WO2011120582A1 - Procédé et dispositif pour génération de faisceaux d'airy à accélération - Google Patents

Procédé et dispositif pour génération de faisceaux d'airy à accélération Download PDF

Info

Publication number
WO2011120582A1
WO2011120582A1 PCT/EP2010/054385 EP2010054385W WO2011120582A1 WO 2011120582 A1 WO2011120582 A1 WO 2011120582A1 EP 2010054385 W EP2010054385 W EP 2010054385W WO 2011120582 A1 WO2011120582 A1 WO 2011120582A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
airy
beams
positive
negative
Prior art date
Application number
PCT/EP2010/054385
Other languages
English (en)
Inventor
Selcuk AKTÜRK
Original Assignee
Aktuerk Selcuk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aktuerk Selcuk filed Critical Aktuerk Selcuk
Priority to PCT/EP2010/054385 priority Critical patent/WO2011120582A1/fr
Publication of WO2011120582A1 publication Critical patent/WO2011120582A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0966Cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements

Definitions

  • the present invention relates to a device, namely an optical element for generation of accelerating airy beams and a method of generating such beams.
  • Airy beams can also be constructed with finite energy resulting in focal lengths much longer compared to the traditional beams of same focal spot size. More remarkably, however, Siviloglou et al. showed that Airy beams also exhibit "acceleration". This exotic property yields a focal spot which does not propagate along a straight line, but it rather moves on a parabola [G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, "Ballistic dynamics of Airy beams," Opt. Lett. 33(3), 207-209 (2008)].
  • Airy beams are perfectly physical because they are formed by redistribution of the energy on the transverse plane. In other words, the average energy still propagates along a straight line, yet the focal spot (which contains the maximum intensity, and hence is useful for most applications) moves on a curved path. In addition to acceleration, Airy beams also exhibit "self-healing" [J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, "Self-healing properties of optical Airy beams," Opt. Express 16(17), 12880-12891 (2008)]; if a small section of the beam is blocked, it is reconstructed after brief propagation.
  • Airy beams were first demonstrated by Siviloglou et al. in 2007. They showed that laser beams can be turned into Airy beams by introduction of a cubic spatial phase and performing an optical Fourier transform.
  • the cubic phase is applied by a computer controlled liquid-crystal spatial light modulator. It can be applied in one or two transverse dimensions, generating one or two dimensional Airy beams, respectively.
  • the Fourier transform can be done by propagating the laser to the far field or by using a focusing lens. This initial work and others later experimentally proved the diffraction-free and acceleration properties of airy beams. Soon after the experimental development of Airy beams, they started to be used in applications of lasers [K.
  • Airy beams to generate curved plasma channels in air [P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, "Curved Plasma Channel Generation Using Ultraintense Airy Beams," Science 324(5924), 229-232 (2009)].
  • the use of Airy beam provided the advantage that emissions from different sections of the plasma were angularly resolved. Airy beams were also used in particle trapping applications [J. Baumgartl, M. Mazilu, and K.
  • Airy beams mentioned above also call for more applications. They started to be available only very recently and new applications can be expected to emerge soon. However, in order to be able to increase the use of these beams, it is paramount that the method of their generation be simplified. So far there have been only two methods developed for Airy beam generations. The first method is using spatial light modulators, as mentioned above. Even though this method works well, it requires expensive equipment and advanced computer control. As a result, it limits the widespread use of Airy beams. The second method for Airy beam generation uses nonlinear optical processes. The method uses three-wave mixing in a specially tailored photonic crystal structure [T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A.
  • the present invention proposes a new method for generation of Airy beams in a simple manner in which a new optical element, i.e. an "Airy lens" is used.
