WO2011122342A1 - Ni基合金、並びにそれを用いたガスタービン動翼及び静翼 - Google Patents

Ni基合金、並びにそれを用いたガスタービン動翼及び静翼 Download PDF

Info

Publication number
WO2011122342A1
WO2011122342A1 PCT/JP2011/056212 JP2011056212W WO2011122342A1 WO 2011122342 A1 WO2011122342 A1 WO 2011122342A1 JP 2011056212 W JP2011056212 W JP 2011056212W WO 2011122342 A1 WO2011122342 A1 WO 2011122342A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
alloy
gas turbine
based alloy
strength
Prior art date
Application number
PCT/JP2011/056212
Other languages
English (en)
French (fr)
Inventor
王玉艇
吉成明
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP11762580.6A priority Critical patent/EP2554697B1/en
Priority to US13/579,642 priority patent/US9353427B2/en
Priority to JP2012508204A priority patent/JP5526223B2/ja
Publication of WO2011122342A1 publication Critical patent/WO2011122342A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to a Ni-based alloy having an excellent balance of creep strength, oxidation resistance and corrosion resistance at high temperatures, and more particularly to a Ni-based alloy used in gas turbine blades and stationary blades.
  • Ni-based alloys include normal cast alloys made of equiaxed crystals, unidirectionally solidified alloys made of columnar crystals, and single crystal alloys made of one crystal.
  • solid solution strengthening elements such as W, Mo, Ta, and Co are added, and Al and Ti are added to form a strengthening phase ⁇ ′Ni 3 (Al, It is necessary to precipitate a large amount of (Ti) phase.
  • An object of the present invention is to provide a Ni-base alloy, particularly for ordinary casting, which has an excellent balance of high temperature strength, corrosion resistance and oxidation resistance as compared with conventional materials.
  • the gist of the present invention for solving the above problems is as follows.
  • Ni-based alloy containing Cr, Co, Al, Ti, Ta, W, Mo, Nb, C, B and unavoidable impurities, with the balance being Ni, with a mass ratio of Cr: 13.1 to 15.0%, Co: 1.0 to 15.0%, Al: 2.3 to 3.3%, Ti: 4.55 to 6.0%, Ta: 3.05 to 4.0%, W : 4.35-4.9%, Mo: 0.1-2.5%, Nb: 0.05-0.5%, Zr: less than 0.05%, C: 0.05-0.2%
  • B The Ni-based alloy having an alloy composition of 0.01 to 0.03%.
  • Ni-based alloy according to (1) having an alloy composition of 0.05 to 0.2% and B: 0.01 to 0.03%.
  • Ni-based alloy according to (1) having an alloy composition of 0.10 to 0.18% and B: 0.01 to 0.02%.
  • Ni-based alloy according to (1) which has an alloy composition of 0.12 to 0.16% and B: 0.01 to 0.03%.
  • Ni-based alloy according to (1) having an alloy composition of 0.10 to 0.18% and B: 0.01 to 0.02%.
  • Ni-based alloy according to (1) which has an alloy composition of 0.12 to 0.16% and B: 0.01 to 0.02%.
  • a gas turbine rotor blade comprising the Ni-based alloy according to any one of (1) to (8).
  • a gas turbine stationary blade comprising the Ni-based alloy according to any one of (1) to (8).
  • a gas turbine comprising the gas turbine rotor blade according to (10) and / or the gas turbine stationary blade according to (11).
  • a Ni-based alloy is provided that is superior in balance of properties such as high-temperature strength, corrosion resistance, and oxidation resistance as compared with conventional materials.
  • This alloy is particularly suitable for ordinary casting.
  • the Ni-based alloy of the present invention contains C and B effective for strengthening grain boundaries, and Hf effective for suppressing grain boundary cracking during casting.
  • the alloy composition is also suitable as a material.
  • Fig. 4 shows an example of the shape of a rotor blade of a power generation gas turbine for land.
  • the gas turbine rotor blade is a rotating part having a complicated cooling structure inside, and is exposed to a severe environment in which a centrifugal force during rotation and a load of thermal stress accompanying starting and stopping are repeatedly applied.
  • As basic material properties excellent high temperature creep strength, oxidation resistance to high temperature combustion gas atmosphere, and corrosion resistance are required. Therefore, it is important to develop a casting alloy composition having a balanced characteristic in which any characteristic is not significantly inferior.
  • the present inventors adjusted the addition amount of each element in the alloy, and examined an alloy having a better balance of properties such as high temperature strength, corrosion resistance and oxidation resistance than conventional materials, which is particularly suitable as a normal casting alloy. did.
  • the function of each component of the Ni-based alloy of the present invention and the preferred composition range will be described.
  • Cr 13.1 to 15.0% by mass Cr is an element effective for improving the corrosion resistance of the alloy at high temperatures.
  • the effect increases as the Cr content increases. And the effect appears more prominent after it exceeds 13.1% by mass.
  • the upper limit is desirably set to 15.0% by mass. In this composition range, high strength and high corrosion resistance can be obtained.
  • it is preferably 13.3% by mass or more, more preferably 13.5% by mass or more, further preferably 13.6% by mass or more, particularly 13.8% by mass or more, and 14.3% by mass or less. In particular, it is preferable to set it in the range of 14.1% by mass or less.
  • Co 1.0-15.0 mass% Co reduces the solid solution temperature of the ⁇ ′ phase (Ni 3 Al intermetallic compound Ni 3 Al) to facilitate solution treatment, and strengthens the ⁇ phase by solid solution strengthening and improves high temperature corrosion resistance.
  • the effect of improving the room temperature ductility is brought about by reducing the stacking fault energy. Such an effect appears when the Co content is 1.0 mass% or more.
  • the solid solution temperature of the ⁇ ′ phase gradually decreases. Accordingly, the precipitation amount of the ⁇ ′ phase also decreases, and the creep strength decreases. % Or less is necessary.
  • the range of 10.1 to 15.0% by mass is preferable.
  • the range is more preferably 10.1 to 12.0% by mass, and still more preferably 10.1 to 11.0% by mass.
  • the creep strength at high temperature due to precipitation strengthening of the ⁇ ′ phase is more important than the creep strength in the intermediate temperature region, it is desirable to reduce the Co content, preferably 1.0 to 7.9 mass%. More preferably, it is in the range of 2.0 to 6.9% by mass, and still more preferably in the range of 5.0 to 6.9% by mass.
  • W 4.35 to 4.9% by mass W dissolves in the ⁇ phase as a matrix and the ⁇ ′ phase as a precipitation phase, and has the effect of increasing the creep strength by solid solution strengthening. And in order to acquire such an effect sufficiently, it is necessary to make content into 4.35 mass% or more.
  • W has a large specific gravity, which increases the density of the alloy and decreases the corrosion resistance of the alloy at high temperatures.
  • acicular ⁇ -W precipitates and the creep strength, high-temperature corrosion resistance and toughness are reduced.
  • the upper limit is desirably 4.9% by mass. In consideration of the balance between strength at high temperature, corrosion resistance and structural stability at high temperature, it is preferably in the range of 4.55 to 4.9% by mass, more preferably 4.55 to 4.85% by mass. It is a range.
  • Ta 3.05 to 4.0% by mass
  • Ta dissolves in the ⁇ ′ phase in the form of [Ni 3 (Al, Ta)], and has the effect of improving the creep strength by solid solution strengthening. In order to sufficiently obtain this effect, a content of 3.05% by mass or more is necessary.
  • the upper limit needs to be 4.0% by mass.
  • it is preferably in the range of 3.05 to 3.5% by mass, more preferably in the range of 3.1 to 3.4% by mass.
  • Mo 0.1 to 2.5% by mass Since Mo has the same effect as W, it can be replaced with part of W as necessary. In addition, since the solid solution temperature of the ⁇ ′ phase is increased, the effect of improving the creep strength as in the case of W is obtained. And in order to acquire such an effect, content of 0.1 mass% or more is required, and creep strength improves as content of Mo increases. Moreover, since Mo has a lower specific gravity than W, the weight of the alloy can be reduced.
