WO2011122050A1 - 汚染防止剤組成物 - Google Patents

汚染防止剤組成物 Download PDF

Info

Publication number
WO2011122050A1
WO2011122050A1 PCT/JP2011/001969 JP2011001969W WO2011122050A1 WO 2011122050 A1 WO2011122050 A1 WO 2011122050A1 JP 2011001969 W JP2011001969 W JP 2011001969W WO 2011122050 A1 WO2011122050 A1 WO 2011122050A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
viscosity
mass
low
kinematic viscosity
Prior art date
Application number
PCT/JP2011/001969
Other languages
English (en)
French (fr)
Inventor
関谷宏
澤田拓
小林大介
泉由美子
Original Assignee
株式会社メンテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44711804&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011122050(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社メンテック filed Critical 株式会社メンテック
Priority to CN201180004032.3A priority Critical patent/CN102549215B/zh
Priority to JP2011532406A priority patent/JP4828001B1/ja
Publication of WO2011122050A1 publication Critical patent/WO2011122050A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/02Agents for preventing deposition on the paper mill equipment, e.g. pitch or slime control
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/07Nitrogen-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/14Carboxylic acids; Derivatives thereof

Definitions

  • the present invention relates to a contamination inhibitor composition, and more particularly, to a contamination inhibitor capable of sufficiently preventing the adhesion of pitch in a dry part and suppressing color loss.
  • the paper making process for producing paper is generally performed by placing a liquid in which pulp is dispersed in water on a paper making net (wire) and letting the excess water spontaneously fall into a wet paper and wet paper. Passing between a pair of press rolls and pressing with a press roll through a felt, the moisture in the wet paper is transferred to the felt, thereby dehydrating the wet paper, and the wet paper that has passed through the press part. And a dry part that is dried by bringing it into contact with a heated cylinder, and a reel part that winds the paper on a rod called a spool.
  • dry part part has a problem that the pitch adheres to the surfaces of cylinders, canvases, calender rolls, breaker stack rolls and the like (hereinafter collectively referred to as “dry part part”). If pitch adheres to these, paper will be polluted and a yield will fall large.
  • a dirt adhesion preventing agent for preventing adhesion of pitch is known (for example, see Patent Document 1).
  • a stain adhesion preventing agent has a composition containing silicone oils having different viscosities and a fluorosurfactant.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an antifouling agent that can sufficiently prevent the pitch from adhering to the dry part and can suppress color loss of paper.
  • the antifouling agent of the present invention that solves the above problems uses a non-silicone oil from the viewpoint of preventing the adhesion of pitch, and uses a neutralized product of a fatty acid and an amine compound as an emulsifier that can suppress color loss. Has been found to be able to be solved, and the present invention has been completed.
  • the present invention is (1) a contamination inhibitor composition for preventing pitch contamination in a dry part of a papermaking process, comprising a non-silicone oil and an emulsifier for emulsifying the non-silicone oil,
  • the pollution inhibitor composition which is a neutralized product of a fatty acid and an amine compound.
  • the present invention resides in (2) the antifouling composition according to the above (1), wherein the fatty acid has 18 or more carbon atoms.
  • the present invention resides in (4) the antifouling agent composition according to any one of the above (1) to (3), wherein the amine compound is morpholine, diethanolamine or triethanolamine.
  • a non-silicone oil is a high viscosity oil kinematic viscosity of more than 100 mm 2 / s at 100 ° C., and a low-viscosity oil kinematic viscosity less 20 mm 2 / s at 100 ° C., made,
  • the blending ratio of the low-viscosity oil to 1 part by mass of the high-viscosity oil is 0.25 to 3 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil is 20 mm 2 / s or more (1) to (4 ) Is present in the antifouling composition according to any one of the above.
  • the present invention resides in (6) the antifouling agent composition according to the above (5), wherein the high viscosity oil is at least one selected from the group consisting of polybutene, maleated polybutene and polyethylene wax.
  • the present invention resides in (7) the antifouling composition according to the above (5), wherein the high viscosity oil is polybutene.
  • the low-viscosity oil is at least one selected from the group consisting of liquid paraffin, turbine oil, machine oil, and vegetable oil. Present in the inhibitor composition.
  • the present invention resides in (9) the antifouling agent composition according to any one of (5) to (7) above, wherein the low-viscosity oil is liquid paraffin.
  • the antifouling agent composition of the present invention uses a non-silicone oil to prevent the adhesion of pitch to the dry part site due to the stickiness of the silicone oil itself, and after drying, the silicone residue is left on the dry part site. It can prevent adhesion. Further, by using a neutralized product of a fatty acid and an amine compound as an emulsifier, color loss of paper can be suppressed.
  • the non-silicone oil is composed of a high-viscosity oil and a low-viscosity oil
  • the high-viscosity oil exhibits the effect of preventing the adhesion of pitch
  • the low-viscosity oil Exerts the effect of relaxing the tackiness of the contamination inhibitor composition itself.
  • the kinematic viscosity at 100 ° C. of the non-silicone oil is 20 mm 2 / s or more, the effect of preventing the adhesion of pitch is further increased. Therefore, according to the antifouling agent composition, it is possible to sufficiently prevent the pitch from adhering to the dry part and to suppress color loss.
  • the antifouling agent composition when the high-viscosity oil is polybutene and the low-viscosity oil is liquid paraffin, the effect of preventing the adhesion of pitch can be further improved.
  • the emulsifier is a neutralized product of a fatty acid and an amine compound
  • the fatty acid is dissolved in a non-silicone oil, and this is easily added to water in which the amine compound is dissolved. It can be emulsified. In this case, even when left for a long time, precipitation or the like does not occur, and the storage stability is excellent.
  • FIG. 1 is a schematic view showing a dry part portion of a dry part using a contamination inhibitor according to the present invention.
  • the antifouling agent composition according to this embodiment has a non-silicone oil, an emulsifier, and water.
  • the non-silicone oil is not particularly limited as long as it is other than a silicone oil, and examples thereof include mineral oil, vegetable oil, and synthetic oil. Among these, the non-silicone oil is preferably one that does not leave a solid content after drying.
  • the kinematic viscosity at 100 ° C. of the non-silicone oil is preferably 20 mm 2 / s or more, and the kinematic viscosity at 100 ° C. is preferably 100 mm 2 / s or less.
  • the kinematic viscosity at 100 ° C. of the non-silicone oil is more preferably 35 to 100 mm 2 / s, and further preferably 45 to 65 mm 2 / s.
  • the kinematic viscosity at 100 ° C. of the non-silicone oil is less than 20 mm 2 / s, the effect of preventing the adhesion of pitch becomes insufficient.
  • this kinematic viscosity exceeds 100 mm ⁇ 2 > / s, there exists a possibility that the adhesiveness of pollution control composition itself may become large, and a paper surface may bend.
  • the non-silicone oil is preferably composed of a high viscosity oil and a low viscosity oil.
  • the high-viscosity oil exhibits the effect of preventing the adhesion of pitch
  • the low-viscosity oil exhibits the effect of relaxing the tackiness of the antifouling agent composition itself.
  • the high viscosity oil preferably has a kinematic viscosity at 100 ° C. of 100 mm 2 / s or more, and preferably 400 mm 2 / s or less.
  • the kinematic viscosity at 100 ° C. of the high-viscosity oil is more preferably 270 to 300 mm 2 / s.
  • the adhesion of pitch may not be sufficiently prevented as compared with the case where the kinematic viscosity is within the above range.
  • the high-viscosity oil one having excellent compatibility with pitch is used.
  • the high-viscosity oil include synthetic oils such as polyisobutylene, polybutene, maleated polybutene, polyethylene wax, and microwax that satisfy the above-described viscosity conditions. These may be used alone or in combination.
  • the high viscosity oil is preferably at least one selected from the group consisting of polybutene, maleated polybutene, and polyethylene wax from the viewpoint of tackiness.
  • the tackiness means the degree of stickiness of the oil itself.
  • the high-viscosity oil is more preferably polybutene having a butene chain or maleated polybutene from the viewpoint of preventing clogging of the spray nozzle, and particularly preferably polybutene from the viewpoint of preventing pitch adhesion.
  • the blending ratio of the high viscosity oil is preferably 3 to 7% by mass. If the blending ratio of the high-viscosity oil is less than 3% by mass, the adhesion of pitch may not be sufficiently prevented compared to the blending ratio of the high-viscosity oil within the above range. When the ratio exceeds 7% by mass, the tackiness of the antifouling agent composition itself is increased as compared with the case where the blending ratio of the high-viscosity oil is within the above range, and the paper surface may be curled.
  • the low viscosity oil preferably has a kinematic viscosity at 100 ° C. of 20 mm 2 / s or less, and preferably 5 mm 2 / s or more.
  • the kinematic viscosity at 100 ° C. of the low-viscosity oil is more preferably 10 to 14 mm 2 / s.
  • the kinematic viscosity at 100 ° C. of the low-viscosity oil exceeds 20 mm 2 / s, the tackiness of the antifouling agent composition itself may not be sufficiently relaxed compared to the case where the kinematic viscosity is within the above range.
  • this kinematic viscosity is less than 5 mm 2 / s, color loss may occur.
  • the low-viscosity oil is preferably excellent in compatibility with the high-viscosity oil.
  • mineral oil such as gear oil, cylinder oil, turbine oil, spindle oil, coconut oil, linseed oil, castor oil, rapeseed oil, corn oil, vegetable oil, liquid paraffin
  • paraffin such as isoparaffin.
  • the low-viscosity oil is preferably at least one selected from the group consisting of liquid paraffin, turbine oil, machine oil, and vegetable oil from the viewpoint of versatility, from the viewpoint of compatibility with the high-viscosity oil. Liquid paraffin, turbine oil or machine oil is more preferable, and liquid paraphone is particularly preferable from the viewpoint of preventing pitch adhesion.