  • Airy lens is very simple: one only needs to pass the laser beam through it and perform the optical Fourier transform either by propagation to far field or using a conventional lens. The method does not require expensive equipment or computer control. More importantly, the Airy lens is made very easily, by using readily available conventional cylindrical lenses.
  • Primary object of the present invention is to provide a method and device to simplify generation of Airy beams.
  • Another object of the present invention is to provide a method and device for generation of Airy beams in which use expensive equipment and advanced computer control is avoided. Further an object of the present invention is to provide a method and device for generation of Airy beams whose use is not limited to high peak power lasers and which does not require specially fabricated materials.
  • Airy lens construction relies on making use of one positive and one negative cylindrical lenses of same absolute value of radii of curvatures.
  • the lenses are then cut from the centers and the Airy lens in which one half of the positive lens being connected on top of the half of the negative one yields a very good approximation to a surface with shape of a cubic polynomial. Therefore the Airy lens of the invention replaces the complex cubic polynomial shape lens which is required for applying cubic spatial phase to the incoming light beam.
  • Airy beams are formed by passing a laser beam through the center of the hence obtained Airy lens and consequent Fourier transform.
  • Fig. 1 and 2 respectively demonstrate the transverse intensity profiles of Bessel and Airy beams.
  • Fig. 3 demonstrates side and front views of the construction elements making up the Airy lens according to the present invention.
  • Fig. 4 demonstrates the phase generated by the Airy lens according to the present invention in comparison with the cubic polynomial fit.
  • Fig. 5 demonstrates the configuration of the elements according to the method of generating Airy beams of the present invention.
  • Fig. 6a and 6b respectively demonstrate theoretical and experimental profiles of Airy beam using the Airy lens according to the present invention.
  • Fig. 7a and 7b demonstrate the position of the peak intensity along the two transverse dimensions, as a function of the propagation distance.
  • the Airy lens according to the present invention is constructed as described below.
  • Airy lens (20) construction relies on making use of one positive (1 1 ) and one negative (12) cylindrical lenses of same absolute value of radii of curvatures.
  • the lenses (1 1 , 12) are then cut from the centers and the Airy lens (20) in which one half of the positive lens (1 1 ) being connected on top of the half of the negative one (12) yields a very good approximation to a surface with shape of a cubic polynomial.
  • cylindrical lenses (1 1 , 12) with radii of curvatures +500 mm and -500 mm are used.
  • Airy beams are formed by passing a laser beam (He-Ne laser) through the center of the Airy lens (20) and consequent Fourier transform.
  • Fourier transform can be performed either by going to the far field or using a lens.
  • a lens (13) of a certain focal length for example 125 mm
  • the desired compact setup will be achieved.
  • the efficiency of the Airy lenses (20) constructed according to the present invention can be evaluated by comparing transverse intensity profile of the beams with calculated intensity profiles.
  • the transverse beam profile at various propagation distances can be measured using a CCD camera.
  • "reference points" are recorded by removing the Airy lenses and directly measuring the centers of the incoming laser beam. As shown in Fig.6a and 6b, the experimental profile closely resembles what is expected from theory.
  • Fig. 7a and 7b show the position of the peak intensity along the two transverse dimensions, as a function of the propagation distance.
  • the focal positions closely follow a parabola.
  • the beams generated through the Airy lens also clearly exhibit acceleration.
  • the optical element (Airy lens) of the present invention can be used to turn laser outputs into accelerating Airy beams.
  • the Airy lens is made of standard cylindrical lenses and is very inexpensive and easy to construct. It requires no computer control or programming. Because of its simplicity and cost effective nature, the Airy lens has the potential to increase the use and applications of accelerating Airy beams.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

