WO2011121638A1 - プロペラシャフトのクロスメンバへの取付構造 - Google Patents

プロペラシャフトのクロスメンバへの取付構造 Download PDF

Info

Publication number
WO2011121638A1
WO2011121638A1 PCT/JP2010/002280 JP2010002280W WO2011121638A1 WO 2011121638 A1 WO2011121638 A1 WO 2011121638A1 JP 2010002280 W JP2010002280 W JP 2010002280W WO 2011121638 A1 WO2011121638 A1 WO 2011121638A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross member
propeller shaft
center bearing
vehicle
shaft
Prior art date
Application number
PCT/JP2010/002280
Other languages
English (en)
French (fr)
Inventor
山田秀人
赤木宏行
菊池荘吉
Original Assignee
フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー, マツダ株式会社 filed Critical フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー
Priority to CN201080065976.7A priority Critical patent/CN102933413B/zh
Priority to PCT/JP2010/002280 priority patent/WO2011121638A1/ja
Priority to US13/636,562 priority patent/US8657059B2/en
Publication of WO2011121638A1 publication Critical patent/WO2011121638A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/063Arrangement of tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • B60K17/24Arrangements of mountings for shafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/02Understructures, i.e. chassis frame on which a vehicle body may be mounted comprising longitudinally or transversely arranged frame members

