WO2011120345A1 - 一种对电池极片进行激光切割的控制方法及系统 - Google Patents

一种对电池极片进行激光切割的控制方法及系统 Download PDF

Info

Publication number
WO2011120345A1
WO2011120345A1 PCT/CN2011/070257 CN2011070257W WO2011120345A1 WO 2011120345 A1 WO2011120345 A1 WO 2011120345A1 CN 2011070257 W CN2011070257 W CN 2011070257W WO 2011120345 A1 WO2011120345 A1 WO 2011120345A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
command
module
pole piece
queue
Prior art date
Application number
PCT/CN2011/070257
Other languages
English (en)
French (fr)
Inventor
冯庆枝
王立松
Original Assignee
深圳市先阳软件技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市先阳软件技术有限公司 filed Critical 深圳市先阳软件技术有限公司
Priority to DE112011101091T priority Critical patent/DE112011101091T5/de
Priority to JP2013501603A priority patent/JP2013523452A/ja
Publication of WO2011120345A1 publication Critical patent/WO2011120345A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a laser cutting control technology in the production of a battery pole piece, in particular to a control method and a system for laser cutting a battery pole piece.
  • Lithium-ion power batteries are one of the most important components in newly emerging power vehicles. They have a short time and huge demand, and there is no relatively mature technology in production. In the prior art, in the battery core forming process of the power battery, it is necessary to cut the positive and negative materials of the battery core. The traditional mechanical cutting method causes burrs to be generated at the break of the pole piece after cutting, which affects the safety of the lithium battery, and the force of the mechanical cutting also adversely affects the performance of the battery pole piece.
  • the laser is used to cut the positive and negative materials of the battery (the laser travels on the material, and the high-density energy of the laser is used to cut the material), which can overcome the defects of mechanical cutting, thereby forming various specifics of the tabs with a plurality of protrusions.
  • the shape of the pole piece is used to cut the positive and negative materials of the battery (the laser travels on the material, and the high-density energy of the laser is used to cut the material), which can overcome the defects of mechanical cutting, thereby forming various specifics of the tabs with a plurality of protrusions.
  • the shape of the pole piece is used to cut the positive and negative materials of the battery (the laser travels on the material, and the high-density energy of the laser is used to cut the material), which can overcome the defects of mechanical cutting, thereby forming various specifics of the tabs with a plurality of protrusions.
  • the existing polar laser cutting control technology generally uses laser marking software to input graphics, and then waits for the product on the assembly line to use the galvanometer as an actuator to control the laser to move at high speed on the product, thereby leaving traces on the product. .
  • this control technique is not satisfactory, and the following problems cannot be solved: a.
  • the continuous cutting function on the assembly line cannot be completed.
  • the existing marking control method can only complete the cutting or marking of individual products one by one; b.
  • the graphic input mode is adopted, after the current graphic processing is finished, loading It takes a certain amount of time to process the next graphic. When the pipeline speed is large, this time becomes a time slice that cannot be ignored and cannot be responded to and processed, resulting in a large cutting position error; c. If the shape is cut The shape of the pole piece changes slightly, and it is difficult to handle. It is necessary to redesign and input the graphic. In the operation, the control program cannot automatically adapt to the graphic change by modifying the parameter.
  • the object of the present invention is to provide a control method and system for laser cutting a battery pole piece, which can well adapt to changes in the pattern of the battery pole piece and ensure the precision of the cutting pattern.
  • the control method for laser cutting the battery pole piece proposed by the invention comprises the following steps: 1) the control unit receives the graphic data of the pole piece to be cut, and generates corresponding motion track data; 2) the control unit controls the command and the motion track The data is sent to the actuator; 3) the execution unit executes the control command and controls the laser to move according to the trajectory specified by the motion trajectory data.
  • Step 3) includes the following steps: 31) The command processing module of the execution unit receives the control command of the control unit, and sequentially adds the queue instruction to the command queue cache; 32) the execution unit's parsing queue command module is in the command queue cache. The data is parsed to generate coordinate points on the motion trajectory, and the coordinate point data is sequentially input into the output data queue buffer; 33) the transmitting data module of the execution unit sequentially sends the coordinate point data information to the galvanometer, through the galvanometer The control sequentially reflects the laser light to the position corresponding to the coordinate point.
  • the received graphic data in step 1) includes data of the height and width of the pole piece and the tab, the length of each side, and the distance between adjacent intervals.
  • the control system for laser cutting a battery pole piece proposed by the present invention comprises a control unit and an execution unit, the control unit comprising a graphic data receiving module for receiving pattern data of the pole piece to be cut, and a graphic for the pole piece according to the pole piece
  • the data calculates a motion trajectory generation module of the laser motion trajectory data
  • the execution unit is configured to receive the motion trajectory data and control the reflection position of the laser light.
  • the execution unit includes a command processing module, a parsing queue command module, a sending data module, and a galvanometer, and the command processing module is configured to receive a control command of the control unit, and add the queue instruction to the command queue cache;
  • the queue command module is configured to parse the data in the command queue buffer to generate coordinate points on the motion track, and input the coordinate point data into the output data queue buffer;
  • the sending data module is used to sequentially sort the coordinate point data information Send to the galvanometer.
  • the execution unit also includes a process management module.