La présente invention porte sur des lentilles cylindriques positive et négative classiques qui sont utilisées pour obtenir des faisceaux d'Airy. Une construction à lentilles d'Airy s'appuie sur l'utilisation de lentilles cylindriques, l'une positive et l'autre négative, ayant la même valeur absolue de rayon de courbure. Les lentilles sont ensuite découpées à partir du centre, et la lentille d'Airy dans laquelle une moitié de la lentille positive est reliée au sommet de la moitié de la lentille négative produit une très bonne approximation sur une surface ayant la forme d'un polynôme cubique. Par conséquent, la lentille d'Airy selon l'invention remplace la lentille de forme polynomiale cubique complexe qui est requise pour appliquer une phase spatiale cubique au faisceau de lumière entrant. Les faisceaux d'Airy sont formés par passage d'un faisceau de laser à travers le centre de la lentille d'Airy ainsi obtenue et par une transformée de Fourier consécutive.
PCT/EP2010/054385 2010-03-31 2010-03-31 Procédé et dispositif pour génération de faisceaux d'airy à accélération WO2011120582A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/054385 WO2011120582A1 (fr) 2010-03-31 2010-03-31 Procédé et dispositif pour génération de faisceaux d'airy à accélération

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/054385 WO2011120582A1 (fr) 2010-03-31 2010-03-31 Procédé et dispositif pour génération de faisceaux d'airy à accélération

Publications (1)

Publication Number Publication Date
WO2011120582A1 true WO2011120582A1 (fr) 2011-10-06

Family

ID=42782135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/054385 WO2011120582A1 (fr) 2010-03-31 2010-03-31 Procédé et dispositif pour génération de faisceaux d'airy à accélération

Country Status (1)

Country Link
WO (1) WO2011120582A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346305A (zh) * 2011-10-09 2012-02-08 浙江师范大学 自由空间形成时空艾里光束的方法
WO2016016642A1 (fr) * 2014-07-30 2016-02-04 University Court Of The University Of St Andrews Feuille de lumière à faisceau d'airy et microscope à feuille de lumière à faisceau d'airy
CN106153307A (zh) * 2016-06-30 2016-11-23 河南科技大学 一种利用光强比测量Airy光束衰减因子的装置和方法
CN106199981A (zh) * 2016-06-28 2016-12-07 浙江师范大学 一种产生携带轨道角动量的无衍射艾里光束的方法及装置
TWI595265B (zh) * 2014-11-19 2017-08-11 Trumpf Laser-Und Systemtechnik Gmbh Optical system for beam shaping, laser processing apparatus, beam shaping method for laser beam, method for processing laser material, use of beam profile in laser material processing
CN107329274A (zh) * 2017-05-10 2017-11-07 浙江师范大学 基于g‑s算法产生艾里光束的装置及其方法
CN107346043A (zh) * 2017-05-08 2017-11-14 浙江师范大学 一种大尺度调控艾里光束传输轨迹的方法
CN108681084A (zh) * 2018-04-03 2018-10-19 河南科技大学 一种可自由调控的角向艾里光束掩模板的设计方法
CN110243466A (zh) * 2019-06-04 2019-09-17 南京东利来光电实业有限责任公司 非可见光波段埃里斑能量分布及圆整度检测方法
CN110471188A (zh) * 2019-08-21 2019-11-19 河南科技大学 一种基于类抛物透镜位相调制艾里光束传输轨迹的方法
CN110989180A (zh) * 2019-11-19 2020-04-10 中国科学技术大学 紧凑型艾里光束相位板及其制造方法
CN111092653A (zh) * 2019-12-18 2020-05-01 南京信息工程大学 基于单slm空间分区实现双偏振艾里绕障信号传输的装置
CN114488546A (zh) * 2021-12-28 2022-05-13 中山大学 一种产生焦点特性可调的多焦点自聚焦光束方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138203A (ja) * 1997-07-23 1999-02-12 Toppan Printing Co Ltd レンチキュラーレンズシート
US20030151822A1 (en) * 1997-03-10 2003-08-14 Semiconductor Energy Laboratory Co. Ltd., A Japan Corporation Laser optical apparatus
US20080156876A1 (en) * 2006-12-29 2008-07-03 Symbol Technologies, Inc. Illumination system including convex/concave lens for an imaging-based bar code reader

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030151822A1 (en) * 1997-03-10 2003-08-14 Semiconductor Energy Laboratory Co. Ltd., A Japan Corporation Laser optical apparatus
JPH1138203A (ja) * 1997-07-23 1999-02-12 Toppan Printing Co Ltd レンチキュラーレンズシート
US20080156876A1 (en) * 2006-12-29 2008-07-03 Symbol Technologies, Inc. Illumination system including convex/concave lens for an imaging-based bar code reader