  • Mo reduces the oxidation resistance and corrosion resistance of the alloy.
  • the upper limit needs to be 2.5% by mass, preferably 2.0% by mass. Therefore, when the oxidation resistance at high temperature is almost the same as that of the conventional alloy and the creep strength is regarded as important, the range is 1.05 to 2.5% by mass, particularly 1.1 to 2.0% by mass. In the range of 1.1 to 1.6% by mass, particularly 1.2 to 1.5% by mass.
  • the creep strength is almost the same as that of the conventional alloy and importance is attached to the corrosion resistance and the oxidation resistance at high temperature, it is preferably in the range of 0.1 to 0.9% by mass, more preferably 0.6 to The range is 0.9% by mass, more preferably 0.7 to 0.9% by mass.
  • Ti 4.55 to 6.0% by mass Ti, like Ta, dissolves in the ⁇ ′ phase in the form of [Ni 3 (Al, Ta, Ti)], but the effect of solid solution strengthening is not as good as that of Ta. Rather, Ti has the effect of significantly improving the corrosion resistance of the alloy at high temperatures. In order to have a remarkable effect on the corrosion resistance against molten salt corrosion, a content of 4.55% by mass or more is necessary. However, if the amount exceeds 6.0% by mass, the oxidation resistance is remarkably deteriorated, and the ⁇ phase of the embrittlement phase is precipitated. Therefore, the upper limit needs to be 6.0% by mass.
  • Ti is preferably 4.55 to 5.5 in consideration of the balance between strength at high temperature, corrosion resistance, and oxidation resistance.
  • the mass is more preferably in the range of 4.65 to 5.5% by mass, and particularly preferably in the range of 4.7 to 5.1% by mass.
  • Al 2.3 to 3.3% by mass
  • Al is a main constituent element of the ⁇ ′ phase [Ni 3 Al], which is a precipitation strengthening phase, thereby improving the creep strength. It also greatly contributes to the improvement of high temperature oxidation resistance. In order to sufficiently obtain these effects, a content of 2.3% by mass or more is necessary.
  • the ⁇ ′ phase [Ni 3 (Al, Ta, Ti)] is excessively precipitated, On the contrary, the strength is lowered and a complex oxide is formed with chromium to lower the corrosion resistance. Therefore, it is desirable to set the content within a range of 2.3 to 3.3 mass%.
  • the range considering the balance between strength at high temperature, oxidation resistance, and corrosion resistance, the range is preferably 2.6 to 3.3% by mass, more preferably 2.9 to 3.3% by mass. Particularly preferably, it is in the range of 3.0 to 3.3% by mass.
  • Nb 0.05 to 0.5% by mass Nb forms a solid solution in the form of [Ni 3 (Al, Nb, Ti)] in the ⁇ ′ phase like Ti, and the effect of solid solution strengthening is greater than that of Ti. Moreover, although there is no remarkable effect like Ti, there exists an effect which improves the corrosion resistance in high temperature. In order to obtain the effect of solid solution strengthening at a high temperature by addition, a content of 0.05% by mass or more is necessary. However, in an alloy having a large amount of Ti such as the alloy of the present invention, when the content exceeds 0.5% by mass, the ⁇ phase of the embrittlement phase is precipitated and the strength is significantly reduced. It is desirable to set it as the mass%. In particular, when considering the balance between strength at high temperature and corrosion resistance and oxidation resistance, it is preferably in the range of 0.05 to 0.25% by mass, more preferably in the range of 0.15 to 0.25% by mass. is there.
  • C 0.05 to 0.2% by mass C segregates at the grain boundaries to improve the strength of the grain boundaries, and partly forms carbides (TiC, TaC, etc.) and precipitates in a lump.
  • carbides TiC, TaC, etc.
  • it is necessary to add 0.05% by mass or more.
  • it exceeds 0.2% by mass excessive carbides are formed and creep at a high temperature. Since strength and ductility are reduced and corrosion resistance is also reduced, the upper limit needs to be 0.2% by mass.
  • it is preferably in the range of 0.10 to 0.18% by mass, more preferably in the range of 0.12 to 0.16% by mass.
  • B 0.01 to 0.03 mass% B segregates at the grain boundaries to improve the strength of the grain boundaries and partly forms boride [(Cr, Ni, Ti, Mo) 3 B 2 ] and precipitates at the grain boundaries of the alloy. .
  • boride (Cr, Ni, Ti, Mo) 3 B 2 ]
  • addition of 0.01% by mass or more is necessary.
  • this boride has a lower melting point than the melting point of the alloy, if the addition amount is too large, Therefore, it is desirable to set the upper limit to 0.03% by mass.
  • the range is preferably from 0.01 to 0.02% by mass.
  • Zr less than 0.05% by mass Zr segregates at the grain boundaries and slightly improves the strength of the grain boundaries. However, most of them form an intermetallic compound with nickel, that is, Ni 3 Zr, at the grain boundaries. Since this intermetallic compound lowers the ductility of the alloy and has a low melting point, it has little effective action such as lowering the melting temperature of the alloy and narrowing the temperature range of the solution treatment. Therefore, the Zr content may be 0, and the upper limit is 0.05% by weight.
  • Hf 0.01 to 0.05% by mass Since Hf is effective in suppressing grain boundary cracking during casting, it is preferably added to the alloy of the present invention. The addition amount is preferably 0.01 to 0.05% by mass.
  • Re 0.5% by mass or less Re can be replaced with a part of W if necessary, and is dissolved in the matrix ⁇ phase to increase the creep strength by solid solution strengthening and the corrosion resistance of the alloy. It is an effective element to improve However, Re is expensive and has a large specific gravity, which increases the specific gravity of the alloy. Further, in the alloy containing 13.1 to 15.0% by mass of Cr, when Re exceeds 0.5% by mass, the precipitation of acicular ⁇ -W or ⁇ -Re (Mo) is promoted, and the creep strength and toughness are increased. In order to reduce the amount, the upper limit must be 0.5% by mass. In the alloy of the present invention, the content is preferably 0.1% by mass or less, and more preferably not substantially added.
  • Oxygen and nitrogen are inevitable impurities, both of which are brought from alloy raw materials O is often mixed from the crucible, and is present in the alloy as an oxide (Al 2 O 3 ) or nitride (TiN or AlN). If these are present in the casting, it becomes the starting point of cracks during creep deformation, which lowers the creep rupture life or decreases the fatigue life as the starting point of fatigue crack generation. In particular, oxygen appears as an oxide on the surface of the casting, thereby causing a surface defect of the casting and reducing the yield of the casting. Therefore, the lower the content of these elements, the better.
  • both elements are 0.005 mass as a range in which the characteristics are not greatly deteriorated. It is desirable to make it less than%. Sulfur and phosphorus are also inevitable impurities, and both are brought from alloy raw materials. Due to the eutectic reaction of S, P and Ni, low melting point substances (Ni-P, Ni-S, etc.) are formed in a film form at the grain boundary, so that high temperature cracking is likely to occur and the creep rupture life of the blade is increased. Easy to lower. In consideration of hot cracking resistance, it is preferable that both elements be less than 0.005% by mass, as long as the characteristics are not greatly deteriorated.
  • the inevitable impurities are present in the starting material of the alloy or are inevitably mixed in the manufacturing process, and are originally unnecessary, but are in a very small amount and affect the characteristics of the alloy of the present invention. It means the component of the extent which does not reach.