  • the invention has the beneficial effects of: describing the laser motion path by using the motion trajectory, pre-planning the laser trajectory, performing continuous laser cutting, speeding up the forming of the electric core, and ensuring the accuracy of the cutting shape. It can be controlled within 0.1mm when the line speed is 400mm/s; and because the method of trajectory description is adopted, it is convenient to input and modify the parameters such as the size data of the figure, and can flexibly adapt to the frequent changes of the battery pole piece pattern. happening.
  • Figure 1 is a block diagram of the components of a specific embodiment.
  • a system for laser cutting a pole piece forming of a lithium ion power battery comprising a control unit and an execution unit.
  • the control unit includes a graphic data receiving module and a motion track generating module.
  • the execution unit includes a process management module, a command processing module, a parsing queue command module, a sending data module, and a galvanometer.
  • the graphic data receiving module is configured to receive the pole piece graphic data to be cut.
  • the motion trajectory generating module is configured to calculate laser motion trajectory data according to the graphic data of the pole piece.
  • the graphic data receiving module first receives parameter data input by the user in advance, such as the height of the pole piece to be cut and the height of the pole on the pole, the length of the interval between the tabs, and the control information such as the cutting speed.
  • the motion trajectory generation module generates a trajectory corresponding to the graphic data according to the graphic data about the pole piece and the polar ear input by the user.
  • the command processing module is configured to receive a control command of the control unit, and provide a rich interface function for the interface between the execution unit and the upper application, and the control command is divided into two categories: a queue instruction and a normal instruction.
  • Queue instructions include queue open command, queue close command, queue execution command, line add command, arc add command, speed setting command, laser delay command, laser delay command, delay wait command between line segments, flight The actual motion coefficient setting instruction of the marking, the specific condition triggering instruction, and the like.
  • Ordinary commands include a laser type selection command, a laser power setting command, a laser spot position control command, a queue immediate stop command, an open laser control command, and a laser control command.
  • Different processing is performed for two different types of instructions: if it is a queue instruction, the instruction and the additional graphic data are sequentially added to the command queue buffer; if it is a normal instruction, the corresponding content is performed according to the specific content of the instruction. Control operation processing.
  • the parsing queue command module is used to parse the data in the command queue buffer to generate coordinate points on the motion track, and input the coordinate point data into the output data queue buffer.
  • the module After receiving the command module to add the queue command to the queue cache, the module starts to parse the data of the queue cache, and if it is a queue control instruction such as opening, closing, executing, etc., it is sent to the process control module, and the corresponding execution is performed.
  • the action if it is a speed setting command, the current queue speed is updated to a new speed value; if it is a position addition command such as a line, an arc, etc., the interpolation function is called, according to the previous coordinate point and the newly added coordinate point.
  • the line segments formed between them and their types are interpolated according to the given queue speed, so that coordinate points on the track segments of many line segments are generated between the two given coordinate points, and the interpolation is calculated.
  • the coordinate points are stored in the output data queue buffer.
  • the transmit data module is used to sequentially transmit the coordinate point data information to the galvanometer.
  • the sending module sequentially sends the coordinate position information to the galvanometer according to the set frequency, such as 100000 Hz.
  • the galvanometer reflects the focus of the laser to the corresponding actual position according to the required coordinate point position.
  • a process management module is provided to coordinate the communication and cooperation of the above three modules. For example, when the execution queue data output is received in the receiving command module, it will notify the sending data module to start transmitting the position information to the galvanometer through the process management module, and the sending data module starts to send in the output data queue when receiving the command. The coordinate point is given to the galvanometer.
  • some states about the entire program are also managed by the module, such as setting whether the data in the queue is all sent to the galvanometer, the speed and position of the current laser walking.
  • control unit first receives parameter data input by the user in advance, such as the height of the pole piece to be cut and the height of the pole on the pole, the length of the interval between the tabs, and the control information such as the cutting speed; Input graphic data about the pole piece and the tab, and generate a trajectory corresponding to the graphic data.
  • the control unit outputs control commands including queue instructions and normal instructions to the underlying execution unit.
  • the execution unit executes the control command, and uses a corresponding processing method for the track description queue. For example, when running to a specific position, the pole cutting action is performed, and the laser will walk on the pole piece of the battery according to the generated track. And use the high energy density of the laser to cut and separate the battery pole pieces. After the action queue instruction is executed, the control laser returns to the initial point to prepare the next action queue instruction. In the program running, it can also respond to other user control commands, such as pause, restart, set parameters, and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种对电池极片进行激光切割的控制方法及系统,本方法包括以下步骤:1)控制单元接收待切割极片的图形数据,生成相应的运动轨迹数据;2)控制单元将控制命令和运动轨迹数据发送给执行机构;3)执行单元执行控制命令,并控制激光按照运动轨迹数据所规定的轨迹移动。本发明采用运动轨迹来描述激光运动路线,提高了极片切割速度,保证了切割精度;而且能够很方便地输入、修改图形的尺寸数据参数,能够灵活地适应电池极片图形频繁发生变化的情况。

