.0%の範囲内にする必要がある。最も好ましい範囲は0.5%~1.5%である。
 本形態に係る歯車8は,図1に示すように,円形の円板部82の周縁に等間隔に歯部81を設けたものである。なお,図1に示される円板部82は円板状というよりは環状のものであるが,このようなものでも「円板」に含まれることとする。図2に示すように歯部81は,歯壁面811と,歯頂面812とを有している。歯壁面811と歯頂面812との間の角状の辺を,歯先角部813という。また,歯部81と歯部81との間には歯元部815が存在している。
 本形態の歯車8の用途としては例えば,自動車の駆動系における種々の歯車が挙げられる。自動車の駆動系の歯車には,低コスト化に加えて強度面および形状精度面で厳しい要求があるが,本発明はその要求を満たす上で非常に有効である。上記の駆動系の歯車としては例えば,自動変速機や差動装置等における歯車が挙げられる。
 この種の用途に用いられる歯車8では,使用時には歯部に非常に強い応力が掛かる。このことを図3により説明する。図3は,歯車8の断面における,使用時の応力分布のシミュレーション結果を示す。図3では,歯部81の右側の歯壁面811に駆動力が掛かっている状況を示している。図3では,領域71が,最も強い応力が掛かっている領域である。以下順に,領域72,73,74と応力が弱くなる。
 図3に見るように,駆動時に応力が集中する箇所は2箇所あることがわかる。1箇所は歯壁面811と歯元部815との境目付近である。ここには主として曲げ応力が掛かる。もう1箇所は,歯壁面811のうち,歯元部815からの距離よりも歯先角部813からの距離の方がやや短い辺りの位置である。ここには主としてせん断応力が掛かる。これらの2箇所のいずれにおいても,歯車8の表層付近のみならずかなり深い部位まで,強い応力が掛かっている。領域71だけでも,一般的な浸炭層の深さより深い。よって,この種の用途に用いられる歯車8では,歯部81の表面硬度が高いことだけでなく,歯部81の内部の靱性も求められるのである。
 本形態の歯車8の原素材は,上記の範囲内の化学成分の熱間圧延鋼材である。この素材鋼を出発材として,熱間鍛造による粗成形を行い,その後に焼鈍処理を施し,さらに切削加工により歯部81を形成する。これにより,外形的には歯車8が出来上がる。しかし本形態の歯車8は,これに対してさらに,次の工程の処理を施したものである。
1.浸炭工程
 浸炭雰囲気中にて歯車8を加熱することにより,歯車8の表層部に浸炭層を形成する処理を行う工程である。
2.冷却工程
 浸炭工程後の歯車8を冷却する工程である。この冷却は,少なくとも,浸炭後の温度降下による組織変態が完了するまで行う必要がある。
3.焼き入れ工程
 冷却工程後の歯車8を,高密度エネルギーによってオーステナイト領域まで局所的に加熱し,加熱した後に急冷して硬化する工程である。
 「1.」の浸炭工程についてさらに説明する。まず,浸炭工程については,大気圧よりも低く減圧した減圧下の浸炭ガス中において行うこと,つまり,減圧浸炭工程とする。減圧浸炭工程では,高温の浸炭炉の内部を減圧状態に維持しながら比較的少量の浸炭ガスによって浸炭処理を行うことができる。このため,従来よりも効率よく浸炭処理を行うことができる。また,従来の大型の熱処理炉を用いた場合のような長時間の加熱処理が不要である。このため,処理時間の短縮および消費エネルギーの低減,さらには,浸炭焼入れ設備そのものの小型化を図ることができる。
 そして,上記の減圧浸炭工程を適用した場合には,本発明でCrを積極的には添加しない任意成分とし,その上限値を制限したことによる効果が特に有効に発揮される。すなわち,通常のガス浸炭の場合は平衡反応にて浸炭を行うので,あらかじめカーボンポテンシャルを計算して条件設定することができる。しかし,減圧浸炭処理は非平衡反応であるため,そのような計算による条件設定が難しい。また,歯車のように凹凸部分を有する鋼部材を減圧浸炭処理した場合には,侵入した炭素の拡散速度に部位によって差異がある。このため,得られる表面の炭素濃度が部位によってばらつく。すなわち浸炭ムラが生じる。したがって,浸炭処理によって表面改質すべき部位に所望の改質効果が得られない場合が生じる。
 素材鋼のCr含有量が多いと,このように通常のガス浸炭の場合よりも大きな浸炭度合いのばらつきが生じた場合に,上述したCr炭化物の生成がより顕著に進む可能性がある。本発明ではCr含有率を低く抑えているので,このようなCr炭化物の生成が抑制される。この点で,Crを制限することの効果は,減圧浸炭工程を採用していることにより特に有効である。
 また減圧浸炭を採用することより,浸炭工程において,浸炭雰囲気を大気圧に対して減圧することになる。このため,雰囲気中の酸素濃度を低く抑えることができる。これにより浸炭層の粒界酸化を防ぐことができる。なお,減圧することなく,窒素ガスや不活性ガスを充填することで,雰囲気中の酸素量を低く抑える方法もある。このような方法によっても,浸炭層の粒界酸化を防ぐことができる。
 なお,浸炭とは一般的に,炭化水素系のガス(浸炭ガス,例えばメタン,プロパン,エチレン,アセチレン等)を直接炉内に導入して,その雰囲気内に対象鋼材(ここでは歯車8)を置いて加熱することで,対象鋼材の表層に炭素を侵入させて浸炭層を形成する処理のことである。この浸炭処理では,まず拡散期に,浸炭ガスの分子が鋼の表面に接触して分解し,活性な炭素が発生する。この活性な炭素が鋼の表面に供給されることで炭化物が形成される。これにより鋼の表面に炭素が蓄えられる。
 続く拡散期には炭化物が分解し,蓄えられていた炭素がマトリックスに溶解する。これによって,炭素が内部に向って拡散していき浸炭層が形成される。炭素の進入ルートは,炭化物経由のルートに限らず,活性な炭素のマトリックスへの直接の溶解というルートも存在する。
 また,上記減圧浸炭工程における雰囲気圧力は,1~100hPaの範囲内とすることが好ましい。減圧浸炭工程における雰囲気圧力を1hPa未満にまで下げることとすると,真空度の実現および維持のために高価な設備が必要となる。一方,100hPaを超える高圧である場合には浸炭中に煤が発生する。これにより,浸炭ムラが生じるという問題が生じる可能性がある。また,上記浸炭ガスとしては,例えば,アセチレン,プロパン,ブタン,メタン,エチレン,エタン等の炭化水素系のガスを適用することができる。
 また,上記浸炭工程は,拡散期後の鋼材の表面の炭素濃度が0.85%以下となる条件で行うことが好ましい。このようにすれば,浸炭層を共析鋼以下の炭素量とすることとなる。このため,後の焼き入れ時の加熱によりオーステナイト変態させその後に急冷することで,セメンタイトを析出させず,マルテンサイト組織とすることができる。
 また本形態の歯車は,その形状に起因して,浸炭処理時に侵入した炭素の拡散速度が異なる第1部位と第2部位とを有し,上記第1部位(炭素容易拡散部位)よりも上記第2部位(炭素難拡散部位)の方が侵入した炭素の拡散速度が遅いという形状を呈しているものである。上記浸炭工程は,上記第1部位の表面の炭素濃度が0.65±0.1%の範囲内となる条件で行うことが好ましい。ここで図3において,歯壁面811,歯元部815,および歯頂面812(歯先角部813を含まず)が第1部位に相当し,歯先角部813が第2部位に相当する。