  • Ni-based alloy consisting of the above components, inevitable impurities and the balance Ni is excellent in balance of high-temperature strength, oxidation resistance and corrosion resistance, and is suitably used as an alloy for casting products such as gas turbine blades and stationary blades. It is done.
  • FIG. 4 is a perspective view illustrating the overall configuration of the gas turbine rotor blade.
  • This gas turbine rotor blade is used in a high-temperature gas of 1300 ° C. or higher while the inside is cooled with air.
  • the gas turbine rotor blade is used as a first stage rotor blade of a gas turbine rotating portion having three stages of rotor blades. It is done.
  • the gas turbine rotor blade includes a blade portion 21, a platform portion 22, a shank 23, a seal fin 24, and a tip pocket 25, and is attached to a disk via a dovetail.
  • the gas turbine rotor blade has, for example, a blade length of 100 mm and a length after the platform portion 22 of 120 mm.
  • the gas turbine rotor blade passes a cooling medium, particularly air or water vapor, so that it can be cooled from the inside.
  • a cooling hole (not shown) is provided through the wing 21 from the dovetail.
  • a thermal barrier coating may be formed on the blade portion 21 and the platform portion 22 exposed to the combustion gas.
  • the Ni-based alloy of the present invention is balanced in terms of creep rupture strength, oxidation resistance and corrosion resistance, and is more practical than existing alloys. Therefore, the Ni-based alloy of the present invention is preferably used as the above gas turbine rotor blade, but can also be used as a gas turbine stationary blade.
  • FIG. 5 is a diagram schematically showing a cross section of a main part of the gas turbine for power generation.
  • This gas turbine includes a rotor (rotary shaft) 49 in the center of a turbine casing 48, a gas turbine rotor blade 46 installed around the rotor 49, and a gas turbine stationary blade 45 supported on the casing 48 side. And a turbine section 44 having a turbine shroud 47.
  • the compressor unit 50 is connected to the turbine unit 44 and includes a compressor 50 and a combustor 40 for sucking air and obtaining compressed air for combustion and a cooling medium.
  • the combustor 40 has a combustor nozzle 41 for mixing and injecting compressed air supplied from the compressor 50 and supplied fuel (not shown), and this mixture is injected into the combustor liner 42.
  • the high temperature and high pressure combustion gas is generated in the combustion chamber, and the combustion gas is supplied to the turbine section 44 via the transition piece (tail tube) 43, whereby the rotor 49 rotates at a high speed.
  • a part of the compressed air discharged from the compressor 50 is used as internal cooling air for the combustor liner 42, the transition piece 43, the gas turbine stationary blade 45, the gas turbine rotor blade 46, etc. in the combustor 40.
  • the high-temperature and high-pressure combustion gas generated in the combustor 40 is rectified by the gas turbine stationary blade 45 through the transition piece 43, injected into the gas turbine rotor blade 46, and rotationally drives the turbine unit 44. Although not shown, it is generally configured to generate power with a generator coupled to the end of the rotor 49.
  • gas turbines can be operated with a wide range of fuels from gas to liquid.
  • LNG or off gas can be applied as the gas fuel.
  • an alloy having excellent oxidation resistance is suitable.
  • liquid fuel includes light oil, heavy oil, etc., and these contain corrosive components such as S and Na. Therefore, gas turbines using these liquid fuels are excellent in oxidation resistance and corrosion resistance. It is necessary.
  • gas turbines since gas turbines have different installation locations, operating conditions, fuels, etc., for each unit, the gas turbine blades and stator blades are made of corrosion resistant, It must be excellent in oxidation resistance.
  • the Ni-based alloy of the present invention is excellent in all of creep strength, corrosion resistance, and oxidation resistance characteristics. Suitable as a material.
  • Table 1 shows the composition (% by mass) of the Ni-based alloy subjected to the test.
  • test specimen numbers A1 to A6 correspond to examples
  • B1 to B3 correspond to existing alloys (comparative examples).
  • Each test piece was prepared by melting a master ingot and a weighed alloy element in an alumina crucible and casting it to a flat plate having a thickness of 14 mm. The mold heating temperature was 1373K, the casting temperature was 1713K, and an alumina ceramic mold was used as the mold. After casting, solution heat treatment and aging heat treatment were performed on the test piece under the conditions shown in Table 2. For A1 to A6, first, a solution heat treatment was performed at 1480 K for 2 h in order to make the alloy composition uniform.
  • a creep test piece having a parallel part diameter of 6.0 mm and a parallel part length of 30 mm by machining from a heat-treated test piece, a creep test piece having a parallel part diameter of 6.0 mm and a parallel part length of 30 mm by machining, a high-temperature oxidation test piece having a length of 25 mm, a width of 10 mm, and a thickness of 1.5 mm, and A cube-shaped high-temperature corrosion test piece of 15 mm ⁇ 15 mm ⁇ 15 mm was cut out, and the microstructure was observed with a scanning electron microscope HITACHI 3200 to evaluate the structural stability of the alloy.
  • Table 3 shows the test conditions of the characteristic evaluation test performed on each test piece.
  • the creep rupture test was conducted under the condition of 1255K-138 MPa.
  • an oxidation test held at 1313 K-600 hours was repeated three times, and the change in weight was measured.
  • the high temperature corrosion test was conducted by immersing in a molten salt of 1123K (composition: Na 2 SO 4 : 75%, NaCl: 25%) for 25 hours four times (total 100 hours) and measuring the change in weight. did.
  • the test results are shown in Table 4 and FIGS. Table 4 is a list of test results.
  • FIG. 1 is a graph showing the creep rupture time at 1255 K-138 MPa
  • FIG. 2 is a graph showing the weight loss due to the high temperature oxidation test
  • FIG. 3 is a graph showing the weight loss due to the molten salt immersion corrosion test.
  • the creep rupture time has almost the same strength as that of the existing alloy B1 (equivalent to Rene 80), but the weight change due to corrosion is almost the same. It was found that the amount of weight change due to oxidation was greatly reduced, and the oxidation resistance was improved. Compared to another existing alloy B2 (equivalent to GTD111), the creep rupture time was improved by 1.5 times or more while the oxidation resistance and the corrosion resistance were substantially equal. Moreover, compared with another existing alloy B3 (IN738LC), the oxidation resistance and the corrosion resistance were almost the same, and the creep rupture time was improved more than twice.
  • the corrosion resistance and oxidation resistance characteristics at high temperatures can be remarkably improved without sacrificing the high temperature creep rupture life, and an alloy having an excellent balance of creep strength, oxidation resistance characteristics, and corrosion resistance is obtained. It became clear that
  • the alloy of the present invention is effective for C and B effective for strengthening grain boundaries, and for suppressing grain boundary cracking during casting. Therefore, the alloy composition is suitable for use as a unidirectionally solidified material.
  • a normally castable nickel-base superalloy having both high temperature creep strength, corrosion resistance, and oxidation resistance can be obtained.
  • This alloy is particularly preferably used for forming the moving blade and stationary blade of a land gas turbine.
  • Blade portion 21 Blade portion 22 Platform portion 23 Shank 24 Seal fin 25 Chip pocket 40 Combustor 41 Combustor nozzle 42 Combustor liner 43 Transition piece 44 Turbine portion 45 Gas turbine stationary blade 46 Gas turbine blade 47 Turbine shroud 48 Turbine casing 49 Rotor 50 Compressor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