Definitions

  • the present invention belongs to a technical field related to a structure for attaching a propeller shaft to a cross member in a vehicle.
  • a small truck or a vehicle called SUV Sports Utility Vehicle
  • the chassis frame is formed in a ladder shape by a pair of left and right main frames (also called side frames) extending in the vehicle length direction (vehicle longitudinal direction) and a plurality of cross members connecting the main frames.
  • Each main frame is positioned between a narrow portion having a small interval between the main frames, a wide portion having a larger interval between the main frames than the narrow portion, and the narrow portion and the wide portion. And a widened portion in which a distance between the main frames increases toward the rear side.
  • the power of the engine disposed in the engine room located at the front of the vehicle is transmitted to the rear wheels via the transmission, the propeller shaft, and the rear differential gear unit.
  • a power transfer unit is provided between the transmission and the propeller shaft.
  • the propeller shaft includes a front shaft and a rear shaft connected to each other via a joint (for example, a universal joint). The vicinity of the rear end of the front shaft is supported by the center bearing.
  • the vehicle is provided with a fuel tank for storing fuel supplied to the engine.
  • This fuel tank is normally disposed on one side in the vehicle width direction of the rear shaft of the propeller shaft.
  • the propeller shaft is bent at the joint as a result of the front end of the propeller shaft being pushed backward by the retreat of the engine or the like.
  • the center bearing and the front side portion of the wide portion of the main frame opposite to the fuel tank are connected to the center bearing by the connecting wire.
  • the present invention has been made in view of such a point, and the object of the present invention is to more reliably obtain a guide action of bending of the propeller shaft at the time of a frontal collision of a vehicle regardless of a full-wrap collision and an offset collision. Is to be able to.
  • a pair of main frames extending in the vehicle length direction and a cross connecting between the pair of main frames
  • a propeller shaft comprising a member, a front shaft and a rear shaft, which are disposed between the pair of main frames and connected to each other via a joint, and the cross member are fixed to support the front shaft rotatably.
  • a flexible coupling that connects a center bearing, a fuel tank disposed between the center bearing and one of the two main frames, and a portion of the center bearing and the cross member opposite to the fuel tank. And a connection body that does not extend substantially in length. It was.
  • the center bearing and the portion of the cross member on the side opposite to the fuel tank are connected by the connecting body. It cannot move to the fuel tank side.
  • the other side of the connection body one side of which is connected to the center bearing, is connected to a cross member to which the center bearing is attached.
  • the connection position of the cross member in the main frame is considerably rearward from the position where the hub or the like holding the front wheel collides at the time of offset front collision of the vehicle.
  • the cross member hardly deforms at the time of a frontal collision of the vehicle, and the connecting portion to the cross member in the connecting body does not move. Therefore, the guide action of bending of the propeller shaft by the coupling body can be obtained more reliably. Therefore, it is possible to prevent the center bearing removed from the cross member, the vicinity of the center bearing of the propeller shaft, and the joint from moving toward the fuel tank.
  • the fuel tank is preferably fixed to the cross member.
  • the fuel tank and the other side of the connecting body are fixed to the same cross member that is difficult to be deformed at the time of frontal collision of the vehicle.
  • the relative positional relationship between the fuel tank and the connecting portion to the cross member in the connecting body is hardly changed. Therefore, the center bearing that is disengaged from the cross member, the vicinity of the center bearing of the propeller shaft, and the joint do not come into contact with the fuel tank.
  • the center bearing has a mounting portion fixed to the cross member, and the mounting portion is accessed from the rear side of the vehicle with respect to the cross member. It preferably has a shape that can reach the fixed position.
  • the center bearing mounting part has a shape that allows access to the fixed position by accessing the cross member from the rear side of the vehicle, the center bearing that receives the impact force from the front shaft when the power plant is retracted is retracted. Therefore, it becomes easy to come off from the cross member. As a result, the propeller shaft is detached from the cross member together with the center bearing, so that the propeller shaft is difficult to inhibit the power plant from retreating.
  • the propeller shaft is arranged so that the joint is positioned on the fuel tank side with respect to a straight line connecting the front and rear ends of the propeller shaft in a plan view. It may be bent at the point.
  • the guide action of the bending of the propeller shaft by the coupling body can be reliably obtained, and the function and effect of the present invention can be effectively exhibited.
  • the center bearing is attached to the cross member so as to be detached from the cross member due to retreat when receiving an impact force from the front shaft. It is preferable that the connecting body is set to such a length that the center bearing removed from the cross member does not reach the fuel tank.
  • the connecting body When the connecting body is set to the length, the connecting body connects the center bearing and the cross member in a state having a slack for allowing the center bearing to retreat. It is more preferable.
  • the center bearing can be retracted by the amount of looseness of the coupled body, and the center bearing can be detached from the cross member. Further, it is possible to prevent the center bearing detached from the cross member from coming into contact with the fuel tank.
  • the propeller shaft has a collapsed structure that contracts in the axial direction of the rear shaft at a rear position relative to the center bearing.
  • the front shaft can be retracted by the impact force received, and the center bearing can be easily pushed from the cross member by pushing the center bearing to the rear side by the retreat.
  • an exhaust pipe is provided on the side opposite to the fuel tank with respect to the center bearing so as to extend in the vehicle length direction, and the coupling body in the cross member It is preferable that the connecting portion is located between the exhaust pipe and the center bearing.
  • the connecting body does not have to straddle the exhaust pipe, and the operation of the connecting body when the center bearing is detached from the cross member can be stabilized.
  • the propeller shaft is disposed so as to pass below the cross member, the center bearing is disposed on the front side of the cross member, and the fuel tank It is preferable to have a front side extending portion that extends to the front side of the cross member through the lower side of the cross member and is aligned with the center bearing in the vehicle width direction.
  • the center bearing and the front extending portion of the fuel tank are aligned in the vehicle width direction.
  • the connecting body that connects the center bearing and the portion of the cross member opposite to the fuel tank is used.
  • the center bearing that is detached from the cross member does not come into contact with the front extending portion of the fuel tank. Therefore, the volume of the fuel tank can be increased.
  • the propeller shaft can be passed through the lower side of the cross member, which is advantageous for attachment and detachment. When the propeller shaft is detached from the cross member together with the center bearing, the center bearing is dropped and the propeller shaft is viewed from the side of the vehicle. Then, it bends at the joint part so that the joint part is located below the straight line connecting both ends of the propeller shaft. As a result, the propeller shaft is more difficult to inhibit the power plant from retreating.
  • the structure for mounting the propeller shaft on the cross member of the present invention it is possible to more reliably obtain the guiding action of the bending of the propeller shaft at the time of the frontal collision of the vehicle, regardless of the full wrap collision and the offset collision. It is possible to prevent the center bearing removed from the cross member, the vicinity of the center bearing of the propeller shaft, and the joint from moving toward the fuel tank.
  • FIG. 1 is a perspective view showing an entire vehicle to which a frontal collision energy absorption structure according to an embodiment of the present invention is applied. It is the perspective view seen from the vehicle left diagonal front side and the upper side which shows the whole chassis frame of the said vehicle. It is a top view of the said chassis frame. It is the perspective view seen from the vehicle left diagonal rear side and the upper side which shows the vehicle front side part of the said chassis frame. It is the perspective view seen from the vehicle left diagonal rear side and the lower side which shows the vehicle front side part of the said chassis frame. It is a perspective view which shows the suspension tower vicinity in the vehicle width direction outer side part of the main frame of the left side of the said chassis frame.
  • FIG. 18 is a sectional view taken along line XIX-XIX in FIG. 17.
  • FIG. 15 is a sectional view taken along line XXI-XXI in FIG. 14 (however, most of the mounted components shown in FIG. 20 are omitted).
  • FIG. 23 is a sectional view taken along line XXIII-XXIII in FIG. 22. It is a bottom view which shows the vehicle rear side part of the chassis frame which mounts the said components. It is the perspective view seen from the vehicle right diagonal front side and the lower side which show the periphery of a propeller shaft center bearing.
  • FIG. 14 is a sectional view taken along line XXVII-XXVII in FIG. 13. It is a graph which shows the relationship between the compression deformation stroke of the vehicle at the time of frontal collision of the vehicle (the amount of the obstacle that the vehicle collided with the frontal surface enters the vehicle) and the impact force G acting on the cabin. It is a bottom view which shows the state which the propeller shaft center bearing removed from the 5th cross member.
  • FIG. 30 is a sectional view taken along line XXX-XXX in FIG. 29.
  • FIG. 30 is a sectional view taken along line XXXI-XXXI in FIG. 29.
  • It is a vehicle bottom view which shows the state of the vehicle front side part at the time of the offset frontal collision of the said vehicle.
  • FIG. 1 shows the entirety of a vehicle 1 (in this embodiment, a small truck) to which a frontal collision energy absorbing structure according to an embodiment of the present invention is applied.
  • 2 to 12 show the whole or a part of the chassis frame 9 of the vehicle 1.
  • FIGS. 13 to 27 show a state in which various components (including units) are mounted on the chassis frame 9.
  • the vehicle 1 includes an engine room 2, a cabin 3, and a loading platform 4 in order from the front side.
  • the front, rear, left and right of the vehicle 1 are simply referred to as front, rear, left and right, respectively.
  • FIGS. 2 to 18, 20 to 22, and 24 to 27 the front side of the vehicle 1 is described as Fr (the same applies to the subsequent FIGS. 29 and 31).
  • the vehicle 1 has a chassis frame 9 at the lower part thereof.
  • the chassis frame 9 includes a pair of left and right main frames 10 (also referred to as side frames) extending in the vehicle length direction (front-rear direction) and a plurality (in this embodiment) extending in the vehicle width direction connecting the main frames 10. , 7) (hereinafter, referred to as first to seventh cross members 11 to 17 in order from the front) and has a ladder shape in plan view.
  • Each main frame 10 is formed in a substantially rectangular cross section by an inner panel 20 on the inner side in the vehicle width direction and an outer panel 21 on the outer side in the vehicle width direction, and a closed cross-sectional space is formed between these panels 20 and 21. .
  • the first cross member 11 is attached to the front ends of both main frames 10 and functions as a bumper reinforcement that reinforces the front bumper 5 (see FIG. 1).
  • the second cross member 12 is attached to the left and right main frames 10 via cross member brackets 23 welded to the left and right main frames 10 at both ends thereof.
  • the third cross member 13 is also attached to the left and right main frames 10 via cross member brackets 24 welded to the left and right main frames 10 at both ends thereof.
  • the cross member bracket 23 can be regarded as a part of the second cross member 12, and the cross member bracket 24 can be regarded as a part of the third cross member 13.
  • the fourth cross member 15 is attached to the left and right main frames 10 via large gussets 25 respectively welded to the left and right main frames 10 at both ends thereof.
  • the gusset 25 has a role of a bracket and a role of reinforcement, and can be regarded as a part of the fourth cross member 15. Both end portions of the fifth to seventh cross members 15 to 17 are directly attached to the left and right
  • Each main frame 10 is located at both ends of the lower part of the engine room 2 in the vehicle width direction and has a narrow width portion 10a where the distance between the main frames 10 is small, and is located below the cabin 3 and the loading platform 4 and both.
  • the space between the main frames 10 is located between the wide portion 10b where the interval between the main frames 10 is larger than the narrow portion 10a, and between the narrow portion 10a and the wide portion 10b (the rear end portion of the engine room 2).
  • each wide portion 10b itself is larger than the width (that is, the cross-sectional area) of each narrow portion 10a itself.
  • Each widened portion 10c extends from the rear end (near the rear side of the third cross member) of each narrow-width portion 10a so as to be inclined rearward in the vehicle width direction, and the width of the widened portion 10c itself toward the rear side. (Cross sectional area) becomes large and is connected to the front end (near the front side of the fourth cross member 14) of the wide portion 10b.
  • the widened portion 10c and the third and fourth cross members 13 and 14 of both main frames 10 have a trapezoidal shape in plan view.
  • the wide width portion 10b is formed so that the width (cross-sectional area) of the wide width portion 10b itself is the largest at the connecting portion with the fourth cross member 14 or in the vicinity thereof.
  • the fourth cross member 14 is connected to a portion having a large width (cross-sectional area) in the wide width portion 10 b, and the connection portion is reinforced by the large gusset 25.
  • a portion of the wide frame portion 10b of each main frame 10 located below the cabin 3 is at a lower height than the narrow width portion 10a, and the wide width portion 10c is inclined downward toward the rear. Yes.
  • the portion located below the loading platform 4 in the wide portion 10b of each main frame 10 (the portion behind the sixth cross member 16) is more than the portion located below the cabin 3 in the wide portion 10b.
  • the rear portion of the portion located on the upper side and positioned on the lower side of the cabin 3 in the wide portion 10b is inclined upward (see FIG. 14).
  • a cab mount bracket 26 is attached in the vicinity of the front side of the fourth cross member 14 in the widened portion 10c of each main frame 10 and in the vicinity of the front side of the sixth cross member 16 in the wide width portion 10b.
  • a vehicle body member constituting the cabin 3 is placed on each cab mount bracket 26 via a cab mount having a rubber member.
  • the cab mount bracket 26 is attached to the outer surface and the lower surface of the main frame 10 in the vehicle width direction by welding.
  • the vehicle body member constituting the floor of the cabin 3 is a floor panel 28, and the vehicle body member that partitions the engine room 2 and the cabin 3 is a dash. Panel 29.
  • the lower end of the dash panel 29 is connected to the front end of the floor panel 28.
  • the rear end portion of the floor panel 28 is bent upward to partition the cabin 3 and the loading platform 4.
  • the drive system of the vehicle 1 includes an engine 32, a transmission 33, a power transfer unit 34, a front wheel propeller shaft 35, a front differential gear unit 36, a rear wheel propeller shaft 37, and a rear differential gear.
  • a unit 38 is included.
  • the vehicle 1 is a four-wheel drive vehicle (4WD vehicle) that drives the front wheels 6 and the rear wheels 7, but may be a 2WD vehicle that drives only the rear wheels 7.
  • the power transfer unit 34, the front wheel propeller shaft 35, and the front differential gear unit 36 do not exist.
  • the engine 32 is a vertical engine having a plurality of (in this embodiment, five) cylinders arranged in a row in the vehicle length direction, and a transmission 33 is connected to the rear side of the engine 32.
  • brackets 40 are attached to the left and right side surfaces of the engine 32 so as to protrude to the left and right sides, respectively.
  • An engine mount 41 having a cylindrical rubber bush 41a is held at the tip of each bracket 40 so that the central axis of the rubber bush 41a extends in the vehicle length direction.
  • the engine mount 41 further includes a central shaft 41b that penetrates the central portion of the rubber bush 41a in the vehicle length direction, and support members 41c that support both ends of the central shaft 41b.
  • the engine mount bracket 27 is attached to the narrow portion 10a of both main frames 10 so as to be positioned below the support member 41c.
  • a support member 41 c is attached on the engine mount bracket 27, whereby the engine 32 is elastically supported on the engine mount bracket 27 via the bracket 40 and the engine mount 41.
  • each engine mount bracket 27 is welded to the inner surface of each main frame 10 in the vehicle width direction (the inner panel 20 of each main frame 10), and the vehicle width from the surface. It has an upper member 27a and a lower member 27b that protrude inward in the direction.
  • the upper member 27a is formed such that a cross section cut along the vehicle length direction has a substantially inverted U shape
  • the lower member 27b has a cross section cut along the vehicle length direction having a substantially U shape. It is formed to make.
  • the side end portions on both sides in the vehicle length direction of the upper member 27a and the side end portions on both sides in the vehicle length direction of the lower member 27b are joined to each other.
  • the front side end of the upper member 27a and the front side end of the lower member 27b are joined together, and the rear side end of the upper member 27a and the rear side end of the lower member 27b. Are joined together.
  • a space is formed between the two members 27a and 27b, and the inside of the space in the vehicle width direction is open.
  • a support member 41c of the engine mount 41 is attached to the upper surface of the upper member 27a via a reinforcing member 27c.
  • a substantially U-shaped cutout portion 27d opened in the vehicle width direction is formed on the bottom surface portion (a portion extending horizontally) of the lower member 27b (see FIG. 9 and FIG. 9). (See FIG. 21).
  • the notch 27d is formed so that the engine mount bracket 27 is compressed and deformed in the vehicle length direction as much as possible when the vehicle 1 collides with the front. Further, the vehicle length is located at a position (position corresponding to the space) that overlaps each engine mount bracket 27 in the vehicle length direction on the vehicle width direction inner surface of each main frame 10 (inner panel 20 of each main frame 10). A long hole 128 extending in the direction is formed (see FIG. 9). By this long hole 128, when the front collision of the vehicle 1 occurs, the mounting portion of the engine mount bracket 27 in the main frame 10 is also compressed and deformed as much as possible in the vehicle length direction together with the engine mount bracket 27.
  • the power transfer unit 34 is connected to the rear side of the transmission 33 and distributes the output of the transmission 33 to the front wheels 6 and the rear wheels 7.
  • This power transfer unit 34 is supported via a rubber mount on a mount mounting portion 14a provided at the center in the vehicle width direction on the upper surface of the fourth cross member 14.
  • the rear wheel propeller shaft 37 is elongated to the front side and connected to the rear end of the transmission 33. Further, an extension extended rearward so as to reach the lower part of the transmission 33 (the part below the connecting part with the rear wheel propeller shaft 37) on the mount mounting part 14a on the upper surface of the fourth cross member 14. An extension portion is formed, and the transmission 33 is supported by the mount attachment portion 14a via the rubber mount at the extension portion.
  • a rear end of a front wheel propeller shaft 35 extending in the vehicle length direction is connected to the left side of the power transfer unit 34 (the portion protruding to the left), and the power transfer unit 34
  • the rear end of 34 is connected to the front end of a propeller shaft 37 for rear wheels extending in the vehicle length direction.
  • the rear end of the front wheel propeller shaft 35 is connected to the power transfer unit 34 via a constant velocity joint 44, and the front end of the front wheel propeller shaft 35 is connected to a front differential gear unit 36 (in detail, via a constant velocity joint 45). , which will be described later).
  • the front differential gear unit 36 includes a case 131 that accommodates a differential gear and the like.
  • the case 131 includes a gear housing portion 131a in which a differential gear is housed, a left output shaft housing portion 131b in which a left output shaft extending in the vehicle width direction is housed, and a right side in which a right output shaft extending in the vehicle width direction is housed. It has an output shaft housing portion 131c and an input shaft housing portion 131d in which an input shaft connected to the front wheel propeller shaft 35 and extending in the vehicle length direction is housed.
  • the left and right output shaft accommodating portions 131b and 131c have a cylindrical shape covering the periphery of the left and right output shafts, respectively, and extend from the gear accommodating portion 131a to both sides in the vehicle width direction.
  • the input shaft housing portion 131d extends rearward from the gear housing portion 131a, and the rear end portion (constant velocity joint 45) of the input shaft protrudes from the rear end thereof.
  • the gear housing 131a is located on the left side of the engine 32.
  • the right output shaft accommodating portion 131c is longer in the vehicle width direction than the left output shaft accommodating portion 131b, and reaches the vicinity of the right main frame 10 through the lower side of the engine 32.
  • the output shafts are connected to left and right front wheel drive shafts 47 extending in the vehicle width direction through constant velocity joints housed in a boot 46, respectively.