Description

一种对电池极片进行激光切割的控制方法及系统 技术领域
本发明涉及电池极片生产中的激光切割控制技术,具体是涉及一种对电池极片进行激光切割的控制方法及其系统。
背景技术
锂离子动力电池是新近兴起的动力汽车等产品中最重要的部件之一,其出现的时间较短,需求巨大,而目前在生产中并没有出现相对较为成熟的技术。现有技术中在动力电池的电芯成型过程时,需要切割电芯的正、负极材料。传统的机械切割方法会导致切割后在极片断开处产生毛刺,影响锂电池的安全性,而且机械切割的作用力对电池极片性能也会造成不利影响。采用激光来切割电芯正、负极材料(激光在材料上行走,利用激光的高密度能量使得材料被切断),可以克服机械切割的缺陷,从而形成附有多个突起的极耳的各种特定的极片形状。
现有的极片激光切割控制技术普遍采用激光打标软件来输入图形,然后等待流水线上的产品经过的时候利用振镜作为执行机构控制激光在产品上高速进走,从而在产品上留下痕迹。对批量的极片切割来说,这种控制技术并不如意,如存在以下问题不能解决: a.无法完成流水线上的连续切割功能,现有的打标控制方式只能是逐次地完成单个产品的切割或打标;b.采用是图形输入方式时,在当前图形处理完后,载入并处理下一个图形需要耗费一定的时间,当流水线速度较大,这段时间就成为了不可忽视的时间片,无法被响应及处理,从而产生较大的切割位置误差;c.如果切割形状的极片的形状稍微发生变化,在处理上比较困难,都需要重新设计、输入图形,操作中控制程序不能通过修改参数的方式自动适应图形变化。
技术问题
本发明的目的是提出一种对电池极片进行激光切割的控制方法及其系统,可以很好地适应电池极片图形的变化,并保证切割图形的精度。
技术解决方案
本发明提出的这种对电池极片进行激光切割的控制方法包括以下步骤:1)控制单元接收待切割极片的图形数据,生成相应的运动轨迹数据;2)控制单元将控制命令和运动轨迹数据发送给执行机构;3)执行单元执行控制命令,并控制激光按照运动轨迹数据所规定的轨迹移动。
其中步骤3)包括以下步骤:31)执行单元的命令处理模块接收控制单元的控制命令,将其中的队列指令依次添加到命令队列缓存中;32)执行单元的解析队列命令模块对命令队列缓存中的数据进行解析,以生成运动轨迹上的坐标点,并把坐标点数据依次输入到输出数据队列缓存中;33)执行单元的发送数据模块将坐标点数据信息依次发送给振镜,通过振镜的控制将激光依次反射到坐标点对应的位置。
其中步骤1)中的接收的图形数据包括极片和极耳的高度、宽度、各边长、相邻间隔距离的数据。
本发明提出的这种对电池极片进行激光切割的控制系统包括控制单元和执行单元,所述控制单元包括用于接收待切割极片图形数据的图形数据接收模块、用于根据极片的图形数据计算出激光运动轨迹数据的运动轨迹生成模块,所述执行单元用于接收运动轨迹数据并控制激光的反射位置。
所述执行单元包括命令处理模块、解析队列命令模块、发送数据模块和振镜,所述命令处理模块用于接收控制单元的控制命令,将其中的队列指令添加到命令队列缓存中;所述解析队列命令模块用于对命令队列缓存中的数据进行解析,以生成运动轨迹上的坐标点,并把坐标点数据输入到输出数据队列缓存中;所述发送数据模块用于将坐标点数据信息依次发送给振镜。
所述执行单元还包括进程管理模块。
有益效果
本发明与现有技术对比所具有的有益效果是:采用运动轨迹来描述激光运动路线,预先规划好激光轨迹,可以进行连续性激光切割,使得电芯成型的速度加快,并保证切割形状的精度,在流水线速度为400mm/s时控制在0.1mm以内;而且由于采用了轨迹描述的方法,能够很方便地输入、修改图形的尺寸数据等参数,能够灵活地适应电池极片图形频繁发生变化的情况。
附图说明