 上述したごとく,減圧浸炭処理は非平衡反応である。このため,歯車8のように凹凸部分を有する鋼部材を減圧浸炭処理した場合には,部位によって侵入した炭素の拡散速度に差異が生じる。このため,得られる表面の炭素濃度が部位によってばらつき,浸炭処理によって表面改質すべき部位に所望の改質効果が得られない場合が生じることがわかった。
 なお,減圧浸炭処理が非平衡反応であることから,得られる表面の炭素濃度は,浸炭を進める浸炭期直後とその後に内部に侵入している炭素の拡散を進める拡散期を経た後とで異なる。上記浸炭層の炭素濃度は,あくまでも拡散期を経た後の値を用いて表現してある。したがって,本願明細書における浸炭層の炭素濃度は,すべて,浸炭期直後ではなく拡散期を経た後の炭素濃度の値である(以下,同様)。
 このような事情に鑑み,形状に起因して第1部位(炭素容易拡散部位)と第2部位(炭素難拡散部位)とを有する歯車8についての減圧浸炭工程を行う場合の条件を,上記のごとく,第1部位の表面の炭素濃度が0.65±0.1%の範囲内となる条件とすることが最適であることが有効であることが見出された。
 本発明の発明者は,このような条件で減圧浸炭処理を行うことによって,得られる歯車8の第2部位,つまり,拡散速度が第1部位よりも遅くて浸炭処理後の表面の炭素濃度が第1部位よりも高くなる部位の表面の炭素濃度を,0.85%以下の範囲に抑制することができるということを,多くの実験の結果はじめて見出したのである。
 そして,これにより,歯車8の浸炭処理によって表面改質しようとする部位のほぼ全面の表面の炭素濃度を0.60~0.85%の範囲内に収めることができる。この範囲内に表面の炭素濃度を収め,さらに,その後の高周波エネルギーを利用した加熱の後に急冷するという特殊な焼き入れ工程を施すことによって,表面の炭素濃度が下限に近い部分(第1部位)においても焼き入れ効果が十分に得られ,かつ,表面の炭素濃度が上限に近い部分(第2部位)においては過剰炭素による不具合を抑制することができる。こうして,焼き入れ後に優れた改質面が得られるのである。
 上記浸炭条件の実施に当たっての,減圧浸炭処理工程における温度,浸炭ガスの種類,圧力,処理時間などの条件は,上記第1部位の表面の炭素濃度が上記特定の範囲となるように調整される必要がある。そのためには,これらの条件を様々に変更して複数回の予備実験を行って適正な条件を見つけ,その条件で実施することが好ましい。なお,被処理材である歯車8が同じ形状のものであれば,データの積み重ねによって,予備実験の回数を減少させることも可能である。また,歯車8における上記第1部位と第2部位の決定は,上記予備実験で実際に複数箇所の炭素濃度を測定して判断することができる。また,形状から比較的容易に判断できるので,形状の観察によって決定してもよい。
 かかる浸炭工程により,図4の断面図に示す,鋼の炭素濃度よりも炭素濃度が高い浸炭層91が形成される。すなわち,鋼の表面に供給された炭素が拡散により表面から内部に侵入して,表層部に浸炭層91が形成される。浸炭層の炭素濃度は,表面では上述のように0.60~0.85%の範囲内とされるが,内部にいくに従って素材鋼の炭素濃度まで徐々に低下していく。浸炭層91は,歯部81および歯元部815の表層に形成されている。浸炭層91の厚さは,0.7~1.3mm程度である。なお図4では,浸炭層91の下に焼き入れ硬化層92が存在するかのように描かれている。ただし焼き入れ硬化層92は,後述する焼き入れ工程を経て形成されるものである。よってこの段階では焼き入れ硬化層92は未だ形成されていない。
 次に,「2.」の冷却工程について説明する。冷却工程は,徐冷条件で行う。より具体的には少なくとも,歯車8の鋼材が冷却中にマルテンサイト変態する冷却速度よりも遅い冷却速度で,冷却による組織変態が完了する温度以下の温度まで冷却する。これにより,マルテンサイト変態に伴うひずみの発生を抑制することができる。したがって,形状精度に優れた状態で浸炭処理を終えることができる。
 さらに具体的には,少なくとも歯車8の温度がその素材鋼のA1変態点温度以上にある間については,0.1℃/秒~3.0℃/秒の範囲内の冷却速度で徐冷することが好ましい。A1変態点温度を下回らないうちに3.0℃/秒を超える冷却速度とする場合には,冷却時の歪み発生抑制効果が十分に得られないおそれがある。一方,冷却工程の冷却速度が鋼部材のA1変態点温度以上の期間に0.1℃/秒未満とすることは,温度がA1変態点まで下がるまでに長時間を要する結果となる。このことは,浸炭により浸炭層に進入した炭素が,その間にも鋼材全体へ向かって拡散してしまうことを意味する。さらに,冷却中の温度は歯車8中の部位によっても異なるので,拡散の程度にも部位によるばらつきが生じる。その結果,炭素濃度に部位によるばらつきが生じる。
 また,冷却工程は,大気圧よりも低く減圧した冷却雰囲気中で行うことが好ましい。つまり減圧冷却工程とすることが好ましい。これにより,冷却時の歪み発生をよりいっそう抑制することができる。その理由は,鋼材と雰囲気との間の熱交換速度を低減できることにある。鋼材と雰囲気との間の熱交換のため,雰囲気中の風の流れの風上と風下とでは雰囲気温度に差があり,風下の位置での雰囲気温度の方が高い。雰囲気の圧力が大気圧ほどもあると,熱交換速度が速いため,この温度差が顕著である。このために歯車8中の部位によって温度差が生じ,熱歪みを生じさせるのである。
 これに対し減圧冷却工程とすることで,そもそも熱交換速度が遅くなる。このため,風上と風下とでの温度差も小さく,比較的均一に冷却が進むことになる。したがって熱歪みが抑制されるのである。また,無風状態で冷却する場合でも,大気圧での冷却よりも減圧冷却の方が熱歪みは少ない。温度の異なる冷却雰囲気の滞留による冷却速度の差が小さいからである。
 このような減圧冷却工程の効果により,浸炭後の冷却の際の歪みを抑制できる。これにより,高い寸法精度を維持したまま次の工程,すなわち焼き入れ工程へ進むことができる。この効果は,冷却工程を減圧かつ徐冷で行うことにより最も高く得られる。そして,次の焼き入れ工程を高密度エネルギー加熱で行うことによるメリットと合わせて,焼き入れ後の歯車8を,歪みの少ない高形状精度のものとすることができる。
 また,浸炭工程と冷却工程とをともに減圧下で行う場合には,両工程間での圧力差が小さい。このため実際の設備において,浸炭室と徐冷室とを直接繋ぎ,両工程を連続して行うことができる。つまり両室の間に圧力調整のための予備室等を設ける必要がない。すなわち,減圧浸炭処理を終えた製品を大気圧状態に晒すことなく減圧徐冷処理に供することができる。このことも歪みの低減に貢献している。
 また,冷却工程での雰囲気圧力は,具体的には100hPa~650hPaの範囲内が好ましい。冷却時の圧力が650hPaより高い場合には,減圧による効果が不十分である。一方,100hPa未満まで減圧することには,設備構成上の難点がある。冷却時の圧力のより好ましい範囲は,100hPa~300hPaである。