  • the high viscosity oil is polybutene and the low viscosity oil is liquid paraffin. In this case, the effect of preventing the adhesion of pitch can be further improved.
  • the blending ratio of the low viscosity oil is preferably 1 to 6% by mass.
  • the blending ratio of the low-viscosity oil is less than 1% by mass, the tackiness of the antifouling agent composition itself may not be sufficiently relaxed compared to the case where the blending ratio of the low-viscosity oil is within the above range. If the blending ratio of the low-viscosity oil exceeds 6% by mass, the adhesive relaxation effect is saturated, resulting in a high cost.
  • the blending ratio of the low viscosity oil to 1 part by mass of the high viscosity oil is preferably 0.25 to 3 parts by mass, more preferably 0.25 to 1.5 parts by mass, and 0.4 to 1.
  • the amount is more preferably 4 parts by mass, and particularly preferably 0.4 to 1.0 part by mass. If the blending ratio of the low-viscosity oil is less than 0.25 parts by mass, the tackiness of the antifouling agent composition itself may not be sufficiently relaxed compared to the case where the blending ratio is within the above range. When the blending ratio of the viscosity oil exceeds 3 parts by mass, there is a drawback that the effect of relaxing the adhesiveness is saturated and the cost is increased as a result compared to the case where the blending ratio is in the above range.
  • the emulsifier emulsifies non-silicone oil.
  • an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, and the like are appropriately used as long as they emulsify non-silicone oil. These may be used alone or in combination.
  • the emulsifier is more preferably a neutralized product of a fatty acid and an amine compound.
  • the emulsifier is more preferably a neutralized product of a fatty acid and an amine compound.
  • an organic salt by using an organic salt, color loss can be further suppressed and the emulsification stability of the oil can be improved.
  • the fatty acid preferably has 18 or more carbon atoms from the viewpoint of suppressing color loss of paper.
  • Specific examples include saturated fatty acids such as stearic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, montanic acid, behenic acid and polycarboxylic acid, and unsaturated fatty acids obtained by making these unsaturated. These may be used alone or in combination.
  • the fatty acid is preferably a mixture of at least two selected from the group consisting of stearic acid, behenic acid, montanic acid and polycarboxylic acid from the viewpoint of emulsion stability and versatility, and in particular, stearic acid. And a combination of behenic acid and a combination of montanic acid and polycarboxylic acid are more preferable.
  • the amine compound examples include morpholine, ammonia, ethylenediamine, ethanolamine, diethanolamine, triethanolamine, and diisopropanolamine. These may be used alone or in combination. Among these, the amine compound is preferably morpholine, diethanolamine or triethanolamine from the viewpoint of emulsion stability.
  • the mixing ratio of the emulsifier to 1 part by mass of the non-silicone oil is preferably 0.1 to 4 parts by mass.
  • the blending ratio of the emulsifier is less than 0.1 parts by mass, the emulsification stability may be insufficient as compared with the case where the blending ratio of the emulsifier is within the above range, and the blending ratio of the emulsifier is 4 masses.
  • the amount exceeds 50 parts, there is a drawback that the degree of color loss of the paper becomes larger than when the blending ratio of the emulsifier is within the above range.
  • the antifouling agent composition according to the present embodiment may contain additives such as a chelating agent, a pH adjuster, a preservative, a dispersant, a viscosity modifier, and a solid lubricant.
  • additives such as a chelating agent, a pH adjuster, a preservative, a dispersant, a viscosity modifier, and a solid lubricant.
  • the antifouling agent composition according to this embodiment is produced by dissolving a fatty acid in a non-silicone oil and emulsifying it by adding it to water in which an amine compound is dissolved.
  • the fatty acid is dissolved in the non-silicone oil, while the amine compound is dissolved in water.
  • dissolved the fatty acid is added to the water which melt
  • a neutralization reaction between the fatty acid and the amine compound occurs at the boundary between the oil layer and the water layer, and the oil layer and the water layer are emulsified.
  • high-viscosity oil and low-viscosity oil as non-silicone oil, high-viscosity oil having a kinematic viscosity at 100 ° C.
  • the non-silicone oil is blended by blending the low-viscosity oil so that the blending ratio of the low-viscosity oil to 0.25 to 3 parts by mass with respect to 1 part by mass of the high-viscosity oil.
  • FIG. 1 is a schematic view showing a dry part portion of a dry part using a contamination inhibitor according to the present invention. As shown in FIG. 1, the antifouling agent composition is used in dry part D.
  • the dry part D includes a paper body W and a plurality of cylindrical cylinders D1, D2, D3, D4, D5, D6, D7 and D8 (hereinafter referred to as “D1 to D8”) for heating and drying the paper body W. ), Canvases K1 and K2 for pressing the paper body against the cylinders D1 to D8, a canvas roll KR for guiding the canvases K1 and K2, and a breaker stack roll B for gently adjusting the smoothness and paper thickness of the dried paper body W And a calender roll C for adjusting the smoothness and paper thickness of the dried paper body W.
  • the paper body W is pressed against the surfaces of the rotating cylinders D1 to D8 by the canvases K1 and K2. As a result, the paper body W adheres to the cylinders D1 to D8 and is simultaneously heated and dried. Thereafter, the paper body W is sandwiched between the breaker stack rolls B, and then the paper body W is densified by the calendar roll C.
  • the application method of the antifouling agent composition is not particularly limited, and for example, a liquid shower method or a mist-like spray method using a spray nozzle or the like is used. That is, paper dust contamination is prevented by spraying on the dry part.
  • the spraying amount of the contamination inhibitor composition is preferably 0.1 ⁇ g to 100 ⁇ g / m 2 as a solid content.
  • the spraying amount is less than 0.1 ⁇ g / m 2 , compared to the case where the spraying amount is within the above range, the antifouling agent composition does not sufficiently adhere to the surface of the dry part part, and the adhesion of the pitch. There is a tendency that it cannot be sufficiently suppressed.
  • the application amount exceeds 100 ⁇ g / m 2 , there is a possibility that the surplus is absorbed by the paper body as compared with the case where the application amount is within the above range.
  • the non-silicone oil when the non-silicone oil is composed of a high-viscosity oil and a low-viscosity oil, a non-silicone system having a viscosity that does not belong to the high-viscosity oil or the low-viscosity oil. Oil may be further added.
  • the antifouling agent composition in the above embodiment, is applied to the dry part part in the dry part, but it can be applied not only to the dry part but also to the press part and the reel part. .
  • a method in which a non-silicone oil in which a fatty acid is dissolved is added to water in which an amine compound is dissolved is used.
  • a method in which water in which an amine compound is dissolved is added to a non-silicone oil in which a fatty acid is dissolved and emulsified may be used.
  • Example 1 Polybutene (high viscosity oil, kinematic viscosity at kinematic viscosity 300mm 2 / s, 40 °C at 100 °C 9000mm 2 /s)1.9 wt% and liquid paraffin (low-viscosity oil, kinematic viscosity at 100 °C 14mm 2 / s, 40 a non-silicone oil consisting of kinematic viscosity 105mm 2 /s)8.1 wt% in ° C., and a fatty acid consisting of montanic acid (carbon 28) 0.3 wt% and polycarboxylic acids 1.1 wt%, morpholine 1 mass % Amine compound and water were prepared so that the total amount was 100% by mass.
  • the blending ratio of the low viscosity oil to 1 part by mass of the high viscosity oil was 4.26 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 25 mm 2 / s.
  • a first liquid in which a fatty acid is dissolved in a non-silicone oil and a second liquid in which an amine compound is dissolved in water are prepared, and the first liquid is added to the second liquid and emulsified by a direct emulsification method.
  • a sample (contamination inhibitor composition) was obtained.
  • Example 2 instead of non-silicone oils of Example 1, polybutene (high viscosity oil, kinematic viscosity 300mm 2 /s)3.8% by weight and liquid paraffin at 100 ° C. (low-viscosity oil, kinematic viscosity 14 mm 2 / s at 100 ° C. )
  • a sample (contamination inhibitor composition) was obtained in the same manner as in Example 1 except that non-silicone oil consisting of 6.2% by mass was used.
  • the blending ratio of the low-viscosity oil to 1 part by mass of the high-viscosity oil was 1.63 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 45 mm 2 / s.
  • Example 3 Instead of the non-silicone oil of Example 1, polybutene (high viscosity oil, kinematic viscosity at 100 ° C. 300 mm 2 / s) 5 mass% and liquid paraffin (low viscosity oil, kinematic viscosity at 100 ° C. 14 mm 2 / s) 5 A sample (antifouling agent composition) was obtained in the same manner as in Example 1 except that non-silicone oil consisting of mass% was used. The blending ratio of the low-viscosity oil to 1 part by mass of the high-viscosity oil was 1 part by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 65 mm 2 / s.
  • Example 4 instead of non-silicone oils of Example 1, polybutene (high viscosity oil, kinematic viscosity 300mm 2 /s)5.9% by weight and liquid paraffin at 100 ° C. (low-viscosity oil, kinematic viscosity 14 mm 2 / s at 100 ° C. )
  • a sample (contamination inhibitor composition) was obtained in the same manner as in Example 1 except that non-silicone oil consisting of 4.1% by mass was used.
  • the blending ratio of the low-viscosity oil to 1 part by mass of the high-viscosity oil was 0.69 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 85 mm 2 / s.
  • Example 5 instead of non-silicone oils of Example 1, polybutene (high viscosity oil, kinematic viscosity 300mm 2 /s)6.6% by weight and liquid paraffin at 100 ° C. (low-viscosity oil, kinematic viscosity 14 mm 2 / s at 100 ° C. )
  • a sample was obtained in the same manner as in Example 1 except that non-silicone oil composed of 3.4% by mass was used.
  • the blending ratio of the low viscosity oil to 1 part by mass of the high viscosity oil was 0.52 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 105 mm 2 / s.