图 1 是 具体 实施方式的组成模块图。
本发明的实施方式
如图1所示的一种对锂离子动力电池的极片成型进行激光切割的系统,包括控制单元和执行单元。控制单元包括图形数据接收模块、运动轨迹生成模块。执行单元包括进程管理模块、命令处理模块、解析队列命令模块、发送数据模块、振镜。
图形数据接收模块用于接收待切割极片图形数据。运动轨迹生成模块用于根据极片的图形数据计算出激光运动轨迹数据。图形数据接收模块首先接收用户预先输入的参数数据,比如需切割的极片及其上的极耳的高度、宽度,极耳之间的间隔长度,还包括切割速度等控制信息。运动轨迹生成模块根据用户输入的有关极片和极耳的图形数据,生成与图形数据相对应的轨迹。
命令处理模块用于接收控制单元的控制命令,为执行单元与上层应用程序的接口,提供丰富的接口功能,控制命令分为队列指令和普通指令两大类。队列指令包括队列开启指令、队列关闭指令、队列执行指令、直线添加指令、圆弧添加指令、速度设置指令、开激光延时指令、关激光延时指令、线段之间的延时等待指令、飞行打标的实际运动系数设置指令、特定条件触发指令等。普通指令则有激光类型选择指令、激光功率设置指令、激光点位置控制指令、队列立即停止指令、开激光控制指令、关激光控制指令等。针对两类不同的指令做出不同的处理:如果是队列指令,则是把指令、附加的图形数据依次添加到命令队列缓存上;如果是普通指令,则根据指令的具体内容进行各种相应的控制操作处理。
解析队列命令模块用于对命令队列缓存中的数据进行解析,以生成运动轨迹上的坐标点,并把坐标点数据输入到输出数据队列缓存中。当接收命令模块把队列命令添加到队列缓存后,此模块就开始进行对队列缓存的数据进行解析,如果是队列控制指令如开启、关闭、执行等指令,则发送到流程控制模块,执行相对应的动作;如果是速度设置指令,则把当前队列速度更新为新的速度值;如果是位置添加命令如直线、圆弧等,则调用插补函数,根据上一个坐标点和新添加的坐标点的之间形成的线段及其类型,按照给定的队列速度进行插补,从而在这两个给定的坐标点之间生成了许多线段轨迹上的坐标点,并把这些插补计算出来的坐标点存放在输出数据队列缓存里。
发送数据模块用于将坐标点数据信息依次发送给振镜。在解析队列命令模块把数据坐标点生成并存放在输出数据队列缓存之后,发送模块会按照设定的频率,如100000Hz,依次把坐标位置信息发送给振镜。振镜按照要求的坐标点位置把激光的焦点反射到对应的实际位置上。
另外设有进程管理模块协调上述三个模块配合的沟通和协作。比如在接收命令模块中收到了执行队列数据输出时,它会通过进程管理模块通知发送数据模块开始传送位置点信息给振镜,发送数据模块在收到此命令时就开始发送在输出数据队列里面的坐标点给振镜。另外,关于整个程序的一些状态也是由该模块来管理,比如设定队列里面的数据是否全部发送给振镜、当前激光的行走的速度、位置等。
工作时,控制单元首先接收用户预先输入的参数数据,比如需切割的极片及其上的极耳的高度、宽度,极耳之间的间隔长度,还包括切割速度等控制信息;并根据用户输入的有关极片和极耳的图形数据,生成与图形数据相对应的轨迹。控制单元将包括队列指令和普通指令的控制命令输出给底层执行单元。
执行单元执行控制命令,对于其中的轨迹描述队列,采用相应的处理方式,比如当运行到特定的位置时,要进行切极耳动作,此时激光就会按照生成的轨迹在电池的极片上行走,并利用激光的高能量密度把电池极片切割分离。在动作队列指令执行完后,控制激光重新回到初始点,准备下一个动作队列指令。而在程序运行中,也能够同时响应用户的其他控制命令,如暂停、重新启动、设置参数等。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (6)