 続いて,「3.」の焼き入れ工程について説明する。焼き入れ工程で重要なことは,歯車8の所望部分を部分的にオーステナイト化温度以上まで加熱し,その後の急冷で少なくとも浸炭層の部分をマルテンサイト変態させることである。このため加熱を,高密度エネルギー加熱で行う必要がある。また急冷を,マルテンサイト変態のための臨界冷却速度以上の冷却速度で行う必要がある。高密度エネルギー加熱としては,例えば,電子ビームやレーザビームといった高密度エネルギーのビームを照射することによる加熱が挙げられる。あるいはビーム照射以外のものとしては,高周波加熱も高密度エネルギー加熱に含まれる。高密度エネルギー加熱を利用することで,加熱時間が短縮される。また,本形態ではオーステナイト化しやすい低Crの鋼種を用いていることもあり,確実で十分に歯車8を硬化することができる。
 また,高密度エネルギー加熱の中でも最も好ましいのは高周波加熱である。高周波加熱では,非接触で誘導加熱により所望部分を精度よく加熱できる。また,高効率である。高周波加熱自体の方法としては,公知の方法を用いることができる。
 また,焼き入れ工程での急冷は,水冷により行うことが好ましい。すなわち,急冷前の加熱を,ガス加熱等ではなく高密度エネルギー加熱で行っているため,その後に非常に冷却速度の速い水冷を行っても,焼き入れ歪みの発生が少ないのである。高密度エネルギー加熱では,歯車8の全体ではなく部分的な加熱を精度よくできるからである。そして,水冷による優れた急冷によって,高い焼き入れ効果が得られる。すなわち,焼き入れ部分のさらなる高強度化が達成される。また,この高い焼き入れ効果により,浸炭処理の簡素化,つまり浸炭時間の短縮,すなわち浸炭層の薄層化をしても,必要な強度を確保できる場合がある。この場合には熱処理工程全体のさらなる時間短縮を図ることができる。
 また,高周波加熱による加熱に当たっては歯車8を1個流しで処理するとともに,加熱後の水冷時には歯車8を回転させながら周囲から冷却水を歯車8に向かって噴射して冷却することが好ましい。このようにすれば,均一に急冷することができる。このため,急冷時における歪みの発生が抑制される。
 また,焼き入れ工程における高密度エネルギー加熱は,歯車8の表面を溶融させることなく,かつ,表面から比較的深い部分までをオーステナイト化させる条件で行う。そのためには,高密度エネルギー加熱の投入エネルギーを小さめにしてその代わりに加熱時間を少し長目(例えば15~25秒程度)にすればよい。つまり,加熱目標温度を,当該鋼素材のオーステナイト領域としては比較的低い範囲内の温度(例えば750℃~960℃)に設定してその分少し長く加熱するのである。こうすることで,表面からの熱伝導により,深さ2~5mmを超えるやや厚い領域全体を加熱できる。これにより,浸炭層の領域だけでなく,それより深い領域でも焼き入れ効果を得ることができる。また,高密度エネルギー加熱でのオーステナイト化を比較的低い温度にとどめることで,その後の水冷時の歪みが抑制される効果もある。
 なお,このような比較的低温で比較的長時間の加熱を行う場合には,Cr含有量を本発明の範囲内に限定しなければ,前述のように硬度ムラが生じるおそれがある。このため,本発明でCr含有量を低く限定していることは,この硬度ムラを防止する観点からも有益なことなのである。
 また,本形態では歯車8を対象物としている。歯車8のように突出した歯部81を有するものが対象物である場合には,上記の高密度エネルギー加熱を,歯部81の表面および内部の全体がオーステナイト化する条件で行うことが好ましい。歯車8においては,歯部81の表面硬度が高いことと,内部の靱性が高いこととの両立が求められるからである。歯車8では加えて,歯部81の形状精度も高いことが求められる。そのため上記のように,焼き入れ工程での加熱を,比較的低温かつ比較的長目とすることが有効である。浸炭層の部分のみならず歯部81全体に焼き入れ効果が及ぶとともに,歪みの抑制による高い形状精度が得られるからである。
 こうして,図4に示したような焼き入れ硬化層92が形成される。図4では,歯車8の表層の浸炭層91の下に焼き入れ硬化層92が存在している。特に,歯部81の内部は,その全体が焼き入れ硬化層92となっている。また,円板部82においても,歯元部815の表層の浸炭層91の下の部分や歯部81の下の部分は,焼き入れ硬化層92となっている。歯元部815の位置の部位では,浸炭層91と焼き入れ硬化層92との合計の厚みが2~5mm程度である。焼き入れ硬化層92は前述のことから,マルテンサイト組織を含んでいる。もちろん,浸炭層91も焼き入れの効果を受けた層であり,マルテンサイト組織を含んでいる。歯車に係る請求項においては,浸炭層91を「第1焼き入れ硬化層」と呼び,焼き入れ硬化層92を「第2焼き入れ硬化層」と呼んでいる。
 図3に領域71,72,73として示した領域はすべて,図4では浸炭層91または焼き入れ硬化層92となっている。すなわち駆動時に応力が集中する領域のすべてに焼き入れの効果が及んで硬度が上げられている。こうして,歯部81の表面硬度が高いことと,内部の靱性が高いこととの両立が実現されている。
 さらに,焼き入れ硬化層92の下には,非焼き入れ層93が存在している。非焼き入れ層93は,マルテンサイト組織を含んでいない。焼き入れ工程での加熱の際にオーステナイト化温度まで昇温しなかった部分だからである。なお,浸炭層91における表面のC濃度は前述のように浸炭により0.60~0.85%の範囲内にある。そして内部にいくに従って,C濃度はもとの鋼素材のC濃度まで徐々に低下していく。これに対し焼き入れ硬化層92および非焼き入れ層93のC濃度は,もとの鋼素材のC濃度であり,0.1~0.40%の範囲内にある。歯車の製造方法に係る請求項では,非焼き入れ層93となるべき箇所を「芯部」と呼んでいる。
 また,上述したように本発明における浸炭工程,冷却工程,焼き入れ工程を含む熱処理は,歪みの発生を抑制する処理方法である。すなわち,浸炭後の冷却工程では,マルテンサイト変態が起こる冷却速度より低い冷却速度で冷却する。これにより,浸炭層だけでなく,浸炭層より深い芯部においても,マルテンサイト組織が生成されずフェライト,パーライト,ベイナイト,のいずれか,またはそれらの混合組織となる。したがって,冷却工程での冷却ではマルテンサイト変態歪みが発生せず,歯車8の形状精度が低下しない。
 また,冷却工程後の焼き入れ工程での加熱には高密度エネルギー加熱を用いている。これにより歯車8の,所望の部分の,かつ,表面から所望の深さの領域のみを加熱することができる。すなわち,歯車8の全体のボリュームに対してごく小さい領域のみを加熱することができる。このため,その後の急冷時にマルテンサイト変態する範囲も,歯車8の全体ではなく一部分である。これにより,マルテンサイト変態歪みが低減されており,焼き入れ後における形状精度が高い。