  • Example 6 instead of non-silicone oils of Example 1, polybutene (high viscosity oil, kinematic viscosity 300mm 2 /s)6.2% by weight and liquid paraffin at 100 ° C. (low-viscosity oil, kinematic viscosity 2 mm 2 / s at 100 ° C. A sample (contamination inhibitor composition) was obtained in the same manner as in Example 1 except that a non-silicone oil composed of 3.8% by mass at a kinematic viscosity at 40 ° C. of 13.5 mm 2 / s) was used.
  • the blending ratio of the low viscosity oil to 1 part by mass of the high viscosity oil was 0.61 part by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 45 mm 2 / s.
  • Example 7 Instead of non-silicone oils of Example 1, polybutene (high viscosity oil, kinematic viscosity 300mm 2 /s)5.6% by weight and liquid paraffin at 100 ° C. (low-viscosity oil, kinematic viscosity 4 mm 2 / s at 100 ° C. A sample (contamination inhibitor composition) was obtained in the same manner as in Example 1 except that non-silicone oil composed of 4.4% by mass at a kinematic viscosity at 40 ° C. of 23.4 mm 2 / s) was used.
  • the blending ratio of the low-viscosity oil to 1 part by mass of the high-viscosity oil was 0.79 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 45 mm 2 / s.
  • Example 8 Instead of non-silicone oils of Example 1, polybutene (high viscosity oil, kinematic viscosity 300mm 2 /s)4.4% by weight and liquid paraffin at 100 ° C. (low-viscosity oil, kinematic viscosity 10 mm 2 / s at 100 ° C. A sample (contamination inhibitor composition) was obtained in the same manner as in Example 1 except that a non-silicone oil composed of 5.6% by mass at a kinematic viscosity of 70 mm 2 / s at 40 ° C. was used.
  • the blending ratio of the low viscosity oil to 1 part by mass of the high viscosity oil was 1.27 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 45 mm 2 / s.
  • Example 9 instead of non-silicone oils of Example 1, polybutene (high viscosity oil, kinematic viscosity at 100 °C 85mm 2 / s, 40 kinematic viscosity at °C 2100mm 2 /s)6.5 wt% and liquid paraffin (low-viscosity oil A sample (contamination inhibitor composition) was obtained in the same manner as in Example 1 except that a non-silicone oil having a kinematic viscosity at 100 ° C. of 14 mm 2 / s) 3.5% by mass was used.
  • the blending ratio of the low viscosity oil to 1 part by mass of the high viscosity oil was 0.54 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 45 mm 2 / s.
  • Example 10 Instead of non-silicone oils of Example 1, polybutene (high viscosity oil, kinematic viscosity at 100 °C 115mm 2 /s)5.5 wt% and liquid paraffin (low-viscosity oil, kinematic viscosity 14 mm 2 / s at 100 ° C. )
  • a sample (contamination inhibitor composition) was obtained in the same manner as in Example 1 except that non-silicone oil consisting of 4.5% by mass was used.
  • the blending ratio of the low viscosity oil to 1 part by mass of the high viscosity oil was 0.82 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 45 mm 2 / s.
  • Example 11 instead of non-silicone oils of Example 1, polybutene (high viscosity oil, kinematic viscosity at 100 °C 220mm 2 /s)4.2 wt% and liquid paraffin (low-viscosity oil, kinematic viscosity 14 mm 2 / s at 100 ° C. )
  • a sample was obtained in the same manner as in Example 1 except that 5.8% by mass of a non-silicone oil was used.
  • the blending ratio of the low viscosity oil to 1 part by mass of the high viscosity oil was 1.38 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 45 mm 2 / s.
  • Example 12 instead of non-silicone oils of Example 1, polybutene (high viscosity oil, kinematic viscosity at 100 °C 270mm 2 /s)3.9 wt% and liquid paraffin (low-viscosity oil, kinematic viscosity 14 mm 2 / s at 100 ° C. )
  • a sample (contamination inhibitor composition) was obtained in the same manner as in Example 1 except that a non-silicone oil composed of 6.1% by mass was used.
  • the blending ratio of the low viscosity oil to 1 part by mass of the high viscosity oil was 1.56 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 45 mm 2 / s.
  • Example 13 Instead of the non-silicone oil of Example 1, polyethylene wax (high viscosity oil, kinematic viscosity at 100 ° C. of 360 mm 2 / s) 2.3% by mass and liquid paraffin (low viscosity oil, kinematic viscosity at 100 ° C. of 13 mm 2 / s) A sample (antifouling agent) in the same manner as in Example 1 except that non-silicone oil comprising 7.7% by mass was used and 0.3% by mass of polyoxyalkyl ether (nonionic surfactant) was further added. Composition) was obtained.
  • the blending ratio of the low-viscosity oil with respect to 1 part by mass of the high-viscosity oil was 3.35 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 45 mm 2 / s.
  • Example 14 Instead of the non-silicone oil of Example 1, polybutene (high viscosity oil, kinematic viscosity at 100 ° C. 660 mm 2 / s, kinematic viscosity at 40 ° C. 24000 mm 2 / s) 3% by mass and liquid paraffin (low viscosity oil, 100 A sample (contamination inhibitor composition) was obtained in the same manner as in Example 1 except that a non-silicone oil consisting of 7% by mass at a kinematic viscosity at 14 ° C. of 14 mm 2 / s) was used.
  • the blending ratio of the low viscosity oil to 1 part by mass of the high viscosity oil was 2.33 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 45 mm 2 / s.
  • Example 15 Instead of non-silicone oils of Example 1, maleic polybutene (high viscosity oil, kinematic viscosity at kinematic viscosity 650mm 2 /s,37.8°C at 100 °C 59000mm 2 /s)4.2 wt%, polybutene ( high-viscosity oil, with 100 kinematic viscosity 300mm 2 /s)1.4% by weight and liquid paraffin at ° C. (low-viscosity oil, non-silicone oils consisting of kinematic viscosity 2mm 2 /s)4.4 wt% at 100 ° C.
  • maleic polybutene high viscosity oil, kinematic viscosity at kinematic viscosity 650mm 2 /s,37.8°C at 100 °C 59000mm 2 /s
  • polybutene high-viscosity oil, with 100 kinematic viscosity 300mm 2 /s)1.4
  • Example 2 A sample was prepared in the same manner as in Example 1 except that a fatty acid composed of 1.0% by mass of behenic acid (carbon 22) and 0.5% by mass of stearic acid (carbon 18) was used instead of the fatty acid of Example 1. (Contamination inhibitor composition) was obtained.
  • the blending ratio of the low-viscosity oil to 1 part by mass of the high-viscosity oil was 0.79 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 45 mm 2 / s.
  • Example 16 Instead of the non-silicone oil of Example 1, maleated polybutene (high viscosity oil, kinematic viscosity at 100 ° C. 650 mm 2 / s) 2.4% by mass, polybutene (high viscosity oil, kinematic viscosity at 100 ° C. 300 mm 2 / s) A non-silicone oil consisting of 0.8% by weight and liquid paraffin (low viscosity oil, kinematic viscosity at 100 ° C.
  • Example 14 14 mm 2 / s) 6.8% by weight, instead of the fatty acid of Example 1, behenic acid
  • a sample (contamination inhibitor composition) was obtained in the same manner as in Example 1 except that a fatty acid composed of 1.0% by mass of (carbon 22) and 0.5% by mass of stearic acid (carbon 18) was used.
  • the blending ratio of the low viscosity oil to 1 part by mass of the high viscosity oil was 2.13 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 45 mm 2 / s.
  • Example 17 Instead of the non-silicone oil of Example 1, maleated polybutene (high viscosity oil, kinematic viscosity at 100 ° C. 650 mm 2 / s) 0.2% by mass and liquid paraffin (low viscosity oil, kinematic viscosity at 100 ° C. 14 mm 2 / S) Using non-silicone oil consisting of 9.8% by mass, instead of the fatty acid of Example 1, 1.0% by mass of behenic acid (carbon 22) and 0.5% by mass of stearic acid (carbon 18) A sample (contamination inhibitor composition) was obtained in the same manner as in Example 1 except that the fatty acid was used.
  • the blending ratio of the low viscosity oil to 1 part by mass of the high viscosity oil was 49 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 15 mm 2 / s.
  • Example 18 Instead of the non-silicone oil of Example 1, maleated polybutene (high viscosity oil, kinematic viscosity at 100 ° C. 650 mm 2 / s) 4.7% by mass, polybutene (high viscosity oil, kinematic viscosity at 100 ° C. 300 mm 2 / s) 1.6% by mass, polybutene (kinematic viscosity at 100 ° C. 80 mm 2 / s) 0.3% by mass and liquid paraffin (low viscosity oil, kinematic viscosity at 100 ° C.
  • Example 2 2 mm 2 / s
  • a non-silicone oil was used except that a fatty acid composed of 1.0% by mass of behenic acid (carbon 22) and 0.5% by mass of stearic acid (carbon 18) was used instead of the fatty acid of Example 1.
  • a sample contamination inhibitor composition
  • the blending ratio of the low-viscosity oil to 1 part by mass of the high-viscosity oil was 0.52 parts by mass, and the kinematic viscosity at 100 ° C. of the non-silicone oil was 75 mm 2 / s.
  • Example 19 instead of non-silicone oils of Example 1, polybutene (high viscosity oil, 100 kinematic viscosity 300mm 2 /s)3.8 wt% at ° C. and turbine oil (low-viscosity oil, kinematic viscosity 14 mm 2 / s at 100 ° C. )
  • a sample (contamination inhibitor composition) was obtained in the same manner as in Example 1 except that non-silicone oil consisting of 6.2% by mass was used.
  • the blending ratio of the low-viscosity oil to 1 part by mass of the high-viscosity oil was 1.63 parts by mass, and the kinematic viscosity of the mixed oil at 100 ° C. was 45 mm 2 / s. The same behavior was observed when machine oil was used instead of turbine oil.
  • the samples of Examples 1 to 19 had a lower tape peeling force than the blank samples.
  • the effect of reducing the tape peeling force was remarkably recognized.
  • the effect of reducing the amount of adhesion of the pitch was remarkably recognized. From these, it was found that the antifouling agent composition of the present invention has an effect of preventing the adhesion of pitch.
  • Color loss test As a reference example, the color loss of the emulsifiers shown in Table 2 was evaluated. In Table 2, water other than fatty acid, amine compound or nonionic surfactant is water. In the color loss test, a 5 ⁇ 25 cm square stainless steel plate was heated to 100 ° C., and a sample of a reference example was sprayed so that a plurality of droplets having a diameter of 2 mm were formed. A handmade paper (brown) made from the raw material of the corrugated cardboard was placed on this, and a 1.6 kg weight was placed on it for 10 seconds. Next, the paper was turned over and placed again on the stainless steel plate, and a 1.6 kg weight was placed on it for 10 seconds.
  • the antifouling agent composition of the present invention is applied to the dry part of the dry part when paper is made. According to the antifouling agent composition of the present invention, it is possible to prevent the pitch from adhering to the dry part and to suppress the color loss of the paper, so that the yield in paper production can be greatly improved.