1. 一种对电池极片进行激光切割的控制方法,包括以下步骤:
1 )控制单元接收待切割极片的图形数据,生成相应的运动轨迹数据;
2 )控制单元将控制命令和运动轨迹数据发送给执行机构;
3 )执行单元执行控制命令,并控制激光按照运动轨迹数据所规定的轨迹移动。
如权利要求 1 所述的对电池极片进行激光切割的控制方法,其特征在于,其中步骤 3 )包括以下步骤:
31 )执行单元的命令处理模块接收控制单元的控制命令,将其中的队列指令依次添加到命令队列缓存中;
32 )执行单元的解析队列命令模块对命令队列缓存中的数据进行解析,以生成运动轨迹上的坐标点,并把坐标点数据依次输入到输出数据队列缓存中;
33 )执行单元的发送数据模块将坐标点数据信息依次发送给振镜,通过振镜的控制将激光依次反射到坐标点对应的位置。
如权利要求 2 所述的对电池极片进行激光切割的控制方法,其特征在于,其中步骤 1 )中的接收的图形数据包括极片和极耳的高度、宽度、各边长、相邻间隔距离的数据。
一种对电池极片进行激光切割的控制系统,包括控制单元和执行单元,所述控制单元包括用于接收待切割极片图形数据的图形数据接收模块、用于根据极片的图形数据计算出激光运动轨迹数据的运动轨迹生成模块,所述执行单元用于接收运动轨迹数据并控制激光的反射位置。
如权利要求 4 所述的对电池极片进行激光切割的控制系统,其特征在于:所述执行单元包括命令处理模块、解析队列命令模块、发送数据模块和振镜,所述命令处理模块用于接收控制单元的控制命令,将其中的队列指令添加到命令队列缓存中;所述解析队列命令模块用于对命令队列缓存中的数据进行解析,以生成运动轨迹上的坐标点,并把坐标点数据输入到输出数据队列缓存中;所述发送数据模块用于将坐标点数据信息依次发送给振镜。
如权利要求 5 所述的对电池极片进行激光切割的控制系统,其特征在于:所述执行单元还包括进程管理模块。
PCT/CN2011/070257 2010-03-31 2011-01-14 一种对电池极片进行激光切割的控制方法及系统 WO2011120345A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011101091T DE112011101091T5 (de) 2010-03-31 2011-01-14 Steuerverfahren und -system zum Laserschneiden von Batterieplatten
JP2013501603A JP2013523452A (ja) 2010-03-31 2011-01-14 電池極片に対してレーザー切断を行う制御方法およびシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101405967A CN102205469A (zh) 2010-03-31 2010-03-31 一种对电池极片进行激光切割的控制方法及系统
CN201010140596.7 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011120345A1 true WO2011120345A1 (zh) 2011-10-06