  • the shaft 47 is connected to a hub 50 that holds the wheels of the left and right front wheels 6 via a constant velocity joint accommodated in the boot 48. With these constant velocity joints, it is possible to cope with the movement of each front wheel 6 in the vertical direction with respect to the output shaft and the movement by steering described later.
  • the power of the engine 32 is transmitted to the left and right front wheels 6 via the transmission 33, the power transfer unit 34, the front wheel propeller shaft 35, the front differential gear unit 36, and the left and right front wheel drive shafts 47. Is done.
  • the front differential gear unit 36 is elastically supported by the chassis frame 9 at three locations. Specifically, a first mount bracket 57 that supports a first mount 53 having a cylindrical rubber bush 53a is provided at a position on the left side of the rear surface of the second cross member 12 (FIGS. 3 and 5). (See FIGS. 6, 20, and 21). Further, a second mount bracket 58 for supporting the second mount 54 having a cylindrical rubber bush 54 a is provided at the right end portion (in practice, the upper surface of the cross member bracket 24) on the upper surface of the third cross member 13. (See FIGS. 3, 4 and 15 to 17).
  • a third mount bracket 59 for supporting a third mount 55 having a cylindrical rubber bush 55a is provided at an upper position of the third cross member 13 on the inner surface in the vehicle width direction of the left main frame 10. (See FIGS. 3, 4, 7-9, 17, and 20).
  • the third mount bracket 59 is divided into two parts, a front divided part 59a and a rear divided part 59b.
  • the first mount 53 further has a central shaft 53b that penetrates the central portion of the rubber bush 53a. Both end portions of the central shaft 53 b are supported by the first mount bracket 57. In this supported state, the central shaft 53b extends in the vehicle width direction.
  • the second mount 54 further has a central shaft 54b that penetrates the central portion of the rubber bush 54a.
  • the central axis 54b extends in the vertical direction.
  • One end portion (lower end portion) of the central shaft 54b is a male screw portion that is screwed with a female screw portion of a weld nut provided on the lower surface of the second mount bracket 58, and the other end portion (upper end portion) is a male screw portion. Hexagonal shape for engaging with a tool to be fastened to the part. In this fastened state, the second mount 54 is supported on the second mount bracket 58.
  • the third mount 55 further has a central shaft 55b that penetrates the central portion of the rubber bush 55a.
  • the central shaft 55b extends in the vehicle length direction. Both end portions of the central shaft 55b have a plate shape extending in the horizontal direction, and are fastened to the front division portion 59a and the rear division portion 59b by bolts 60 (see FIGS. 9 and 20) from above.
  • a front portion of the gear housing portion 131a of the front differential gear unit 36 is formed with a first mount holding portion 131e that protrudes forward and holds the periphery of the rubber bush 53a of the first mount 53 (FIG. 20). reference). Further, a second mount holding portion 131f that protrudes rearward and holds the periphery of the rubber bush 54a of the second mount 54 is formed at the tip end portion (right end portion) of the right output shaft housing portion 131c. (See FIGS. 15 and 17). Further, a third mount holding portion 131g that protrudes to the upper left side and holds the periphery of the rubber bush 55a of the third mount 55 is formed at the rear portion of the input shaft accommodating portion 131d (FIGS. 17 and 20). reference).
  • the front differential gear unit 36 is attached to the chassis frame 9 via the first to third mounts 53 to 55 and the first to third mount brackets 57 to 59.
  • the central axes 53b, 54b, and 55b of the first to third mounts 53 to 55 extend in different directions.
  • vibration components in all directions generated in the front differential gear unit 36 are not easily transmitted to the chassis frame 9.
  • the rear wheel propeller shaft 37 includes a front shaft 37a and a rear shaft 37b which are connected to each other via a joint (in this embodiment, a universal joint 65).
  • the front end of the front shaft 37a is connected to the rear end of the power transfer unit 34 via a universal joint 64, and the rear end of the front shaft 37a is a universal joint 65 (see FIG. 24) located below the fifth cross member 15. )
  • the front shaft 37a extends straight from the universal joint 64 to the rear side through the center in the vehicle width direction between the main frames 10 in plan view.
  • the front shaft 37a is inclined downward toward the rear.
  • the rear shaft 37b extends from the universal joint 65 to the rear side through the universal joint 66, as shown in FIG. It is connected to a rear differential gear unit 38 (more specifically, an input shaft described later).
  • the rear shaft 37b is inclined downward toward the rear and slightly inclined toward the right (opposite side to a fuel tank 83 described later) toward the rear in plan view.
  • the propeller shaft 37 for the rear wheel has a universal joint 65 (with respect to a straight line connecting the front and rear ends (the front end of the front shaft 37a and the rear end of the rear shaft 37b) of the rear wheel propeller shaft 37 in a plan view.
  • the universal joint 65 is bent at a location of the universal joint 65 (a location of the joint portion 65a) so that a later-described joint portion 65a) is located on the left side.
  • the rear-wheel propeller shaft 37 as a whole is inclined so as to incline downward toward the rear and is disposed so as to pass below the fifth cross member 15.
  • the propeller shaft 37 for the rear wheel is rotatably supported by a propeller shaft center bearing 67 (hereinafter simply referred to as a center bearing 67) at an intermediate portion in the longitudinal direction.
  • a propeller shaft center bearing 67 hereinafter simply referred to as a center bearing 67
  • the center bearing 67 is supported by two bearing brackets 68 attached to the fifth cross member 15, and is located in front of the fifth cross member 15 and in the vicinity of the fifth cross member 15.
  • the bearing bracket 68 is disposed on both sides of the center bearing 67 in the vehicle width direction.
  • the center bearing 67 has a cylindrical outer cylinder 151 (see FIGS. 26 and 27), and the outer cylinder 151 (center bearing 67) is provided on both sides of the outer circumferential surface of the outer cylinder 151 in the vehicle width direction. )
  • Each mounting portion 151a is formed with a notch portion 151b opened to the front side (see FIG. 26).
  • Each bearing bracket 68 is provided with a stud bolt 148 protruding downward.
  • the stud bolt 148 is inserted into the notch 151b and then fastened to the flanged nut 149.
  • each attachment part 151a is fixed to the lower surface of each bearing bracket 68.
  • the notch part 151b of each attachment part 151a is open
  • a bearing body 152 including a plurality of balls 153, an outer race 154, and an inner race 155 is provided inside the outer cylindrical body 151.
  • the outer cylinder 151 and the bearing main body 152 are connected by a rubber 156.
  • the rubber 156 connects the outer cylinder 151 and the outer race 154.
  • An intermediate portion of the rubber 156 protrudes forward of the front end of the outer cylinder 151.
  • Front and rear dust covers 158 and 159 for preventing dust from entering the inner side of the outer race 154 from the gap between the front shaft 37a and the outer race 154 are provided on the front side and the rear side of the bearing main body 152, respectively. Is provided.
  • the inner pressing portion 161 and an outer pressing portion 162 that press the center bearing 67 rearward when an impact force from the front to the rear acts on the front shaft 37a on a portion of the front shaft 37a immediately before the center bearing 67.
  • the inner pressing portion 161 has substantially the same diameter as the front end of the outer race 154, and presses the outer race 154 rearward when an impact force from the front to the rear acts on the front shaft 37a.
  • the outer pressing portion 162 has substantially the same diameter as that of the outer cylinder 151, and presses the outer cylinder 151 rearward when an impact force from the front to the rear acts on the front shaft 37a. To do.
  • an impact force from the front to the rear acts on the center bearing 67.
  • this impact force is larger than the reference value
  • the center bearing 67 is applied to the bearing bracket 68 (the fifth cross member 15). On the other hand, it retracts from the bearing bracket 68 (the fifth cross member 15).
  • the universal joint 65 includes a joint portion 65a (see FIGS. 25 to 27), a front connection portion 65b (see FIG. 27) connected to the rear end portion of the front shaft 37a, and the front shaft 37a and the joint portion 65a. And a rear connection portion 65c (see FIGS. 25 to 27) connected to the front end portion of the rear shaft 37b.
  • the front connection portion 65b has a cylindrical shape, and the rear end portion of the front shaft 37a is inserted therein.
  • the front connection portion 65b and the rear end portion of the front shaft 37a are integrally rotated by spline engagement and are fixed to each other so as not to be relatively movable in the shaft length direction.
  • the rear connection portion 65c is also cylindrical, and the front end portion of the rear shaft 37b is inserted therein.
  • the rear connection portion 65c and the front end portion of the rear shaft 37b are integrally rotated by spline engagement and can be moved relative to each other in the shaft length direction. That is, when the connecting portion between the universal joint 65 and the rear shaft 37b is subjected to an impact force from the front to the rear (impact force that removes the center bearing 67 from the bearing bracket 68) on the front shaft 37a ( When the front shaft 37a receives the impact force, it has a collapsed structure that contracts in the axial direction of the rear shaft 37b. With this structure, when the front shaft 37a receives the impact force, the front shaft 37a and the universal joint 65 tend to move rearward.
  • the rear connection portion 65c moves rearward relative to the front end portion of the rear shaft 37b (the universal joint 65 and the rear shaft).
  • 37b is contracted in the axial direction of the rear shaft 37b). That is, the distance between the joint part 65a and the universal joint 66 is shortened.
  • the rear shaft 37a is allowed to move rearward, and as described above, the front shaft 37a (the inner pressing portion 161 and the outer pressing portion 162) presses the center bearing 67 to the rear side, and the center bearing 67 Can be removed from the bearing bracket 68.
  • the collapse structure is not limited to the connection portion between the universal joint 65 and the rear shaft 37b, but is located at a position behind the center bearing 67 in the rear wheel propeller shaft 37 (for example, an intermediate portion of the rear shaft 37b). What is necessary is just to provide.
  • the center bearing 67 and the portion of the fifth cross member 15 on the right side of the center bearing 67 are connected by a connecting wire 170 extending in the vehicle width direction.
  • the connecting wire 170 constitutes a connecting body that is flexible and does not substantially extend in its entire length.
  • mounting brackets 171 are caulked to both ends of the connecting wire 170, and the mounting bracket 171 on one end side (left side) is connected to the rear extension portion 151c on the right mounting portion 151a in the outer cylinder 151.
  • the provided stud bolt 172 and the nut 173 screwed to the stud bolt 172 are connected and fixed to the rear extension portion 151c.
  • the mounting bracket 171 on the other end side (right side) is attached to the center bearing 67 in the fifth cross member 15 by a stud bolt 175 provided on the fifth cross member 15 and a nut 176 screwed to the stud bolt 175.
  • it is connected and fixed to a portion on the opposite side to the fuel tank 83.
  • the length of the connecting wire 170 including the mounting bracket 171 is longer than the distance between the stud bolts 172 and 175. Therefore, the intermediate portion of the connecting wire 170 is bent and bent due to the flexibility of the connecting wire 170. (See FIGS. 24 and 25). This is because the center bearing 67 can move rearward until it is disengaged from the bearing bracket 68 (the fifth cross member 15). That is, the connecting wire 170 connects the center bearing 67 and the fifth cross member 15 in a state where the connecting wire 170 has a slack for allowing the center bearing 67 to retreat. When the center bearing 67 is removed from the bearing bracket 68 due to retreat when receiving an impact force from the front shaft 37a, the center bearing 67 hardly moves to the left side (the fuel tank 83 side described later) by the connecting wire 170. Drop as described below.
  • the rear differential gear unit 38 includes an axle housing 132 that houses a differential gear and the like.
  • the axle housing 132 includes a gear housing portion 132a in which a differential gear is housed, a left drive shaft housing portion 132b in which a left rear wheel drive shaft that extends in the vehicle width direction and drives the left rear wheel 7 is housed, and a vehicle width.
  • the right drive shaft housing portion 132c that houses the right rear wheel drive shaft that extends in the direction and drives the right rear wheel 7, and the input shaft that houses the input shaft connected to the rear shaft 37b and extending in the vehicle length direction
  • Both drive shaft accommodating portions 132b and 132c have a cylindrical shape that covers the periphery of both rear wheel drive shafts, and extend from the gear accommodating portion 132a to both sides in the vehicle width direction.
  • Both drive shaft accommodating portions 132b and 132c are supported by leaf springs 71 attached to the rear portions of the wide width portions 10b of both main frames 10 (see FIG. 14). Further, between the left drive shaft accommodating portion 132b and the rear portion of the left main frame 10 with respect to the left drive shaft accommodating portion 132b, and between the right drive shaft accommodating portion 132c and the right drive shaft accommodating portion 132c in the right main frame 10. Also, shock absorbers 72 are respectively disposed between the front side portions (see FIGS. 13, 14, and 24).
  • the exhaust device 75 of the engine 32 is disposed on the right side of the engine 32 (see FIGS. 13 and 24).
  • the exhaust device 75 has an exhaust pipe 76 extending to the vicinity of the rear end of the vehicle 1.
  • an upstream side exhaust purification device 77, a flexible joint 78, a downstream side exhaust purification device 79, and a muffler 80 are sequentially arranged from the upstream side.
  • the upstream side and downstream side exhaust purification devices 77 and 79 have a three-way catalyst and purify the exhaust of the engine 1.
  • the upstream side exhaust purification device 77 is disposed in the vicinity of the engine 1 in order to purify HC and CO particularly when the engine 1 is cold.
  • the flexible joint 78 suppresses the vibration of the engine 32 from being transmitted to a portion of the exhaust pipe 76 downstream of the flexible joint 78.
  • the muffler 80 is disposed on the right side of the rear shaft 37 b of the rear wheel propeller shaft 37 and between the fifth and sixth cross members 15 and 16.
  • a resin fuel tank 83 for storing fuel supplied to the engine 32 is disposed on the left side of the rear shaft 37b (see FIGS. 13, 14, and 24).
  • the fuel tank 83 is basically located between the fifth and sixth cross members 15 and 16.
  • a portion of the fuel tank 83 positioned between the fifth and sixth cross members 15 and 16 is referred to as a tank main body portion 83a.
  • On the front side of the tank body 83a there is provided a front extension 83b that passes under the fifth cross member 15 and extends forward of the fifth cross member 15 and is aligned with the center bearing 67 in the vehicle width direction.
  • a rear extending portion 83c is provided that extends below the sixth cross member 16 through the lower side of the sixth cross member 16.
  • the fuel tank 83 is disposed between the center bearing 67 and the left main frame 10.
  • the lower portion of the fifth cross member 15 in the front extending portion 83b and the lower portion of the sixth cross member 16 in the rear extending portion 83c are confined in the vehicle width direction.
  • the fuel tank 83 is attached to and fixed to the lower surfaces of the fifth and sixth cross members 15 and 16 via a band-shaped tank attachment member 84 (see FIG. 24) at these two constricted portions.
  • an insulator 85 (shown only in FIGS. 25 and 26) made of a thin iron plate for blocking heat from the exhaust pipe 76 and the muffler 80 is provided on the right side surface of the fuel tank 83.
  • an under guard made of a thin iron plate is provided on the lower surface of the fuel tank 83. Such an under guard is also provided on the lower side of the engine 32, between the first and second cross members, and on the lower side of the power transfer unit 34.
  • the left and right front wheels 6 are steered via a steering mechanism that is interlocked with a steering wheel operated by an occupant.
  • a steering mechanism that is interlocked with a steering wheel operated by an occupant.
  • a pinion is rotated by an operation of a steering wheel, and a rack that meshes with the pinion is accommodated in a steering gear box 87 (see FIGS. 13 and 15 to 18).
  • the rack extends in the vehicle width direction, and both ends thereof are connected to the left and right steering rods 88 (see FIGS. 16 and 18).
  • Each steering rod 88 is connected to a knuckle 91 provided on the inner side of the hub 50 in the vehicle width direction.
  • each front wheel suspension device 90 is a high-mount type double wishbone suspension, and includes the knuckle 91, lower arm 92, upper arm 93, coil spring 94 (shown only in FIG. 20), and shock absorber 95.
  • the stabilizer which the front-wheel suspension apparatus 90 has is abbreviate
  • the lower arm 92 has a shape in which its base end side (inner side in the vehicle width direction) is bifurcated into the front and rear, and the front base end 92a of the lower arm 92 is attached to the second cross member 12 via the cross member bracket 23.
  • the rear base end portion 92 b is attached to the third cross member 13 via the cross member bracket 24.
  • the front base end portion 92a is rotatably attached to a lower arm pivot 98 (see FIGS. 6 and 22) provided on the cross member bracket 23 so as to extend in the vehicle length direction.
  • the portion 92b is also rotatably attached to a lower arm pivot 99 (see FIGS. 6 and 22) provided on the cross member bracket 24 so as to extend in the vehicle length direction.
  • the lower arm 92 can swing in the vertical direction about the lower arm pivots 98 and 99.
  • the upper arm 93 also has a shape in which the base end side is bifurcated into the front and rear.
  • the front and rear base ends 93a and 93b of the upper arm are provided on an upper arm pivot 106 (see FIGS. 15 to 17 and 19) provided on an inner panel 102 of a suspension tower 101 described later so as to extend in the vehicle length direction. It is attached to both ends so as to be rotatable. As a result, the upper arm 93 can swing in the vertical direction about the upper arm pivot 106.
  • the lower arm 92 extends from the front and rear base end portions 92a and 92b to the outer side in the vehicle width direction than the main frame 10, and a ball is attached to the lower end portion of the knuckle 91 at the tip portion (end portion in the vehicle width direction). It is connected via a joint 110 (see FIGS. 19 and 22).
  • the upper arm 93 extends from the front and rear base end portions 93a, 93b to the outside in the vehicle width direction from the main frame 10, and is located above the knuckle 91 at the tip end portion (end portion outside in the vehicle width direction). It connects with the upper end part of the extending arm part 91a via the ball joint 111 (refer FIG.15, FIG.17 and FIG.19). Accordingly, the knuckle 91, the lower arm 92, and the upper arm 93 swing in the vertical direction in conjunction with the vertical movement of the front wheel 6.
  • a bump stopper 115 (see FIGS. 2 to 6, 15, 17, and 19 to 23) is attached to the outer surface of each main frame 10 in the vehicle width direction (the outer panel 21 of the main frame 10) by welding. ing. Each bump stopper 115 is in contact with a contact portion 92c provided in the vicinity of the rear base end portion 92b on the upper surface of the lower arm 92, and restricts the lower arm 92 from moving upward from the contacted position. is there.
  • the lower arm 92 is composed of two upper and lower plate members 92d and 92e (a space is formed between both plate members 92d and 92e), but the abutting portion 92c is further increased in order to increase its strength.
  • a sheet of plate material 92f is welded (see FIG. 22).
  • Each bump stopper 115 includes a stopper main body 116 attached to the outer surface in the vehicle width direction of each main frame 10 so as to protrude outward in the vehicle width direction.
  • the stopper main body 116 is formed such that a cross section cut along the horizontal direction forms a bag shape (substantially U-shaped in this embodiment) having an opening on the inner side in the vehicle width direction and has openings at both upper and lower ends. It is made up of panels.
  • stopper main body 116 is attached to the main frame 10 via the end portions (front and rear attachment portions 116c and 116d) on both sides of the U shape in the cross section.
  • the opening at the upper end of the panel of the stopper main body 116 is referred to as an upper opening 116a, and the opening at the lower end of the panel is referred to as a lower opening 116b.
  • the stopper main body 116 is attached to the main frame 10 via the front and rear attachment portions 116c and 116d, whereby the vehicle width direction inner side opening of the panel is closed. It becomes the shape like a cylindrical member which extends up and down and has an opening in both upper and lower ends.
  • the upper and lower openings are an upper opening 116a and a lower opening 116b. Therefore, it can be said that the upper opening 116a is formed between the upper end portion of the stopper main body 116 and the outer surface of the main frame 10 in the vehicle width direction. It can also be said that the lower opening 116b is formed between the lower end of the stopper main body 116 and the outer surface in the vehicle width direction of the main frame 10 (actually, the cross member bracket 24).
  • the amount of protrusion of the stopper main body 116 from the main frame 10 to the outer side in the vehicle width direction is increased toward the lower side. For this reason, when viewed from the vehicle length direction, the tip of the stopper main body 116 is inclined outward in the vehicle width direction toward the lower side. Further, the opening area of the lower opening 116b is larger than the opening area of the upper opening 116a.
  • the closing member 117 Of the upper opening 116a and the lower opening 116b, only the lower opening 116b is covered with the closing member 117 (see FIGS. 4, 6, 22 and 23).
  • An abutting member 118 with which the lower arm 92 abuts is attached to a portion of the lower surface of the closing member 117 on the outer side in the vehicle width direction.