Landscapes

  • Paper (AREA)
  • Lubricants (AREA)

Abstract

 本発明は、抄紙工程のドライパートにおけるピッチ汚染を防止する汚染防止剤組成物であって、非シリコーン系オイルと、該非シリコーン系オイルを乳化させる乳化剤と、を有し、乳化剤が、脂肪酸とアミン化合物との中和物である汚染防止剤組成物である。

Description

汚染防止剤組成物
 本発明は、汚染防止剤組成物に関し、更に詳しくは、ドライパートにおけるピッチの付着を十分に防止でき、且つ色抜けを抑制できる汚染防止剤に関する。
 紙を製造するための抄紙工程は、一般に水中にパルプが分散された液を抄紙用の網(ワイヤー)に載せ、余分な水を自然落下させることにより湿紙とするワイヤーパートと、湿紙を一対のプレスロール間に通し、フェルトを介してプレスロールで押圧することにより、湿紙中の水分をフェルトに移行させ、これにより湿紙を脱水するプレスパートと、プレスパートを通過した湿紙を、加熱されたシリンダに接触させることで乾燥させ、紙とするドライパートと、紙をスプールと呼ばれる棒に巻き取るリールパートと、を有する。
 ところで、上記ドライパートにおいては、シリンダ、カンバス、カレンダーロール、ブレーカースタックロール等(以下これらを総称して「ドライパート部位」という。)の表面にピッチが付着する問題がある。これらにピッチが付着すると、紙が汚染され、歩留まりが大きく低下する。
 これに対し、ピッチの付着を防止する汚れ付着防止剤が知られている(例えば、特許文献1参照)。かかる汚れ付着防止剤は、粘度が異なるシリコーンオイルと、フッ素系界面活性剤を含む組成となっている。
特開平7-292382号公報
 しかしながら、特許文献1記載の汚れ付着防止剤においては、混合したシリコーンオイルの粘度が高すぎ、且つシリコーンオイル自体の粘着性によりドライパート部位へのピッチの付着を十分に防止できない。
 また、段ボール等の着色された紙を製造する場合、汚れ付着防止剤が紙の色を脱落させ、紙の色が斑になる(以下「色抜け」という。)欠点がある。
 本発明は上記事情に鑑みてなされたものであり、ドライパート部位へのピッチの付着を十分に防止でき、且つ紙の色抜けを抑制できる汚染防止剤を提供することを目的とする。
 上記課題を解決する本発明の汚染防止剤は、ピッチの付着防止の観点から非シリコーン系オイルを用い、色抜けを抑制できる乳化剤として脂肪酸とアミン化合物との中和物を用いることにより、上記課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、(1)抄紙工程のドライパートにおけるピッチ汚染を防止する汚染防止剤組成物であって、非シリコーン系オイルと、該非シリコーン系オイルを乳化させる乳化剤と、を有し、乳化剤が、脂肪酸とアミン化合物との中和物である汚染防止剤組成物に存する。
 本発明は、(2)脂肪酸の炭素数が18以上である上記(1)記載の汚染防止剤組成物に存する。
 本発明は、(3)脂肪酸がステアリン酸、ベヘニン酸、モンタン酸及びポリカルボン酸からなる群より選ばれる少なくとも2種類の混合物である上記(1)又は(2)に記載の汚染防止剤組成物に存する。
 本発明は、(4)アミン化合物がモルホリン、ジエタノールアミン又はトリエタノールアミンである上記(1)~(3)のいずれか一つに記載の汚染防止剤組成物に存する。
 本発明は、(5)非シリコーン系オイルが、100℃における動粘度が100mm/s以上の高粘度オイルと、100℃における動粘度が20mm/s以下の低粘度オイルと、からなり、高粘度オイル1質量部に対する低粘度オイルの配合割合が、0.25~3質量部であり、非シリコーン系オイルの100℃における動粘度が20mm/s以上である上記(1)~(4)のいずれか一つに記載の汚染防止剤組成物に存する。
 本発明は、(6)高粘度オイルが、ポリブテン、マレイン化ポリブテン及びポリエチレンワックスからなる群より選ばれる少なくとも1種である上記(5)記載の汚染防止剤組成物に存する。
 本発明は、(7)高粘度オイルがポリブテンである上記(5)記載の汚染防止剤組成物に存する。
 本発明は、(8)低粘度オイルが、流動パラフィン、タービン油、マシン油及び植物油からなる群より選ばれる少なくとも1種である上記(5)~(7)のいずれか一つに記載の汚染防止剤組成物に存する。
 本発明は、(9)低粘度オイルが流動パラフィンである上記(5)~(7)のいずれか一つに記載の汚染防止剤組成物に存する。
 本発明の汚染防止剤組成物は、非シリコーン系オイルを用いることにより、シリコーンオイル自体の粘着性によるドライパート部位へのピッチの付着を防止し、且つ、乾燥後にシリコーンのカスがドライパート部位に付着することを防止できる。
 また、乳化剤として脂肪酸とアミン化合物との中和物を用いることにより、紙の色抜けを抑制できる。
 上記汚染防止剤組成物においては、非シリコーン系オイルが、高粘度オイルと、低粘度オイルと、からなるものであると、高粘度オイルがピッチの付着を防止させる効果を発揮し、低粘度オイルが汚染防止剤組成物自体の粘着性を緩和させる効果を発揮する。
 特に、非シリコーン系オイルの100℃における動粘度が20mm/s以上である場合、ピッチの付着防止効果はより大きくなる。
 したがって、上記汚染防止剤組成物によれば、ドライパート部位へのピッチの付着を十分に防止でき、且つ色抜けを抑制できる。
 上記汚染防止剤組成物においては、高粘度オイルがポリブテンであり、低粘度オイルが流動パラフィンである場合、ピッチの付着防止効果をより一層向上させることができる。
 上記汚染防止剤組成物においては、乳化剤が脂肪酸とアミン化合物との中和物であるので、非シリコーン系オイルに脂肪酸を溶解し、これを、アミン化合物を溶解した水に加えることにより、容易に乳化することができる。この場合、長期間放置した場合であっても、沈殿等が生じず、保存安定性が優れる。
図1は、本発明に係る汚染防止剤を用いるドライパートのドライパート部位を示す概略図である。
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は図示の比率に限られるものではない。
 本実施形態に係る汚染防止剤組成物は、非シリコーン系オイルと、乳化剤と、水とを有する。
 上記汚染防止剤組成物は、これらを有することにより、ドライパート部位へのピッチの付着を十分に防止でき、且つ紙の色抜けを抑制できる。
 非シリコーン系オイルとしては、シリコーン系以外であれば特に限定されないが、例えば、鉱油、植物油、合成油等が挙げられる。
 これらの中でも、非シリコーン系オイルは、乾燥後、固形分が残らないものであることが好ましい。
 非シリコーン系オイルの100℃における動粘度が20mm/s以上であることが好ましく、100℃における動粘度が100mm/s以下であることが好ましい。
 また、非シリコーン系オイルの100℃における動粘度は、35~100mm/sであることがより好ましく、45~65mm/sであることが更に好ましい。
 非シリコーン系オイルの100℃における動粘度が20mm/s未満であると、ピッチの付着防止効果が不十分となる。なお、この動粘度が100mm/sを超えると、汚染防止剤組成物自体の粘着性が大きくなり、紙面が毟れる恐れがある。
 非シリコーン系オイルは、高粘度オイルと、低粘度オイルと、からなることが好ましい。
 この場合、高粘度オイルがピッチの付着を防止させる効果を発揮し、低粘度オイルが汚染防止剤組成物自体の粘着性を緩和させる効果を発揮する。
 ここで、本発明において、高粘度オイルは、100℃における動粘度が100mm/s以上であることが好ましく、400mm/s以下であることが好ましい。
 また、高粘度オイルの100℃における動粘度は、270~300mm/sであることがより好ましい。
 高粘度オイルの100℃における動粘度が100mm/s未満であると、動粘度が上記範囲内にある場合と比較して、ピッチの付着を十分に防止できない場合がある。
 上記高粘度オイルは、ピッチとの相溶性に優れるものが用いられる。
 高粘度オイルとしては、上述した粘度の条件を満たす、ポリイソブチレン、ポリブテン、マレイン化ポリブテン、ポリエチレンワックス、マイクロワックス等の合成オイルが挙げられる。これらは単独で用いても、複数を混合して用いてもよい。
 これらの中でも、高粘度オイルは、タック性の観点から、ポリブテン、マレイン化ポリブテン及びポリエチレンワックスからなる群より選ばれる少なくとも1種であることが好ましい。なお、タック性とは、オイル自体のべと付きの度合いを意味する。