 以下,本発明およびその比較例に係る実施例の歯車およびその製造方法について,具体的に説明する。これらの発明例は,本発明を説明するためのものであって,本発明の範囲を限定するものではない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本実施例では,表1(発明例,試験No.1~23)および表2(比較例,試験No.24~33)に示す化学成分の熱間圧延鋼材を素材として用い,機械加工により歯車8(デフリングギア)を製作した。この機械加工を,鋼素材の切削性を判定する試験(切削試験)として利用した。表2の比較例の各素材の化学成分は,表中に太斜体字で示した点にて,次のように本発明の範囲から外れている。
  試験No.24では,Siが不足している。
  試験No.25では,Cが過剰である。
  試験No.26~28では,Crが過剰である。
  試験No.29では,Pが過剰である。
  試験No.30では,Sが過剰である。
  試験No.31では,Siが不足しており,CrとMoが過剰である。
  試験No.32では,CrとMoが過剰である。
 このうちの試験No.32,33は,従来鋼であるJIS-SCM420(クロモリ鋼)を素材として用いた例である。
 続いて,これらの機械加工後の歯車8に,前述の浸炭工程と,その後の冷却工程と,その後の焼き入れ工程とを施した。これらの工程後の歯車8について,材質調査と疲労試験とを行った。
 ここで,本実施例において,上記浸炭工程から焼き入れ工程までを実施するのに使用した熱処理設備について簡単に説明する。図5に示すように,本実施例で用いた熱処理設備5は,前洗槽51と,減圧浸炭徐冷装置52と,高周波焼き入れ機53と,磁気探傷装置54とを有している。前洗槽51は,熱処理開始前に歯車8を洗浄する部分である。減圧浸炭徐冷装置52は,加熱室521と,減圧浸炭室522と,減圧徐冷室523とを備えている。加熱室521で歯車8を昇温させ,引き続き減圧浸炭室522での減圧浸炭と,減圧徐冷室523での減圧徐冷とが行われるようになっている。減圧浸炭室522と減圧徐冷室523との間に予備室はない。高周波焼き入れ機53は,減圧徐冷後の歯車8に対し,高周波加熱とその後の水冷とを行う部分である。磁気探傷装置54は,焼き入れ後の歯車8の欠陥検査を行う部分である。
 続いて,図5の熱処理設備5にて行った各工程について説明する。まず,減圧浸炭徐冷装置52の減圧浸炭室522での減圧浸炭工程について説明する。本実施例での浸炭処理は前述のように,大気圧より低い圧力に減圧した浸炭ガス中で行う減圧浸炭処理である。この減圧浸炭処理,およびその後の減圧徐冷処理におけるヒートパターンを図6に示す。図6では,横軸に時間を,縦軸に温度を取っている。
 図6中,「a」で示されるのは,加熱室521での加熱期間である。「b1」および「b2」で示されるのが,減圧浸炭室522での保持期間である。保持期間の前期「b1」は,浸炭処理における浸炭期であり,それに続く後期「b2」は,浸炭処理における拡散期である。本実施例では,浸炭温度,すなわち保持期間「b1」および「b2」における保持温度を,鋼素材のオーステナイト化温度以上の温度である950℃とした。そして,加熱期間「a」で歯車8をこの保持温度まで昇温させた。また,保持期間「b1」および「b2」では,歯車8の温度を一定の温度,すなわち前述の保持温度に維持した。
 本実施例では,減圧浸炭処理における浸炭ガスの圧力を,1~3.5hPaの範囲内とした。また,浸炭期「b1」における浸炭ガスとして,アセチレンを用いた。また,浸炭条件については,あらかじめ行った予備実験を通じて次のように定めた。すなわち,本実施例の歯車8はデフリングギアであり,その形状に起因して,第1部位(炭素容易拡散部位)と第2部位(炭素難拡散部位)とを有している。歯車8においては,図2に示した歯元部815および歯壁面811が第1部位であり,歯先角部813が第2部位である。本実施例では,第1部位である歯元部815の表層の炭素濃度が0.65±0.05%の範囲内となる条件を採用した。
 続いて,減圧浸炭処理に引き続いて行われる,減圧徐冷室523での減圧徐冷工程について説明する。本実施例での徐冷処理は前述のように,大気圧より低い圧力に減圧した雰囲気中で行う減圧徐冷処理である。図6では,「c」で示される期間が徐冷期間である。本実施例では,減圧徐冷処理における雰囲気圧力を,600hPaとした。雰囲気のガス種は,N ガスとした。減圧徐冷処理における冷却速度は,0.1~3.0℃/秒の範囲内の速度とした。この冷却速度で,浸炭処理直後のオーステナイト化温度以上の温度から,A1変態点より低い温度である150℃となるまで冷却した。なお,図6に示したヒートパターンは1つの例であり,適宜予備試験を行うことにより,使用する鋼素材の種類に対して最適な条件に変更可能である。
 続いて,高周波焼き入れ機53での焼き入れ工程について説明する。本実施例の焼き入れ工程では,高密度エネルギー加熱の手段として高周波加熱を用いた。また,急冷手段として水冷を用いた。本実施例の焼き入れ工程のヒートパターンを図7に示す。図7でも図6と同様に,横軸に時間を,縦軸に温度を取っている。図7中,「d1」で示されるのが昇温期間であり,「d2」で示されるのが急冷期間である。昇温期間「d1」では高周波加熱により,歯車8の外周側の歯部81を,オーステナイト化温度以上の温度に加熱する。その後の急冷期間「d2」では水の噴射により,歯車8を,その浸炭層において臨界冷却速度以上の冷却速度で急冷する。臨界冷却速度とは前述のように,オーステナイト化している鋼素材,特にその浸炭層の部分がマルテンサイト変態するために必要な冷却速度である。
 昇温期間「d1」での高周波加熱は,通常の高周波加熱において行われる条件よりも,エネルギー投入量を小さめにし,その分加熱時間を比較的長目の15~25秒として行った。これにより,歯部81の表面付近のみならずその内部も含めた全体が750℃~960℃の範囲内の温度となるようにした。また,歯元部815の表面における到達温度は,920℃~940℃の範囲内であった。図8は,昇温期間「d1」での,歯元部815の表面での実際の昇温チャートである。図8は,歯車8の幅方向について第1の端部Rr,中央部Mid,第2の端部Frの3箇所での測定結果を示している。3箇所とも,昇温開始後15~25秒でも920℃~940℃の範囲内まで温度が上昇していることがわかる。なお,昇温の途中で,幅方向位置による昇温速度のばらつきが見られるが,これは,加熱時の加熱コイルとの位置関係によると考えられる。それでも,昇温終了までの時間と到達温度には大差がない。
 この高周波加熱は,歯車8を1個単位で流しつつ(運搬しつつ),1個ずつ個別に行った。急冷期間「d2」での水冷は,13秒程度とし,その間の冷却速度は50~65℃/秒とした。この水冷の際には,歯車8を回転させ,周囲から冷却水を歯車8に向かって吹き付けることにより,1個ずつ冷却した。こうして,歪みの発生を最も抑制できる方法で焼き入れ工程を行った。図7のヒートパターンもまた,1つの例であり,適宜予備試験を行うことにより,使用する鋼素材の種類に対して最適な条件に変更可能である。例えば図9に示すように,昇温後の冷却を2段階に分けて行うようにしてもよい。