 本発明の目的は、従来材より高温強度、耐食性及び耐酸化性のバランスに優れた、特に普通鋳造用のNi基合金を提供することである。 Cr、Co、Al、Ti、Ta、W、Mo、Nb、C、B及び不可避不純物を含み、残部がNiよりなるNi基合金であって、質量比で、Cr:13.1~15.0%、Co:1.0~15.0%、Al:2.3~3.3%、Ti:4.55~6.0%、Ta:3.05~4.0%、W:4.35~4.9%、Mo:0.1~2.0%、Nb:0.05~0.5%、Zr:0.05%未満、C:0.05~0.2%、及びB:0.01~0.03%の合金組成を有することを特徴とする。

Description

Ni基合金、並びにそれを用いたガスタービン動翼及び静翼
 本発明は、高温におけるクリープ強度、耐酸化性及び耐食性のバランスに優れたNi基合金に関し、特に、ガスタービン動翼及び静翼等に用いられるNi基合金に関する。
 近年、化石燃料の節約、二酸化炭素の排出量削減、地球温暖化防止等、環境意識の高まりから、内燃機関に対しては熱効率の向上が図られている。ガスタービンやジェットエンジン等の熱機関は、カルノーサイクルの高温側をより高温で運転することによって、熱効率を最も有効に向上できることが知られている。タービン入口温度の高温化に伴い、ガスタービンの高温部品、すなわち燃焼器やタービン動翼及び静翼に使用される材料の開発・改良の重要性が高まっている。この高温化に対処するために、材料面ではより高温強度に優れるNi基耐熱合金が適用され、現在多くのNi超合金が使用されている。Ni基合金には、等軸晶からなる普通鋳造合金、柱状晶からなる一方向凝固合金、及び一つの結晶からなる単結晶合金がある。Ni基合金を高強度化するためには、固溶強化元素であるW、Mo、Ta及びCo等を多く添加するとともに、Al及びTiを添加して強化相であるγ′Ni(Al,Ti)相を多く析出させることが必要である。
 一方、燃料価格の高騰により、腐食の原因となる不純物を多く含む低品質の燃料を、ランド用ガスタービンの燃料に使用する動きがあり、高温強度と耐食性を兼ね備えた材料の開発も必要となっている。このような材料では、保護性の皮膜を形成するCrを多く添加することが望ましい。耐食性を重視した合金として、例えば、(特許文献1)や(特許文献2)に示される普通鋳造合金がある。
 しかし、これらの合金元素を多く含むほど、材料の組織の安定性が低下し、長時間の使用に際してσ相等の硬質で脆い有害相が析出するという問題がある。
 すなわち、優れた高温クリープ強度と耐食性及び耐酸化性とを併せ持つ合金材料を開発することは従来困難であった。
特開2004-197131号公報 特開昭51-34819号公報
 本発明の目的は、従来材に比べて高温強度、耐食性及び耐酸化性のバランスに優れた、特に普通鋳造用のNi基合金を提供することである。
 上記課題を解決するための本発明の要旨は以下の通りである。
(1)Cr、Co、Al、Ti、Ta、W、Mo、Nb、C、B及び不可避不純物を含み、残部がNiよりなるNi基合金であって、質量比で、Cr:13.1~15.0%、Co:1.0~15.0%、Al:2.3~3.3%、Ti:4.55~6.0%、Ta:3.05~4.0%、W:4.35~4.9%、Mo:0.1~2.5%、Nb:0.05~0.5%、Zr:0.05%未満、C:0.05~0.2%、及びB:0.01~0.03%の合金組成を有する前記Ni基合金。
(2)Cr:13.1~15.0%、Co:1.0~7.9%、Al:2.3~3.3%、Ti:4.55~6.0%、Ta:3.05~4.0%、W:4.35~4.9%、Mo:0.1~0.9%、Nb:0.05~0.5%、Zr:0.05%未満、C:0.05~0.2%、及びB:0.01~0.03%の合金組成を有する前記(1)に記載のNi基合金。
(3)Cr:13.1~15.0%、Co:10.1~15.0%、Al:2.3~3.3%、Ti:4.55~6.0%、Ta:3.05~4.0%、W:4.35~4.9%、Mo:1.05~2.0%、Nb:0.05~0.5%、Zr:0.05%未満、C:0.05~0.2%、及びB:0.01~0.02%の合金組成を有する前記(1)に記載のNi基合金。
(4)Cr:13.6~14.1%、Co:2.0~6.9%、Al:2.6~3.3%、Ti:4.55~5.5%、Ta:3.05~3.4%、W:4.55~4.9%、Mo:0.6~0.9%、Nb:0.05~0.25%、Zr:0.05%未満、C:0.10~0.18%、及びB:0.01~0.02%の合金組成を有する前記(1)に記載のNi基合金。
(5)Cr:13.8~14.1%、Co:5.0~6.9%、Al:3.0~3.3%、Ti:4.7~5.1%、Ta:3.1~3.4%、W:4.55~4.85%、Mo:0.7~0.9%、Nb:0.15~0.25%、Zr:0.05%未満、C:0.12~0.16%、及びB:0.01~0.03%の合金組成を有する前記(1)に記載のNi基合金。
(6)Cr:13.3~14.3%、Co:10.1~12.0%、Al:2.9~3.3%、Ti:4.65~5.5%、Ta:3.05~4.0%、W:4.55~4.9%、Mo:1.1~1.6%、Nb:0.15~0.25%、Zr:0.05%未満、C:0.10~0.18%、及びB:0.01~0.02%の合金組成を有する前記(1)に記載のNi基合金。
(7)Cr:13.5~14.1%、Co:10.1~11.0%、Al:3.0~3.3%、Ti:4.7~5.1%、Ta:3.1~3.4%、W:4.55~4.85%、Mo:1.2~1.5%、Nb:0.15~0.25%、Zr:0.05%未満、C:0.12~0.16%、及びB:0.01~0.02%の合金組成を有する前記(1)に記載のNi基合金。
(8)さらに、Hf:0.01~0.05%を含む前記(1)~(7)のいずれかに記載のNi基合金。
(9)前記(1)~(8)のいずれかに記載のNi基合金からなる鋳造品。
(10)前記(1)~(8)のいずれかに記載のNi基合金からなるガスタービン動翼。
(11)前記(1)~(8)のいずれかに記載のNi基合金からなるガスタービン静翼。
(12)前記(10)に記載のガスタービン動翼及び/又は前記(11)に記載のガスタービン静翼を備えたガスタービン。
 本明細書は本願の優先権の基礎である日本国特許出願2010-075964号の明細書及び/又は図面に記載される内容を包含する。
 本発明により、従来材に比べて高温強度、耐食性及び耐酸化性等の特性のバランスに優れたNi基合金が提供される。この合金は、特に普通鋳造用として最適である。さらに、本発明のNi基合金は、結晶粒界強化に効果のあるC、B、及び鋳造時の結晶粒界割れの抑制に効果のあるHfが含まれていることから、一方向凝固合金の材料としても適した合金組成となっている。
合金試験片のクリープ破断時間を示すグラフである。 合金試験片に対する高温酸化試験での酸化減量を示すグラフである。 合金試験片に対する溶融塩浸漬腐食試験での腐食減量を示すグラフである。 ガスタービンの動翼形状の一例を示す図である。 ガスタービンの断面を模式的に示す図である。
 図4に、ランド用発電ガスタービンの動翼形状の一例を示す。ガスタービン動翼は、内部に複雑な冷却構造を持つ回転部品であり、回転中の遠心力及び起動停止に伴う熱応力の負荷が繰り返し加わる厳しい環境に曝される。基本的な材料特性として、優れた高温クリープ強度、高温燃焼ガス雰囲気に対する耐酸化性、及び耐食性が要求される。したがって、いずれかの特性が著しく劣ることのない、バランスの取れた特性を持つ鋳造用合金組成を開発することが重視される。
 また、通常、ガスタービン翼の作製手法としては、普通鋳造、一方向凝固鋳造、及び単結晶鋳造が知られている。一方向凝固合金や単結晶合金は、主に小型で軽量のジェットエンジン(航空用ガスタービン)の動静翼に使用されている。しかし、一方向凝固合金や単結晶合金を用いた翼は、鋳造プロセスが複雑であるため、翼を鋳造する際の鋳造歩留りが悪くなる。特に、ランド用ガスタービンの翼では、サイズが大きく形状も複雑であることから、鋳造歩留りが非常に低く、そのため非常に高価な製品になってしまうという欠点がある。
 そこで本発明者らは、合金中のそれぞれの元素の添加量を調整し、特に普通鋳造合金として最適な、従来材より高温強度、耐食性及び耐酸化性等の特性のバランスに優れた合金を検討した。以下、本発明のNi基合金の各成分の働き、及び好ましい組成範囲について説明する。
Cr:13.1~15.0質量%
 Crは、高温における合金の耐食性を改善するのに有効な元素であり、特に溶融塩腐食に対する耐食性を向上させるためには、Cr含有量を増加させるほど効果は大きくなる。そして、その効果がより顕著に現れるのは13.1質量%を超えてからである。しかし、本発明の合金では、Ti、W、Ta等が多く添加されるため、Cr量が多くなり過ぎると、脆いTCP相が析出して高温強度が低下する。そのため、他の合金元素とのバランスを考慮して、その上限を15.0質量%とすることが望ましい。この組成範囲において、高強度と高耐食性が得られる。上記範囲の中でも、好ましくは13.3質量%以上、より好ましくは13.5質量%以上、さらに好ましくは13.6質量%以上、特に13.8質量%以上であり、14.3質量%以下、特に14.1質量%以下の範囲とすることが好ましい。