  • the abutting member 118 has an inverted dish-shaped base portion 118a fixed to the closing member 117 and a conical shape that is vulcanized and bonded to the base portion 118a and pointed downward.
  • the rubber abutting portion 118b is formed, and the abutting portion 92c of the lower arm 92 abuts on the rubber abutting portion 118b.
  • a stud bolt 119 is welded to the center of the base portion 118a so as to protrude upward, and a weld nut 120 that is screwed to the stud bolt 119 is welded to the upper surface of the closing member 117.
  • a through hole 117a is formed at a position corresponding to the weld nut 120 of the closing member 117 (see FIGS. 6 and 23).
  • the rear mounting portion 116d of the stopper main body 116 overlaps the third cross member 13 in the vehicle length direction, and the entire vertical direction of the surface on the outer side in the vehicle width direction of the main frame 10 and the third cross member 13 (actually Is attached to the cross member bracket 24). Further, the front mounting portion 116c of the stopper main body 116 is located at a position between the engine mount bracket 27 and the third cross member 13 in the vehicle length direction, and on the entire vertical direction of the outer surface of the main frame 10 in the vehicle width direction. It is attached.
  • the vicinity of the rear base end portion 92b of the lower arm 92 (the portion that comes into contact with the contact member 118) is inclined forward toward the outer side in the vehicle width direction.
  • the member 118 protrudes outward in the vehicle width direction from the surface on the outer side in the vehicle width direction of the main frame 10 in a state inclined toward the front side toward the outer side in the vehicle width direction.
  • the bump stopper 115 Due to the configuration and arrangement of the bump stopper 115, the bump stopper 115 is easily compressed and deformed in the vehicle length direction when the vehicle 1 collides with the front. For this reason, the bump stopper 115 does not hinder the compressive deformation of the main frame 10 in the vehicle length direction at the time of a frontal collision of the vehicle. Further, in the present embodiment, a plurality (two) of recesses 125 (FIGS. 4, 7, and 7) are disposed at positions (two locations on the upper surface and the lower surface) overlapping with the upper opening 116a in the main frame 10 in the vehicle length direction. 8 (see FIG. 15 and FIG.
  • the recess 125 may be formed anywhere as long as it overlaps the upper opening 116a in the main frame 10 in the vehicle length direction, and may not be formed at a plurality of locations, and may be formed only at one location. Good.
  • the small holes act as holes for taking in and out the electrodeposition liquid in the closed cross section of the main frame 10, which is required in the painting process of the main frame.
  • each main frame 10 Between the second and third cross members 12 and 13 in the narrow width portion 10a of each main frame 10, the top portion of the strut 96 (that is, the coil spring 94 and the shock absorber 95) extending in the vertical direction of the front wheel suspension device 90 is supported. Suspension towers 101 are attached respectively (see FIGS. 6 to 8, FIGS. 10 to 12, FIGS. 15 to 17, and FIG. 19). The lower end of the strut 96 (the lower end of the shock absorber 95) is connected to the lower arm 92 so as to be rotatable about an axis extending in the vehicle length direction.
  • Each suspension tower 101 includes an inner panel 102 on the inner side in the vehicle width direction, an outer panel 103 on the outer side in the vehicle width direction coupled to the inner panel 102, and a suspension tower reinforcement provided between the panels 102 and 103. 104 (see FIGS. 10 to 12 and the like).
  • a front leg portion 101a and a rear leg portion 101b branched from each other in the vehicle length direction are provided below the suspension towers 101.
  • the upper end portion of the outer panel 103 has a strut receiving portion 103a that supports the top portion of the strut 96, and the top portions of the coil spring 94 and the shock absorber 95 are fixed and supported by the strut receiving portion 103a.
  • the outer panel 103 includes an outer panel front leg portion 103b and an outer panel rear leg portion 103c that extend downward from the front and rear edge portions of the upper end portion, respectively.
  • the suspension tower reinforcement 104 is welded to the outer panel 103 so as to cover an opening in the vehicle width direction between the outer panel front leg portion 103b and the outer panel rear leg portion 103c of the outer panel 103.
  • a space that is surrounded by the outer panel front leg portion 103b, the outer panel rear leg portion 103c, and the suspension tower reinforcement 104 and that opens to the outside in the vehicle width direction is a space in which the strut 96 is accommodated.
  • the suspension panel reinforcement 104 may not be provided, and a portion corresponding to the suspension tower reinforcement 104 may be integrally formed with the outer panel 103.
  • the outer panel 103 to which the suspension tower reinforcement 104 is welded is welded to the inner panel 102.
  • a closed cross-sectional space is formed between the inner panel 102 and the suspension tower reinforcement 104.
  • a portion corresponding to the suspension tower reinforcement 104 is formed integrally with the outer panel 103, a closed cross-sectional space is formed between the inner panel 102 and the outer panel.
  • the inner panel 102 protrudes above the outer panel 103, and the outer panel 103 protrudes below the inner panel 102.
  • An upper arm pivot 106 that supports the upper arm 93 is provided on the upper protruding portion of the inner panel so as to extend in the vehicle length direction.
  • the upper arm pivot 106 is inserted into a support sleeve 107 (see FIGS. 10 and 11) provided on the inner panel 102.
  • a stiffener 108 (see FIGS. 10 and 11) is provided on the outer side of the support sleeve 107 in the vehicle width direction (the upper position of the outer panel 103).
  • the stiffener 108 provides the upper arm pivot 106 in the inner panel 102. Part is reinforced.
  • the reason why the upper arm pivot 106 is provided on the inner panel 102 is that the arm length of the upper arm 93 can be made longer than that provided on the outer panel 103.
  • An inner panel front leg portion 102a and an inner panel rear leg portion 102b that are branched so as to be separated from each other in the vehicle length direction are provided at the lower portion of the inner panel 102, and the vehicle length is mutually below the suspension tower reinforcement 104.
  • a reinforcement front leg portion 104a and a reinforcement rear leg portion 104b branched off in the vertical direction are provided.
  • the reinforcement front leg 104a is connected to the outer panel front leg 103b by welding, and the reinforcement rear leg 104b is connected to the outer panel rear leg 103c by welding.
  • the inner panel front leg portion 102a, the outer panel front leg portion 103b, and the reinforcement front leg portion 104a constitute the front leg portion 101a of the suspension tower 101, and the inner panel rear leg portion 102b, the outer panel rear leg portion 103c, and the reinforcement rear leg portion 104b. Constitutes the rear leg portion 101 b of the suspension tower 101.
  • each suspension tower 101 The front leg portion 101a and the rear leg portion 101b of each suspension tower 101 are attached to each main frame 10 by welding so as to be separated from each other in the vehicle length direction.
  • the inner panel front leg portion 102 a and the inner panel rear leg portion 102 b of the inner panel 102 are mutually in the vehicle length direction on the vehicle width direction inner side portion (the inner panel 20 of the main frame 10) of the upper surface of the main frame 10. Attached by welding.
  • the outer panel front leg portion 103b and the outer panel rear leg portion 103c of the outer panel are mutually connected to the vehicle length direction outer side portion of the upper surface of the main frame and the entire vertical direction of the vehicle width direction outer side surface (the outer panel 21 of the main frame 10).
  • the reinforcement front leg portion 104a and the reinforcement rear leg portion 104b of the suspension tower reinforcement 104 are arranged on the vehicle width direction outer side surface (the outer panel 21 of the main frame 10) of the main frame 10 with respect to each other in the vehicle length direction. Attached by welding. Therefore, the lower portion of the suspension tower 101 is not attached to the main frame 10 over the entire vehicle length direction, but is attached to the main frame 10 at the middle portion of the lower portion of the suspension tower 101 in the vehicle length direction. There is a part that can not be.
  • the suspension tower 101 is arranged on the inner side in the vehicle width direction with the inner panel front leg part 102a and the inner panel rear leg. It is attached to the main frame 10 at the portion 102b, and at the outer side in the vehicle width direction, it is attached to the main frame 10 at the outer panel front leg portion 103b, the outer panel rear leg portion 103c, the reinforcement front leg portion 104a, and the reinforcement rear leg portion 104b.
  • the attachment strength of the suspension tower 101 to the main frame 10 can be made sufficiently strong to withstand the force received from the strut 96.
  • each main frame 10 between the front leg portion 101a and the rear leg portion 101b (a total of four corners between the upper surface and both side surfaces of the main frame 10 and each corner portion of the lower surface and both side surfaces)
  • a plurality of (four) recesses 126 are formed. Due to the plurality of recesses 126, the location of the recesses 126 in each main frame 10 during the frontal collision of the vehicle 1 (particularly during a full-wrap frontal collision) is easily compressed and deformed in the vehicle length direction.
  • connection portion (the attachment portion of the suspension tower 101) of each main frame 10 with the suspension tower 101 is usually difficult to compress and deform in the vehicle length direction, but branches so as to be separated in the vehicle length direction in the suspension tower 101.
  • the portion of the main frame 10 between the front leg portion 101a and the rear leg portion 101b is compressed and deformed in the vehicle length direction at the time of a frontal collision of the vehicle.
  • the recess 126 in the portion is more easily compressed and deformed in the vehicle length direction.
  • the concave portion 126 may be formed anywhere as long as it is a portion between the front leg portion 101a and the rear leg portion 101b in the main frame 10, and it is not necessary to form it at a plurality of locations, and it is formed only at one location. May be.
  • the second cross member 12 is provided at a position away from the suspension tower 101 to the front side.
  • the third cross member 13 is provided at a position away from the suspension tower 101 to the rear side.
  • the engine mount brackets 27 are connected to the connection portions of the main frames 10 to the suspension tower 101 and the connection portions to the second and third cross members 12 and 13 (connection portions to the cross member brackets 23 and 24). On the other hand, they are separated from each other in the vehicle length direction and are attached by welding between the second and third cross members 12 and 13 on the inner side surface (inner panel 20 of the main frame 10) of each main frame 10. .
  • the separation of the engine mount bracket 27 in the vehicle length direction with respect to the connection portion includes that the engine mount bracket 27 is separated from the connection portion in the vehicle length direction at the same height position of the main frame 10.
  • the front end of the engine mount bracket 27 is inclined forward toward the lower side.
  • the upper portion of the front end of the engine mount bracket 27 is separated from the rear leg portion 101b of the suspension tower 101 in the vehicle length direction.
  • the lower part of the front end of the engine mount bracket 27 is spaced apart in the vertical direction with respect to the rear leg part 101b.
  • the front end of the engine mount bracket 27 is inclined frontward toward the lower side so that a gap of a predetermined width is formed with the suspension tower 101 (rear leg portion 101b).
  • the main frame 10 is compressed and deformed in the vehicle length direction.
  • each engine mount bracket 27 is attached to a portion of each main frame 10 between the suspension tower 101 and the third cross member 13.
  • the engine 32 can be disposed relatively rearward in the front portion of the main frame 10, it is possible to delay the timing at which the engine 32 moves backward during a frontal collision of the vehicle 1. As a result, the amount of energy absorbed by the compressive deformation at the front portion of the main frame 10 before the engine 32 starts to retract can be increased.
  • Each engine mount bracket 27 can be attached to a portion of each main frame 10 between the suspension tower 101 and the second cross member 12. Also in this case, the engine mount brackets 27 are separated in the vehicle length direction from the connection portions of the main frames 10 to the suspension tower 101 and the connection portions to the second and third cross members 12 and 13. Thus, it is preferable to attach to each main frame 10. However, since the engine 32 tends to be disposed relatively forward in the front portion of the main frame 10, the timing at which the engine 32 moves backward in the frontal collision of the vehicle 1 is accelerated. As a result, the amount of energy absorption due to compressive deformation at the front of the main frame 10 before the engine 32 starts retreating is reduced, and therefore, energy absorption engineering that incorporates the retreat of the engine 32 whose behavior is unstable is necessary. It is said.
  • the value of F2 varies greatly depending on the amount of compressive deformation of the main frames 10 in the vehicle length direction. By increasing the amount of compression deformation, the value of F2 can be reduced.
  • a portion of the main frame 10 between the second and third cross members 12 and 13 includes the second and third cross members 12 and 13, the suspension tower 101, and the engine mount bracket 27.
  • Many deformation-inhibiting members that inhibit compression deformation in the vehicle length direction of the main frame 10 at the time of a frontal collision are attached.
  • the bump stopper 115 does not correspond to the deformation-inhibiting member because the bump stopper 115 is formed in a shape that easily compresses and deforms in the vehicle length direction as described above.
  • the plurality of deformation inhibiting members are arranged in the vehicle length direction, the mounting portions of the plurality of deformation inhibiting members in the main frame 10 are further compressed and deformed in the vehicle length direction. It becomes difficult to do. For this reason, the value of F2 may be instantaneously excessive.
  • the engine mount bracket 27 is separated in the vehicle length direction from the connection portion of the main frame 10 with the suspension tower 101 and the connection portions with the second and third cross members 12 and 13. Thus, it is attached to the main frame 10. That is, the plurality of deformation inhibiting members are dispersedly arranged on the main frame 10 in the vehicle length direction so that the deformation inhibiting members in the main frame 10 are reliably compressed and deformed in the vehicle length direction.
  • the attachment portion of the single deformation inhibiting member in the main frame 10 is not compressed and deformed at all in the vehicle length direction. It is possible to compress and deform to some extent.
  • a front leg portion 101a and a rear leg portion 101b that are branched so as to be separated from each other in the vehicle length direction are provided at the lower portion of the suspension tower 101. 10 and are separated from each other in the vehicle length direction, and a recess 126 is formed in a portion between the front leg portion 101a and the rear leg portion 101b in the main frame 10, so that the front leg portion 101a and the rear leg portion 101b in the main frame 10 are formed.
  • the portion between is reliably compressed and deformed in the vehicle length direction.
  • the engine mount bracket 27 is easily compressed and deformed in the vehicle length direction due to the formation of the cutout portion 27d, and coupled with the long hole 128 formed in the main frame 10, the engine in the main frame 10 is provided.
  • the mounting portion of the mount bracket 27 is more likely to be compressed and deformed in the vehicle length direction. Therefore, the amount of collision energy absorbed at the time of a frontal collision of the vehicle 1 can be secured by the accumulation of the compression deformation, and an excessive impact force can be prevented from instantaneously acting on the cabin 3. it can. Further, since there are a plurality of dispersed locations where the main frame 10 is reliably compressed and deformed in the vehicle length direction, the impact force G can be easily controlled.
  • the transmission 33 and the power transfer unit 34 are also retracted (that is, the power plant including the engine 32, the transmission 33 and the power transfer unit 34 is retracted), and the front side An impact force from the front to the rear acts on the shaft 37a. Accordingly, the center bearing 67 is pressed rearward by the inner pressing portion 161 and the outer pressing portion 162, and an impact force from the front toward the rear acts on the center bearing 67.
  • the impact force is larger than the reference value (when the engine 32 is largely retracted)
  • the rear connection portion 65c of the universal joint 65 moves relative to the front end of the rear shaft 37b while moving rearward.
  • the shaft 37a and the center bearing 67 are retracted (see FIG. 29).
  • the center bearing 67 is disengaged from the bearing bracket 68 (the fifth cross member 15) by the retreat of the center bearing 67.
  • the pressing force P1 is applied to the joint portion 65a of the universal joint 65 from the front side connection portion 65b, and the pressing force P2 is received as a reaction force from the rear side connection portion 65.
  • the rear-wheel propeller shaft 37 is rear-wheel in plan view due to the position in the vehicle width direction of the input shaft of the rear differential gear unit 38 (shifted to the right with respect to the center in the vehicle width direction of the vehicle 1).
  • the joint portion 65a so that the joint portion 65a is located on the left side (the fuel tank 83 side) with respect to a straight line connecting both ends of the propeller shaft 37 (the front end of the front shaft 37a and the rear end of the rear shaft 37b). It is bent at some points. For this reason, the resultant force P3 of P1 and P2 acts on the joint portion 65a so as to make the joint portion 65a face the left side. Due to the resultant force P3, the universal joint 65, the center bearing 67, and the portion of the front shaft 37a near the center bearing 67 tend to move to the left side (the fuel tank 83 side).
  • a tension that balances the resultant force P3 acts on the connecting wire 170, thereby preventing the movement.
  • the center bearing 67, the universal joint 65, and the front and rear shafts 37a and 37b are subjected to gravity smaller than P1, P2, and P3, though not a force that acts suddenly.
  • the center bearing 67 starts to fall after moving slightly to the left by the amount that the connecting wire 170 is in the tensioned state.
  • the connecting wire 170 changes from a slack state to a stretched state the entire length of the connecting wire 170 including the mounting bracket 171 does not substantially extend (do not change).
  • the connecting wire 170 is set to such a length that the center bearing 67 detached from the fifth cross member 15 does not reach the fuel tank 83.
  • the rear wheel propeller shaft 37 Due to the fall of the center bearing 67, as shown in FIG. 31, the rear wheel propeller shaft 37 has the joint portion 65a below the straight line connecting both ends of the rear wheel propeller shaft 37 in a side view of the vehicle 1. It bends at the joint portion 65a so as to be located on the side. 29 to 31, the state after the collision of the front shaft 37a, the rear shaft 37b, the universal joint 65, etc. is indicated by a solid line, and the state before the collision is indicated by a two-dot chain line. Further, in FIG. 29 to FIG. 31, the main frame 10, the fifth cross member 15, the mounted components and the like are illustrated in a simplified manner.
  • the main frame 10 on the collision side is compressed and deformed in the vehicle length direction as in the case of the full-wrap frontal collision, but as shown in FIG. 32, the second and third cross members 12, 13, the engine 32, the front wheel drive shaft 47, and the like do not recede straight to the rear side, and the colliding side largely recedes to the rear side relative to the non-collision side.
  • the front wheel 6 (hub 50) on the collision side may press the main frame 10 on the collision side inward in the vehicle width direction.
  • reference numeral 200 in FIG. 32 denotes an obstacle with which the vehicle 1 collides frontward.
  • the other end of the connecting wire 170 is connected to the fifth cross member 15 to which the center bearing 67 is attached. Since the center bearing 67 is disengaged from the fifth cross member 15 when receiving an impact force larger than the reference value, a large impact force does not act on the fifth cross member 15. Further, the connection position of the fifth cross member 15 in the main frame 10 is considerably behind the position where the hub 50 and the like collide at the time of offset frontal collision. As a result, the fifth cross member 15 hardly deforms even at the time of a full wrap frontal collision or an offset frontal collision.
  • the connecting wire 170 by connecting the other end of the connecting wire 170 to the fifth cross member 15 to which the center bearing 67 is attached, the bending guide of the rear wheel propeller shaft 37 by the connecting wire 170 can be obtained more reliably. Therefore, it is possible to prevent the universal joint 65, the center bearing 67, and the vicinity of the center bearing 67 of the front shaft 37a from moving to the fuel tank 83 side.
  • the rear wheel propeller shaft 37 is located at the joint portion 65a so that the joint portion 65a is located on the left side with respect to a straight line connecting both ends of the rear wheel propeller shaft 37 in plan view.
  • it may be bent at the joint portion 65a so that the joint portion 65a is positioned on the right side with respect to a straight line connecting both ends of the rear-wheel propeller shaft 37 in plan view.
  • the entire rear wheel propeller shaft 37 may extend straight in the vehicle length direction in a plan view.
  • the present invention is useful for a vehicle (particularly a small truck or SUV) in which a propeller shaft center bearing that rotatably supports the propeller shaft is attached to the chassis frame.
  • chassis frame 10 main frame 15 fifth cross member (cross member to which the center bearing is attached) 37 Rear wheel propeller shaft 37a Front shaft 37b Rear shaft 65 Universal joint 67 Propeller shaft center bearing 76 Exhaust pipe 83 Fuel tank 83b Front extension 170 Connection wire (connection body)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Body Structure For Vehicles (AREA)
  • Motor Power Transmission Devices (AREA)