 次に,歯車8について行った各試験について説明する。本実施例では歯車8について,切削性試験と,材質調査と,疲労試験との3種類の試験を行った。
<切削性試験>
 切削性試験は上述のように,機械加工により熱延鋼材から歯車8を製作した際に行った。切削性試験の条件は,超硬工具を用いて,周速250m/分,送り量0.3mm/rev,切り込み1.5mmのドライ環境による旋削を行う条件とした。この条件で歯車8を10個製作し,超硬工具に欠けが生じなかった場合を「良好」とし,欠けが生じた場合を「不良」とした。
<材質調査>
 材質調査は,熱処理完了後の歯車8であって後述する疲労試験に供していないものの歯壁面811から採取したサンプルについて行った。調査した項目は,硬度と結晶粒度の2つである。硬度については,サンプルの表面から0.05mmおきに各深さにて,荷重2.9Nでのビッカース硬さを測定して,JIS G 0557で規定する有効硬化層深さを測定した。結晶粒度については,サンプルの表面から0.4mmの深さの箇所において,JIS G 0551で規定するオーステナイト結晶粒度番号を求めて評価した。
 材質の評価の判定は,次の基準により行った。
(良好)
 次の3つの条件をすべて満たしているものを「良好」と判定した。
 ・有効硬化層深さが0.8mm以上確保されていること。
 ・ビッカース硬さにムラがないこと。具体的にはすべての隣接する測定点間での差がHV50未満であること。
 ・オーステナイト粒度番号が「6」以上の細粒であること。
(不良)
 上記の3つの条件のうちいずれか1つでも満たしていないものは「不良」と判定し,どの条件で不良となったかを特定した。なお,後述する疲労試験で著しく低強度であったものについては,破面をSEM(走査型電子顕微鏡)で観察して,粒界脆性破面となっているか否かを確認した。
<疲労試験>
 疲労試験としては,動力循環式歯車試験機で,歯元曲げ疲労強度(Nm)とピッチング強度(Nm)とを測定した。試験に供した歯車8の諸元は,モジュール2.03,圧力角18°,ねじれ角27°である。歯元曲げ疲労強度は,潤滑油温80℃,回転数2000rpmの条件下で1000万回耐久する入力トルクにて評価した。ピッチング強度は,潤滑油温120℃,回転数4000rpmの条件下で5000万回供試後に,ピッチング面積率が全歯当たり面積の3%以下となる入力トルクにて評価した。いずれにおいても,潤滑油としてはATF(オートマチックトランスミッションフルード)を用いた。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記各試験の結果を表3(発明例)および表4(比較例)に示す。表3に示すように,本発明例の歯車8(試験No.1~23)のいずれもが,切削性,材質ともに良好であった。また,疲労試験でも優れた結果を示した。特に,比較例のうち従来鋼SCM420を用いた試験No.31,32と比較して,すべての発明例が,歯元疲労強度で凌駕しており,ピッチング強度ではほぼ同等ないし凌駕していた。
 図10に,本発明例の1つである試験No.3についてのビッカース硬さの測定結果の詳細を示す。図10では,縦軸にビッカース硬さを取り,横軸に表面(歯元部815)からの深さを取っている。図10によれば,表面で800程度のビッカース硬さがあり,深さが増すとともにビッカース硬さが減少している。そして,深さ2.6mm以上では,ビッカース硬さがほぼ一定となっている。これよりこの例では,表面から深さ2.6mmまでの部分に焼き入れの効果が及んでおり,深さ約2.6mm以上の部分が非焼き入れ層93であることがわかる。さらに,表面から深さ2.6mmまでの範囲内でも,深さ約0.9mmのところでビッカース硬さに段差がある。これよりこの例では,表面から深さ0.9mmまでの範囲内が浸炭層91であり,深さ0.9mmから深さ2.6mmまでの範囲が焼き入れ硬化層92であることがわかる。このように本発明例では,浸炭層91のみならずその下の焼き入れ硬化層92においても,焼き入れにより硬さが上昇しているのである。
 これに対し比較例では,試験No.24~32のいずれにも,結果のよくない事項があった。表4では,結果のよくなかったところを太斜体字で示している。個別には以下の通りである。
 試験No.24では,ピッチング強度が低かった。鋼素材中のSi量が0.35%に満たないことに起因して,焼き戻し軟化抵抗の向上が不十分であったためと考えられる。
 試験No.25では,素材の切削性が悪く,試験片である歯車8を製作することができなかった。鋼素材中のC量が0.40%を超えていることに起因して,素材が硬すぎたためと考えられる。
 試験No.26~28では,硬さムラが見られ,疲労強度が低かった(歯元,ピッチングとも)。鋼素材中のCr量が0.2%を超えていることによりセメンタイトの溶け込み不良が発生したためと考えられる。
 試験No.29では,疲労強度が著しく低かった(歯元,ピッチングとも)。このため破面のSEM観察をしたところ,粒界脆性破面となっていることが確認された。鋼素材中のP量が0.03%を超えていることにより,Pの粒界偏析が生じて粒界脆性を起こしたためと考えられる。
 試験No.30では,疲労強度が著しく低かった(歯元,ピッチングとも)。このため破面のSEM観察をしたところ,粒界脆性破面となっていることが確認された。鋼素材中のS量が0.15%を超えていることにより,Sの粒界偏析が生じて粒界脆性を起こしたためと考えられる。
 試験No.31,32では,硬さムラが見られ,歯元疲労強度が低かった。これらの比較例は従来鋼SCM420(クロモリ鋼)を用いたものであり,Cr量とMo量とがともに過剰であるためにセメンタイトの溶け込み不良が発生したためと考えられる。特に試験No.33ではピッチング強度もやや低かった。これは,鋼素材中のSi量が不足していることによると考えられる。
 本発明例とこれら比較例との比較から,本発明の歯車8およびその製造方法では,従来のクロモリ鋼に比べてCr量,Mo量を減らして素材コストを低減させているがそれでも,歯元疲労強度に優れ,その他の諸特性でも同等以上となることが明らかとなった。
 なお,本実施の形態および実施例は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,上記の実施例では,歯車8として,歯部81が外向きに形成されている外歯歯車の例を説明した。しかし本発明は外歯歯車に限定されない。図11に示すような内歯歯車(例えば遊星歯車装置のリングギヤ等)にも適用できる。あるいは,傘歯歯車などにも適用できる。ただし,内歯歯車の場合には,焼き入れ硬化層などの位置関係に関して,半径方向の外側ほど,「下」あるいは「深い」に相当することとなる。なお,図11は一部を省略して描いている図であるが,実際にはむろん,歯形が全周にわたって形成されている。
81  歯部
815 歯元部
82  円板部
91  浸炭層
92  焼き入れ硬化層
93  非焼き入れ層