Family

ID=44694692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070257 WO2011120345A1 (zh) 2010-03-31 2011-01-14 一种对电池极片进行激光切割的控制方法及系统

Country Status (4)

Country Link
JP (1) JP2013523452A (zh)
CN (1) CN102205469A (zh)
DE (2) DE112011101091T5 (zh)
WO (1) WO2011120345A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130146573A1 (en) * 2010-10-19 2013-06-13 Nissan Motor Co., Ltd. Laser cutting method
CN103947014A (zh) * 2011-10-24 2014-07-23 有限公司K-实验室 电极箔切割装置及方法
CN113798697A (zh) * 2021-09-29 2021-12-17 大族激光科技产业集团股份有限公司 分段激光切割方法
CN114384079A (zh) * 2022-01-20 2022-04-22 佛山市天劲新能源科技有限公司 锂电池极片毛刺检测分选系统及方法
CN114633035A (zh) * 2022-05-11 2022-06-17 东莞市盛雄激光先进装备股份有限公司 一种正极极片的制片方法、制片系统及正极极片
CN114799565A (zh) * 2022-05-18 2022-07-29 苏州仁和老河口汽车股份有限公司 一种铸铝件加工用激光切割机智能控制系统及方法
CN114914389A (zh) * 2022-03-31 2022-08-16 广东利元亨智能装备股份有限公司 一种极片裁切控制方法、系统、设备及存储介质
CN114986250A (zh) * 2022-05-23 2022-09-02 西门子(中国)有限公司 电池极片切割设备的步进控制方法以及步进控制系统
CN117102690A (zh) * 2023-07-31 2023-11-24 广东利元亨智能装备股份有限公司 极耳成型方法、模切机、切叠一体机及电子设备