Abstract

 車両におけるプロペラシャフトのクロスメンバへの取付構造において、車両長さ方向に延びる一対のメインフレーム(10)と、一対のメインフレーム(10)間を接続するクロスメンバ(15)と、一対のメインフレーム(10)間に配設され、ジョイント(65)を介して互いに接続された前側シャフト(37a)及び後側シャフト(37b)からなるプロペラシャフト(37)と、クロスメンバ(15)に固定され、前側シャフト(37a)を回転可能に支持するセンターベアリング(67)と、センターベアリング(67)と両メインフレーム(10)の一方との間に配設された燃料タンク(83)と、センターベアリング(67)とクロスメンバ(15)における燃料タンク(83)とは反対側の部分とを連結する、フレキシブルでかつ全長が実質的に伸びない連結体(170)と、を備える。

Description

プロペラシャフトのクロスメンバへの取付構造
 本発明は、車両におけるプロペラシャフトのクロスメンバへの取付構造に関する技術分野に属する。
 従来より、小型トラックや、SUV(スポーツ・ユーティリティ・ビークル)と呼ばれる車両においては、梯子状のシャーシフレームが設けられている。このシャーシフレームは、車両長さ方向(車両前後方向)に延びる左右一対のメインフレーム(サイドフレームとも呼ばれる)と、これらメインフレーム間を接続する複数のクロスメンバとによって梯子状に形成されている。また、各メインフレームは、両メインフレーム間の間隔が小さい狭幅部と、両メインフレーム間の間隔が狭幅部よりも大きい広幅部と、狭幅部と広幅部との間に位置しかつ両メインフレーム間の間隔が後側ほど大きくなる拡幅部とを有する。
 上記車両では、通常、該車両の前部に位置するエンジンルームに配設されたエンジンの動力が、変速機、プロペラシャフト及びリヤディファレンシャルギヤユニットを介して、後輪に伝達されるようになっている(4WD車の場合には、変速機とプロペラシャフトとの間にパワートランスファーユニットが設けられる)。上記プロペラシャフトは、ジョイント(例えば、ユニバーサルジョイント)を介して互いに接続された前側シャフト及び後側シャフトからなる。そして、前側シャフトの後端近傍がセンターベアリングによって支持される。
 また、上記車両には、エンジンに供給される燃料を収容する燃料タンクが設けられる。この燃料タンクは、通常、プロペラシャフトの後側シャフトの車幅方向一側に配設される。
 ここで、上記車両の前面衝突時には、エンジンの後退等によって、プロペラシャフトの前端部が後方に押される結果、プロペラシャフトがジョイントの箇所で折れ曲がる。この場合、例えば特許文献1に示されているように、プロペラシャフトの折れ曲がりを予め定めた方向に案内するようにして、プロペラシャフトの燃料タンクへの衝突を防止するようにすることが提案されている。具体的には、連結ワイヤによって、センターベアリングと、センターベアリングに対して燃料タンクとは反対側のメインフレームの広幅部の前側部分とを連結する。
特許第2944198号公報
 ところで、燃料タンクの容量を出来る限り大きくするためには、燃料タンクを前側へ延長する必要があり、このようにすると、その延長部分がセンターベアリングの側方に位置することになる。この場合、プロペラシャフトの折れ曲がりの案内作用をより確実に得られるようにする必要がある。
 しかし、上記特許文献1の構成では、プロペラシャフトの折れ曲がりの案内作用が不十分になる可能性があり、改良の余地がある。すなわち、特許文献1の構成では、連結ワイヤがメインフレームの広幅部の前側部分に連結されており、この連結部分は、車両のオフセット前面衝突(連結ワイヤが連結されているメインフレームの側の衝突)時に、前輪ホイールを保持するハブ等によって車幅方向内側に押圧されて車幅方向内側に変形する可能性がある。このため、連結ワイヤにおけるメインフレームへの連結部が後退し、この結果、連結ワイヤによるプロペラシャフトの折れ曲がりの案内作用が十分に得られない虞れがある。
 本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、フルラップ衝突及びオフセット衝突に関係なく、車両の前面衝突時に、プロペラシャフトの折れ曲がりの案内作用をより確実に得られるようにすることにある。
 上記の目的を達成するために、この発明では、車両におけるプロペラシャフトのクロスメンバへの取付構造を対象として、車両長さ方向に延びる一対のメインフレームと、上記一対のメインフレーム間を接続するクロスメンバと、上記一対のメインフレーム間に配設され、ジョイントを介して互いに接続された前側シャフト及び後側シャフトからなるプロペラシャフトと、上記クロスメンバに固定され、上記前側シャフトを回転可能に支持するセンターベアリングと、上記センターベアリングと上記両メインフレームの一方との間に配設された燃料タンクと、上記センターベアリングと上記クロスメンバにおける上記燃料タンクとは反対側の部分とを連結する、フレキシブルでかつ全長が実質的に伸びない連結体と、を備えている、構成とした。
 上記の構成により、車両の前面衝突時に、センターベアリングがクロスメンバから外れたとしても、センターベアリングとクロスメンバにおける燃料タンクとは反対側の部分とが連結体により連結されているので、センターベアリングは燃料タンクの側へは移動できない。ここで、一側がセンターベアリングに連結される連結体の他側は、センターベアリングが取り付けられるクロスメンバに連結されている。このクロスメンバに取り付けられたセンターベアリングが車両前側から衝撃力を受けて外れた場合に、該クロスメンバには、大きな衝撃力は作用しない。また、メインフレームにおける上記クロスメンバの接続位置は、車両のオフセット前面衝突時に前輪ホイールを保持するハブ等が衝突する位置よりもかなり後側にある。この結果、上記クロスメンバは、車両の前面衝突時に変形することは殆どなく、連結体におけるクロスメンバへの連結部は移動しない。したがって、連結体によるプロペラシャフトの折れ曲がりの案内作用がより確実に得られる。よって、クロスメンバから外れたセンターベアリング、プロペラシャフトのセンターベアリング近傍部及びジョイントが燃料タンクの側へ移動するのを防止することができる。
 上記プロペラシャフトのクロスメンバへの取付構造において、上記燃料タンクは、上記クロスメンバに固定されている、ことが好ましい。
 このことで、燃料タンクと、一側がセンターベアリングに連結される連結体の他側とが、上記の如く車両の前面衝突時に変形し難い同一のクロスメンバに固定されるので、車両の前面衝突時に、燃料タンクと連結体におけるクロスメンバへの連結部との相対位置関係は殆ど変わらない。よって、クロスメンバから外れたセンターベアリング、プロペラシャフトのセンターベアリング近傍部及びジョイントが燃料タンクに接触するようなことはない。
 上記プロペラシャフトのクロスメンバへの取付構造において、上記センターベアリングは、上記クロスメンバに対して固定される取付部を有し、上記取付部は、上記クロスメンバに対して車両後側からアクセスして固定位置に到達可能な形状を有している、ことが好ましい。
 すなわち、車両の前面衝突時には、エンジン及び変速機等からなるパワープラントを後退させることが好ましいが、パワープラントの車両後側に連結される前側シャフトがセンターベアリングを介してクロスメンバに取り付けられたままでは、プロペラシャフトがパワープラントの後退を阻害することになる。そこで、センターベアリングの取付部を、クロスメンバに対して車両後側からアクセスして固定位置に到達可能な形状にしておけば、パワープラントの後退時に前側シャフトから衝撃力を受けたセンターベアリングが後退してクロスメンバから外れ易くなる。この結果、プロペラシャフトがセンターベアリングと共にクロスメンバから外れ、よって、プロペラシャフトがパワープラントの後退を阻害し難くなる。
 上記プロペラシャフトのクロスメンバへの取付構造において、上記プロペラシャフトは、平面視で、該プロペラシャフトの前後両端を結ぶ直線に対して、上記ジョイントが上記燃料タンクの側に位置するように、該ジョイントの箇所で折れ曲がっていてもよい。
 すなわち、車両の前面衝突時に、連結体によるプロペラシャフトの折れ曲がりの案内作用が十分に得られない場合には、プロペラシャフトの当初からの折れ曲がりの程度が大きくなる可能性がある。しかし、本発明では、連結体によるプロペラシャフトの折れ曲がりの案内作用が確実に得られ、本発明の作用効果を有効に発揮することができる。
 上記プロペラシャフトのクロスメンバへの取付構造において、上記センターベアリングは、上記前側シャフトから衝撃力を受けたときの後退に起因して上記クロスメンバから外れるように該クロスメンバに取り付けられており、上記連結体は、上記クロスメンバから外れたセンターベアリングが上記燃料タンクに届かない長さに設定されている、ことが好ましい。
 このことにより、クロスメンバから外れたセンターベアリングが燃料タンクに接触するのを確実に防止することができる。
 上記連結体が上記長さに設定されている場合において、上記連結体は、上記センターベアリングの後退を許容するための弛みを有する状態で、上記センターベアリングと上記クロスメンバとを連結している、ことがより好ましい。
 こうすることで、連結体の弛みの分だけセンターベアリングが後退することができ、センターベアリングがクロスメンバから外れるようにすることができる。また、このクロスメンバから外れたセンターベアリングが燃料タンクに接触するのを防止することができる。
 上記プロペラシャフトのクロスメンバへの取付構造において、上記プロペラシャフトは、上記センターベアリングよりも後側位置に、上記後側シャフトの軸方向に縮むコラプス構造を有している、ことが好ましい。
 これにより、前側シャフトが、その受けた衝撃力により後退することができ、この後退によりセンターベアリングを後側へ押圧して、センターベアリングをクロスメンバから外すことが容易にできる。
 上記プロペラシャフトのクロスメンバへの取付構造において、上記センターベアリングに対して上記燃料タンクとは反対側に、排気管が車両長さ方向に延びるように設けられており、上記クロスメンバにおける上記連結体の連結部は、上記排気管と上記センターベアリングとの間に位置している、ことが好ましい。
 こうすることで、連結体が排気管を跨がなくて済み、センターベアリングがクロスメンバから外れたときの連結体の動作を安定させることができる。
 上記プロペラシャフトのクロスメンバへの取付構造において、上記プロペラシャフトは、上記クロスメンバの下側を通るように配設され、上記センターベアリングは、上記クロスメンバよりも前側に配設され、上記燃料タンクは、上記クロスメンバの下側を通って該クロスメンバよりも前側に延びかつ上記センターベアリングと車幅方向に並ぶ前側延設部を有している、ことが好ましい。
 これにより、センターベアリングと燃料タンクの前側延設部とが車幅方向に並ぶことになるが、本発明では、センターベアリングとクロスメンバにおける燃料タンクとは反対側の部分とを連結する連結体により、クロスメンバから外れたセンターベアリングが燃料タンクの前側延設部に接触するようなことはない。したがって、燃料タンクの容積を増大することができる。また、プロペラシャフトは、その脱着に有利なクロスメンバ下側を通すことができるとともに、プロペラシャフトがセンターベアリングと共にクロスメンバから外れたときに、センターベアリングが落下するとともに、プロペラシャフトが、車両側面視で、プロペラシャフトの両端を結ぶ直線に対して、ジョイント部が下側に位置するように、ジョイント部の箇所で折れ曲がる。この結果、プロペラシャフトがパワープラントの後退をより一層阻害し難くなる。
 以上説明したように、本発明のプロペラシャフトのクロスメンバへの取付構造によると、フルラップ衝突及びオフセット衝突に関係なく、車両の前面衝突時に、プロペラシャフトの折れ曲がりの案内作用がより確実に得られ、クロスメンバから外れたセンターベアリング、プロペラシャフトのセンターベアリング近傍部及びジョイントが、燃料タンクの側へ移動するのを防止することができる。
本発明の実施形態に係る前面衝突エネルギー吸収構造が適用された車両の全体を示す斜視図である。 上記車両のシャーシフレームの全体を示す、車両左斜め前側かつ上側から見た斜視図である。 上記シャーシフレームの平面図である。 上記シャーシフレームの車両前側部分を示す、車両左斜め後側かつ上側から見た斜視図である。 上記シャーシフレームの車両前側部分を示す、車両左斜め後側かつ下側から見た斜視図である。 上記シャーシフレームの左側のメインフレームの車幅方向外側部分におけるサスペンションタワー近傍を示す斜視図である。 上記シャーシフレームの左側のメインフレームの車幅方向内側部分におけるサスペンションタワー近傍を示す斜視図である。 上記シャーシフレームの左側のメインフレームの車幅方向内側部分におけるサスペンションタワー近傍を示す分解斜視図である。 上記シャーシフレームの左側のメインフレームの車幅方向内側部分におけるエンジンマウントブラケット近傍を示す斜視図である。 上記左側のメインフレームのサスペンションタワーを示す斜視図である。 図10のサスペンションタワーのインナパネル及びスティフナーを示す斜視図である。 図10のサスペンションタワーのアウタパネル及びサスペンションタワーレインフォースメントを示す斜視図である。 上記シャーシフレームに種々の部品(ユニットを含む)を搭載した状態を示す平面図である。 上記部品を搭載したシャーシフレームを車両左側から見た側面図である。 上記部品を搭載したシャーシフレームの車両前側部分を示す、車両左斜め後側かつ上側から見た斜視図である。 上記部品を搭載したシャーシフレームの車両前側部分を示す、車両左斜め前側かつ下側から見た斜視図である。 上記部品を搭載したシャーシフレームの車両前側部分を示す平面図である。 上記部品を搭載したシャーシフレームの車両前側部分を示す底面図である。 図17のXIX-XIX線断面図である。 図14のXX-XX線断面図である。 図14のXXI-XXI線断面図である(但し、図20に示す搭載部品の大部分を省略)。 上記部品を搭載したシャーシフレームの左側のメインフレームの車幅方向外側部分におけるバンプストッパ近傍を示す斜視図である。 図22のXXIII-XXIII線断面図である。 上記部品を搭載したシャーシフレームの車両後側部分を示す底面図である。 プロペラシャフトセンターベアリングの周辺を示す、車両右斜め前側かつ下側から見た斜視図である。 第5クロスメンバにおけるベアリングブラケットの周辺を示す、車両右斜め前側かつ下側から見た斜視図である。 図13のXXVII-XXVII線断面図である。 車両の前面衝突時における該車両の圧縮変形ストローク(車両が前面衝突した障害物の該車両への食い込み量)とキャビンに作用する衝撃力Gとの関係を示すグラフである。 プロペラシャフトセンターベアリングが第5クロスメンバから外れた状態を示す底面図である。 図29のXXX-XXX線断面図である。 図29のXXXI-XXXI線断面図である。 上記車両のオフセット前面衝突時における車両前側部分の状態を示す車両底面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 図1は、本発明の実施形態に係る前面衝突エネルギー吸収構造が適用された車両1(本実施形態では、小型トラック)の全体を示す。また、図2~図12は、車両1のシャーシフレーム9の全体又は一部を示し、図13~図27は、シャーシフレーム9に種々の部品(ユニットを含む)を搭載した状態を示す。
 図1及び図14に示すように、車両1は、前側から順に、エンジンルーム2、キャビン3及び荷台4を備える。以下、車両1についての前、後、左及び右を、それぞれ単に前、後、左及び右という。また、図2~図18、図20~図22、図24~図27においては、車両1の前側をFrと記載している(後の図29及び図31においても同様)。
 車両1は、その下部に、シャーシフレーム9を備えている。このシャーシフレーム9は、車両長さ方向(前後方向)に延びる左右一対のメインフレーム10(サイドフレームとも呼ばれる)と、これらメインフレーム10間を接続する、車幅方向に延びる複数(本実施形態では、7つ)のクロスメンバ(以下、前から順に、第1~第7クロスメンバ11~17という)とで構成されていて、平面視で梯子状をなしている。各メインフレーム10は、車幅方向内側のインナパネル20と、車幅方向外側のアウタパネル21とで断面略矩形状に形成され、これら両パネル20,21の間に閉断面空間が形成されている。
 第1クロスメンバ11は、両メインフレーム10の前端に取り付けられていて、フロントバンパー5(図1参照)を補強するバンパーレインフォースメントとして機能する。第2クロスメンバ12は、その両端部で、左右のメインフレーム10にそれぞれ溶接されたクロスメンバブラケット23を介して、左右のメインフレーム10に取り付けられている。また、第3クロスメンバ13も、その両端部で、左右のメインフレーム10にそれぞれ溶接されたクロスメンバブラケット24を介して、左右のメインフレーム10に取り付けられている。クロスメンバブラケット23は、第2クロスメンバ12の一部と見做すことができ、クロスメンバブラケット24は、第3クロスメンバ13の一部と見做すことができる。第4クロスメンバ15は、その両端部で、左右のメインフレーム10にそれぞれ溶接された大型のガセット25を介して、左右のメインフレーム10に取り付けられている。このガセット25は、ブラケットの役割と補強の役割とを有するものであって、第4クロスメンバ15の一部と見做すことができる。第5乃至第7クロスメンバ15~17の両端部は、左右のメインフレーム10にそれぞれ直接取り付けられている。
 各メインフレーム10は、エンジンルーム2下部の車幅方向両側の端部に位置しかつ両メインフレーム10間の間隔が小さい狭幅部10aと、キャビン3及び荷台4の下側に位置しかつ両メインフレーム10間の間隔が狭幅部10aよりも大きい広幅部10bと、狭幅部10aと広幅部10bとの間(エンジンルーム2の後端部)に位置しかつ両メインフレーム10間の間隔が後側ほど大きくなる拡幅部10cとを有する(各メインフレーム10の各部10a,10b,10cと、エンジンルーム2、キャビン3及び荷台4との位置関係については、図14を参照)。各広幅部10b自体の幅(つまり断面積)は、各狭幅部10a自体の幅(つまり断面積)よりも大きい。各拡幅部10cは、各狭幅部10aの後端(第3クロスメンバの後側近傍)から、後方に向かって車幅方向外側に傾斜して延びるとともに、後側ほど拡幅部10c自体の幅(断面積)が大きくなって、広幅部10bの前端(第4クロスメンバ14の前側近傍)に繋がる。こうして両メインフレーム10の拡幅部10c並びに第3及び第4クロスメンバ13,14は、平面視で台形状をなしている。
 広幅部10bは、第4クロスメンバ14との接続部ないしその近傍で広幅部10b自体の幅(断面積)が最も大きく形成されており、広幅部10bにおける第4クロスメンバ14から第6クロスメンバ14までの部分では、幅(断面積)が徐々に小さくなり、広幅部10bにおける第6クロスメンバ16よりも後側の部分では、幅(断面積)が略一定である。このように第4クロスメンバ14は、広幅部10bにおいて幅(断面積)が大きい部分に接続されているとともに、その接続部が大型のガセット25により補強されている。
 各メインフレーム10の広幅部10bにおけるキャビン3の下側に位置する部分は、狭幅部10aよりも下側の高さ位置にあり、拡幅部10cは、後方に向かって下側に傾斜している。また、各メインフレーム10の広幅部10bにおける荷台4の下側に位置する部分(第6クロスメンバ16よりも後側の部分)は、広幅部10bにおけるキャビン3の下側に位置する部分よりも上側の高さ位置にあり、広幅部10bにおけるキャビン3の下側に位置する部分の後部は、後方に向かって上側に傾斜している(図14参照)。
 各メインフレーム10の拡幅部10cにおける第4クロスメンバ14の前側近傍、及び、広幅部10bにおける第6クロスメンバ16の前側近傍には、キャブマウントブラケット26がそれぞれ取り付けられている。各キャブマウントブラケット26上には、ゴム部材を有するキャブマウントを介して、キャビン3を構成する車体部材が載せられる。キャブマウントブラケット26は、メインフレーム10の車幅方向外側の面及び下面に溶接により取り付けられる。
 尚、図14に示すように、キャビン3を構成する車体部材のうち、キャビン3のフロアを構成する車体部材は、フロアパネル28であり、エンジンルーム2とキャビン3とを仕切る車体部材は、ダッシュパネル29である。ダッシュパネル29の下端がフロアパネル28の前端と接続される。フロアパネル28の後端部は上方に折れ曲がって、キャビン3と荷台4とを仕切る。
 図13に示すように、車両1の駆動系は、エンジン32、変速機33、パワートランスファーユニット34、前輪用プロペラシャフト35、フロントディファレンシャルギヤユニット36、後輪用プロペラシャフト37、及び、リヤディファレンシャルギヤユニット38を有する。尚、本実施形態では、車両1は、前輪6及び後輪7を駆動する4輪駆動車(4WD車)であるが、後輪7のみを駆動する2WD車であってもよい。この2WD車の場合には、パワートランスファーユニット34、前輪用プロペラシャフト35及びフロントディファレンシャルギヤユニット36は存在しない。
 エンジン32は、複数(本実施形態では、5つ)の気筒を車両長さ方向に列状に有する縦置きエンジンであり、エンジン32の後側に変速機33が接続されている。図15に示すように、エンジン32の左右両側の側面には、それぞれ左側及び右側へ突出するブラケット40が取り付けられている。各ブラケット40の先端部には、円筒状のゴムブッシュ41aを有するエンジンマウント41が、該ゴムブッシュ41aの中心軸が車両長さ方向に延びるように保持されている。このエンジンマウント41は、ゴムブッシュ41aの中心部を車両長さ方向に貫通する中心軸41bと、該中心軸41bの両端を支持する支持部材41cとを更に有する。一方、両メインフレーム10の狭幅部10aには、エンジンマウントブラケット27が支持部材41cの下側に位置するように取り付けられている。そして、エンジンマウントブラケット27上に支持部材41cが取り付けられ、これにより、エンジン32が、ブラケット40及びエンジンマウント41を介して、エンジンマウントブラケット27上に弾性支持される。
 各エンジンマウントブラケット27は、図7~図9及び図21に示すように、各メインフレーム10における車幅方向内側の面(各メインフレーム10のインナパネル20)に溶接されかつ該面から車幅方向内側へ突出する上側部材27a及び下側部材27bを有している。上側部材27aは、車両長さ方向に沿って切断した断面が略逆U字状をなすように形成され、下側部材27bは、車両長さ方向に沿って切断した断面が略U字状をなすように形成されている。上側部材27aの車両長さ方向両側の側端部と下側部材27bの車両長さ方向両側の側端部とは互いに接合されている。すなわち、上側部材27aの前側の側端部と下側部材27bの前側の側端部とが互いに接合され、上側部材27aの後側の側端部と下側部材27bの後側の側端部とが互いに接合されている。これら両部材27a,27b間には空間が形成され、この空間の車幅方向内側は開放されている。上側部材27aの上面には、補強部材27cを介してエンジンマウント41の支持部材41cが取り付けられるようになっている。一方、下側部材27bの底面部(水平に延びている部分)には、車幅方向内側に開放された、平面視で略U字状の切欠き部27dが形成されている(図9及び図21参照)。この切欠き部27dは、車両1の前面衝突時にエンジンマウントブラケット27が車両長さ方向に出来る限り圧縮変形するようにするために形成したものである。また、各メインフレーム10の車幅方向内側の面(各メインフレーム10のインナパネル20)における各エンジンマウントブラケット27と車両長さ方向において重なる位置(上記空間に対応する位置)に、車両長さ方向に延びる長孔128が形成されている(図9参照)。この長孔128により、車両1の前面衝突時に、エンジンマウントブラケット27と共に、メインフレーム10における該エンジンマウントブラケット27の取付部も車両長さ方向に出来る限り圧縮変形するようにしている。
 パワートランスファーユニット34は、変速機33の後側に接続されて、変速機33の出力を前輪6と後輪7とに分配する。このパワートランスファーユニット34は、第4クロスメンバ14の上面の車幅方向中央部に設けたマウント取付部14aにゴムマウントを介して支持される。
 尚、上記2WD車の場合には、パワートランスファーユニット34が存在しないので、その分だけ後輪用プロペラシャフト37が前側に長くなって変速機33の後端に接続される。また、変速機33の下部(後輪用プロペラシャフト37との接続部よりも下側の部分)に、第4クロスメンバ14上面のマウント取付部14a上に達するように後側に延長された延設部が形成され、この延設部にて変速機33がマウント取付部14aに上記ゴムマウントを介して支持される。
 パワートランスファーユニット34の左側の側部(左側に突出している部分)には、変速機33の左側の側方を車両長さ方向に延びる前輪用プロペラシャフト35の後端が接続され、パワートランスファーユニット34の後端には、車両長さ方向に延びる後輪用プロペラシャフト37の前端が接続されている。