Claims (9)

  1. 円板部と,前記円板部に円周状に離散的に形成された複数の歯部とを有し,成形後に浸炭処理とその後の高密度エネルギー加熱による焼き入れ処理とを経ている歯車において, 素材鋼の化学成分が
      C :0.1 ~0.40質量%,
      Si:0.35~3.0 質量%,
      Mn:0.1 ~3.0 質量%,
      Cr:0.2 質量%未満,
      Mo:0.1 質量%以下,
      P :0.03質量%以下,
      S :0.15質量%以下,
      Al:0.05質量%以下,
      N :0.03質量%以下,
      Feおよび不可避不純物:残部,であり,
     前記歯部の表層部,および,前記円板部における前記歯部同士の間の箇所である歯元部の表層部が,浸炭処理によりC濃度が前記素材鋼のC濃度より高くされるとともに,マルテンサイト組織を含む第1焼き入れ硬化層とされており,
     前記歯部のうち前記第1焼き入れ硬化層とされている部分以外の部分と,前記円板部のうち前記歯元部の前記第1焼き入れ硬化層の下の部分と,前記円板部のうち前記歯部の下の部分とにわたり,C濃度が前記素材鋼のC濃度とされるとともに,マルテンサイト組織を含む第2焼き入れ硬化層が形成されており,
     前記円板部における前記第2焼き入れ硬化層より深い領域が,C濃度が前記素材鋼のC濃度とされるとともに,マルテンサイト組織を含まない非焼き入れ層とされていることを特徴とする歯車。
  2. 請求項1に記載の歯車において,前記第1焼き入れ硬化層のC濃度が,
     表面にて0.60~0.85質量%であるとともに,
     内部では前記第2焼き入れ硬化層との境界に向かって徐々に低下していることを特徴とする歯車。
  3. 請求項1または請求項2に記載の歯車において,素材鋼の化学成分にさらに,
      Ti:0.005 ~0.2  質量%,
      B :0.0006~0.005質量%,
    が含まれることを特徴とする歯車。
  4. 請求項1から請求項3までのいずれか1つに記載の歯車において,
     素材鋼の化学成分中のMoの含有量が0.01%未満であることを特徴とする歯車。
  5. 請求項1から請求項4までのいずれか1つに記載の歯車において,
     素材鋼の化学成分にさらに,
      Nb:0.01~0.3質量%,
      V :0.01~0.2質量%,
    の1種または2種が含まれることを特徴とする歯車。
  6. 請求項1から請求項5までのいずれか1つに記載の歯車において,
     素材鋼の化学成分にさらに,
      Ni:0.1~3.0質量%,
    が含まれることを特徴とする歯車。
  7. 円板部と,前記円板部に円周状に離散的に形成された複数の歯部とを有する歯車の製造方法において,
     素材鋼として,化学成分が
      C :0.1 ~0.40質量%,
      Si:0.35~3.0 質量%,
      Mn:0.1 ~3.0 質量%,
      Cr:0.2 質量%未満,
      Mo:0.1 質量%以下,
      P :0.03質量%以下,
      S :0.15質量%以下,
      Al:0.05質量%以下,
      N :0.03質量%以下,
      Feおよび不可避不純物:残部,であるものを用い,
     前記素材鋼で成形された歯車を,大気の酸素濃度より低い酸素濃度の浸炭雰囲気中で,前記素材鋼のオーステナイト化温度以上の温度に加熱して表面に浸炭層を形成する浸炭工程と,
     前記浸炭工程後の前記歯車を,前記素材鋼がマルテンサイト変態する冷却速度より遅い冷却速度で,冷却による組織変態が完了する温度以下の温度まで冷却する冷却工程と,
     前記冷却工程後の前記歯車を高密度エネルギー加熱により加熱することで,前記円板部における芯部を前記素材鋼のオーステナイト化温度以上の温度まで昇温させることなく,前記円板部における前記芯部より浅い領域と前記歯部とを前記素材鋼のオーステナイト化温度以上の温度まで昇温させ,その状態から,前記素材鋼がマルテンサイト変態する冷却速度以上の冷却速度で冷却することにより,前記円板部における前記芯部より浅い領域と前記歯部とにマルテンサイト組織を形成する焼入工程とを行うことを特徴とする歯車の製造方法。
  8. 請求項7に記載の歯車の製造方法において,
     前記浸炭工程を,その浸炭工程の拡散期後における浸炭層内の炭素濃度が0.85質量%以下となる条件で行うことを特徴とする歯車の製造方法。
  9. 請求項7または請求項8に記載の歯車の製造方法において,
     前記浸炭工程に供する歯車が,
      その形状に起因して,浸炭処理時に侵入した炭素の拡散速度が異なる第1部位と第2部位とを有し,
      前記第1部位よりも上記第2部位の方が侵入した炭素の拡散速度が遅いという形状を呈しているものであり,
     前記浸炭工程を,その浸炭工程における拡散期後における前記第1部位の浸炭層内の炭素濃度が0.65±0.1質量%の範囲内となる条件で行うことを特徴とする歯車の製造方法。
     