 また、高粘度オイルは、散布ノズルの目詰まり防止の観点から、ブテン鎖を有するポリブテン又はマレイン化ポリブテンであることがより好ましく、ピッチ付着防止の観点から、ポリブテンであることが特に好ましい。
 高粘度オイルの配合割合は、3~7質量%であることが好ましい。高粘度オイルの配合割合が3質量%未満であると、高粘度オイルの配合割合が上記範囲内にある場合と比較して、ピッチの付着を十分に防止できない場合があり、高粘度オイルの配合割合が7質量%を超えると、高粘度オイルの配合割合が上記範囲内にある場合と比較して、汚染防止剤組成物自体のタック性が大きくなり、紙面が毟れる恐れがある。
 本発明において、低粘度オイルは、100℃における動粘度が20mm/s以下であることが好ましく、5mm/s以上であることが好ましい。
 また、低粘度オイルの100℃における動粘度は、10~14mm/sであることがより好ましい。
 低粘度オイルの100℃における動粘度が20mm/sを超えると、動粘度が上記範囲内にある場合と比較して、汚染防止剤組成物自体の粘着性を十分に緩和できない場合がある。なお、この動粘度が5mm/s未満であると、色抜けが生じる場合がある。
 上記低粘度オイルは、高粘度オイルとの相溶性に優れるものが好ましい。
 低粘度オイルとしては、上述した粘度の条件を満たす、ギアー油、シリンダ油、タービン油、スピンドル油等の鉱油、ヤシ油、アマニ油、ヒマシ油、ナタネ油、コーン油等の植物油、流動パラフィン、イソパラフィン等のパラフィン等が挙げられる。これらは単独で用いても、複数を混合して用いてもよい。
 これらの中でも、低粘度オイルは、汎用性の観点から、流動パラフィン、タービン油、マシン油及び植物油からなる群より選ばれる少なくとも1種であることが好ましく、高粘度オイルとの相溶性の観点から、流動パラフィン、タービン油又はマシン油であることがより好ましく、ピッチ付着防止の観点から、流動パラフォンであることが特に好ましい。
 したがって、汚染防止剤組成物においては、高粘度オイルがポリブテンであり、低粘度オイルが流動パラフィンであることが最も好ましい。この場合、ピッチの付着防止効果をより一層向上させることができる。
 低粘度オイルの配合割合は、1~6質量%であることが好ましい。低粘度オイルの配合割合が1質量%未満であると、低粘度オイルの配合割合が上記範囲内にある場合と比較して、汚染防止剤組成物自体の粘着性を十分に緩和できない場合があり、低粘度オイルの配合割合が6質量%を超えると、粘着性の緩和効果が飽和し、結果として高コストとなる欠点がある。
 高粘度オイル1質量部に対する低粘度オイルの配合割合は、0.25~3質量部であることが好ましく、0.25~1.5質量部であることがより好ましく、0.4~1.4質量部であることが更に好ましく、0.4~1.0質量部であることが特に好ましい。
 低粘度オイルの配合割合が0.25質量部未満であると、配合割合が上記範囲内にある場合と比較して、汚染防止剤組成物自体の粘着性を十分に緩和できない場合があり、低粘度オイルの配合割合が3質量部を超えると、配合割合が上記範囲内にある場合と比較して、粘着性の緩和効果が飽和し、結果として高コストとなる欠点がある。
 上記乳化剤は、非シリコーン系オイルを乳化させる。
 乳化剤は、非シリコーン系オイルを乳化させるものであれば、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、ノニオン界面活性剤等、適宜用いられる。これらは単独で用いても、複数を混合して用いてもよい。
 これらの中でも、乳化剤は、脂肪酸とアミン化合物との中和物であることがより好ましい。この場合、有機物の塩を用いることで、色抜けをより抑制できると共にオイルの乳化安定性を向上させることができる。また、脂肪酸を非シリコーン系オイルに溶解し、アミン化合物を水に溶解し、これらを混合して両者の中和反応を利用することにより、比較的容易に、乳化させることが可能となる。
 上記脂肪酸としては、紙の色抜け抑制の観点から、炭素数が18以上であることが好ましい。具体的には、ステアリン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、モンタン酸、ベヘニン酸、ポリカルボン酸等の飽和脂肪酸や、これらを不飽和にした不飽和脂肪酸等が挙げられる。これらは単独で用いても、複数を混合して用いてもよい。
 これらの中でも、脂肪酸は、乳化安定性及び汎用性の観点から、ステアリン酸、ベヘニン酸、モンタン酸及びポリカルボン酸からなる群より選ばれる少なくとも2種類の混合物であることが好ましく、特に、ステアリン酸及びベヘニン酸の組み合わせ、モンタン酸及びポリカルボン酸の組み合わせがより好ましい。
 上記アミン化合物としては、モルホリン、アンモニア、エチレンジアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン等が挙げられる。これらは単独で用いても、複数を混合して用いてもよい。
 これらの中でも、アミン化合物としては、乳化安定性の観点から、モルホリン、ジエタノールアミン又はトリエタノールアミンであることが好ましい。
 非シリコーン系オイル1質量部に対する乳化剤の配合割合は、0.1~4質量部であることが好ましい。乳化剤の配合割合が0.1質量部未満であると、乳化剤の配合割合が上記範囲内にある場合と比較して、乳化安定性が不十分となる場合があり、乳化剤の配合割合が4質量部を超えると、乳化剤の配合割合が上記範囲内にある場合と比較して、紙の色抜けの度合いが大きくなる欠点がある。
 本実施形態に係る汚染防止剤組成物には、キレート剤、pH調整剤、防腐剤、分散剤、粘度調整剤、固体潤滑剤等の添加剤が含まれていてもよい。
 次に、汚染防止剤組成物の製造方法について説明する。
 本実施形態に係る汚染防止剤組成物は、非シリコーン系オイルに脂肪酸を溶解し、これを、アミン化合物を溶解した水に加えて乳化することにより製造される。
 すなわち、非シリコーン系オイルに脂肪酸を溶解し、一方で、水にアミン化合物を溶解する。そして、脂肪酸を溶解した非シリコーン系オイルを、アミン化合物を溶解した水に加えて乳化させる(直接乳化法)。これにより、オイル層と水層との境界において、脂肪酸とアミン化合物との中和反応が生じると共に、オイル層と水層とが乳化する。なお、非シリコーン系オイルとして、高粘度オイルと低粘度オイルとを用いる場合は、100℃における動粘度が100mm/s以上の高粘度オイルと、100℃における動粘度が20mm/s以下の低粘度オイルと、を高粘度オイル1質量部に対する低粘度オイルの配合割合が0.25~3質量部となるように配合して非シリコーン系オイルが配合される。
 本実施形態に係る汚染防止剤組成物の製造方法においては、上述したように、直接乳化法を改良した方法で乳化させることにより、長期間放置した場合であっても、沈殿等が生じず、保存安定性が優れる汚染防止剤組成物が得られる。
 次に、ドライパートにおける汚染防止剤組成物の使用方法について説明する。
 図1は、本発明に係る汚染防止剤を用いるドライパートのドライパート部位を示す概略図である。
 図1に示すように、汚染防止剤組成物は、ドライパートDで用いられる。
 ドライパートDは、紙体Wと、該紙体Wを加熱乾燥するための複数の円筒状のシリンダD1,D2,D3,D4,D5,D6,D7及びD8(以下「D1~D8」という。)と、紙体をシリンダD1~D8に押し付けるカンバスK1,K2と、カンバスK1,K2を案内するカンバスロールKRと、乾燥した紙体Wの平滑性と紙厚を緩やかに調整するブレーカースタックロールBと、乾燥した紙体Wの平滑性と紙厚を調整するカレンダーロールCと、を備える。
 ドライパートDにおいては、回転するシリンダD1~D8の表面に紙体WがカンバスK1,K2により圧接される。これにより、紙体WがシリンダD1~D8に付着し、同時に加熱乾燥されるようになっている。
 その後、紙体Wは、ブレーカースタックロールBに挟持され、次いで、紙体Wは、カレンダーロールCにより高密度化される。
 上記汚染防止剤組成物の使用方法においては、図1に示すように、ドライパートDのシリンダD1~D8、カンバスK1,K2、ブレーカースタックロールB、カレンダーロールCに対して、それぞれ矢印Aの位置で汚染防止剤組成物が付与される。
 このとき、汚染防止剤組成物の付与方法は特に限定されず、例えば、散布ノズル等を用いて液状のシャワー方式や霧状の噴霧方式等が用いられる。すなわち、ドライパートに吹き付けることにより、紙粉汚染が防止される。