Co:1.0~15.0質量%
 Coは、γ′相(NiとAlの金属間化合物NiAl)の固溶温度を低下させて溶体化処理を容易にする他、γ相を固溶強化するとともに高温耐食性を向上させ、さらに積層欠陥エネルギーを小さくすることで室温延性を良好にする効果をもたらす。そして、そのような効果が現れるのは、Coの含有量が1.0質量%以上である。
 一方で、Coの含有量が増えるにつれてγ′相の固溶温度は徐々に低下するため、それに伴ってγ′相の析出量も減少し、クリープ強度が低下してしまうため、15.0質量%以下にすることが必要である。
 したがって、本発明の組成範囲の中でも、Coによる固溶強化の効果が大きい中温度領域のクリープ強度と室温延性を重視する場合、10.1~15.0質量%の範囲とするのが好ましく、より好ましくは10.1~12.0質量%、さらに好ましくは10.1~11.0質量%の範囲である。
 また、中温領域のクリープ強度よりも、γ′相の析出強化による高温でのクリープ強度を重視する場合は、Coの含有量を少なくすることが望ましく、好ましくは1.0~7.9質量%の範囲であり、より好ましくは2.0~6.9質量%、さらに好ましくは5.0~6.9質量%の範囲である。
W:4.35~4.9質量%
 Wは、マトリックスであるγ相と析出相であるγ′相に固溶し、固溶強化によりクリープ強度を高める効果がある。そして、このような効果を十分に得るためには含有量を4.35質量%以上とすることが必要である。しかし、Wは比重が大きく、合金の密度を増大させるとともに、合金の高温における耐食性を低下させる。さらに、本発明の合金のようにTi及びCr添加量の多い合金では、4.9質量%を超えると針状のα-Wが析出し、クリープ強度、高温耐食性及び靭性が低下するため、その上限を4.9質量%にすることが望ましい。また、高温における強度、耐食性及び高温での組織安定性のバランスを考慮した場合、好ましくは4.55~4.9質量%の範囲であり、より好ましくは4.55~4.85質量%の範囲である。
Ta:3.05~4.0質量%
 Taは、γ′相に[Ni(Al,Ta)]の形で固溶し、固溶強化によりクリープ強度を向上させる効果がある。この効果を十分に得るためには、3.05質量%以上の含有量が必要である。一方、4.0質量%を超えると過飽和になって針状のδ相[Ni,Ta]が析出し、クリープ強度が低下するため、上限は4.0質量%とする必要がある。特に、高温における強度と組織安定性のバランスを考慮した場合、好ましくは3.05~3.5質量%の範囲、より好ましくは3.1~3.4質量%の範囲である。
Mo:0.1~2.5質量%
 Moは、Wと同様の効果を有するため、必要に応じてWの一部と置き換えることが可能である。また、γ′相の固溶温度を上げるため、Wと同様にクリープ強度を向上させる効果がある。そして、このような効果を得るためには0.1質量%以上の含有量が必要であり、Moの含有量が増えるにつれてクリープ強度も向上する。また、MoはWに比べて比重が小さいため、合金の軽量化が図れる。
 一方、Moは合金の耐酸化特性及び耐食性を低下させる。特に、Moの含有量が増えるにつれて耐酸化特性が大幅に悪くなることから、その上限を2.5質量%、好ましくは2.0質量%とする必要がある。したがって、高温での耐酸化性を従来合金とほぼ同等とし、クリープ強度を重要視する場合は、1.05~2.5質量%、特に1.1~2.0質量%の範囲とすることが好ましく、より好ましくは1.1~1.6質量%、特に1.2~1.5質量%の範囲である。一方、クリープ強度は従来合金とほぼ同等とし、耐食性や高温での耐酸化特性を重要視する場合は、好ましくは0.1~0.9質量%の範囲であり、より好ましくは0.6~0.9質量%、さらに好ましくは0.7~0.9質量%の範囲である。
Ti:4.55~6.0質量%
 Tiは、Taと同様にγ′相に[Ni(Al,Ta,Ti)]の形で固溶するが、固溶強化の効果はTaほどではない。むしろ、Tiは合金の高温における耐食性を著しく改善する効果がある。溶融塩腐食に対する耐食性に顕著な効果が現れるためには、4.55質量%以上の含有量が必要である。しかし、6.0質量%を超えて添加すると、耐酸化特性が著しく劣化し、さらに脆化相のη相が析出してくるため、上限を6.0質量%とする必要がある。本発明の合金のようにCrを13.1~15.0質量%含む合金において、高温における強度と耐食性、耐酸化特性とのバランスを考慮した場合、Tiは好ましくは4.55~5.5質量%、より好ましくは4.65~5.5質量%の範囲であり、特に好ましくは4.7~5.1質量%の範囲である。
Al:2.3~3.3質量%
 Alは、析出強化相であるγ′相[NiAl]の主構成元素であり、これによりクリープ強度が向上する。また、高温耐酸化特性の向上にも大きく寄与する。それらの効果を十分得るためには、2.3質量%以上の含有量が必要である。一方、本発明の合金では、Cr、Ti及びTaの含有量が高いことから、3.3質量%を超えると、γ′相[Ni(Al,Ta,Ti)]が過大に析出し、かえって強度を低下させるとともに、クロムと複合酸化物を形成し、耐食性を低下させることから、2.3~3.3質量%の範囲とすることが望ましい。この組成範囲において、高温における強度と耐酸化特性、耐食性とのバランスを考慮した場合、好ましくは2.6~3.3質量%、より好ましくは2.9~3.3質量%の範囲であり、特に好ましくは3.0~3.3質量%の範囲である。
Nb:0.05~0.5質量%
 Nbは、Tiと同様にγ′相に[Ni(Al,Nb,Ti)]の形で固溶し、固溶強化の効果はTiより大きい。また、Tiほどの著しい効果は無いが、高温における耐食性を改善する効果がある。添加により高温での固溶強化の効果を得るためには、0.05質量%以上の含有量が必要である。しかし、本発明の合金のようにTi量の多い合金では、0.5質量%を超えると、脆化相のη相が析出し、強度を著しく低下させることから、Nbの上限は0.5質量%とすることが望ましい。特に、高温における強度と耐食性、耐酸化特性とのバランスを考慮した場合、好ましくは0.05~0.25質量%の範囲であり、より好ましくは0.15~0.25質量%の範囲である。
C:0.05~0.2質量%
 Cは、結晶粒界に偏析し、結晶粒界の強度を向上させるとともに、一部は炭化物(TiC,TaC等)を形成し塊状に析出する。結晶粒界に偏析させて粒界強度を上げるには、0.05質量%以上の添加が必要であるが、0.2質量%を超えて添加すると過剰の炭化物を形成し、高温でのクリープ強度や延性を低下させ、耐食性も低下させるので、上限を0.2質量%とする必要がある。この組成範囲において、強度、延性及び耐食性のバランスを考慮した場合、好ましくは0.10~0.18質量%の範囲であり、より好ましくは0.12~0.16質量%の範囲である。
B:0.01~0.03質量%
 Bは、結晶粒界に偏析し、結晶粒界の強度を向上させるとともに、一部は硼化物[(Cr,Ni,Ti,Mo)]を形成し、合金の粒界に析出する。結晶粒界に偏析させ粒界強度を上げるには、0.01質量%以上の添加が必要であるが、この硼化物は合金の融点に比べ低融点であるため、添加量が多過ぎると合金の溶融温度を著しく低下させ、溶体化処理を困難にすることから、上限を0.03質量%とすることが望ましい。この組成範囲において、強度及び溶体化熱処理性のバランスを考慮した場合、好ましくは0.01~0.02質量%の範囲である。
Zr:0.05質量%未満
 Zrは、結晶粒界に偏析して結晶粒界の強度を若干向上させる。しかし、大部分は結晶粒界にニッケルとの金属間化合物すなわちNiZrを形成する。この金属間化合物は合金の延性を低下させ、また低融点であるため、合金の溶融温度を低下させ、溶体化処理の温度範囲を狭くする等、有効な作用が少ない。したがって、Zrの含有量は0であって良く、その上限は0.05重量%とする。
Hf:0.01~0.05質量%
 Hfは、鋳造時の結晶粒界割れの抑制に効果的であることから、本発明の合金中に添加することが好ましい。添加量は、0.01~0.05質量%とすることが好ましい。
Re:0.5質量%以下
 Reは、必要に応じてWの一部と置き換えることが可能であり、マトリックスであるγ相に固溶し、固溶強化によってクリープ強度を高めるとともに、合金の耐食性を改善するのに有効な元素である。しかし、Reは高価であるとともに、比重が大きく、合金の比重を増大させる。また、Crを13.1~15.0質量%含む合金では、Reが0.5質量%を超えると針状のα-W又はα-Re(Mo)の析出を助長し、クリープ強度及び靭性を低下させるため、その上限を0.5質量%とする必要がある。本発明の合金においては、好ましくは0.1質量%以下であり、より好ましくは実質的に添加しないことである。
O:0.005質量%未満、N:0.005質量%未満、S:0.005質量%未満、P:0.005質量%未満