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773613B (zh) * 2012-08-28 2015-02-25 江苏灵剑激光科技有限公司 激光切割数控系统
CN104385787B (zh) * 2014-11-28 2015-08-12 深圳市创鑫激光股份有限公司 一种激光打标机的控制方法及激光打标机
CN106541214A (zh) * 2016-09-30 2017-03-29 广东正业科技股份有限公司 一种激光切割设备及其切割控制方法和系统
CN108698172B (zh) * 2017-06-29 2021-01-12 深圳市大疆创新科技有限公司 电池极片的切割方法及设备
CN107672335B (zh) * 2017-09-28 2023-07-21 长沙八思量信息技术有限公司 激光标记方法、激光标记机及存储介质
CN108581245A (zh) * 2018-05-31 2018-09-28 深圳市海目星激光智能装备股份有限公司 一种应用于电芯极片的Mark孔切割方法
CN111266741A (zh) * 2018-11-19 2020-06-12 深圳市圭华智能科技有限公司 激光加工系统及激光加工方法
CN109967895B (zh) * 2019-03-18 2020-11-24 北京金橙子科技股份有限公司 一种极耳设计加工系统
CN109926736A (zh) * 2019-04-10 2019-06-25 英诺激光科技股份有限公司 一种利用高频纳秒光纤激光切割电池极片的装置及方法
CN109986219B (zh) * 2019-04-25 2021-10-08 大族激光科技产业集团股份有限公司 一种软包动力电池极耳切割设备
CN112192045A (zh) * 2020-10-10 2021-01-08 珠海兴业新材料科技有限公司 一种调光膜或其电极的激光切割方法
CN113695767B (zh) * 2021-10-29 2022-02-25 济南邦德激光股份有限公司 一种激光切割光斑控制系统及方法
WO2023124288A1 (zh) * 2021-12-30 2023-07-06 深圳市创客工场科技有限公司 桌面智能激光设备中的运动控制方法、装置和设备
CN114799552A (zh) * 2022-04-21 2022-07-29 南京睿芯峰电子科技有限公司 集成电路封装激光切筋方法、系统和装置
CN114976516A (zh) * 2022-05-31 2022-08-30 无锡先导智能装备股份有限公司 一种极耳成型方法、装置及系统
CN116160129A (zh) * 2023-04-25 2023-05-26 深圳吉阳智能科技有限公司 一种多激光极耳成型装置及工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116871A (ja) * 1993-10-22 1995-05-09 Fanuc Ltd レーザ加工装置
JP2008093685A (ja) * 2006-10-11 2008-04-24 Hitachi Ltd 燃料電池用電解質膜のレーザ切断装置
CN101318264A (zh) * 2008-07-07 2008-12-10 苏州德龙激光有限公司 用于晶圆切割的紫外激光加工设备的设计方法
CN101612691A (zh) * 2009-03-31 2009-12-30 深圳市吉阳自动化科技有限公司 极片切割方法
CN101633078A (zh) * 2009-06-04 2010-01-27 周金平 锂离子动力电池极片的切割方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155063A (ja) * 1992-11-25 1994-06-03 Mitsubishi Electric Corp レーザー切断方法
JPH09108863A (ja) * 1995-10-16 1997-04-28 Fanuc Ltd レーザ加工方式
JP3768730B2 (ja) * 1999-06-14 2006-04-19 松下電器産業株式会社 レーザ加工機およびその数値制御装置ならびにレーザ加工機の制御方法
JP2001176501A (ja) * 1999-12-16 2001-06-29 Sony Corp 非水電解質電池の製造方法
EP1690629B1 (en) * 2005-02-09 2013-01-23 Fanuc Corporation Laser processing system
JP5354646B2 (ja) * 2008-07-31 2013-11-27 Necエナジーデバイス株式会社 積層型二次電池およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116871A (ja) * 1993-10-22 1995-05-09 Fanuc Ltd レーザ加工装置
JP2008093685A (ja) * 2006-10-11 2008-04-24 Hitachi Ltd 燃料電池用電解質膜のレーザ切断装置
CN101318264A (zh) * 2008-07-07 2008-12-10 苏州德龙激光有限公司 用于晶圆切割的紫外激光加工设备的设计方法
CN101612691A (zh) * 2009-03-31 2009-12-30 深圳市吉阳自动化科技有限公司 极片切割方法
CN101633078A (zh) * 2009-06-04 2010-01-27 周金平 锂离子动力电池极片的切割方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168611B2 (en) * 2010-10-19 2015-10-27 Nissan Motor Co., Ltd. Laser cutting method
US20130146573A1 (en) * 2010-10-19 2013-06-13 Nissan Motor Co., Ltd. Laser cutting method
CN103947014A (zh) * 2011-10-24 2014-07-23 有限公司K-实验室 电极箔切割装置及方法
JP2014534077A (ja) * 2011-10-24 2014-12-18 ケーラボ エルティーディーK−Lab Ltd. 電極フォイル切断装置及び方法
CN113798697A (zh) * 2021-09-29 2021-12-17 大族激光科技产业集团股份有限公司 分段激光切割方法
CN114384079A (zh) * 2022-01-20 2022-04-22 佛山市天劲新能源科技有限公司 锂电池极片毛刺检测分选系统及方法
CN114384079B (zh) * 2022-01-20 2023-02-03 佛山市天劲新能源科技有限公司 锂电池极片毛刺检测分选系统及方法
CN114914389A (zh) * 2022-03-31 2022-08-16 广东利元亨智能装备股份有限公司 一种极片裁切控制方法、系统、设备及存储介质
CN114633035A (zh) * 2022-05-11 2022-06-17 东莞市盛雄激光先进装备股份有限公司 一种正极极片的制片方法、制片系统及正极极片
CN114799565A (zh) * 2022-05-18 2022-07-29 苏州仁和老河口汽车股份有限公司 一种铸铝件加工用激光切割机智能控制系统及方法
CN114799565B (zh) * 2022-05-18 2024-04-19 苏州仁和老河口汽车股份有限公司 一种铸铝件加工用激光切割机智能控制系统及方法
CN114986250A (zh) * 2022-05-23 2022-09-02 西门子(中国)有限公司 电池极片切割设备的步进控制方法以及步进控制系统
CN114986250B (zh) * 2022-05-23 2024-05-03 西门子(中国)有限公司 电池极片切割设备的步进控制方法以及步进控制系统
CN117102690A (zh) * 2023-07-31 2023-11-24 广东利元亨智能装备股份有限公司 极耳成型方法、模切机、切叠一体机及电子设备