 前輪用プロペラシャフト35の後端は、等速ジョイント44を介してパワートランスファーユニット34に接続され、前輪用プロペラシャフト35の前端は、等速ジョイント45を介してフロントディファレンシャルギヤユニット36(詳細には、後述の入力軸)に接続されている。
 フロントディファレンシャルギヤユニット36は、図15~図20に示すように、ディファレンシャルギヤ等を収容するケース131を備える。このケース131は、ディファレンシャルギヤが収容されたギヤ収容部131aと、車幅方向に延びる左側出力軸が収容された左側出力軸収容部131bと、車幅方向に延びる右側出力軸が収容された右側出力軸収容部131cと、前輪用プロペラシャフト35と連結されかつ車両長さ方向に延びる入力軸が収容された入力軸収容部131dとを有する。左側及び右側出力軸収容部131b,131cは、左側及び右側出力軸の周囲をそれぞれ覆う円筒状をなしていて、ギヤ収容部131aから車幅方向両側にそれぞれ延びている。入力軸収容部131dは、ギヤ収容部131aから後側に延び、その後端から、上記入力軸の後端部(等速ジョイント45)が突出している。
 前輪用プロペラシャフト35が変速機33の左側に位置するため、ギヤ収容部131aはエンジン32の左側に位置する。このため、右側出力軸収容部131cは、左側出力軸収容部131bよりも車幅方向の長さが長くて、エンジン32の下側を通って右側のメインフレーム10の近傍まで達する。
 上記両出力軸は、図15及び図16に示すように、ブーツ46内に収容された等速ジョイントを介して、車幅方向に延びる左右の前輪ドライブシャフト47とそれぞれ連結され、左右の前輪ドライブシャフト47は、ブーツ48内に収容された等速ジョイントを介して左右の前輪6のホイールを保持するハブ50とそれぞれ連結されている。これら等速ジョイントにより、各前輪6の上記出力軸に対する上下方向の移動及び後述の操舵による移動に対応することが可能になる。
 上記の構成により、エンジン32の動力は、変速機33、パワートランスファーユニット34、前輪用プロペラシャフト35、フロントディファレンシャルギヤユニット36、及び、左右の前輪ドライブシャフト47を介して、左右の前輪6に伝達される。
 フロントディファレンシャルギヤユニット36は、3箇所でシャーシフレーム9に弾性支持される。具体的には、第2クロスメンバ12の後面における左寄りの位置に、円筒状のゴムブッシュ53aを有する第1マウント53を支持する第1マウントブラケット57が設けられている(図3、図5、図6、図20及び図21参照)。また、第3クロスメンバ13の上面における右側の端部(実際には、クロスメンバブラケット24の上面)に、円筒状のゴムブッシュ54aを有する第2マウント54を支持する第2マウントブラケット58が設けられている(図3、図4及び図15~図17参照)。さらに、左側のメインフレーム10の車幅方向内側の面における第3クロスメンバ13の上側位置に、円筒状のゴムブッシュ55aを有する第3マウント55を支持する第3マウントブラケット59が設けられている(図3、図4、図7~図9、図17、図20参照)。第3マウントブラケット59は、前側分割部59aと後側分割部59bとに2分割されている。
 第1マウント53は、ゴムブッシュ53aの中心部を貫通する中心軸53bを更に有する。この中心軸53bの両端部が、第1マウントブラケット57により支持される。この支持状態で、中心軸53bは車幅方向に延びている。
 第2マウント54は、ゴムブッシュ54aの中心部を貫通する中心軸54bを更に有する。この中心軸54bは上下方向に延びている。中心軸54bの一端部(下端部)は、第2マウントブラケット58の下面に設けたウェルドナットの雌ねじ部と螺合する雄ねじ部とされ、他端部(上端部)は、その雄ねじ部を雌ねじ部に締結させる工具と係合するために六角形状をなしている。この締結状態で、第2マウント54が第2マウントブラケット58上に支持される。
 第3マウント55は、ゴムブッシュ55aの中心部を貫通する中心軸55bを更に有する。この中心軸55bは車両長さ方向に延びている。中心軸55bの両端部は、水平方向に延びる板状をなしていて、それぞれ上記前側分割部59a及び後側分割部59bにボルト60(図9及び図20参照)で上側から締結される。
 フロントディファレンシャルギヤユニット36のギヤ収容部131aの前部には、前側に突出しかつその先端に第1マウント53のゴムブッシュ53aの周囲を保持する第1マウント保持部131eが形成されている(図20参照)。また、右側出力軸収容部131cの先端部(右側の端部)には、後側に突出しかつその先端に第2マウント54のゴムブッシュ54aの周囲を保持する第2マウント保持部131fが形成されている(図15及び図17参照)。さらに、入力軸収容部131dの後部には、左上側に突出しかつその先端に第3マウント55のゴムブッシュ55aの周囲を保持する第3マウント保持部131gが形成されている(図17及び図20参照)。
 したがって、フロントディファレンシャルギヤユニット36は、第1乃至第3マウント53~55及び第1乃至第3マウントブラケット57~59を介してシャーシフレーム9に取り付けられる。このとき、第1乃至第3マウント53~55の中心軸53b,54b,55bは、互いに異なる方向に延びるようになされている。この結果、フロントディファレンシャルギヤユニット36に生じるあらゆる方向の振動成分がシャーシフレーム9に伝わり難くなる。
 尚、2WD車の場合には、フロントディファレンシャルギヤユニット36が存在しないので、第1乃至第3マウントブラケット57~59も存在しない。
 後輪用プロペラシャフト37は、図13及び図24に示すように、ジョイント(本実施形態では、ユニバーサルジョイント65)を介して互いに接続された前側シャフト37a及び後側シャフト37bからなる。前側シャフト37aの前端は、ユニバーサルジョイント64を介してパワートランスファーユニット34の後端に連結され、前側シャフト37aの後端は、第5クロスメンバ15の下側に位置するユニバーサルジョイント65(図24参照)を介して後側シャフト37bの前端に連結される。前側シャフト37aは、平面視で、ユニバーサルジョイント64から、両メインフレーム10間の車幅方向中央を通って真っ直ぐ後側に延びている。この前側シャフト37aは、後方に向かって下側に傾斜している。
 後側シャフト37bは、図24(底面図であるため、左側及び右側が図13とは逆になっている)に示すように、ユニバーサルジョイント65から後側に延びて、ユニバーサルジョイント66を介してリヤディファレンシャルギヤユニット38(詳細には、後述の入力軸)に接続されている。この後側シャフト37bは、後方に向かって下側に傾斜しているとともに、平面視で、後方に向かって右側(後述の燃料タンク83とは反対側)に僅かに傾斜している。これにより、後輪用プロペラシャフト37は、平面視で、後輪用プロペラシャフト37の前後両端(前側シャフト37aの前端及び後側シャフト37bの後端)を結ぶ直線に対して、ユニバーサルジョイント65(詳細には、ユニバーサルジョイント65における後述のジョイント部65a)が左側に位置するように、ユニバーサルジョイント65の箇所(ジョイント部65aの箇所)で折れ曲がっている。後輪用プロペラシャフト37全体としては、後方に向かって下側に傾斜しているとともに、第5クロスメンバ15の下側を通るように配設されている。
 後輪用プロペラシャフト37は、その長さ方向中間部にて、プロペラシャフトセンターベアリング67(以下、単にセンターベアリング67という)によって回転可能に支持されている。具体的には、前側シャフト37aの後端近傍(前側シャフト37aにおけるユニバーサルジョイント65の近傍)が、センターベアリング67によって回転可能に支持されている。このセンターベアリング67は、第5クロスメンバ15に取り付けられた2つのベアリングブラケット68に支持されていて、第5クロスメンバ15よりも前側でかつ第5クロスメンバ15の近傍に位置する。
 図25及び図26に示すように、上記ベアリングブラケット68は、センターベアリング67の車幅方向両側に配設されている。センターベアリング67は、円筒状の外筒体151(図26及び図27参照)を有し、この外筒体151の外周面における車幅方向両側の側部に、外筒体151(センターベアリング67)をベアリングブラケット68に取り付けるための、略水平に延びる取付部151aがそれぞれ突出形成されている(図26参照)。この各取付部151aには、前側に開放された切欠き部151bが形成されている(図26参照)。
 上記各ベアリングブラケット68には、スタッドボルト148が下方に突出するように設けられている。このスタッドボルト148が上記切欠き部151bに挿通された後にフランジ付きナット149に締結される。これにより、各取付部151aが各ベアリングブラケット68の下面に固定されることになる。ここで、各取付部151aの切欠き部151bは前側に開放されている。つまり、各取付部151aは、各ベアリングブラケット68(第5クロスメンバ15)に対して後側からアクセスして固定位置に到達可能な形状を有している。これにより、後述の如くセンターベアリング67に対し前方から後方へ向かう過大な衝撃力(予め設定された基準値よりも大きい衝撃力)が作用すると、取付部151aがベアリングブラケット68(第5クロスメンバ15)に対して後方へ移動して、外筒体151(センターベアリング67)がベアリングブラケット68(第5クロスメンバ15)から外れる。これにより、後輪用プロペラシャフト37がセンターベアリング67と共に第5クロスメンバ15から脱落することになる。
 図27に示すように、上記外筒体151の内側には、複数のボール153、アウタレース154及びインナレース155を含むベアリング本体部152が設けられている。外筒体151とベアリング本体部152とは、ラバー156により接続されている。このラバー156は、外筒体151とアウタレース154とを接続する。ラバー156の中間部は、外筒体151の前端よりも前側に突出している。
 ベアリング本体部152の前側及び後側には、前側シャフト37aとアウタレース154との間の隙間からアウタレース154の内側にダストが進入するのを防止するための前側及び後側ダストカバー158,159がそれぞれ設けられている。
 前側シャフト37aにおけるセンターベアリング67の直ぐ前側の部分には、前側シャフト37aに対して前方から後方へ向かう衝撃力が作用したとき、センターベアリング67を後方へ押圧する内側押圧部161及び外側押圧部162が設けられている。内側押圧部161は、アウタレース154の前端の径と略同じ径を有していて、前側シャフト37aに対して前方から後方へ向かう衝撃力が作用したとき、アウタレース154を後方へ押圧する。一方、外側押圧部162は、外筒体151の径と略同じ径を有していて、前側シャフト37aに対して前方から後方へ向かう衝撃力が作用したとき、外筒体151を後方へ押圧する。こうしてセンターベアリング67に対し前方から後方へ向かう衝撃力が作用することになり、この衝撃力が上記基準値よりも大きい場合には、センターベアリング67が、ベアリングブラケット68(第5クロスメンバ15)に対して後退して、ベアリングブラケット68(第5クロスメンバ15)から外れることになる。
 上記ユニバーサルジョイント65は、ジョイント部65a(図25~図27参照)と、前側シャフト37aの後端部と接続される前側接続部65b(図27参照)と、前側シャフト37aとジョイント部65aを介して接続されかつ後側シャフト37bの前端部と接続される後側接続部65c(図25~図27参照)とを有する。
 前側接続部65bは円筒状をなし、その内部に前側シャフト37aの後端部が挿入される。前側接続部65bと前側シャフト37aの後端部とは、スプライン係合により一体回転するとともに、シャフト長さ方向には相対移動不能なように互いに固定されている。
 後側接続部65cも円筒状をなし、その内部に後側シャフト37bの前端部が挿入される。後側接続部65cと後側シャフト37bの前端部とは、スプライン係合により一体回転するとともに、シャフト長さ方向に互いに相対移動可能になっている。すなわち、ユニバーサルジョイント65と後側シャフト37bとの接続部が、前側シャフト37aに対して前方から後方へ向かう衝撃力(センターベアリング67をベアリングブラケット68から外すような衝撃力)が作用したときに(前側シャフト37aが上記衝撃力を受けたときに)、後側シャフト37bの軸方向に縮むコラプス構造を有している。この構造により、前側シャフト37aが上記衝撃力を受けたときに、前側シャフト37a及びユニバーサルジョイント65が後側へ移動しようとする。このとき、後側シャフト37bは、アクスルハウジング132によって後退が制限されるため、後側接続部65cが後側シャフト37bの前端部に対して後側へ相対移動する(ユニバーサルジョイント65と後側シャフト37bとの接続部が後側シャフト37bの軸方向に縮む)。つまり、ジョイント部65aとユニバーサルジョイント66との間の距離が短くなる。これにより、前側シャフト37aの後側への移動が許容されて、上記の如く、前側シャフト37a(内側押圧部161及び外側押圧部162)がセンターベアリング67を後側へ押圧して、センターベアリング67をベアリングブラケット68から外すことが可能になる。尚、上記コラプス構造は、ユニバーサルジョイント65と後側シャフト37bとの接続部に限らず、後輪用プロペラシャフト37におけるセンターベアリング67よりも後側位置(例えば、後側シャフト37bの中間部)に設ければよい。
 図25及び図26に示すように、センターベアリング67と、第5クロスメンバ15における該センターベアリング67に対して右側の部分(第5クロスメンバ15における後述の燃料タンク83とは反対側の部分)とが、車幅方向に延びる連結ワイヤ170により連結されている。この連結ワイヤ170は、フレキシブルでかつ全長が実質的に伸びない連結体を構成する。
 具体的には、連結ワイヤ170の両端に、取付金具171がかしめられており、一端側(左側)の取付金具171が、外筒体151における右側の取付部151aの後側延設部151cに設けたスタッドボルト172及び該スタッドボルト172に螺合されるナット173により、該後側延設部151cに連結固定される。また、他端側(右側)の取付金具171が、第5クロスメンバ15に設けたスタッドボルト175及び該スタッドボルト175に螺合されるナット176により、第5クロスメンバ15における、センターベアリング67に対して燃料タンク83とは反対側の部分に連結固定される。取付金具171を含めた連結ワイヤ170の長さは、両スタッドボルト172,175間の距離よりも長く、このため、連結ワイヤ170の中間部は、連結ワイヤ170のフレキシビリティにより弛んで曲がっている(図24及び図25参照)。これは、センターベアリング67が、ベアリングブラケット68(第5クロスメンバ15)から外れるまで後方へ移動できるようにするためである。すなわち、連結ワイヤ170は、センターベアリング67の後退を許容するための弛みを有する状態で、センターベアリング67と第5クロスメンバ15とを連結している。センターベアリング67は、前側シャフト37aから衝撃力を受けたときの後退に起因してベアリングブラケット68から外れると、連結ワイヤ170により、左側(後述の燃料タンク83の側)へは殆ど移動できず、後述の如く落下する。
 リヤディファレンシャルギヤユニット38は、図24に示すように、ディファレンシャルギヤ等を収容するアクスルハウジング132を備える。このアクスルハウジング132は、ディファレンシャルギヤが収容されたギヤ収容部132aと、車幅方向に延びかつ左側後輪7を駆動する左側後輪ドライブシャフトが収容された左側ドライブシャフト収容部132bと、車幅方向に延びかつ右側後輪7を駆動する右側後輪ドライブシャフトが収容された右側ドライブシャフト収容部132cと、後側シャフト37bと連結されかつ車両長さ方向に延びる入力軸が収容された入力軸収容部132dとを有する。両ドライブシャフト収容部132b,132cは、上記両後輪ドライブシャフトの周囲をそれぞれ覆う円筒状をなしていて、ギヤ収容部132aから車幅方向両側にそれぞれ延びている。
 両ドライブシャフト収容部132b,132cは、両メインフレーム10の広幅部10bの後部にそれぞれ取り付けられたリーフバネ71によって支持されている(図14参照)。また、左側ドライブシャフト収容部132bと左側メインフレーム10における左側ドライブシャフト収容部132bよりも後側部分との間、及び、右側ドライブシャフト収容部132cと右側メインフレーム10における右側ドライブシャフト収容部132cよりも前側部分との間には、ショックアブソーバ72がそれぞれ配設されている(図13、図14及び図24参照)。
 エンジン32の右側の側方には、該エンジン32の排気装置75が配設されている(図13及び図24参照)。この排気装置75は、車両1の後端近傍まで延びる排気管76を有する。この排気管76には、上流側から、上流側排気浄化装置77、フレキシブルジョイント78、下流側排気浄化装置79、及び、マフラー80が順に配設されている。上流側及び下流側排気浄化装置77,79は、三元触媒を有していて、エンジン1の排気を浄化する。上流側排気浄化装置77は、特にエンジン1の冷間時にHC及びCOの浄化を図るために、エンジン1の近傍に配設される。フレキシブルジョイント78は、エンジン32の振動を、排気管76におけるフレキシブルジョイント78よりも下流側の部分に伝達するのを抑制する。マフラー80は、後輪用プロペラシャフト37の後側シャフト37bの右側の側方でかつ第5及び第6クロスメンバ15,16間に配設されている。
 後側シャフト37bの左側の側方には、エンジン32に供給される燃料を収容する樹脂製の燃料タンク83が配設されている(図13、図14及び図24参照)。この燃料タンク83は、基本的には、第5及び第6クロスメンバ15,16間に位置している。以下、燃料タンク83における第5及び第6クロスメンバ15,16間に位置する部分をタンク本体部83aという。タンク本体部83aの前側には、第5クロスメンバ15の下側を通って第5クロスメンバ15よりも前側に延びかつセンターベアリング67と車幅方向に並ぶ前側延設部83bが設けられ、タンク本体部83aの後側には、第6クロスメンバ16の下側を通って第6クロスメンバ16よりも後側に延びる後側延設部83cが設けられている。上記燃料タンク83は、センターベアリング67と左側のメインフレーム10との間に配設されていることになる。
 上記前側延設部83bにおける第5クロスメンバ15の下側部分、及び、上記後側延設部83cにおける第6クロスメンバ16の下側部分は、車幅方向に括れている。燃料タンク83は、これら2箇所の括れ部分で、帯状のタンク取付部材84(図24参照)を介して第5及び第6クロスメンバ15,16の下面に取り付けられて固定されている。尚、燃料タンク83の右側の側面には、排気管76及びマフラー80からの熱を遮断するための、薄い鉄板からなるインシュレータ85(図25及び図26にのみ示す)が設けられている。また、図示は省略するが、燃料タンク83の下面には、薄い鉄板からなるアンダーガードが設けられている。このようなアンダーガードは、エンジン32の下側、第1及び第2クロスメンバ間、及び、パワートランスファーユニット34の下側にも設けられる。
 左右の前輪6は、乗員が操作するステアリングホイールと連動する操舵機構を介して、操舵される。この操舵機構は、ステアリングホイールの操作によってピニオンが回転し、このピニオンと噛み合うラックがステアリングギヤボックス87(図13及び図15~図18参照)内に収容されている。このラックは車幅方向に延びていて、その両端が左右のステアリングロッド88(図16及び図18参照)とそれぞれ連結される。各ステアリングロッド88は、ハブ50の車幅方向内側部分に設けられたナックル91に連結される。
 また、図15~図20に示すように、左右の前輪6は、左右の前輪サスペンション装置90(符号90は図15のみに示す)によってそれぞれ支持されている。各前輪サスペンション装置90は、ハイマウントタイプのダブルウィッシュボーン式サスペンションであって、上記ナックル91と、ロアアーム92と、アッパアーム93と、コイルスプリング94(図20にのみ示す)と、ショックアブソーバ95とを有する。尚、前輪サスペンション装置90が有するスタビライザは図示を省略している。
 ロアアーム92は、その基端部側(車幅方向内側)が前後二股に分岐した形状をなし、ロアアーム92の前側基端部92aがクロスメンバブラケット23を介して第2クロスメンバ12に取り付けられ、後側基端部92bがクロスメンバブラケット24を介して第3クロスメンバ13に取り付けられている。具体的には、前側基端部92aは、クロスメンバブラケット23に車両長さ方向に延びるように設けたロアアーム枢軸98(図6及び図22参照)に回動可能に取り付けられ、後側基端部92bも、クロスメンバブラケット24に車両長さ方向に延びるように設けたロアアーム枢軸99(図6及び図22参照)に回動可能に取り付けられている。これにより、ロアアーム92は、ロアアーム枢軸98,99を中心にして上下方向に揺動することができる。
 アッパアーム93も、その基端部側が前後二股に分岐した形状をなしている。アッパアームの前側及び後側基端部93a,93bは、後述のサスペンションタワー101のインナパネル102に車両長さ方向に延びるように設けたアッパーアーム枢軸106(図15~図17及び図19参照)の両端部にそれぞれ回動可能に取り付けられている。これにより、アッパアーム93は、アッパーアーム枢軸106を中心にして上下方向に揺動することができる。
 ロアアーム92は、前側及び後側基端部92a,92bからメインフレーム10よりも車幅方向外側に延びて、その先端部(車幅方向外側の端部)にて、ナックル91の下端部にボールジョイント110(図19及び図22参照)を介して連結されている。また、アッパアーム93は、前側及び後側基端部93a,93bからメインフレーム10よりも車幅方向外側に延びて、その先端部(車幅方向外側の端部)にて、ナックル91の上方に延びる腕部91aの上端部にボールジョイント111(図15、図17及び図19参照)を介して連結されている。これにより、前輪6の上下移動に連動して、ナックル91、ロアアーム92及びアッパアーム93が上下方向に揺動することになる。
 各メインフレーム10の車幅方向外側の面(メインフレーム10のアウタパネル21)には、バンプストッパ115(図2~図6、図15、図17、図19~図23参照)が溶接により取り付けられている。この各バンプストッパ115は、ロアアーム92の上面における後側基端部92b近傍に設けた当接部92cと当接して該ロアアーム92がその当接した位置から上側へ移動するのを規制するものである。尚、ロアアーム92は上下2枚の板材92d,92eで構成される(両板材92d,92eの間には空間が形成される)が、当接部92cは、その強度を増すべく、更にもう一枚の板材92fが溶接されている(図22参照)。
 各バンプストッパ115は、各メインフレーム10の車幅方向外側の面に、車幅方向外側に突出するように取り付けられたストッパ本体部116を備えている。ストッパ本体部116は、水平方向に沿って切断した断面が、車幅方向内側に開口を有する袋状(本実施形態では、略U字状)をなしかつ上下両端部に開口を有するように形成されたパネルからなる。このパネルにおける車幅方向内側開口の両側に位置する端部(上記断面におけるU字両側の端部)が、車両長さ方向に互いに離れた状態で、ストッパ本体部116の前側及び後側取付部116c,116d(図6、図22及び図23参照)として、各メインフレーム10の車幅方向外側の面に取り付けられる。すなわち、ストッパ本体部116は、上記断面におけるU字両側の端部(前側及び後側取付部116c,116d)を介してメインフレーム10に取り付けられる。
 以下、上記ストッパ本体部116のパネル上端部の開口を上側開口116aといい、パネル下端部の開口を下側開口116bという。ストッパ本体部116が前側及び後側取付部116c,116dを介してメインフレーム10に取り付けられることで、上記パネルの車幅方向内側開口が閉塞されることになり、ストッパ本体部116がメインフレーム10の一部と共に、上下に延びかつ上下両端に開口を有する筒状部材のような形状になる。この上下両端の開口が上側開口116a及び下側開口116bである。したがって、上側開口116aは、ストッパ本体部116の上端部とメインフレーム10の車幅方向外側の面との間に形成されているとも言える。また、下側開口116bは、ストッパ本体部116の下端部とメインフレーム10(実際には、クロスメンバブラケット24)の車幅方向外側の面との間に形成されているとも言える。
 本実施形態では、ストッパ本体部116のメインフレーム10から車幅方向外側への突出量が、下側ほど大きくされている。このため、車両長さ方向から見て、ストッパ本体部116の先端は、下側に向かって車幅方向外側に傾斜している。また、下側開口116bの開口面積が上側開口116aの開口面積よりも大きくなっている。