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BERRY M V ET AL: "Nonspreading wave packets", AMERICAN JOURNAL OF PHYSICS, AMERICAN ASSOCIATION OF PHYSICS TEACHERS, US LNKD- DOI:10.1119/1.11855, vol. 47, no. 3, 1 March 1979 (1979-03-01), pages 264 - 267, XP008116581, ISSN: 0002-9505 *
G. A. SIVILOGLOU; D. N. CHRISTODOULIDES: "Accelerating finite energy Airy beams", OPT. LETT., vol. 32, no. 8, 2007, pages 979 - 981, XP001540475, DOI: doi:10.1364/OL.32.000979
G. A. SIVILOGLOU; J. BROKY; A. DOGARIU; D. N. CHRISTODOULIDES: "Ballistic dynamics of Airy beams", OPT. LETT., vol. 33, no. 3, 2008, pages 207 - 209, XP001511083, DOI: doi:10.1364/OL.33.000207
G. A. SIVILOGLOU; J. BROKY; A. DOGARIU; D. N. CHRISTODOULIDES: "Observation of Accelerating Airy Beams", PHYS. REV. LETT., vol. 99, no. 21, 2007, pages 213901 - 213904, XP002561788, DOI: doi:10.1103/PhysRevLett.99.213901
J. ARLT; K. DHOLAKIA: "Generation of high-order Bessel beams by use of an axicon", OPT. COMMUN., vol. 177, no. 1-6, 2000, pages 297 - 301, XP004195406, DOI: doi:10.1016/S0030-4018(00)00572-1
J. BAUMGARTL; M. MAZILU; K. DHOLAKIA: "Optically mediated particle clearing using Airy wavepackets", NAT. PHOTON, vol. 2, no. 11, 2008, pages 675 - 678
J. BROKY; G. A. SIVILOGLOU; A. DOGARIU; D. N. CHRISTODOULIDES: "Self-healing properties of optical Airy beams", OPT. EXPRESS, vol. 16, no. 17, 2008, pages 12880 - 12891, XP055065897, DOI: doi:10.1364/OE.16.012880
J. DURNIN; J. J. MICELI; J. H. EBERLY: "Diffraction-free beams", PHYS. REV. LETT., vol. 58, no. 15, 1987, pages 1499 - 1501, XP000892612, DOI: doi:10.1103/PhysRevLett.58.1499
K. DHOLAKIA: "Optics: Against the spread of the light", NATURE, vol. 451, no. 7177, 2008, pages 413 - 413
P. POLYNKIN; M. KOLESIK; J. V. MOLONEY; G. A. SIVILOGLOU; D. N. CHRISTODOULIDES: "Curved Plasma Channel Generation Using Ultraintense Airy Beams", SCIENCE, vol. 324, no. 5924, 2009, pages 229 - 232
SIVILOGLOU G A ET AL: "Observation of accelerating Airy beam ballistics", LASERS AND ELECTRO-OPTICS, 2008. CLEO 2008. CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 4 May 2008 (2008-05-04), pages 1 - 2, XP031279122, ISBN: 978-1-55752-859-9 *
T. ELLENBOGEN; N. VOLOCH-BLOCH; A. GANANY-PADOWICZ; A. ARIE: "Nonlinear generation and manipulation of Airy beams", NAT. PHOTON., vol. 3, no. 7, 2009, pages 395 - 398