 このとき、汚染防止剤組成物の散布量は、固形分量として、0.1μg~100μg/mであることが好ましい。
 散布量が0.1μg/m未満であると、散布量が上記範囲内にある場合と比較して、汚染防止剤組成物が十分にドライパート部位の表面に付着せず、ピッチの付着を十分に抑制できない傾向にある。また、散布量が100μg/mを超えると、散布量が上記範囲内にある場合と比較して、余剰分が紙体に吸収されてしまう虞がある。
 なお、汚染防止剤組成物が、ドライパート部位の表面に散布されると、高粘度オイルと低粘度オイルとによる皮膜が形成される。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 例えば、上記実施形態に係る汚染防止剤組成物において、非シリコーン系オイルが高粘度オイルと、低粘度オイルとからなる場合、これに、高粘度オイル又は低粘度オイルに属さない粘度の非シリコーン系オイルを更に添加してもよい。
 上記実施形態に汚染防止剤組成物においては、汚染防止剤組成物をドライパートにおけるドライパート部位に付与しているが、ドライパートのみならず、プレスパートやリールパートに応用することも可能である。
 上記実施形態に係る汚染防止剤組成物の製造方法の乳化工程においては、脂肪酸を溶解した非シリコーン系オイルを、アミン化合物を溶解した水に加えて乳化させる方法(直接乳化法)が用いられているが、脂肪酸を溶解した非シリコーン系オイルに、アミン化合物を溶解した水を投入して乳化させる方法(反転乳化法)を用いてもよい。
 以下、実施例及び参考例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
 ポリブテン(高粘度オイル、100℃における動粘度300mm/s、40℃における動粘度9000mm/s)1.9質量%及び流動パラフィン(低粘度オイル、100℃における動粘度14mm/s、40℃における動粘度105mm/s)8.1質量%からなる非シリコーン系オイルと、モンタン酸(炭素28)0.3質量%及びポリカルボン酸1.1質量%からなる脂肪酸と、モルホリン1質量%からなるアミン化合物と、水とを準備して全量を100質量%となるようにした。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が4.26質量部であり、非シリコーン系オイルの100℃における動粘度は、25mm/sであった。
 次に、脂肪酸を非シリコーン系オイルに溶解した第1液と、アミン化合物を水に溶解した第2液とを作製し、第1液を第2液に加え、直接乳化法により乳化させることにより、サンプル(汚染防止剤組成物)を得た。
(実施例2)
 実施例1の非シリコーン系オイルの代わりに、ポリブテン(高粘度オイル、100℃における動粘度300mm/s)3.8質量%及び流動パラフィン(低粘度オイル、100℃における動粘度14mm/s)6.2質量%からなる非シリコーン系オイルを用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が1.63質量部であり、非シリコーン系オイルの100℃における動粘度は、45mm/sであった。
(実施例3)
 実施例1の非シリコーン系オイルの代わりに、ポリブテン(高粘度オイル、100℃における動粘度300mm/s)5質量%及び流動パラフィン(低粘度オイル、100℃における動粘度14mm/s)5質量%からなる非シリコーン系オイルを用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が1質量部であり、非シリコーン系オイルの100℃における動粘度は、65mm/sであった。
(実施例4)
 実施例1の非シリコーン系オイルの代わりに、ポリブテン(高粘度オイル、100℃における動粘度300mm/s)5.9質量%及び流動パラフィン(低粘度オイル、100℃における動粘度14mm/s)4.1質量%からなる非シリコーン系オイルを用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が0.69質量部であり、非シリコーン系オイルの100℃における動粘度は、85mm/sであった。
(実施例5)
 実施例1の非シリコーン系オイルの代わりに、ポリブテン(高粘度オイル、100℃における動粘度300mm/s)6.6質量%及び流動パラフィン(低粘度オイル、100℃における動粘度14mm/s)3.4質量%からなる非シリコーン系オイルを用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が0.52質量部であり、非シリコーン系オイルの100℃における動粘度は、105mm/sであった。
(実施例6)
 実施例1の非シリコーン系オイルの代わりに、ポリブテン(高粘度オイル、100℃における動粘度300mm/s)6.2質量%及び流動パラフィン(低粘度オイル、100℃における動粘度2mm/s、40℃における動粘度13.5mm/s)3.8質量%からなる非シリコーン系オイルを用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が0.61質量部であり、非シリコーン系オイルの100℃における動粘度は、45mm/sであった。
(実施例7)
 実施例1の非シリコーン系オイルの代わりに、ポリブテン(高粘度オイル、100℃における動粘度300mm/s)5.6質量%及び流動パラフィン(低粘度オイル、100℃における動粘度4mm/s、40℃における動粘度23.4mm/s)4.4質量%からなる非シリコーン系オイルを用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が0.79質量部であり、非シリコーン系オイルの100℃における動粘度は、45mm/sであった。
(実施例8)
 実施例1の非シリコーン系オイルの代わりに、ポリブテン(高粘度オイル、100℃における動粘度300mm/s)4.4質量%及び流動パラフィン(低粘度オイル、100℃における動粘度10mm/s、40℃における動粘度70mm/s)5.6質量%からなる非シリコーン系オイルを用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が1.27質量部であり、非シリコーン系オイルの100℃における動粘度は、45mm/sであった。
(実施例9)
 実施例1の非シリコーン系オイルの代わりに、ポリブテン(高粘度オイル、100℃における動粘度85mm/s、40℃における動粘度2100mm/s)6.5質量%及び流動パラフィン(低粘度オイル、100℃における動粘度14mm/s)3.5質量%からなる非シリコーン系オイルを用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が0.54質量部であり、非シリコーン系オイルの100℃における動粘度は、45mm/sであった。
(実施例10)
 実施例1の非シリコーン系オイルの代わりに、ポリブテン(高粘度オイル、100℃における動粘度115mm/s)5.5質量%及び流動パラフィン(低粘度オイル、100℃における動粘度14mm/s)4.5質量%からなる非シリコーン系オイルを用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が0.82質量部であり、非シリコーン系オイルの100℃における動粘度は、45mm/sであった。
(実施例11)
 実施例1の非シリコーン系オイルの代わりに、ポリブテン(高粘度オイル、100℃における動粘度220mm/s)4.2質量%及び流動パラフィン(低粘度オイル、100℃における動粘度14mm/s)5.8質量%からなる非シリコーン系オイルを用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が1.38質量部であり、非シリコーン系オイルの100℃における動粘度は、45mm/sであった。
(実施例12)
 実施例1の非シリコーン系オイルの代わりに、ポリブテン(高粘度オイル、100℃における動粘度270mm/s)3.9質量%及び流動パラフィン(低粘度オイル、100℃における動粘度14mm/s)6.1質量%からなる非シリコーン系オイルを用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が1.56質量部であり、非シリコーン系オイルの100℃における動粘度は、45mm/sであった。