 酸素と窒素は不可避不純物であり、いずれも合金原料から持ち込まれることが多く、Oはるつぼからも混入し、合金中には酸化物(Al)や窒化物(TiNあるいはAlN)として塊状に存在する。鋳物中にこれらが存在すると、クリープ変形中のクラックの起点となり、クリープ破断寿命を低下させたり、疲労亀裂発生の起点となって疲労寿命を低下させたりする。特に酸素は、鋳物表面に酸化物として現れることで、鋳物の表面欠陥となり、鋳造品の歩留まりを低下させる原因となる。そのため、これら元素の含有量は少ないほど良いが、実際のインゴットを作る場合には酸素が含まれることは避けられないことから、特性を大きく劣化させない範囲として、両元素はいずれも0.005質量%未満とすることが望ましい。また、硫黄とリンも不可避不純物であり、いずれも合金原料から持ち込まれる。S、PとNiとの共晶反応により、低融点物質(Ni-P、Ni-S等)が結晶粒界でフィルム状に形成されるので、高温割れが起こりやすく、翼のクリープ破断寿命を低下させやすい。耐高温割れ性を考慮して、特性を大きく劣化させない範囲として、両元素はいずれも0.005質量%未満とすることが好ましい。
 なお、ここで不可避不純物とは、合金の出発原料中に存在したり、製造工程において不可避に混入するもので、本来は不要なものであるが、微量であり、本発明合金の特性に影響を及ぼさない程度の成分を意味する。
 上記の各成分と、不可避不純物及び残部のNiよりなるNi基合金は、高温強度、耐酸化性及び耐食性のバランスに優れ、ガスタービン動翼及び静翼等の鋳造品用の合金として好適に用いられる。
 上記のNi基合金からなるガスタービン動翼の一実施形態について図4に基づき説明するが、以下の構成に限定されるものではない。図4は、ガスタービン動翼の全体構成を表す斜視図である。このガスタービン動翼は、内部を空気で冷却しながら、1300℃以上の高温ガス中で使用されるものであり、例えば3段の動翼を備えたガスタービン回転部分の初段の動翼として用いられる。図4に示すように、ガスタービン動翼は、翼部21、プラットフォーム部22、シャンク23、シールフィン24及びチップポケット25を有し、ダブテイルを介してディスクに取り付けられる。また、このガスタービン動翼は、例えば、翼部長さが100mm、プラットフォーム部22以降の長さが120mmであり、ガスタービン動翼は内部から冷却できるように冷却媒体、特に空気又は水蒸気が通るように冷却孔(図示せず)がダブテイルから翼部21を通して設けられている。ガスタービン動翼において、燃焼ガスに曝される翼部21及びプラットフォーム部22には遮熱コーティングを形成しても良い。
 本発明のNi基合金はクリープ破断強度、耐酸化性及び耐食性の全ての点でバランスがとれており、既存合金より実用性に優れている。したがって、本発明のNi基合金は上記のようなガスタービン動翼として好適に用いられるが、ガスタービン静翼として用いることもできる。
 次に、本発明のNi基合金からなる動静翼を備えたガスタービンの一実施形態について図5に基づき説明する。図5は発電用ガスタービンの主要部の断面を模式的に示した図である。このガスタービンは、タービンケーシング48の内部に、中心にロータ(回転軸)49と、ロータ49の周囲に設置されるガスタービン動翼46と、ケーシング48側に支持されるガスタービン静翼45と、タービンシュラウド47とを有するタービン部44を備える。また、このタービン部44に連結されて、大気を吸い込み、燃焼用及び冷却媒体用の圧縮空気を得るための圧縮機50と、燃焼器40とを備える。燃焼器40は、圧縮機50から供給される圧縮空気と、供給される燃料(図示せず)とを混合して噴射するための燃焼器ノズル41を有し、この混合気を燃焼器ライナ42内で燃焼させて高温高圧の燃焼ガスを発生させ、トランジションピース(尾筒)43を介して、この燃焼ガスをタービン部44に供給することで、ロータ49が高速で回転する。圧縮機50より吐出された圧縮空気の一部は、燃焼器40における燃焼器ライナ42、トランジションピース43、ガスタービン静翼45、ガスタービン動翼46等の内部冷却用空気として用いられる。燃焼器40で発生した高温高圧の燃焼ガスは、トランジションピース43を経てガスタービン静翼45で整流され、ガスタービン動翼46に噴射されてタービン部44を回転駆動する。そして、図示はしていないが、一般的にはロータ49の端部に結合されている発電機により発電するように構成されている。
 なお、ガスタービンは、ガスから液体までの幅広い燃料に対応して運転できることが大きな特徴である。例えば、ガス燃料としてLNGやオフガスが適用可能である。LNGを使うようなガスタービンでは、耐酸化性に優れた合金が適しているが、不純物の多いオフガスを使用するガスタービンでは、耐酸化性と共に耐食性にも優れていることが必要である。一方、液体燃料としては軽油や重油等があり、これらは腐食成分であるSやNa等を含んでいることから、これらの液体燃料を使用するガスタービンでは、耐酸化性とともに耐食性に優れていることが必要である。また、ガスタービンは、設置場所や運転条件、使用する燃料等が一台毎に異なることから、それらの種々の条件に対応するために、ガスタービン動静翼の材料としては、クリープ強度とともに耐食・耐酸化特性に優れていることが必要である。
 本発明のNi基合金は、クリープ強度、耐食性、耐酸化特性のいずれにも優れているため、上記のような、ガスから液体までの幅広い燃料に対応して運転されるガスタービンの動静翼の材料として好適である。
 以下、実施例及び比較例により本発明をさらに詳細に説明するが、これらに限定されるものではない。
 試験に供したNi基合金の組成(質量%)を表1に示す。表1中、試験片番号A1~A6は実施例に相当し、B1~B3は既存の合金(比較例)に相当する。各試験片は、マスターインゴットと秤量した合金元素をアルミナるつぼで溶解し、厚さ14mmの平板に鋳造した。鋳型加熱温度は1373K、鋳込み温度は1713K、鋳型はアルミナのセラミック鋳型を用いた。鋳造後、試験片に対し、表2に示す条件で溶体化熱処理及び時効熱処理を行った。A1~A6については、まず、合金組成を均一化するために1480Kで2h溶体化熱処理を行った。溶体化熱処理後は空冷とし、これに続く時効熱処理の条件は、全てのA1~A6試験片で1366K/4時間/空冷+1325K/4時間/空冷+1116K/16時間/空冷とした。その後、以下の通り試験片加工を行い、クリープ破断試験、腐食及び酸化試験を実施した。
 具体的には、熱処理した試験片から、機械加工によって平行部直径6.0mm、平行部長さ30mmのクリープ試験片と、長さ25mm、幅10mm、厚さ1.5mmの高温酸化試験片、及び15mm×15mm×15mmの立方体形状の高温腐食試験片を切り出すとともに、走査型電子顕微鏡HITACHI3200でミクロ組織を観察し、合金の組織安定性を評価した。
 表3に、各試験片に対して行った特性評価試験の試験条件を示す。クリープ破断試験は、1255K-138MPaの条件で行った。高温酸化試験は、1313K-600時間保持の酸化試験を3回繰り返して行い、重量の変化を測定した。また、高温腐食試験は、1123Kの溶融塩(組成は、NaSO:75%、NaCl:25%)中に25時間浸漬する試験を4回(計100時間)行い、重量の変化を測定した。試験結果を表4、及び図1~3に示す。表4は試験結果の一覧である。図1は1255K-138MPaでのクリープ破断時間、図2は高温酸化試験による酸化減量、図3は溶融塩浸漬腐食試験による腐食減量を棒グラフにしたものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から明らかなように、本発明の合金A1~A6では、クリープ破断時間は既存合金B1(Rene80相当)とほぼ同じ強度を有しながら、腐食による重量変化量はほぼ同等であり、酸化による重量変化量は大幅に低減され、耐酸化特性が向上していることが分かった。別の既存合金B2(GTD111相当)と比較すると、耐酸化性、耐食性はほぼ同等でありながら、クリープ破断時間は1.5倍以上に向上していた。また、別の既存合金B3(IN738LC)と比較すると、耐酸化性、耐食性はほぼ同等であり、クリープ破断時間は2倍以上に向上していた。
 すなわち、本発明により、高温クリープ破断寿命を犠牲にすることなく、高温での耐食性、耐酸化特性を著しく向上させることができ、クリープ強度、耐酸化特性、及び耐食性のバランスに優れた合金が得られることが明らかとなった。
 上記の実施例においては、普通鋳造材としての効果を説明したが、本発明の合金は、結晶粒界の強化に効果的なC、B、及び鋳造時の結晶粒界割れの抑制に効果的なHfを含むことから、一方向凝固材としての使用にも適した合金組成となっている。
以上述べたように、本発明によれば、優れた高温クリープ強度と耐食性及び耐酸化性とを併せ持つ、普通鋳造可能なニッケル基超合金を得ることができる。この合金は、特にランド用ガスタービンの動翼及び静翼を形成するために好適に用いられる。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
21 翼部
22 プラットフォーム部
23 シャンク
24 シールフィン
25 チップポケット
40 燃焼器
41 燃焼器ノズル
42 燃焼器ライナ
43 トランジションピース
44 タービン部
45 ガスタービン静翼
46 ガスタービン動翼
47 タービンシュラウド
48 タービンケーシング
49 ロータ
50 圧縮機