     
     
     
     
PCT/JP2011/057934 2010-03-30 2011-03-30 歯車およびその製造方法 WO2011122650A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2012134192/02A RU2507298C1 (ru) 2010-03-30 2011-03-30 Шестерня и способ ее изготовления
EP11762874.3A EP2505684B1 (en) 2010-03-30 2011-03-30 Gear and method for producing same
KR1020147032757A KR20140143460A (ko) 2010-03-30 2011-03-30 기어 및 그 제조 방법
JP2012508355A JP5301728B2 (ja) 2010-03-30 2011-03-30 歯車およびその製造方法
CN201180011200.1A CN102770569B (zh) 2010-03-30 2011-03-30 齿轮及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-079437 2010-03-30
JP2010079437 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122650A1 true WO2011122650A1 (ja) 2011-10-06

Family

ID=44712345

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/057935 WO2011122651A1 (ja) 2010-03-30 2011-03-30 浸炭鋼部材及びその製造方法
PCT/JP2011/057934 WO2011122650A1 (ja) 2010-03-30 2011-03-30 歯車およびその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057935 WO2011122651A1 (ja) 2010-03-30 2011-03-30 浸炭鋼部材及びその製造方法

Country Status (7)

Country Link
US (1) US20120247619A1 (ja)
EP (2) EP2505684B1 (ja)
JP (3) JP5301728B2 (ja)
KR (3) KR20120102160A (ja)
CN (2) CN102770569B (ja)
RU (2) RU2507298C1 (ja)
WO (2) WO2011122651A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9388476B2 (en) * 2011-03-31 2016-07-12 Aisin Aw Co., Ltd. Steel gear and manufacturing method for the same
JP2016194115A (ja) * 2015-03-31 2016-11-17 アイシン・エィ・ダブリュ株式会社 リングギヤの製造方法及びリングギヤ
WO2017154964A1 (ja) * 2016-03-08 2017-09-14 アイシン・エィ・ダブリュ株式会社 鋼部品、歯車部品および鋼部品の製造方法
CN110904306A (zh) * 2020-01-02 2020-03-24 重庆齿轮箱有限责任公司 一种零件缩孔方法和一种零件缩孔工装
WO2020144830A1 (ja) * 2019-01-10 2020-07-16 日本製鉄株式会社 機械部品及び機械部品の製造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008022663B4 (de) 2008-05-07 2012-10-31 Schauenburg Hose Technology Gmbh Stretch-Schlauch
US9964238B2 (en) 2009-01-15 2018-05-08 Globalmed, Inc. Stretch hose and hose production method
US8733199B2 (en) 2010-04-01 2014-05-27 Aisin Aw Co., Ltd. Gears and its process of manufacture
US10087510B2 (en) * 2011-05-19 2018-10-02 Nippon Steel & Sumitomo Metal Corporation Non-post-heat treated steel and non-post-heat treated steel member
JP5648663B2 (ja) * 2012-09-20 2015-01-07 センサ・システム株式会社 焼入れ硬化層厚さの検査装置及びニッケルめっき皮膜厚さの検査装置
CN103343213A (zh) * 2013-07-15 2013-10-09 南京金鑫传动设备有限公司 一种薄壁齿圈的热处理方法
DE102013224851A1 (de) * 2013-12-04 2015-06-11 Schaeffler Technologies AG & Co. KG Kettenelement
JP6175361B2 (ja) * 2013-12-11 2017-08-02 住友重機械工業株式会社 偏心揺動型の減速装置の偏心体軸歯車の製造方法
JP6185829B2 (ja) * 2013-12-11 2017-08-23 住友重機械工業株式会社 偏心揺動型減速装置のクランク軸および外歯歯車の製造方法
JP6287656B2 (ja) * 2014-07-14 2018-03-07 アイシン・エィ・ダブリュ株式会社 プラネタリキャリアの製造方法及びプラネタリキャリア
JP6788817B2 (ja) * 2015-10-14 2020-11-25 大同特殊鋼株式会社 真空浸炭窒化部品の製造方法
US10774413B2 (en) 2015-11-11 2020-09-15 Honeywell International Inc. Low pressure induction carburization
US11248692B2 (en) * 2016-03-11 2022-02-15 Deere & Company Composite gears and methods of manufacturing such gears
WO2018138581A1 (en) 2017-01-30 2018-08-02 Globalmed, Inc. Heated respiratory hose assembly
CN107287521A (zh) * 2017-06-28 2017-10-24 安徽华飞机械铸锻有限公司 一种齿轮铸造生产工艺
US10730144B2 (en) * 2017-07-24 2020-08-04 Ford Motor Company Localized tempering of carburized steel
US20230003256A1 (en) * 2017-10-24 2023-01-05 Ntn Corporation Wheel bearing device and method for manufacturing said device
KR102153196B1 (ko) * 2018-12-18 2020-09-07 주식회사 포스코 고탄소 보론강 강재 및 그 제조방법
EP3950993A4 (en) * 2019-03-29 2022-10-26 Nippon Steel Corporation CARBONED COMPONENT AND PROCESS FOR ITS MANUFACTURE
KR102462130B1 (ko) * 2020-10-26 2022-11-03 현대제철 주식회사 연화 열처리를 포함한 초고장력 열연강판의 제조방법 및 초고장력 열연강판의 제조장치
CN113549866B (zh) * 2021-07-22 2023-04-14 湖南南方宇航高精传动有限公司 风力发电机组齿轮箱滚道行星轮渗碳淬火工艺
CN116751952A (zh) * 2023-08-01 2023-09-15 重庆大学 一种中锰钢板的热处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311607A (ja) * 1995-05-16 1996-11-26 Sumitomo Metal Ind Ltd 歯元曲げ強度に優れた低歪浸炭歯車およびその製造方法
WO2006118243A1 (ja) * 2005-04-28 2006-11-09 Aisin Aw Co., Ltd. 浸炭高周波焼入部品
WO2007034911A1 (ja) * 2005-09-26 2007-03-29 Aisin Aw Co., Ltd. 鋼部材、その熱処理方法、及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139584A (en) * 1989-07-13 1992-08-18 Solo Fours Industriels Sa Carburization process
SU1759944A1 (ru) * 1991-03-29 1992-09-07 Центральный научно-исследовательский институт черной металлургии Конструкционна сталь
JP2549039B2 (ja) * 1991-09-17 1996-10-30 新日本製鐵株式会社 歪の小さい高強度歯車の浸炭窒化熱処理方法
JPH06323399A (ja) * 1992-06-30 1994-11-25 Sumitomo Metal Ind Ltd 自動車用ギヤおよびその製造方法
JP3269374B2 (ja) * 1996-03-06 2002-03-25 住友金属工業株式会社 浸炭歯車
US6159312A (en) * 1997-12-19 2000-12-12 Exxonmobil Upstream Research Company Ultra-high strength triple phase steels with excellent cryogenic temperature toughness
JP5319866B2 (ja) * 2004-05-24 2013-10-16 株式会社小松製作所 転動部材およびその製造方法
JP2006045585A (ja) * 2004-07-30 2006-02-16 Jfe Steel Kk 溶接構造用鋼
DE102006039697B4 (de) * 2006-08-21 2010-07-29 SSI Schäfer Noell GmbH Lager- und Systemtechnik Vorrichtung und Verfahren zum Entladen von mit Palettenlagen beladenen Tablaren
US20090266449A1 (en) * 2008-04-25 2009-10-29 Aisin Aw Co., Ltd. Method of carburizing and quenching a steel member
CN201487138U (zh) * 2009-09-11 2010-05-26 重庆克诺斯齿轮制造有限公司 用于200hp拖拉机的前驱动桥圆锥齿轮副