(実施例13)
 実施例1の非シリコーン系オイルの代わりに、ポリエチレンワックス(高粘度オイル、100℃における動粘度360mm/s)2.3質量%及び流動パラフィン(低粘度オイル、100℃における動粘度13mm/s)7.7質量%からなる非シリコーン系オイルを用い、更にポリオキシアルキルエーテル(ノニオン界面活性剤)0.3質量%を加えたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が3.35質量部であり、非シリコーン系オイルの100℃における動粘度は、45mm/sであった。
(実施例14)
 実施例1の非シリコーン系オイルの代わりに、ポリブテン(高粘度オイル、100℃における動粘度660mm/s、40℃における動粘度24000mm/s)3質量%及び流動パラフィン(低粘度オイル、100℃における動粘度14mm/s)7質量%からなる非シリコーン系オイルを用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が2.33質量部であり、非シリコーン系オイルの100℃における動粘度は、45mm/sであった。
(実施例15)
 実施例1の非シリコーン系オイルの代わりに、マレイン化ポリブテン(高粘度オイル、100℃における動粘度650mm/s、37.8℃における動粘度59000mm/s)4.2質量%、ポリブテン(高粘度オイル、100℃における動粘度300mm/s)1.4質量%及び流動パラフィン(低粘度オイル、100℃における動粘度2mm/s)4.4質量%からなる非シリコーン系オイルを用い、実施例1の脂肪酸の代わりに、ベヘニン酸(炭素22)1.0質量%及びステアリン酸(炭素18)0.5質量%からなる脂肪酸を用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が0.79質量部であり、非シリコーン系オイルの100℃における動粘度は、45mm/sであった。
(実施例16)
 実施例1の非シリコーン系オイルの代わりに、マレイン化ポリブテン(高粘度オイル、100℃における動粘度650mm/s)2.4質量%、ポリブテン(高粘度オイル、100℃における動粘度300mm/s)0.8質量%及び流動パラフィン(低粘度オイル、100℃における動粘度14mm/s)6.8質量%からなる非シリコーン系オイルを用い、実施例1の脂肪酸の代わりに、ベヘニン酸(炭素22)1.0質量%及びステアリン酸(炭素18)0.5質量%からなる脂肪酸を用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が2.13質量部であり、非シリコーン系オイルの100℃における動粘度は、45mm/sであった。
(実施例17)
 実施例1の非シリコーン系オイルの代わりに、マレイン化ポリブテン(高粘度オイル、100℃における動粘度650mm/s)0.2質量%及び流動パラフィン(低粘度オイル、100℃における動粘度14mm/s)9.8質量%からなる非シリコーン系オイルを用い、実施例1の脂肪酸の代わりに、ベヘニン酸(炭素22)1.0質量%及びステアリン酸(炭素18)0.5質量%からなる脂肪酸を用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が49質量部であり、非シリコーン系オイルの100℃における動粘度は、15mm/sであった。
(実施例18)
 実施例1の非シリコーン系オイルの代わりに、マレイン化ポリブテン(高粘度オイル、100℃における動粘度650mm/s)4.7質量%、ポリブテン(高粘度オイル、100℃における動粘度300mm/s)1.6質量%、ポリブテン(100℃における動粘度80mm/s)0.3質量%及び流動パラフィン(低粘度オイル、100℃における動粘度2mm/s)3.4質量%からなる非シリコーン系オイルを用い、実施例1の脂肪酸の代わりに、ベヘニン酸(炭素22)1.0質量%及びステアリン酸(炭素18)0.5質量%からなる脂肪酸を用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が0.52質量部であり、非シリコーン系オイルの100℃における動粘度は、75mm/sであった。
(実施例19)
 実施例1の非シリコーン系オイルの代わりに、ポリブテン(高粘度オイル、100℃における動粘度300mm/s)3.8質量%及びタービン油(低粘度オイル、100℃における動粘度14mm/s)6.2質量%からなる非シリコーン系オイルを用いたこと以外は実施例1と同様にしてサンプル(汚染防止剤組成物)を得た。なお、高粘度オイル1質量部に対する低粘度オイルの配合割合が1.63質量部であり、混合オイルの100℃における動粘度は、45mm/sであった。なお、タービン油の代わりにマシン油を用いた場合も同じ挙動を示した。
(評価方法)
1.ピッチ付着性試験
 5×25cm角のステンレス板に実施例1~19で得られたサンプルを0.2g散布した。これを80℃で加熱乾燥した後、耐熱テープ(商品名:No.5412、住友3M株式会社製)を貼り固定した。
 そして、100℃で加熱した後、耐熱テープを剥がすときの力の大きさを測定した。なお、値が大きい程、ピッチが剥離しにくい(ピッチが付着しやすい)ことを意味する。得られた剥離力を表1に示す。なお、ブランクとして、ステンレス板にサンプルを散布しない場合についても測定した。
2.実機評価
 ドライヤー(シリンダ)に実施例1~6,8,9,12,14~16及び18のサンプルを5ml/min散布し、実機で60分間稼動させた場合のドクターブレード(ドライヤー汚れ除去装置)に蓄積したピッチの付着量(g)を測定した。得られた結果を表1に示す。
〔表1〕
Figure JPOXMLDOC01-appb-I000001
 表1の結果より、実施例1~19のサンプルは、ブランクのサンプルと比較してテープ剥離力が低かった。特に、実施例2及び3のサンプルにおいては、テープ剥離力が低くなる効果が顕著に認められた。
 また、実機評価において、特に、実施例2及び3のサンプルにおいては、ピッチの付着量が少なくなる効果が顕著に認められた。
 これらのことから、本発明の汚染防止剤組成物は、ピッチの付着防止効果があることがわかった。
3.色抜け試験
 参考例として、表2に示す乳化剤の色抜けについて評価した。なお、表2中、脂肪酸、アミン化合物又はノニオン界面活性剤以外は、水である。
 色抜け試験は、5×25cm角のステンレス板を100℃に加熱し、直径2mmの液滴が複数できるように、参考例のサンプルを散布した。これにダンボールの表層の原料から作製した手漉きの紙(茶色)をのせ、その上に1.6kgの錘を10秒間載せた。次に、紙を裏返して、ステンレス板に再びのせ、その上に1.6kgの錘を10秒間載せた。
 このステンレス板の上に紙の表裏をのせ錘をその上にのせる操作を3回繰り返した。
 次に、得られた紙を100℃の恒温槽で保管し、経時的(0日、1日、3日、6日、7日)にサンプル(乳化剤)の付着部分のR(red)、G(green)、B(blue)の値を画像処理ソフト(PaintShop Pro7)で測定した。これらの値の和を表3に示す。なお、表3中、R+G+Bの値が大きい程、色抜けが発生している(白っぽくなっている)ことを意味する。また、比較対象として、サンプル(乳化剤)を付与していない部分のR+G+Bの値をブランクとして測定した。
〔表2〕
Figure JPOXMLDOC01-appb-I000002
〔表3〕
Figure JPOXMLDOC01-appb-I000003
 表3の結果より、色抜け抑制効果は、ノニオン界面活性剤を用いる場合よりも、脂肪酸とアミン化合物との中和物を用いるほうが優れていることがわかった。
 これらのことから、本発明の汚染防止剤組成物によれば、紙の色抜けを抑制できることが確認された。
 本発明の汚染防止剤組成物は、紙の抄造の際に、ドライパートのドライパート部位に付与して用いられる。本発明の汚染防止剤組成物によれば、ドライパート部位へのピッチの付着を防止でき、且つ紙の色抜けを抑制できるので、紙の製造における歩留まりを極めて向上させることができる。
 B・・・ブレーカースタックロール
 C・・・カレンダーロール
 D・・・ドライパート
 D1,D2,D3,D4,D5,D6,D7,D8・・・シリンダ
 K1,K2・・・カンバス
 KR・・・カンバスロール
 W・・・紙体