Also Published As

Publication number Publication date
JP2013523452A (ja) 2013-06-17
CN102205469A (zh) 2011-10-05
DE202011110437U1 (de) 2014-01-30
DE112011101091T5 (de) 2013-04-11

Similar Documents

Publication Publication Date Title
WO2011120345A1 (zh) 一种对电池极片进行激光切割的控制方法及系统
EP3566822A1 (en) Robot joint space point-to-point movement trajectory planning method
Sun et al. A cooperative lane change model for connected and autonomous vehicles on two lanes highway by considering the traffic efficiency on both lanes
CN103522290A (zh) 基于现场总线的分布式机器人控制系统
CN112720472B (zh) 一种机器人轨迹规划方法、装置、存储介质及机器人
CN107942981B (zh) 舞台用多点伺服驱动的协同控制方法
KR20130130950A (ko) 차량 정지 제어 시스템 및 방법
US20210373530A1 (en) Synchronization control device, synchronization control system, synchronization control method, and simulation device
CN109079343A (zh) 极耳加工方法
CN108375979A (zh) 基于ros的自动导航机器人通用控制系统
Ali et al. Model predictive control with constraints for a nonlinear adaptive cruise control vehicle model in transition manoeuvres
CN114489067B (zh) 智能网联车辆队列协同驾驶模型预测控制方法
Liu et al. Dynamic motion planner with trajectory optimisation for automated highway lane‐changing driving
CN106826836A (zh) 一种智能工业机器人控制系统
Artigas et al. Time domain passivity control-based telepresence with time delay
CN116197919A (zh) 机器人控制系统及控制方法
CN110142757A (zh) 一种控制机器人运动的方法、装置及下位机
CN117055529A (zh) 汽车电子转向控制器测试平台
Wang et al. Multi-smart car control system design and research based on ZigBee
CN114489845B (zh) 调整任务想定的仿真方法、平台和电子设备
CN114578946B (zh) 一种非精确混合关键任务非抢占动态优先级能耗优化方法
Han et al. State-Constrained Optimal Solutions for Safe Eco-Approach and Departure at Signalized Intersections
CN115327929A (zh) 一种纸面石膏板高精度切断的控制优化方法
Lombard et al. V2V-Based memetic optimization for improving traffic efficiency on multi-lane roads
CN205091577U (zh) 一种基于物联网的机器人控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11761920

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013501603

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120111010915

Country of ref document: DE

Ref document number: 112011101091

Country of ref document: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A SENT 01.03.13)

122 Ep: pct application non-entry in european phase

Ref document number: 11761920

Country of ref document: EP

Kind code of ref document: A1