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311607A (ja) * 1995-05-16 1996-11-26 Sumitomo Metal Ind Ltd 歯元曲げ強度に優れた低歪浸炭歯車およびその製造方法
WO2006118243A1 (ja) * 2005-04-28 2006-11-09 Aisin Aw Co., Ltd. 浸炭高周波焼入部品
WO2006118242A1 (ja) 2005-04-28 2006-11-09 Aisin Aw Co., Ltd. 鋼部材およびその熱処理方法
WO2007034911A1 (ja) * 2005-09-26 2007-03-29 Aisin Aw Co., Ltd. 鋼部材、その熱処理方法、及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9388476B2 (en) * 2011-03-31 2016-07-12 Aisin Aw Co., Ltd. Steel gear and manufacturing method for the same
JP2016194115A (ja) * 2015-03-31 2016-11-17 アイシン・エィ・ダブリュ株式会社 リングギヤの製造方法及びリングギヤ
WO2017154964A1 (ja) * 2016-03-08 2017-09-14 アイシン・エィ・ダブリュ株式会社 鋼部品、歯車部品および鋼部品の製造方法
JPWO2017154964A1 (ja) * 2016-03-08 2018-11-08 アイシン・エィ・ダブリュ株式会社 鋼部品、歯車部品および鋼部品の製造方法
US10889870B2 (en) 2016-03-08 2021-01-12 Aisin Aw Co., Ltd. Steel component, gear component, and producing method for steel component
WO2020144830A1 (ja) * 2019-01-10 2020-07-16 日本製鉄株式会社 機械部品及び機械部品の製造方法
CN110904306A (zh) * 2020-01-02 2020-03-24 重庆齿轮箱有限责任公司 一种零件缩孔方法和一种零件缩孔工装

Also Published As

Publication number Publication date
EP2546381A1 (en) 2013-01-16
CN102770569B (zh) 2014-03-12
EP2505684A4 (en) 2016-12-21
JPWO2011122651A1 (ja) 2013-07-08
JP5422045B2 (ja) 2014-02-19
RU2012134191A (ru) 2014-02-20
KR20120102159A (ko) 2012-09-17
KR20140143460A (ko) 2014-12-16
JPWO2011122650A1 (ja) 2013-07-08
WO2011122651A1 (ja) 2011-10-06
EP2546381B1 (en) 2018-05-02
JP5842895B2 (ja) 2016-01-13
EP2546381A4 (en) 2016-12-21
KR20120102160A (ko) 2012-09-17
JP5301728B2 (ja) 2013-09-25
EP2505684A1 (en) 2012-10-03
JP2014077198A (ja) 2014-05-01
CN102770567A (zh) 2012-11-07
EP2505684B1 (en) 2018-05-16
CN102770567B (zh) 2015-02-18
RU2507298C1 (ru) 2014-02-20
US20120247619A1 (en) 2012-10-04
CN102770569A (zh) 2012-11-07
KR101559616B1 (ko) 2015-10-13
RU2518840C2 (ru) 2014-06-10

Similar Documents

Publication Publication Date Title
JP5301728B2 (ja) 歯車およびその製造方法
US8733199B2 (en) Gears and its process of manufacture
EP3378963B1 (en) Steel component, gear component, and method for manufacturing steel component
JP6174140B2 (ja) ギヤおよびその製造方法
WO2019198539A1 (ja) 機械部品とその製造方法
US20150020924A1 (en) Composite steel part and manufacturing method for the same
JP5668592B2 (ja) 複合鋼部品の製造方法
JP6414385B2 (ja) 浸炭部品
JP2006089779A (ja) 高速ドライ切削用歯車素材の製造方法及びその歯車素材を用いた歯車の製造方法
JP2006097035A (ja) 高速ドライ切削用歯車素材の製造方法及びその歯車素材を用いた歯車の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011200.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011762874

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012508355

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127020944

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012134192

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 9067/CHENP/2012

Country of ref document: IN