Claims (9)

  1.  抄紙工程のドライパートにおけるピッチ汚染を防止する汚染防止剤組成物であって、
     非シリコーン系オイルと、該非シリコーン系オイルを乳化させる乳化剤と、を有し、
     前記乳化剤が、脂肪酸とアミン化合物との中和物である汚染防止剤組成物。
  2.  前記脂肪酸の炭素数が18以上である請求項1記載の汚染防止剤組成物。
  3.  前記脂肪酸がステアリン酸、ベヘニン酸、モンタン酸及びポリカルボン酸からなる群より選ばれる少なくとも2種類の混合物である請求項1又は2に記載の汚染防止剤組成物。
  4.  前記アミン化合物がモルホリン、ジエタノールアミン又はトリエタノールアミンである請求項1~3のいずれか一項に記載の汚染防止剤組成物。
  5.  前記非シリコーン系オイルが、100℃における動粘度が100mm/s以上の高粘度オイルと、100℃における動粘度が20mm/s以下の低粘度オイルと、からなり、
     前記高粘度オイル1質量部に対する前記低粘度オイルの配合割合が、0.25~3質量部であり、
     前記非シリコーン系オイルの100℃における動粘度が20mm/s以上である請求項1~4のいずれか一項に記載の汚染防止剤組成物。
  6.  前記高粘度オイルが、ポリブテン、マレイン化ポリブテン及びポリエチレンワックスからなる群より選ばれる少なくとも1種である請求項5記載の汚染防止剤組成物。
  7.  前記高粘度オイルがポリブテンである請求項5記載の汚染防止剤組成物。
  8.  前記低粘度オイルが、流動パラフィン、タービン油、マシン油及び植物油からなる群より選ばれる少なくとも1種である請求項5~7のいずれか一項に記載の汚染防止剤組成物。
  9.  前記低粘度オイルが流動パラフィンである請求項5~7のいずれか一項に記載の汚染防止剤組成物。
PCT/JP2011/001969 2010-03-31 2011-03-31 汚染防止剤組成物 WO2011122050A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180004032.3A CN102549215B (zh) 2010-03-31 2011-03-31 污染防止剂组合物
JP2011532406A JP4828001B1 (ja) 2010-03-31 2011-03-31 汚染防止剤組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-083995 2010-03-31
JP2010083995 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011122050A1 true WO2011122050A1 (ja) 2011-10-06

Family

ID=44711804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001969 WO2011122050A1 (ja) 2010-03-31 2011-03-31 汚染防止剤組成物

Country Status (3)

Country Link
JP (1) JP4828001B1 (ja)
CN (1) CN102549215B (ja)
WO (1) WO2011122050A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521509A4 (en) * 2016-09-29 2020-05-27 Maintech Co., Ltd. CONTAMINATION PREVENTION AGENT COMPOSITION AND CONTAMINATION PREVENTION METHOD

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988992A (ja) * 1982-11-12 1984-05-23 出光石油化学株式会社 紙剥離剤
JPS62215098A (ja) * 1986-03-08 1987-09-21 日本油脂株式会社 製紙用剥離剤
JPH04130190A (ja) * 1990-09-20 1992-05-01 Nippon Oil & Fats Co Ltd 抄紙用ドライヤー表面清浄潤滑剤
JPH07292382A (ja) * 1994-04-28 1995-11-07 Taiho Ind Co Ltd 抄紙ドライヤー工程用汚れ付着防止剤
JP2007126669A (ja) * 2005-11-03 2007-05-24 Infineum Internatl Ltd 潤滑油組成物
JP2008019525A (ja) * 2006-07-12 2008-01-31 Seiko Pmc Corp クレープ用離型剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3388450B1 (ja) * 2002-01-11 2003-03-24 株式会社メンテック 抄紙機用汚染防止剤、及びそれを使用した汚染防止方法
JP4271636B2 (ja) * 2003-04-09 2009-06-03 株式会社メンテック 抄紙機におけるドライパートの汚染防止方法
TW200508455A (en) * 2003-04-09 2005-03-01 Maintech Co Ltd Method for preventing pollution on a dry part in a paper machine, and anti-pollution agent used for this method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988992A (ja) * 1982-11-12 1984-05-23 出光石油化学株式会社 紙剥離剤
JPS62215098A (ja) * 1986-03-08 1987-09-21 日本油脂株式会社 製紙用剥離剤
JPH04130190A (ja) * 1990-09-20 1992-05-01 Nippon Oil & Fats Co Ltd 抄紙用ドライヤー表面清浄潤滑剤
JPH07292382A (ja) * 1994-04-28 1995-11-07 Taiho Ind Co Ltd 抄紙ドライヤー工程用汚れ付着防止剤
JP2007126669A (ja) * 2005-11-03 2007-05-24 Infineum Internatl Ltd 潤滑油組成物
JP2008019525A (ja) * 2006-07-12 2008-01-31 Seiko Pmc Corp クレープ用離型剤

Also Published As

Publication number Publication date
CN102549215B (zh) 2013-04-17
CN102549215A (zh) 2012-07-04
JP4828001B1 (ja) 2011-11-30
JPWO2011122050A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
JP4868628B1 (ja) 汚染防止剤組成物
JP4868629B1 (ja) 汚染防止剤組成物
JP2013531713A (ja) クレーピング剥離剤
JP4857405B2 (ja) 汚染防止剤組成物
JP4828001B1 (ja) 汚染防止剤組成物
WO2016157875A1 (ja) 汚染防止剤組成物
JP6080285B1 (ja) 汚染防止剤組成物及び汚染防止方法
CN1084817C (zh) 使用粘合剂对平板材料幅进行热机械表面处理的方法
WO2020202704A1 (ja) 汚染防止剤組成物
JP5960378B1 (ja) 汚染防止剤組成物
TWI619804B (zh) 污染防止劑組成物及污染防止方法
JP2016186141A (ja) 汚染防止剤組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004032.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011532406

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762291

Country of ref document: EP

Kind code of ref document: A1