 上記上側開口116a及び下側開口116bのうち下側開口116bのみが閉塞部材117により覆われている(図4、図6、図22及び図23参照)。この閉塞部材117の下面における車幅方向外側の部分に、ロアアーム92が当接する当接部材118が取り付けられている。具体的には、当接部材118は、図23に示すように、閉塞部材117に固定された逆皿状の基部118aと、この基部118aに加硫接着されかつ下側に尖った円錐状をなすゴム当接部118bとを有し、このゴム当接部118bにロアアーム92の当接部92cが当接するようになっている。基部118aの中心部には、スタッドボルト119が上側へ突出するように溶接されている一方、閉塞部材117の上面には、スタッドボルト119と螺合するウェルドナット120が溶接されている。閉塞部材117のウェルドナット120に対応する位置には、貫通孔117aが形成されている(図6及び図23参照)。当接部材118を閉塞部材117の下面に取り付ける際には、スタッドボルト119を貫通孔117aに差し込んで基部118aを回転させることで、スタッドボルト119をウェルドナット120にねじ込む。
 上記ストッパ本体部116の後側取付部116dは、第3クロスメンバ13と車両長さ方向において重なる位置で、メインフレーム10の車幅方向外側の面の上下方向全体及び第3クロスメンバ13(実際にはクロスメンバブラケット24)に取り付けられている。また、ストッパ本体部116の前側取付部116cは、車両長さ方向においてエンジンマウントブラケット27と第3クロスメンバ13との間の位置で、メインフレーム10の車幅方向外側の面の上下方向全体に取り付けられている。
 ロアアーム92の後側基端部92b近傍(当接部材118に当接する部分)は、車幅方向外側に向かって前側へ傾斜しているため、この形状に合わせて、ストッパ本体部116及び当接部材118は、メインフレーム10の車幅方向外側の面から、車幅方向外側に向かって前側へ傾斜した状態で、車幅方向外側へ突出している。
 上記バンプストッパ115の構成及び配置により、車両1の前面衝突時にバンプストッパ115は車両長さ方向に容易に圧縮変形する。このため、バンプストッパ115が、車両の前面衝突時におけるメインフレーム10の車両長さ方向の圧縮変形を阻害することはない。また、本実施形態では、各メインフレーム10における上記上側開口116aと車両長さ方向において重なる位置(上面及び下面の2箇所)に、複数(2つ)の凹部125(図4、図7、図8、図15及び図20参照)がそれぞれ形成されており(各メインフレーム10の下面に形成された凹部の図示は省略)、これら複数の凹部125により、メインフレーム10は車両長さ方向により一層圧縮変形し易くなる。さらに、バンプストッパ115のストッパ本体部116の前側取付部116cを、車両長さ方向においてエンジンマウントブラケット27と重ならないようにしているので、後述の複数の変形阻害部材の分散配置と同様の効果が得られる。尚、凹部125は、メインフレーム10における上側開口116aと車両長さ方向において重なる位置であればどこに形成してもよく、また、複数箇所に形成する必要はなく、1箇所にのみ形成してもよい。さらに、凹部125の代わりに、インナパネル20又はアウタパネル21を貫通する小孔を設けても、同等の効果が得られることが期待できる。この場合、その小孔は、メインフレームの塗装工程において求められる、電着液をメインフレーム10の閉断面内に出し入れするための孔として作用する。
 各メインフレーム10の狭幅部10aにおける第2及び第3クロスメンバ12,13間には、前輪サスペンション装置90の上下方向に延びるストラット96(つまりコイルスプリング94及びショックアブソーバ95)の頂部を支持するためのサスペンションタワー101がそれぞれ取り付けられている(図6~図8、図10~図12、図15~図17、図19等参照)。尚、ストラット96の下端部(ショックアブソーバ95の下端部)は、ロアアーム92に、車両長さ方向に延びる軸回りに回動可能に連結されている。
 各サスペンションタワー101は、車幅方向内側のインナパネル102と、該インナパネル102と結合された車幅方向外側のアウタパネル103と、これら両パネル102,103の間に設けられたサスペンションタワーレインフォースメント104とを有している(図10~図12等参照)。そして、各サスペンションタワー101の下部には、互いに車両長さ方向に離れるように分岐した前脚部101a及び後脚部101bが設けられている。
 具体的には、アウタパネル103の上端部は、ストラット96の頂部を支持するストラット受け部103aを有し、このストラット受け部103aに、コイルスプリング94及びショックアブソーバ95の頂部が固定されて支持される。アウタパネル103は、その上端部の前側及び後側縁部からそれぞれ下側に延びるアウタパネル前脚部103b及びアウタパネル後脚部103cを有する。
 上記サスペンションタワーレインフォースメント104は、アウタパネル103のアウタパネル前脚部103bとアウタパネル後脚部103cとの間における車幅方向内側の開口を覆うように、アウタパネル103に溶接される。アウタパネル前脚部103b及びアウタパネル後脚部103cとサスペンションタワーレインフォースメント104とで囲まれる、車幅方向外側に開放された空間が、ストラット96が収容される空間となる。尚、サスペンションタワーレインフォースメント104を設けないで、サスペンションタワーレインフォースメント104に相当する部分を、アウタパネル103で一体形成してもよい。
 上記サスペンションタワーレインフォースメント104が溶接されたアウタパネル103が、インナパネル102と溶接される。この溶接された状態で、インナパネル102とサスペンションタワーレインフォースメント104との間には閉断面空間が形成される。尚、サスペンションタワーレインフォースメント104に相当する部分を、アウタパネル103で一体形成した場合には、インナパネル102とアウタパネルとの間に閉断面空間が形成されることになる。
 また、上記溶接状態で、インナパネル102は、アウタパネル103よりも上側に突出しており、アウタパネル103は、インナパネル102よりも下側に突出している。インナパネルの上記上側突出部分には、上記アッパーアーム93を支持するアッパーアーム枢軸106が、車両長さ方向に延びるように設けられる。このアッパーアーム枢軸106は、インナパネル102に設けた支持スリーブ107(図10及び図11参照)に挿通される。この支持スリーブ107の車幅方向外側(アウタパネル103の上側位置)には、スティフナー108(図10及び図11参照)が設けられて、このスティフナー108により、インナパネル102におけるアッパーアーム枢軸106が設けられる部分が補強されている。尚、アッパーアーム枢軸106をインナパネル102に設ける理由は、アウタパネル103に設ける場合に比べて、アッパーアーム93のアーム長を長くすることができるからである。
 インナパネル102の下部には、互いに車両長さ方向に離れるように分岐したインナパネル前脚部102aとインナパネル後脚部102bとが設けられ、サスペンションタワーレインフォースメント104の下部には、互いに車両長さ方向に離れるように分岐したレインフォースメント前脚部104aとレインフォースメント後脚部104bとが設けられている。レインフォースメント前脚部104aはアウタパネル前脚部103bと溶接により結合され、レインフォースメント後脚部104bはアウタパネル後脚部103cと溶接により結合されている。
 インナパネル前脚部102a、アウタパネル前脚部103b及びレインフォースメント前脚部104aは、サスペンションタワー101の前脚部101aを構成し、インナパネル後脚部102b、アウタパネル後脚部103c及びレインフォースメント後脚部104bは、サスペンションタワー101の後脚部101bを構成する。
 各サスペンションタワー101の前脚部101a及び後脚部101bは、各メインフレーム10に、互いに車両長さ方向に離れて、溶接により取り付けられている。具体的には、インナパネル102のインナパネル前脚部102a及びインナパネル後脚部102bが、メインフレーム10の上面の車幅方向内側部分(メインフレーム10のインナパネル20)に、互いに車両長さ方向に離れて、溶接により取り付けられている。また、アウタパネルのアウタパネル前脚部103b及びアウタパネル後脚部103cが、メインフレームの上面の車幅方向外側部分及び車幅方向外側の面の上下方向全体(メインフレーム10のアウタパネル21)に、互いに車両長さ方向に離れて、溶接により取り付けられている。さらに、サスペンションタワーレインフォースメント104のレインフォースメント前脚部104a及びレインフォースメント後脚部104bが、メインフレーム10の車幅方向外側の面(メインフレーム10のアウタパネル21)に、互いに車両長さ方向に離れて、溶接により取り付けられている。したがって、サスペンションタワー101の下部は、その車両長さ方向の全体に亘ってメインフレーム10に取り付けられるのではなくて、サスペンションタワー101の下部における車両長さ方向の中間部に、メインフレーム10に取り付けられない部分が存在する。このようにサスペンションタワー101の下部が、前脚部101aと後脚部101bとでメインフレーム10に取り付けられても、サスペンションタワー101は、車幅方向内側では、インナパネル前脚部102a及びインナパネル後脚部102bでメインフレーム10に取り付けられ、車幅方向外側では、アウタパネル前脚部103b、アウタパネル後脚部103c、レインフォースメント前脚部104a及びレインフォースメント後脚部104bでメインフレーム10に取り付けられるので、サスペンションタワー101のメインフレーム10への取付強度を、ストラット96から受ける力に十分に耐える強度にすることができるようになる。
 各メインフレーム10における上記前脚部101aと後脚部101bとの間の部分(メインフレーム10の上面と両側面との各角部及び下面と両側面との各角部の合計4箇所)には、複数(4つ)の凹部126(図6~図9及び図20~図22参照)が形成されている。これら複数の凹部126により、車両1の前面衝突時(特にフルラップ前面衝突時)に各メインフレーム10における該凹部126の箇所が車両長さ方向に圧縮変形し易くなる。すなわち、各メインフレーム10におけるサスペンションタワー101との接続部(サスペンションタワー101の取付部)は、通常、車両長さ方向に圧縮変形し難いが、サスペンションタワー101における車両長さ方向に離れるように分岐した前脚部101a及び後脚部101bをメインフレーム10に取り付けることで、メインフレーム10における前脚部101aと後脚部101bとの間の部分が、車両の前面衝突時に車両長さ方向に圧縮変形し易くなり、しかも、その部分に凹部126を形成することで、該部分が車両長さ方向により一層圧縮変形し易くなる。尚、凹部126は、メインフレーム10における前脚部101aと後脚部101bとの間の部分であればどこに形成してもよく、また、複数箇所に形成する必要はなく、1箇所にのみ形成してもよい。
 第2クロスメンバ12は、サスペンションタワー101から前側に離れた位置に設けられている。また、第3クロスメンバ13は、サスペンションタワー101から後側に離れた位置に設けられている。
 上記各エンジンマウントブラケット27は、各メインフレーム10におけるサスペンションタワー101との接続部、並びに、第2及び第3クロスメンバ12,13との接続部(クロスメンバブラケット23,24との接続部)に対して車両長さ方向に離間して、各メインフレーム10の車幅方向内側の面(メインフレーム10のインナパネル20)における第2及び第3クロスメンバ12,13間に溶接により取り付けられている。
 尚、エンジンマウントブラケット27の上記接続部に対する車両長さ方向の離間は、メインフレーム10の同じ高さ位置において上記接続部に対して車両長さ方向に離間していることを含む。例えば図9に示すように、エンジンマウントブラケット27の前端は、下側に向かって前側に傾斜している。そして、メインフレーム10の上部の高さ位置では、エンジンマウントブラケット27の前端の上部がサスペンションタワー101の後脚部101bから車両長さ方向に離間している。エンジンマウントブラケット27の前端の下部は、後脚部101bに対して上下方向に離間している。すなわち、エンジンマウントブラケット27の前端は、サスペンションタワー101(後脚部101b)との間に所定幅の隙間が形成されるように、下側に向かって前側に傾斜しており、この隙間の部分で、後述の如くメインフレーム10が車両長さ方向に圧縮変形することになる。
 本実施形態では、各エンジンマウントブラケット27は、各メインフレーム10におけるサスペンションタワー101と第3クロスメンバ13との間の部分に取り付けられている。この場合には、エンジン32をメインフレーム10の前部において比較的後方に配置することができるため、車両1の前面衝突時にエンジン32が後退するタイミングを遅らせることが可能である。その結果、エンジン32が後退を開始する前のメインフレーム10の前部における圧縮変形によるエネルギー吸収量を拡大することができる。
 尚、各エンジンマウントブラケット27を、各メインフレーム10におけるサスペンションタワー101と第2クロスメンバ12との間の部分に取り付けることも可能である。この場合も、各エンジンマウントブラケット27を、各メインフレーム10におけるサスペンションタワー101との接続部、並びに、第2及び第3クロスメンバ12,13との接続部に対して車両長さ方向に離間して、各メインフレーム10に取り付けることが好ましい。但し、エンジン32が、メインフレーム10の前部において比較的前方に配置される傾向があるため、車両1の前面衝突時にエンジン32が後退するタイミングが早くなる。その結果、エンジン32が後退を開始する前のメインフレーム10の前部における圧縮変形によるエネルギー吸収量が減少するため、挙動が不安定であるエンジン32の後退を織り込んだ、エネルギー吸収のエンジニアリングが必要とされる。
 車両1のフルラップ前面衝突時には、フロントバンパー5及び第1クロスメンバ11の車幅方向全体に対して後方への衝撃力が入力される。これにより、図28に示すように、キャビン3に作用する衝撃力Gは、F1まで増大する。
 続いて、左右の両メインフレーム10における第1及び第2クロスメンバ11,12間の部分が車両長さ方向(メインフレーム10の長さ方向)に圧縮変形する。このときの上記衝撃力Gは、F1である。
 次いで、両メインフレーム10において、第2クロスメンバ12とサスペンションタワー101との間の部分、サスペンションタワー101の前脚部101aと後脚部101bとの間の部分(凹部126が形成された部分)、サスペンションタワー101とエンジンマウントブラケット27との間の部分、及び、エンジンマウントブラケット27と第3クロスメンバ13との間の部分(バンプストッパ115を含む)が順に、車両長さ方向に圧縮変形していく。また、これら部分の圧縮変形と並行して、エンジン32が後退し、やがて、その後退するエンジン32によりダッシュパネル29が後方に変形する(変形しながら後退する)。エンジン32が後退し始めると、上記衝撃力Gは、F1から増大し始め、エンジン32の後退に起因してダッシュパネル29の後側への変形(後退)を開始する時にはF2となる。
 ここで、F2の値は、両メインフレーム10の車両長さ方向の圧縮変形量によって大きく変わる。この圧縮変形量を多くすることで、F2の値を小さくすることができる。しかし、両メインフレーム10における第2及び第3クロスメンバ12,13間の部分には、当該第2及び第3クロスメンバ12,13、サスペンションタワー101、並びに、エンジンマウントブラケット27といった、車両1の前面衝突時におけるメインフレーム10の車両長さ方向の圧縮変形を阻害する変形阻害部材が多く取り付けられている。尚、バンプストッパ115は、上述の如く車両長さ方向に圧縮変形し易い形状に形成されているので、上記変形阻害部材には該当しない。
 複数の上記変形阻害部材同士を車両長さ方向に重ねて配置することが考えられるが、このようにすると、メインフレーム10における該複数の変形阻害部材の取付部が車両長さ方向に更に圧縮変形し難くなる。このため、F2の値が瞬間的に過大になることも考えられる。
 そこで、本実施形態では、エンジンマウントブラケット27を、メインフレーム10におけるサスペンションタワー101との接続部、並びに、第2及び第3クロスメンバ12,13との接続部に対して車両長さ方向に離間してメインフレーム10に取り付けるようにしている。すなわち、上記複数の変形阻害部材をメインフレーム10上で車両長さ方向に分散配置することで、メインフレーム10における該変形阻害部材間を車両長さ方向に確実に圧縮変形するようにする。
 また、上記複数の変形阻害部材同士を車両長さ方向に重ねて配置する場合とは異なり、メインフレーム10における単独の変形阻害部材の取付部が車両長さ方向に全く圧縮変形しないということはなく、或る程度圧縮変形するようにすることができる。特に本実施形態では、サスペンションタワー101の下部に、互いに車両長さ方向に離れるように分岐した前脚部101a及び後脚部101bを設け、これら前脚部101a及び後脚部101bの下部を、メインフレーム10に互いに車両長さ方向に離れて取り付けるとともに、メインフレーム10における前脚部101aと後脚部101bとの間の部分に凹部126を形成したので、メインフレーム10における前脚部101aと後脚部101bとの間の部分は車両長さ方向に確実に圧縮変形する。また、エンジンマウントブラケット27は、切欠き部27dの形成により車両長さ方向に圧縮変形し易くなっているとともに、メインフレーム10に形成された長孔128と相俟って、メインフレーム10におけるエンジンマウントブラケット27の取付部は、車両長さ方向に圧縮変形する可能性が高くなる。したがって、上記圧縮変形の積み重なりにより、車両1の前面衝突時の衝突エネルギーの吸収量を確保することができるとともに、キャビン3に対して過大な衝撃力が瞬間的に作用するのを抑制することができる。また、メインフレーム10が車両長さ方向に確実に圧縮変形する箇所が、複数分散して存在することにより、衝撃力Gをコントロールし易くなる。
 上記フルラップ前面衝突時において、エンジン32が後退すると、変速機33及びパワートランスファーユニット34も後退して(つまり、エンジン32、変速機33及びパワートランスファーユニット34からなるパワープラントが後退して)、前側シャフト37aに対して前方から後方へ向かう衝撃力が作用する。これにより、内側押圧部161及び外側押圧部162によりセンターベアリング67が後方へ押圧され、センターベアリング67に対し前方から後方へ向かう衝撃力が作用する。この衝撃力が上記基準値よりも大きい場合(エンジン32が大きく後退する場合)、ユニバーサルジョイント65の後側接続部65cが後側シャフト37bの前端部に対して後側に相対移動しながら、前側シャフト37a及びセンターベアリング67が後退する(図29参照)。
 センターベアリング67の後退により、センターベアリング67がベアリングブラケット68(第5クロスメンバ15)から外れる。このとき、ユニバーサルジョイント65のジョイント部65aには、前側接続部65bから押圧力P1が作用するととともに、後側接続部65から押圧力P2を反力として受ける。後輪用プロペラシャフト37は、リヤディファレンシャルギヤユニット38の入力軸の車幅方向の位置(車両1の車幅方向中央に対して右側にずれている)に起因して、平面視で、後輪用プロペラシャフト37の両端(前側シャフト37aの前端及び後側シャフト37bの後端)を結ぶ直線に対して、ジョイント部65aが左側(燃料タンク83の側)に位置するように、ジョイント部65aの箇所で折れ曲がっている。このため、ジョイント部65aには、P1とP2との合力P3が、ジョイント部65aを左側へ向かわせるように作用する。この合力P3により、ユニバーサルジョイント65、センターベアリング67及び前側シャフト37aのセンターベアリング67近傍部が、左側(燃料タンク83の側)へ移動しようとする。
 しかし、本実施形態では、連結ワイヤ170に、合力P3と釣り合う張力が作用して、上記移動が防止される。ここで、センターベアリング67、ユニバーサルジョイント65並びに前側及び後側シャフト37a,37bには、急激に作用する力ではないが、上記P1,P2,P3よりも小さい重力が作用している。この結果、センターベアリング67は、連結ワイヤ170が弛んだ状態から張った状態になる分だけ僅かに左側へ移動した後、落下を開始する。連結ワイヤ170が弛んだ状態から張った状態になっても、取付金具171を含めた連結ワイヤ170の全長は実質的に伸びない(変化しない)。センターベアリング67の落下時、センターベアリング67は、連結ワイヤ170により第5クロスメンバ15に吊られているため、連結ワイヤ170が張った状態でセンターベアリング67の端部(左側の取付部151a)が描く軌跡、つまり図30において一点鎖線で示すラインLよりも左側(図30の右側)の範囲には入らない。すなわち、取付金具171を含めた連結ワイヤ170の長さは、連結ワイヤ170が張った状態で、センターベアリング67の端部(左側の取付部151a)が燃料タンク83に届く長さよりも小さく設定されている。このことで、連結ワイヤ170は、第5クロスメンバ15から外れたセンターベアリング67が燃料タンク83に届かない長さに設定されていることになる。
 上記センターベアリング67の落下により、図31に示すように、後輪用プロペラシャフト37は、車両1の側面視で、後輪用プロペラシャフト37の両端を結ぶ直線に対して、ジョイント部65aが下側に位置するように、ジョイント部65aの箇所で折れ曲がる。尚、図29~図31では、前側シャフト37a、後側シャフト37b、ユニバーサルジョイント65等の衝突後の状態を実線で示し、衝突前の状態を二点鎖線で示す。また、図29~図31では、メインフレーム10、第5クロスメンバ15、搭載部品等を簡略化して描いている。
 車両1のオフセット前面衝突時には、衝突した側のメインフレーム10が、フルラップ前面衝突時と同様に車両長さ方向に圧縮変形するが、図32に示すように、第2及び第3クロスメンバ12,13や、エンジン32、前輪ドライブシャフト47等が真っ直ぐ後側へ後退せず、衝突した側が非衝突側に対して大きく後側に後退する。そして、衝突した側の前輪6(ハブ50)は、衝突した側のメインフレーム10を車幅方向内側へ押圧する可能性がある。尚、図32の符号200は、車両1が前面衝突した障害物である。
 このようにオフセット前面衝突時には、前輪6(ハブ50)による押圧により、メインフレーム10の広幅部10bの前側部分が車幅方向内側へ変形する可能性が高くなる。このため、一端がセンターベアリング67に連結される連結ワイヤ170の他端が、上記特許文献1(特許第2944198号公報)に示されているように、後輪用プロペラシャフト37の左右両側に配設された両メインフレーム10の一方(燃料タンク83から遠い側のメインフレーム10)における広幅部10bの前側部分に連結された場合には、連結ワイヤ170による後輪用プロペラシャフト37の折れ曲がりの案内作用が不十分になる可能性がある。
 そこで、本実施形態では、連結ワイヤ170の他端を、センターベアリング67が取り付けられる第5クロスメンバ15に連結する。センターベアリング67は、上記基準値よりも大きい衝撃力を受けたときに、第5クロスメンバ15から外れるので、第5クロスメンバ15には、大きな衝撃力は作用しない。また、メインフレーム10における第5クロスメンバ15の接続位置は、オフセット前面衝突時にハブ50等が衝突する位置よりもかなり後側である。この結果、第5クロスメンバ15は、フルラップ前面衝突時であっても、オフセット前面衝突時であっても、変形することは殆どない。したがって、連結ワイヤ170の他端を、センターベアリング67が取り付けられる第5クロスメンバ15に連結することで、連結ワイヤ170による後輪用プロペラシャフト37の折れ曲がりの案内作用がより確実に得られる。よって、ユニバーサルジョイント65、センターベアリング67及び前側シャフト37aのセンターベアリング67近傍部が、燃料タンク83の側へ移動するのを防止することができる。
 本発明は、上記実施形態に限られるものではなく、請求の範囲の主旨を逸脱しない範囲で代用が可能である。
 例えば、上記実施形態では、後輪用プロペラシャフト37は、平面視で、後輪用プロペラシャフト37の両端を結ぶ直線に対して、ジョイント部65aが左側に位置するように、ジョイント部65aの箇所で折れ曲がっているが、平面視で、後輪用プロペラシャフト37の両端を結ぶ直線に対して、ジョイント部65aが右側に位置するように、ジョイント部65aの箇所で折れ曲がっていてもよい。或いは、後輪用プロペラシャフト37の全体が、平面視で、車両長さ方向に真っ直ぐに延びていてもよい。
 上述の実施形態は単なる例示に過ぎず、本発明の範囲を限定的に解釈してはならない。本発明の範囲は請求の範囲によって定義され、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 本発明は、プロペラシャフトを回転可能に支持するプロペラシャフトセンターベアリングがシャーシフレームに取り付けられる車両(特に小型トラックやSUV等)に有用である。
  1    車両
  9    シャーシフレーム
  10   メインフレーム
  15   第5クロスメンバ
       (センターベアリングが取り付けられるクロスメンバ)
  37   後輪用プロペラシャフト
  37a  前側シャフト
  37b  後側シャフト
  65   ユニバーサルジョイント
  67   プロペラシャフトセンターベアリング
  76   排気管
  83   燃料タンク
  83b  前側延設部
  170  連結ワイヤ(連結体)