Claims (12)

  1.  Cr、Co、Al、Ti、Ta、W、Mo、Nb、C、B及び不可避不純物を含み、残部がNiよりなるNi基合金であって、質量比で、Cr:13.1~15.0%、Co:1.0~15.0%、Al:2.3~3.3%、Ti:4.55~6.0%、Ta:3.05~4.0%、W:4.35~4.9%、Mo:0.1~2.5%、Nb:0.05~0.5%、Zr:0.05%未満、C:0.05~0.2%、及びB:0.01~0.03%の合金組成を有する前記Ni基合金。
  2.  Cr:13.1~15.0%、Co:1.0~7.9%、Al:2.3~3.3%、Ti:4.55~6.0%、Ta:3.05~4.0%、W:4.35~4.9%、Mo:0.1~0.9%、Nb:0.05~0.5%、Zr:0.05%未満、C:0.05~0.2%、及びB:0.01~0.03%の合金組成を有する請求項1に記載のNi基合金。
  3.  Cr:13.1~15.0%、Co:10.1~15.0%、Al:2.3~3.3%、Ti:4.55~6.0%、Ta:3.05~4.0%、W:4.35~4.9%、Mo:1.05~2.0%、Nb:0.05~0.5%、Zr:0.05%未満、C:0.05~0.2%、及びB:0.01~0.02%の合金組成を有する請求項1に記載のNi基合金。
  4.  Cr:13.6~14.1%、Co:2.0~6.9%、Al:2.6~3.3%、Ti:4.55~5.5%、Ta:3.05~3.4%、W:4.55~4.9%、Mo:0.6~0.9%、Nb:0.05~0.25%、Zr:0.05%未満、C:0.10~0.18%、及びB:0.01~0.02%の合金組成を有する請求項1に記載のNi基合金。
  5.  Cr:13.8~14.1%、Co:5.0~6.9%、Al:3.0~3.3%、Ti:4.7~5.1%、Ta:3.1~3.4%、W:4.55~4.85%、Mo:0.7~0.9%、Nb:0.15~0.25%、Zr:0.05%未満、C:0.12~0.16%、及びB:0.01~0.03%の合金組成を有する請求項1に記載のNi基合金。
  6.  Cr:13.3~14.3%、Co:10.1~12.0%、Al:2.9~3.3%、Ti:4.65~5.5%、Ta:3.05~4.0%、W:4.55~4.9%、Mo:1.1~1.6%、Nb:0.15~0.25%、Zr:0.05%未満、C:0.10~0.18%、及びB:0.01~0.02%の合金組成を有する請求項1に記載のNi基合金。
  7.  Cr:13.5~14.1%、Co:10.1~11.0%、Al:3.0~3.3%、Ti:4.7~5.1%、Ta:3.1~3.4%、W:4.55~4.85%、Mo:1.2~1.5%、Nb:0.15~0.25%、Zr:0.05%未満、C:0.12~0.16%、及びB:0.01~0.02%の合金組成を有する請求項1に記載のNi基合金。
  8.  さらに、Hf:0.01~0.05%を含む請求項1~7のいずれかに記載のNi基合金。
  9.  請求項1~8のいずれかに記載のNi基合金からなる鋳造品。
  10.  請求項1~8のいずれかに記載のNi基合金からなるガスタービン動翼。
  11.  請求項1~8のいずれかに記載のNi基合金からなるガスタービン静翼。
  12.  請求項10に記載のガスタービン動翼及び/又は請求項11に記載のガスタービン静翼を備えたガスタービン。
PCT/JP2011/056212 2010-03-29 2011-03-16 Ni基合金、並びにそれを用いたガスタービン動翼及び静翼 WO2011122342A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11762580.6A EP2554697B1 (en) 2010-03-29 2011-03-16 Ni-based alloy, and gas turbine rotor blade and stator blade each using same
US13/579,642 US9353427B2 (en) 2010-03-29 2011-03-16 Ni-based alloy, and gas turbine rotor blade and stator blade each using same
JP2012508204A JP5526223B2 (ja) 2010-03-29 2011-03-16 Ni基合金、並びにそれを用いたガスタービン動翼及び静翼