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346305A (zh) * 2011-10-09 2012-02-08 浙江师范大学 自由空间形成时空艾里光束的方法
US10353188B2 (en) 2014-07-30 2019-07-16 University Court Of The University Of St Andrews Airy beam light sheet and airy beam light sheet microscope
WO2016016642A1 (fr) * 2014-07-30 2016-02-04 University Court Of The University Of St Andrews Feuille de lumière à faisceau d'airy et microscope à feuille de lumière à faisceau d'airy
US10816787B2 (en) 2014-07-30 2020-10-27 University Court Of The University Of St Andrew Airy beam light sheet and airy beam light sheet microscope
CN106537221B (zh) * 2014-07-30 2020-06-12 圣安德鲁斯大学董事会 艾里光束光片和艾里光束光片显微镜
CN106537221A (zh) * 2014-07-30 2017-03-22 圣安德鲁斯大学董事会 艾里光束光片和艾里光束光片显微镜
TWI595265B (zh) * 2014-11-19 2017-08-11 Trumpf Laser-Und Systemtechnik Gmbh Optical system for beam shaping, laser processing apparatus, beam shaping method for laser beam, method for processing laser material, use of beam profile in laser material processing
CN106199981A (zh) * 2016-06-28 2016-12-07 浙江师范大学 一种产生携带轨道角动量的无衍射艾里光束的方法及装置
CN106153307A (zh) * 2016-06-30 2016-11-23 河南科技大学 一种利用光强比测量Airy光束衰减因子的装置和方法
CN107346043A (zh) * 2017-05-08 2017-11-14 浙江师范大学 一种大尺度调控艾里光束传输轨迹的方法
CN107329274A (zh) * 2017-05-10 2017-11-07 浙江师范大学 基于g‑s算法产生艾里光束的装置及其方法
CN107329274B (zh) * 2017-05-10 2023-09-29 浙江师范大学 基于g-s算法产生艾里光束的装置及其方法
CN108681084A (zh) * 2018-04-03 2018-10-19 河南科技大学 一种可自由调控的角向艾里光束掩模板的设计方法
CN110243466B (zh) * 2019-06-04 2021-07-20 南京东利来光电实业有限责任公司 非可见光波段埃里斑能量分布及圆整度检测方法
CN110243466A (zh) * 2019-06-04 2019-09-17 南京东利来光电实业有限责任公司 非可见光波段埃里斑能量分布及圆整度检测方法
CN110471188A (zh) * 2019-08-21 2019-11-19 河南科技大学 一种基于类抛物透镜位相调制艾里光束传输轨迹的方法
CN110471188B (zh) * 2019-08-21 2021-12-14 河南科技大学 一种基于类抛物透镜位相调制艾里光束传输轨迹的方法
CN110989180A (zh) * 2019-11-19 2020-04-10 中国科学技术大学 紧凑型艾里光束相位板及其制造方法
CN111092653A (zh) * 2019-12-18 2020-05-01 南京信息工程大学 基于单slm空间分区实现双偏振艾里绕障信号传输的装置
CN114488546A (zh) * 2021-12-28 2022-05-13 中山大学 一种产生焦点特性可调的多焦点自聚焦光束方法

Similar Documents

Publication Publication Date Title
WO2011120582A1 (fr) Procédé et dispositif pour génération de faisceaux d'airy à accélération
Dudutis et al. Aberration-controlled Bessel beam processing of glass
KR101951070B1 (ko) 파장 변환형 공간광 변조 장치
CN101862899A (zh) 飞秒激光加工装置
EP3076224A1 (fr) Mappeur de champ
Heberle et al. Electro-optic and acousto-optic laser beam scanners
Šlevas et al. Azimuthally modulated axicon vortical beams for laser microprocessing
Xing et al. Dynamically tunable multi-lobe laser generation via multifocal curved beam
Slevas et al. Laser induced modifications in transparent materials using azimuthally modulated axicon beams
Rafighdoost et al. Remarkable ability of spiral orthogonal zone plate in generating various focused optical vortices
Šlevas et al. An optical needle with elongated transversal profile created using Airy beams for laser processing of glasses
Wen et al. Propagation of symmetric tunable dual Airy beam through ABCD optical system
Šlevas et al. Creating an Array of Parallel Vortical Optical Needles
Xiao et al. Angular magnification method of liquid crystal optical phased array based on telescope system
CN104020626A (zh) 涡旋光束布里渊放大方法及实现该方法的系统
Yamane et al. Development of high-precision mode decomposition devices for optical vortices
Zuo et al. Half-horn and parabola shaped electro-optic beam deflectors
Rao et al. Generation of high peak power, segmented and Bessel beams of tunable range without on-axis intensity modulation
Lightman et al. Tailoring light by 3D direct laser-writing of micron-scale phase elements
Yang et al. Plasma waveguide arrays from filament interaction in air
Wang et al. Aberration-free three dimensional micromachining in glass with spatiotemporally shaped femtosecond laser pulses
Lei et al. Ultra compact metasurface radial/azimuthal polarization converter
Kim et al. Multiwavelength Achromatic Metalens based on Quantized Phase Profile with Pixelated Nanostructure
Chaitanya et al. Nonlinear interaction of ultrafast hollow Gaussian beams
Drevinskas et al. Geometric phase circular gratings fabricated by ultrafast laser nanostructuring for symmetric simultaneous spatio-temporal focusing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10720359

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012/11089

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10720359

Country of ref document: EP

Kind code of ref document: A1