Claims (9)

  1.  車両におけるプロペラシャフトのクロスメンバへの取付構造であって、
     車両長さ方向に延びる一対のメインフレームと、
     上記一対のメインフレーム間を接続するクロスメンバと、
     上記一対のメインフレーム間に配設され、ジョイントを介して互いに接続された前側シャフト及び後側シャフトからなるプロペラシャフトと、
     上記クロスメンバに固定され、上記前側シャフトを回転可能に支持するセンターベアリングと、
     上記センターベアリングと上記両メインフレームの一方との間に配設された燃料タンクと、
     上記センターベアリングと上記クロスメンバにおける上記燃料タンクとは反対側の部分とを連結する、フレキシブルでかつ全長が実質的に伸びない連結体と、
    を備えている、プロペラシャフトのクロスメンバへの取付構造。
  2.  請求項1記載のプロペラシャフトのクロスメンバへの取付構造において、
     上記燃料タンクは、上記クロスメンバに固定されている、プロペラシャフトのクロスメンバへの取付構造。
  3.  請求項1記載のプロペラシャフトのクロスメンバへの取付構造において、
     上記センターベアリングは、上記クロスメンバに対して固定される取付部を有し、
     上記取付部は、上記クロスメンバに対して車両後側からアクセスして固定位置に到達可能な形状を有している、プロペラシャフトのクロスメンバへの取付構造。
  4.  請求項1記載のプロペラシャフトのクロスメンバへの取付構造において、
     上記プロペラシャフトは、平面視で、該プロペラシャフトの前後両端を結ぶ直線に対して、上記ジョイントが上記燃料タンクの側に位置するように、該ジョイントの箇所で折れ曲がっている、プロペラシャフトのクロスメンバへの取付構造。
  5.  請求項1記載のプロペラシャフトのクロスメンバへの取付構造において、
     上記センターベアリングは、上記前側シャフトから衝撃力を受けたときの後退に起因して上記クロスメンバから外れるように該クロスメンバに取り付けられており、
     上記連結体は、上記クロスメンバから外れたセンターベアリングが上記燃料タンクに届かない長さに設定されている、プロペラシャフトのクロスメンバへの取付構造。
  6.  請求項5記載のプロペラシャフトのクロスメンバへの取付構造において、
     上記連結体は、上記センターベアリングの後退を許容するための弛みを有する状態で、上記センターベアリングと上記クロスメンバとを連結している、プロペラシャフトのクロスメンバへの取付構造。
  7.  請求項1記載のプロペラシャフトのクロスメンバへの取付構造において、
     上記プロペラシャフトは、上記センターベアリングよりも後側位置に、上記後側シャフトの軸方向に縮むコラプス構造を有している、プロペラシャフトのクロスメンバへの取付構造。
  8.  請求項1記載のプロペラシャフトのクロスメンバへの取付構造において、
     上記センターベアリングに対して上記燃料タンクとは反対側に、排気管が車両長さ方向に延びるように設けられており、
     上記クロスメンバにおける上記連結体の連結部は、上記排気管と上記センターベアリングとの間に位置している、プロペラシャフトのクロスメンバへの取付構造。
  9.  請求項1記載のプロペラシャフトのクロスメンバへの取付構造において、
     上記プロペラシャフトは、上記クロスメンバの下側を通るように配設され、
     上記センターベアリングは、上記クロスメンバよりも前側に配設され、
     上記燃料タンクは、上記クロスメンバの下側を通って該クロスメンバよりも前側に延びかつ上記センターベアリングと車幅方向に並ぶ前側延設部を有している、プロペラシャフトのクロスメンバへの取付構造。
PCT/JP2010/002280 2010-03-29 2010-03-29 プロペラシャフトのクロスメンバへの取付構造 WO2011121638A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080065976.7A CN102933413B (zh) 2010-03-29 2010-03-29 传动轴与横梁的连接结构
PCT/JP2010/002280 WO2011121638A1 (ja) 2010-03-29 2010-03-29 プロペラシャフトのクロスメンバへの取付構造
US13/636,562 US8657059B2 (en) 2010-03-29 2010-03-29 Attachment structure of propeller shaft to cross-member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/002280 WO2011121638A1 (ja) 2010-03-29 2010-03-29 プロペラシャフトのクロスメンバへの取付構造

Publications (1)

Publication Number Publication Date
WO2011121638A1 true WO2011121638A1 (ja) 2011-10-06

Family

ID=44711436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002280 WO2011121638A1 (ja) 2010-03-29 2010-03-29 プロペラシャフトのクロスメンバへの取付構造

Country Status (3)

Country Link
US (1) US8657059B2 (ja)
CN (1) CN102933413B (ja)
WO (1) WO2011121638A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3081423A1 (en) 2015-04-15 2016-10-19 Toyota Jidosha Kabushiki Kaisha Powertrain unit
RU2621835C1 (ru) * 2015-04-15 2017-06-07 Тойота Дзидося Кабусики Кайся Силовой агрегат
JP2019147505A (ja) * 2018-02-28 2019-09-05 日産自動車株式会社 ブラケットの取付構造

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8851491B2 (en) * 2012-11-30 2014-10-07 Ford Global Technologies, Llc Mechanically self-powered driveshaft center bearing height adjustment
US9718353B2 (en) * 2015-09-01 2017-08-01 Ronald Scott Bandy Chassis for independent suspension system
DE102016200741B4 (de) * 2016-01-20 2023-06-29 Ford Global Technologies, Llc Montageeinheit mit Antriebswelle und Antriebswellenhalter sowie Kraftfahrzeug mit Montageeinheit
US10703413B2 (en) * 2016-08-31 2020-07-07 Ford Global Technologies, Llc Rear drive unit detachment system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969023U (ja) * 1982-10-30 1984-05-10 マツダ株式会社 車両のプロペラシヤフトのセンタベアリング支持構造
JPH03112427U (ja) * 1990-03-05 1991-11-18
JPH08197970A (ja) * 1995-01-26 1996-08-06 Hino Motors Ltd 車室内のこもり音低減構造
JP2944198B2 (ja) * 1990-11-28 1999-08-30 マツダ株式会社 車両のプロペラシャフト支持構造
JP2005212748A (ja) * 2004-02-02 2005-08-11 Toyota Motor Corp 車体下部構造
JP2006132628A (ja) * 2004-11-04 2006-05-25 Jidosha Buhin Kogyo Co Ltd プロペラシャフト

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2773304A (en) * 1953-05-05 1956-12-11 Twin Coach Co Method for the production of vehicles
JPH03112427A (ja) * 1989-09-27 1991-05-14 Minagi Giken:Kk 養豚用給餌器の給餌槽のコーナー・シーリング方法
US5562179A (en) * 1995-02-28 1996-10-08 Mcadam; Dennis J. Adjustable drive shaft support for truck frame
EP1516765A3 (en) * 2003-09-18 2005-07-20 Nissan Motor Company, Limited Vehicle drive system
JP4238899B2 (ja) * 2006-08-30 2009-03-18 トヨタ自動車株式会社 排気系熱交換器の車体搭載構造
JP5488117B2 (ja) * 2010-03-30 2014-05-14 マツダ株式会社 自動車の駆動力伝達装置およびこれを備えた自動車の下部車体構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969023U (ja) * 1982-10-30 1984-05-10 マツダ株式会社 車両のプロペラシヤフトのセンタベアリング支持構造
JPH03112427U (ja) * 1990-03-05 1991-11-18
JP2944198B2 (ja) * 1990-11-28 1999-08-30 マツダ株式会社 車両のプロペラシャフト支持構造
JPH08197970A (ja) * 1995-01-26 1996-08-06 Hino Motors Ltd 車室内のこもり音低減構造
JP2005212748A (ja) * 2004-02-02 2005-08-11 Toyota Motor Corp 車体下部構造
JP2006132628A (ja) * 2004-11-04 2006-05-25 Jidosha Buhin Kogyo Co Ltd プロペラシャフト

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3081423A1 (en) 2015-04-15 2016-10-19 Toyota Jidosha Kabushiki Kaisha Powertrain unit
US9505446B2 (en) 2015-04-15 2016-11-29 Toyota Jidosha Kabushiki Kaisha Powertrain unit
RU2621835C1 (ru) * 2015-04-15 2017-06-07 Тойота Дзидося Кабусики Кайся Силовой агрегат
JP2019147505A (ja) * 2018-02-28 2019-09-05 日産自動車株式会社 ブラケットの取付構造
JP7084742B2 (ja) 2018-02-28 2022-06-15 日産自動車株式会社 ブラケットの取付構造

Also Published As

Publication number Publication date
US20130011092A1 (en) 2013-01-10
US8657059B2 (en) 2014-02-25
CN102933413B (zh) 2016-04-13
CN102933413A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5367152B2 (ja) 車両の前面衝突エネルギー吸収構造
JP5367151B2 (ja) 車両のサスペンションタワー構造
WO2011101907A1 (ja) バンプストッパ
US8393669B2 (en) Vehicle frame structure
WO2011121638A1 (ja) プロペラシャフトのクロスメンバへの取付構造
CN108349537B (zh) 前副车架结构
JP5974475B2 (ja) 自動車のフロントサブフレーム構造
US9096276B2 (en) Front subframe structure of automobile
JP5967292B2 (ja) 車両前部構造
JP6070821B2 (ja) 車両前部構造
JP5870680B2 (ja) 自動車のフロントサブフレーム構造
WO2014141933A1 (ja) 車両前部構造
WO2011121639A1 (ja) 支持マウントブラケット、フロントディファレンシャルギヤユニットの搭載方法、及び、フロントディファレンシャルギヤユニットの取付構造
JP5870673B2 (ja) 自動車のフロントサブフレーム構造
JP2009137378A (ja) 自動車の前部車体構造
JP3873818B2 (ja) 車体前部構造
WO2015193972A1 (ja) 車両のフレーム
JP5390916B2 (ja) 車体前部構造
JP5399760B2 (ja) 車体前部構造
JP7367551B2 (ja) 車両の前部車体構造
WO2023188105A1 (ja) 車体フレーム構造
JP2023077033A (ja) ステアリングビーム支持構造
JPH0589157U (ja) 車両のクロスメンバー取付構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065976.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13636562

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848821

Country of ref document: EP

Kind code of ref document: A1