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010075964 2010-03-29
JP2010-075964 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011122342A1 true WO2011122342A1 (ja) 2011-10-06

Family

ID=44712060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056212 WO2011122342A1 (ja) 2010-03-29 2011-03-16 Ni基合金、並びにそれを用いたガスタービン動翼及び静翼

Country Status (4)

Country Link
US (1) US9353427B2 (ja)
EP (1) EP2554697B1 (ja)
JP (1) JP5526223B2 (ja)
WO (1) WO2011122342A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185210A (ja) * 2012-03-08 2013-09-19 Hitachi Ltd ニッケル基合金及びそれを用いたガスタービン翼
US20140064982A1 (en) * 2012-08-30 2014-03-06 Hitachi, Ltd. Ni Base Alloy and Gas Turbine Blade and Gas Turbine Utilizing the Same
JP2017508877A (ja) * 2013-12-23 2017-03-30 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 粉末に基づく付加製造プロセスにおいて使用されるガンマプライム析出強化ニッケル基超合金
JP2017518184A (ja) * 2014-03-27 2017-07-06 ゼネラル・エレクトリック・カンパニイ 複数の結晶粒組織を有し、高応力環境で使用するための物品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013224199A1 (de) * 2013-11-27 2015-05-28 MTU Aero Engines AG Gasturbinen-Laufschaufel
CN108866387B (zh) * 2017-05-16 2020-06-09 中国科学院金属研究所 一种燃气轮机用高强抗热腐蚀镍基高温合金及其制备工艺和应用
GB201818180D0 (en) * 2018-11-08 2018-12-26 Rolls Royce Plc A nickel-base superalloy
US11339458B2 (en) 2019-01-08 2022-05-24 Chromalloy Gas Turbine Llc Nickel-base alloy for gas turbine components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286503A (ja) * 1994-04-20 1995-10-31 Hitachi Ltd 高効率ガスタービン
WO1999031365A1 (fr) * 1997-12-15 1999-06-24 Hitachi, Ltd. Turbine a gaz utilisee pour produire de l'energie et systeme mixte de production d'energie
JP2010084166A (ja) * 2008-09-30 2010-04-15 Hitachi Ltd ニッケル基合金及びそれを用いたガスタービン翼

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1511562A (en) 1974-07-17 1978-05-24 Gen Electric Nickel-base alloys
US6416596B1 (en) 1974-07-17 2002-07-09 The General Electric Company Cast nickel-base alloy
CA1212020A (en) * 1981-09-14 1986-09-30 David N. Duhl Minor element additions to single crystals for improved oxidation resistance
US4895201A (en) * 1987-07-07 1990-01-23 United Technologies Corporation Oxidation resistant superalloys containing low sulfur levels
US5431750A (en) * 1991-06-27 1995-07-11 Mitsubishi Materials Corporation Nickel-base heat-resistant alloys
WO1999067435A1 (en) * 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
JP4036091B2 (ja) 2002-12-17 2008-01-23 株式会社日立製作所 ニッケル基耐熱合金及びガスタービン翼
CN101128649B (zh) * 2004-12-24 2010-11-03 阿尔斯托姆科技有限公司 具有嵌入式通道的部件,尤其是涡轮机的热气部件
JP5296046B2 (ja) * 2010-12-28 2013-09-25 株式会社日立製作所 Ni基合金、及びそれを用いたガスタービンのタービン動・静翼

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286503A (ja) * 1994-04-20 1995-10-31 Hitachi Ltd 高効率ガスタービン
WO1999031365A1 (fr) * 1997-12-15 1999-06-24 Hitachi, Ltd. Turbine a gaz utilisee pour produire de l'energie et systeme mixte de production d'energie
JP2010084166A (ja) * 2008-09-30 2010-04-15 Hitachi Ltd ニッケル基合金及びそれを用いたガスタービン翼

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185210A (ja) * 2012-03-08 2013-09-19 Hitachi Ltd ニッケル基合金及びそれを用いたガスタービン翼
US20140064982A1 (en) * 2012-08-30 2014-03-06 Hitachi, Ltd. Ni Base Alloy and Gas Turbine Blade and Gas Turbine Utilizing the Same
EP2703507B1 (en) 2012-08-30 2016-01-20 Mitsubishi Hitachi Power Systems, Ltd. Ni base alloy and gas turbine blade and gas turbine utilizing the same
JP2017508877A (ja) * 2013-12-23 2017-03-30 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 粉末に基づく付加製造プロセスにおいて使用されるガンマプライム析出強化ニッケル基超合金
JP2017518184A (ja) * 2014-03-27 2017-07-06 ゼネラル・エレクトリック・カンパニイ 複数の結晶粒組織を有し、高応力環境で使用するための物品

Also Published As

Publication number Publication date
JP5526223B2 (ja) 2014-06-18
JPWO2011122342A1 (ja) 2013-07-08
EP2554697A4 (en) 2016-04-06
EP2554697B1 (en) 2017-09-27
US9353427B2 (en) 2016-05-31
US20120308393A1 (en) 2012-12-06
EP2554697A1 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5296046B2 (ja) Ni基合金、及びそれを用いたガスタービンのタービン動・静翼
JP5526223B2 (ja) Ni基合金、並びにそれを用いたガスタービン動翼及び静翼
JPWO2007037277A1 (ja) 耐酸化性に優れたNi基超合金
US20110287269A1 (en) Alloy, protective layer and component
KR20140050714A (ko) 2겹의 MCrAlX 금속층을 포함하는 층 시스템
JP2013530309A (ja) 合金、保護層、及び部品
US20070071607A1 (en) High-temperature-resistant component
JP5626920B2 (ja) ニッケル基合金の鋳造品、ガスタービン翼及びガスタービン
RU2359054C2 (ru) Сплав, защитный слой для защиты конструктивного элемента от коррозии и окисления при высоких температурах и конструктивный элемент
JP5597598B2 (ja) Ni基超合金と、それを用いたガスタービンのタービン動・静翼
JP5063550B2 (ja) ニッケル基合金及びそれを用いたガスタービン翼
JP6084802B2 (ja) 高強度Ni基超合金と、それを用いたガスタービン
JP5427642B2 (ja) ニッケル基合金及びそれを用いたランド用ガスタービン部品
KR101597924B1 (ko) 2겹 금속층을 포함하는 층 시스템
JP6045857B2 (ja) 高強度Ni基超合金と、それを用いたガスタービンのタービン動翼
KR102197355B1 (ko) 니켈기 단결정 초내열합금
US20130337286A1 (en) Alloy, protective coating, and component
KR102340057B1 (ko) 니켈기 단결정 초내열합금 및 이의 제조방법
JP5396445B2 (ja) ガスタービン
JP2013185210A (ja) ニッケル基合金及びそれを用いたガスタービン翼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762580

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508204

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13579642

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011762580

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011762580

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE