WO2011118404A1 - 給電装置 - Google Patents

給電装置 Download PDF

Info

Publication number
WO2011118404A1
WO2011118404A1 PCT/JP2011/055641 JP2011055641W WO2011118404A1 WO 2011118404 A1 WO2011118404 A1 WO 2011118404A1 JP 2011055641 W JP2011055641 W JP 2011055641W WO 2011118404 A1 WO2011118404 A1 WO 2011118404A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coils
primary
power
self
Prior art date
Application number
PCT/JP2011/055641
Other languages
English (en)
French (fr)
Inventor
天野 也寸志
真士 市川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/577,689 priority Critical patent/US20130009462A1/en
Priority to EP11759211A priority patent/EP2551991A1/en
Priority to CN2011800152456A priority patent/CN102835002A/zh
Publication of WO2011118404A1 publication Critical patent/WO2011118404A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • B60M7/003Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/36Single contact pieces along the line for power supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a power feeding device that includes a plurality of primary coils provided in a first part and a plurality of secondary coils provided in a second part, and supplies power from the primary coil to the secondary coil.
  • a hybrid vehicle includes a traveling motor and an engine, and uses at least one of the traveling motor and the engine as a drive source for the vehicle.
  • a mobile power feeding device that wirelessly feeds power from a primary coil provided on the fixed side to a secondary coil provided on the vehicle, which is a moving body, can be used to wirelessly power the vehicle from an external power source. It is considered to transmit power and charge a battery.
  • the charging system includes an electric vehicle and a power feeding device.
  • the electric vehicle is configured to be electromagnetically coupled to the primary resonance coil of the power feeding device by the resonance of the electromagnetic field, to receive high-frequency power from the primary resonance coil, and to be able to receive power from the secondary resonance coil by electromagnetic induction.
  • Secondary coil, a rectifier, and a power storage device The rectifier rectifies the power received by the secondary coil, and the power storage device stores the power rectified by the rectifier.
  • one or both of the secondary resonance coil and the secondary coil are set as a plurality of sets on the vehicle side, or one or both of the primary resonance coil and the primary coil are set as a set on the power feeding device side. It is described that.
  • Patent Document 2 describes a non-contact power feeding device including a large number of power supply modules provided in a moving path of a moving body and a large number of power receiving modules provided in the moving body.
  • the power supply module has a power supply circuit integrated with a power supply coil.
  • the power receiving circuit is integrated with the power receiving coil.
  • the alternating current from the alternating current power source is converted into a high frequency sine wave by the power supply module, and is supplied to each power supply coil to generate a high frequency magnetic field.
  • the power receiving coil provided on the moving body is close to the power feeding coil, the power receiving coil receives the induced electromotive force generated between the power feeding coils, and the received power is rectified and then moved. It is supposed to be supplied to a load such as an electric motor that drives the body.
  • charging from the power source outside the vehicle to the in-vehicle power storage device can be performed by power transmission using the resonance method, which is wireless power transmission.
  • the resonance method which is wireless power transmission.
  • Providing a plurality of coils and a plurality of secondary resonance coils on the moving body side is not described.
  • power is transmitted from a power supply device outside the vehicle to an in-vehicle power storage device while the vehicle is traveling, power is received from a plurality of primary resonance coils by a plurality of secondary resonance coils, and power is transmitted or received per individual coil.
  • the loss may increase due to copper loss or the like.
  • the electromagnetic field is the same as above. There is a need to increase transmission efficiency when performing power transmission and reception using resonance.
  • An object of the present invention is to increase transmission efficiency even in the case of performing power transmission / reception using electromagnetic resonance using a plurality of primary coils and a plurality of secondary coils in a power feeding device.
  • a power supply apparatus is a power supply apparatus that includes a plurality of primary coils provided in a first part and a plurality of secondary coils provided in a second part, and supplies power from the primary coil to the secondary coil.
  • the primary coils have different resonance frequencies with respect to adjacent primary coils, and the secondary coils have different resonance frequencies with respect to adjacent secondary coils. It is a power feeding device.
  • the first portion provided with the plurality of primary coils is a fixed side, and is used for power supply to the moving body which is the second portion provided with the plurality of secondary coils.
  • the plurality of primary coils include at least one first primary coil and at least one second primary coil having different resonance frequencies, and the first primary coil and the second primary coil are alternately arranged with respect to the moving direction of the moving body.
  • the plurality of secondary coils include at least one first secondary coil and at least one second secondary coil having resonance frequencies different from each other, and the first secondary coil and the second secondary coil Are alternately arranged with respect to the moving direction of the moving body.
  • the first portion provided with the plurality of primary coils is a fixed side, and is used for power supply to the moving body which is the second portion provided with the plurality of secondary coils.
  • the plurality of secondary coils are arranged in a line along the moving direction of the moving body, and the plurality of primary coils are arranged in a line so as to face the plurality of secondary coils in the vertical direction as the moving body moves. Is arranged.
  • the first portion provided with the plurality of primary coils is a fixed side, and is used for power supply to the moving body which is the second portion provided with the plurality of secondary coils.
  • the plurality of secondary coils are arranged in a plurality of rows along the moving direction of the moving body, and the plurality of primary coils are vertically moved to the corresponding row of the plurality of secondary coils as the moving body moves. Are arranged in a plurality of rows so as to face each other.
  • each primary coil has a resonance with each other by making one or more of the radius, the axial length, and the number of turns different from each other with respect to the adjacent primary coil.
  • the frequencies of the secondary coils are different, and each secondary coil has a different resonance frequency by making any one or more of the radius, axial length, and number of turns different from each other. ing.
  • the power supply device includes a capacitor connected to each of one or both of the plurality of primary coils and the secondary coils, and each of one or both of the plurality of primary coils and the secondary coils is provided.
  • the resonance frequencies of the adjacent primary coils or adjacent secondary coils are made different by making the capacitances of the capacitors connected to the primary coils or the adjacent secondary coils different.
  • transmission efficiency can be increased even when power is transmitted and received using electromagnetic resonance using a plurality of primary coils and a plurality of secondary coils.
  • FIG. 1 is an overall configuration diagram illustrating a vehicle charging system that is a power supply apparatus according to a first embodiment of the present invention.
  • FIG. 1 it is a figure which shows the circuit for charging an electrical storage part from the secondary electrical storage side coil, and driving a motor by an electrical storage part.
  • 1st Embodiment it is a schematic diagram which shows a mode that the primary self-resonance coil on the road side and the secondary self-resonance coil on the vehicle side face each other.
  • a 1st embodiment it is a perspective view showing two kinds of primary self-resonance coils or secondary self-resonance coils which are mutually adjacent.
  • FIG. 6 is a diagram illustrating an example of a simulation result of a relationship between transmission efficiency and frequency when electric power is transmitted from one primary coil to itself and another coil at the arrangement position of FIG. 5. It is a schematic diagram which shows a mode that the primary coil and the secondary coil were each provided only 1 and the primary coil and the secondary coil were made to oppose. It is a figure which shows an example of the simulation result of the relationship between the transmission efficiency and frequency in case electric power is transmitted from the primary coil to self and another coil in the arrangement position of FIG.
  • FIG. 10 is a diagram illustrating a simulation result of a relationship between transmission efficiency and frequency when power is transmitted from one primary coil to itself and another coil in the arrangement configuration of FIG. 9.
  • FIG. 10 is a diagram illustrating a simulation result of a relationship between transmission efficiency and frequency when electric power is transmitted from another primary coil to itself and another coil in the arrangement configuration of FIG. 9.
  • 1st Embodiment it is a perspective view which shows the 1st example of another example of two types of primary self-resonance coils or secondary self-resonance coils which adjoin each other.
  • 1st Embodiment it is a perspective view which shows the 2nd example of another example of two types of primary self-resonance coils or secondary self-resonance coils which adjoin each other.
  • 1st Embodiment it is a perspective view which shows the 3rd example of another example of two types of primary self-resonant coils or secondary self-resonant coils which adjoin each other.
  • 2nd Embodiment which concerns on this invention, it is a schematic perspective view which shows a mode that a primary self-resonance coil and a secondary self-resonance coil oppose.
  • 2nd Embodiment it is the schematic which looked at the arrangement configuration of the primary self-resonance coil and the secondary self-resonance coil when a vehicle moves on a road from the top to the bottom.
  • a vehicle charging system that is a power feeding device of the present embodiment and is a mobile power feeding device is a first part, and is provided with a primary self-resonance provided on a road 10 side that is a fixed side.
  • a coil group 12 and a secondary self-resonant coil group 16 provided in a vehicle 14 that is a second part and a moving body are provided, and power is supplied from the primary self-resonant coil group 12 to the secondary self-resonant coil group 16.
  • the vehicle charging system is used for supplying power to the vehicle 14.
  • the vehicle charging system includes a power feeding device 18 and a vehicle 14 that is an electric vehicle.
  • the power feeding device 18 includes an AC power supply 28, a plurality of primary power supply side coils 30, a primary self-resonant coil group 12, a primary controller as a control unit (not shown), and a changeover switch (not shown).
  • the primary self-resonant coil group 12 includes a plurality of first primary self-resonant coils 20 and second primary self-resonant coils 22 each being a primary coil.
  • the AC power supply 28 is an external power supply, for example, a system power supply.
  • the AC power supply 28 and each primary power supply side coil 30 are connected via a high frequency power driver 32.
  • the changeover switch is provided in common for each high frequency power driver 32 between the AC power supply 28 and the plurality of high frequency power drivers 32.
  • the primary-side controller controls switching of connection disconnection of the changeover switch.
  • the AC power is supplied from the AC power supply 28 to each high frequency power driver 32 by the connection of the changeover switch.
  • the high frequency power driver 32 outputs power obtained by frequency-converting power output from the AC power supply 28 to the primary power supply side coil 30.
  • the primary power supply side coil 30 is configured to transmit power to the corresponding primary self-resonant coil 20 (or 22) by electromagnetic induction.
  • the primary power supply side coil 30 is arranged coaxially with the corresponding primary self-resonant coil 20 (or 22).
  • the primary power supply side coil 30 outputs the electric power from the AC power supply 28 to the corresponding primary self-resonant coil 20 (or 22).
  • each primary self-resonant coil 20, 22 is placed on a straight road that is a charging-dedicated section of the road 10 in a straight direction that is the moving direction of the vehicle 14 (FIG. 1).
  • the first primary self-resonant coils 20 and the second primary self-resonant coils 22 are arranged alternately and in a line.
  • the plurality of primary self-resonant coils 20 and 22 are arranged so that the distance between the central axes thereof is the same, such as one line on a straight line, so that the axial direction is directed in the vertical direction.
  • the first primary self-resonant coil 20 and the second primary self-resonant coil 22 have different resonance frequencies as will be described in detail later.
  • the primary power supply side coil 30 is disposed in the vicinity of the ground of the straight road of the road 10 so as to be substantially opposed to each other below the primary self-resonant coil 20 (or 22).
  • the primary self-resonant coils 20 and 22 are non-connected LC resonant coils whose both ends are open.
  • the high-frequency power driver 32 can transmit the power output from the AC power supply 28 from the corresponding primary self-resonant coil 20 (or 22) to the corresponding secondary self-resonant coil 24 (or 26) on the vehicle 14 side. It converts into high frequency electric power, and supplies the converted high frequency electric power to the corresponding primary power supply side coil 30.
  • the vehicle 14 is, for example, a hybrid vehicle that uses at least one of an engine (not shown) and a travel motor 34 as a main drive source, or an electric vehicle that is an electric vehicle that uses the travel motor 34 as a main drive source.
  • the vehicle 14 includes a secondary self-resonant coil group 16 disposed near the floor, a plurality of secondary power storage coils 36, a rectifier 38, a power storage unit 40, a drive unit 41 including an inverter circuit, and a control unit. And a secondary motor 42 (FIG. 2) and a traveling motor 44.
  • the secondary self-resonant coil group 16 includes a plurality of first secondary self-resonant coils 24 and second secondary self-resonant coils 26 each being a secondary coil. Further, the plurality of secondary power storage side coils 36 are arranged to face the plurality of secondary self-resonant coils 24, 26 in the vertical direction. The rectifiers 38 are connected to the secondary power storage side coils 36, respectively.
  • the secondary self-resonant coils 24 and 26 are LC resonant coils whose both ends are open.
  • the plurality of secondary self-resonant coils 24 and 26 are arranged, for example, so as to be aligned in the front-rear direction of the vehicle 14 so that the axial direction is directed in the vertical direction.
  • FIG. 3 in the vehicle 14 (FIG. 1), the first secondary self-resonant coil 24 and the second secondary self are arranged in the front-rear direction (the left-right direction in FIG. 1), which is the moving direction of the vehicle 14.
  • the resonance coils 26 are arranged alternately and in a line.
  • the primary self-resonant coils 20 and 22 arranged on the road 10 side are arranged in a row so as to face the secondary self-resonant coils 24 and 26 in the vertical direction as the vehicle 14 moves. Yes. Further, the first secondary self-resonant coil 24 and the second secondary self-resonant coil 26 have different resonance frequencies as will be described in detail later.
  • the secondary self-resonant coils 24 and 26 are electromagnetically coupled to the primary self-resonant coils 20 and 22 on the road 10 side by electromagnetic field resonance, and are configured to receive power from the primary self-resonant coils 20 and 22.
  • Secondary self-resonant coils 24 and 26 are the voltage of power storage unit 40 (FIGS. 1 and 2), the distance between primary self-resonant coils 20 and 22 and secondary self-resonant coils 24 and 26, and primary self-resonant coil 20.
  • a value (Q value) representing the sharpness of resonance of the primary self-resonant coils 20, 22 and the secondary self-resonant coils 24, 26 The number of turns is set so that the value indicating the degree of coupling and the like are large.
  • the secondary power storage side coil 36 is configured to receive power from the secondary self-resonant coils 24 and 26 (FIG. 1) by electromagnetic induction, and preferably the corresponding secondary self-resonant coil 24. , 26 and the same axis.
  • the secondary power storage side coil 36 outputs the power received from the secondary self-resonant coils 24, 26 to the rectifier 38.
  • the rectifier 38 rectifies high-frequency AC power received from the secondary power storage side coil 36 into DC power and outputs the DC power to the power storage unit 40.
  • an AC / DC converter that converts high-frequency AC power received from the secondary power storage side coil 36 into DC power supplied to the power storage unit 40 can also be used.
  • the power storage unit 40 is a DC power source that can be charged and discharged, and is constituted by a secondary battery such as a lithium ion battery or a nickel metal hydride battery. In addition to storing the power supplied from the rectifier 38, the power storage unit 40 also has a function of storing the power generated by the traveling motor 44 along with the braking of the wheels. The power storage unit 40 can supply power to the secondary controller 42. A large-capacity capacitor can also be used as the power storage unit 40.
  • the driving unit 41 converts the electric power supplied from the power storage unit 40 into an AC voltage and outputs the AC voltage to the traveling motor 44 to drive the traveling motor 44.
  • the drive unit 41 rectifies the electric power generated by the traveling motor 44 into direct-current power and outputs it to the power storage unit 40 to charge the power storage unit 40.
  • the traveling motor 44 is supplied with electric power from the power storage unit 40 via the driving unit 41, generates vehicle driving force, and outputs the generated driving force to the wheels.
  • a rectifier 38 connected to the secondary power storage side coil 36 is connected to the power storage unit 40 via the first switch 46, and the positive and negative sides of the power storage unit 40 and the drive unit are connected.
  • a second switch 48 is provided between the first switch 41 and the second switch 48.
  • the secondary controller 42 connects one of the first switch 46 and the second switch 48 and shuts off the other based on the operation of the operation unit such as a switch by the driver, so that the traveling motor 44 is disconnected. By supplying electric power, it is possible to switch between driving the traveling motor 44 or charging the power storage unit 40 from the AC power supply 28 (FIG. 1).
  • the resonance frequencies of the first primary self-resonant coil 20 and the second primary self-resonant coil 22 which are adjacent to each other are made different. Therefore, each of the plurality of primary self-resonant coils 20 and 22 has a resonance frequency different from that of the adjacent primary self-resonant coil 20 (or 22). Therefore, as shown in FIG. 4, the radii R20 and R22 are different between the adjacent first primary self-resonant coil 20 and second primary self-resonant coil 22. That is, as shown in FIG. 3, the primary self-resonant coil groups 12 are arranged at intervals of the same first radius R20 along the moving direction of the vehicle 14 (FIG. 1) (the arrow direction in FIG. 3).
  • the first primary self-resonant coil and the second primary self-resonant coil that are adjacent to each other have different resonance frequencies. Therefore, the resonance frequencies of the plurality of primary self-resonant coils 20 and 22 are alternately changed with respect to the moving direction of the vehicle 14. Further, the first primary self-resonant coil 20 and the second primary self-resonant coil 22 have the same other shapes such as the axial length except for the radius.
  • the plurality of secondary self-resonant coils 24 and 26 have mutual resonance frequencies with respect to the secondary self-resonant coil 24 (or 26) adjacent in the front-rear direction (arrow direction in FIG. 3) of the vehicle 14 (FIG. 1). Is different. Therefore, as shown in FIG. 4, the radii R24 and R26 are made different between the first secondary self-resonant coil 24 and the second secondary self-resonant coil 26 adjacent to each other. In other words, the secondary self-resonant coil group 16 (FIG.
  • first secondary self-resonant coil 24 includes the first secondary self-resonant coils 24 having the same first radius R24 arranged alternately along the moving direction of the vehicle 14, A second secondary self-resonant coil 26 disposed between the first secondary self-resonant coils 24 and having a second radius R26 different from the first radius R24. Accordingly, the resonance frequencies of the plurality of secondary self-resonant coils 24 and 26 alternately change with respect to the moving direction of the vehicle 14. Further, the first secondary self-resonant coil 24 and the second secondary self-resonant coil 26 have the same other shapes such as the axial length except for the radius.
  • the resonance frequency of the first secondary self-resonant coil 24 is matched with the resonance frequency of the first primary self-resonant coil 20, and the resonance frequency of the second secondary self-resonant coil 26 is the same as that of the second primary self-resonant coil 22.
  • the resonance frequency is matched.
  • the interval between the centers of the adjacent secondary self-resonant coils 24 and 26 and the interval between the centers of the adjacent primary self-resonant coils 20 and 22 are set to at least a part of the plurality of primary self-resonant coils 20 and 22. Corresponding parts or parts corresponding to all are the same.
  • the high-frequency power driver 32 provided between the AC power supply 28 and the primary power supply side coil 30 shown in FIG.
  • first primary self-resonant coil 20 is set to 2 according to the two types of the first primary self-resonant coil 20 and the second primary self-resonant coil 22. It is also possible to connect each of the two high-frequency power drivers 32 to a plurality of primary power supply side coils 30 that output the corresponding power of the same frequency.
  • the first primary self-resonant coil 20, the second primary self-resonant coil 22, the first secondary self-resonant coil 24, and the second secondary self-resonant coil 26 can each be one or more.
  • the method of transmitting power from the road 10 side to the vehicle 14 is performed as follows.
  • the frequency-converted electric power is supplied from the AC power supply 28 to all the primary power supply side coils 30 via the high frequency power driver 32, and the primary self-resonant coils 20 and 22 corresponding to each other by electromagnetic induction from the primary power supply side coil 30. Transmit power.
  • electric power is transmitted from the primary self-resonant coils 20 and 22 to the secondary self-resonant coils 24 and 26 on the vehicle 14 side by electromagnetic field resonance, and the secondary power-resonance side coil is transmitted from the secondary self-resonant coils 24 and 26 by electromagnetic induction.
  • Power is transmitted to 36. From the secondary power storage side coil 36, a current rectified to a direct current by a rectifier 38 is sent to the power storage unit 40, and the power storage unit 40 is charged.
  • the present embodiment it is possible to easily set the frequency of the electric power to be transmitted even when the vehicle 14 as a moving body moves. Further, even when power is transmitted / received using electromagnetic resonance using a plurality of primary self-resonant coils 20 and 22 and a plurality of secondary self-resonant coils 24 and 26, transmission efficiency can be increased. That is, when the number of coils used for power transmission / reception is increased as in the present embodiment, the power transmitted per individual coil can be reduced, so that the current flowing through each coil can be reduced. For this reason, copper loss can be reduced and transmission efficiency can be increased.
  • the transmission efficiency is deteriorated in the non-contact power transmission by the resonance method using electromagnetic resonance.
  • the distance between adjacent coils on the power transmission side and the power reception side are adjacent to each other. If the distance between the coils is short, the transmission efficiency may deteriorate.
  • FIG. 5 shows a comparative example that is out of the scope of the present invention, in which primary coils C1 and C2 having the same resonance frequency 2 and secondary coils C3 and C4 having the same resonance frequency 2 are arranged. It is a schematic diagram which shows a mode that C1, C2 and the secondary coils C3, C4 were made to oppose.
  • FIG. 6 is a diagram illustrating an example of a calculation result of a relationship between transmission efficiency and frequency when power is transmitted from the primary coil C1 to the self and another coil at the arrangement position of FIG.
  • AC power converted from an AC power source by a high-frequency driver is converted from two primary power source side coils 30 to primary coils C1, which are two primary self-resonant coils facing each other. Transmission to C2 is possible by electromagnetic induction. Further, the AC power transmitted from the primary coils C1 and C2 to the secondary coils C3 and C4, which are the two secondary self-resonant coils, is supplied to the two secondary power storage sides facing the secondary coils C3 and C4. Transmission to the coil 36 is possible by electromagnetic induction.
  • the radius R of each of the coils C1 to C4 is determined (for example, 30 cm), and the distances d between the adjacent primary coils C1 and C2 and between the adjacent secondary coils C3 and C4 are set. Determination (for example, 10 cm) Calculation for obtaining the relationship between transmission efficiency and frequency when power is transmitted from one primary coil C1 to one primary coil C1 itself and another coil C2 to C4, that is, a simulation was performed. .
  • the shapes of the coils C1 to C4 are all the same including the axial length and the number of turns.
  • FIG. 6 shows the simulation result.
  • the broken line S11 represents the transmission efficiency of the electric power returning from one primary coil C1 to one primary coil C1 itself, and another alternate primary coil adjacent to one primary coil C1 is represented by a one-dot chain line S21. It represents the transmission efficiency of the power transmitted to C2.
  • the two-dot chain line S31 represents the transmission efficiency of power transmitted from one primary coil C1 to one primary coil C1 and one secondary coil C3 that is axially opposed to the first primary coil C1, and the solid line S41 represents the first primary
  • the transmission efficiency of the electric power transmitted from the coil C1 to the other primary coil C2 and the other secondary coil C4 facing the axial direction is shown.
  • the simulation result for obtaining the relationship between the transmission efficiency and the frequency when power is transmitted from another primary coil C2 to another primary coil C2 itself and to other coils C1, C3, and C4 is also the same as the result of FIG. Became.
  • the broken line S11 is S22, which is the transmission efficiency of power returning from another primary coil C2 to another primary coil C2 itself, and the alternate long and short dash line S21 is adjacent to another primary coil C2.
  • S12 which is the transmission efficiency of the power transmitted to the primary coil C1.
  • the two-dot chain line S31 is S42, which is the transmission efficiency of power transmitted from another primary coil C2 to another secondary coil C4 that is axially opposed to the other primary coil C2
  • the solid line S41 is another S32 is the transmission efficiency of power transmitted from the primary coil C2 to the one primary coil C1 and the one secondary coil C3 facing the axial direction.
  • the transmission efficiency of the transmitted power from another primary coil C2 on the power supply side to each of the secondary coils C3 and C4 that are receiving coils is the resonance frequency point with the highest transmission efficiency, and each secondary coil
  • the transmission efficiency is about 95% when only one coil on each of the power transmission side and the power reception side is arranged and power is transmitted from one coil on the power transmission side to one coil on the power reception side.
  • the transmission efficiency from each coil on the power transmission side is considerably deteriorated.
  • transmission efficiency S21 from one primary coil C1 to another primary coil C2 and transmission efficiency S12 from another primary coil C2 to one primary coil C1 are 5 respectively. % May occur. That is, the coils C1 and C2 on the power transmission side may resonate and power may be transmitted between the coils C1 and C2 on the power transmission side. For this reason, the present inventor improved efficiency in the case of a conventional configuration in which even if a plurality of coils C1, C2 (or C3, C4) having the same resonance frequency are arranged on the power transmission side and the power reception side, respectively I thought it was not always possible.
  • FIG. 7 is a schematic diagram showing a state in which only one primary coil and secondary coil are provided and the primary coil and the secondary coil are opposed to each other.
  • FIG. 8 is a diagram showing an example of a simulation result of the relationship between transmission efficiency and frequency when power is transmitted from the primary coil to itself and another coil at the arrangement position of FIG.
  • FIG. 7 is the same as FIG. 5 except that only one primary coil C1a, which is the primary self-resonant coil, and secondary coil C3a, which is the secondary self-resonant coil, are arranged.
  • FIG. 8 shows the result of calculation for obtaining the relationship between transmission efficiency and frequency when electric power is transmitted from the primary coil C1a to the primary coil C1a itself and the secondary coil C3a, that is, the result of simulation.
  • the broken line S11a represents the transmission efficiency of power returning from the primary coil C1a to the primary coil C1a itself
  • the solid line S31a represents the transmission efficiency of power transmitted from the primary coil C1a to the secondary coil C3a. Represents.
  • one coil C1a on the power transmission side and one coil C3a on the power reception side each transmit power from one power transmission coil C1a to one power reception coil C3a.
  • the transmission efficiency is about 95% at each resonance point.
  • each primary self-resonant coil 20, 22 has a mutual resonance frequency relative to the adjacent primary self-resonant coils 20, 22.
  • the secondary self-resonant coils 24 and 26 have different resonance frequencies from each other with respect to the adjacent secondary self-resonant coils 24 and 26.
  • each set resonates at a different frequency between adjacent sets, with a plurality of sets constituted by one primary self-resonant coil and one secondary self-resonant coil facing each other substantially in the axial direction, Moreover, power can be transmitted with high efficiency.
  • the power transmission efficiency from the primary self-resonant coil 20 (or 22) to the secondary self-resonant coil 24 (or 26) can be as high as about 95%.
  • FIG. 9 is a schematic diagram showing the configuration used for the simulation performed to confirm the effect of the present embodiment.
  • two primary coils having different resonance frequencies and two secondary coils having different resonance frequencies are arranged, and the primary coil and the secondary coil are opposed to each other.
  • FIG. 10 assumes that in the coil configuration of FIG. 9, two sets each composed of a primary coil and a secondary coil that face each other in the axial direction are greatly separated from each other, that is, independently exist. It is a figure which shows an example of the simulation result of the relationship between the transmission efficiency and frequency when electric power is transmitted from the primary coil to the self and the opposing secondary coil.
  • the primary coils C5 and C6, which are the primary self-resonant coils have different resonance frequencies by making their shapes, that is, radii R5 and R6 different.
  • the two secondary coils C7 and C8, which are secondary self-resonant coils have different resonance frequencies by different shapes, that is, radii R7 and R8.
  • Other configurations are the same as those in the case of FIG. In FIG. 10, the relationship between the transmission efficiency and the frequency when it is assumed that power is transmitted from the primary coils C5 and C6 only to the primary coils C5 and C6 itself and the secondary coils C7 and C8 facing directly in the axial direction. The result of the calculation to be obtained, that is, the simulation is shown.
  • the broken line S55 represents the transmission efficiency of power returning from the primary coil C5 to the primary coil C5 itself
  • the dashed-dotted line S75 represents the primary coil C5 to the primary coil C5.
  • the transmission efficiency of the electric power transmitted to one secondary coil C7 that is directly opposed in the axial direction.
  • the transmission efficiency of the electric power which returns to another primary coil C6 itself from another primary coil C6 is represented by the dashed-two dotted line S66, and another primary coil C6 and axis
  • each of the plurality of sets formed by the primary coil C5 (or C6) and the secondary coil C7 (or C8) facing each other in the axial direction in each set resonates at a different frequency.
  • power can be transmitted with an efficiency of about 95%.
  • FIG. 11 shows an example of a simulation result obtained for the frequency.
  • FIG. 12 shows an example of a simulation result for obtaining the efficiency and frequency when power is transmitted from another primary coil C6 to itself or another coil.
  • the transmission efficiency of power returning from one primary coil C5 to one primary coil C5 itself is represented by a two-dot chain line S55, and another primary coil C6 adjacent to one primary coil C5 is represented by a solid line S65. Represents the transmission efficiency of the power transmitted to.
  • the transmission efficiency of power transmitted from one primary coil C5 to one primary coil C5 and one secondary coil C7 facing in the axial direction from one primary coil C5 is represented by a one-dot chain line S75, and one primary coil is represented by a broken line S85.
  • the transmission efficiency of the electric power transmitted from C5 to another primary coil C6 and another secondary coil C8 facing in the axial direction is shown.
  • the transmission efficiency of power returning from another primary coil C6 to another primary coil C6 itself is represented by a two-dot chain line S66, and the primary one adjacent from another primary coil C6 is represented by a solid line S56. It represents the transmission efficiency of the power transmitted to the coil C5.
  • the broken line S76 represents the transmission efficiency of power transmitted from another primary coil C6 to one secondary coil C7 that is axially opposed to the primary coil C5, and the alternate long and short dash line S86 represents another primary coil.
  • the transmission efficiency of power transmitted from C6 to another primary coil C6 and another secondary coil C8 facing in the axial direction is shown.
  • electromagnetic resonance is used by using a plurality of primary self-resonant coils 20 and 22 and a plurality of secondary self-resonant coils 24 and 26. Even in the case of transmitting / receiving the generated power, the transmission efficiency can be increased at the resonance point of each of the coils 20, 22, 24, 26. 11 and 12, it can be seen that there are two resonance frequencies when power is transmitted from the respective primary self-resonant coils 20 and 22 to the secondary self-resonant coils 24 and 26 facing each other. Any one can be set as the frequency on the power supply side.
  • adjacent primary self-resonant coils 20 and 22 have a plurality of primary self-resonant coils 20 and 22 which are adjacent to each other in order to have different resonance frequencies.
  • the diameters of the second primary self-resonant coils 22 are different.
  • the first secondary self-resonant coil 24 and the second second The diameters of the next self-resonant coils 26 are different.
  • the present embodiment is not limited to such a configuration, and as shown in FIG. 13A, adjacent primary self-resonant coils 20 and 22 (or adjacent secondary self-resonant coils 24 and 26).
  • the resonance frequency can be varied by varying the axial length.
  • the adjacent primary self-resonant coils 20, 22 have different resonance frequencies by changing the number of turns, that is, the number of turns. It can also be made.
  • the adjacent primary self-resonant coils 20 and 22 have different axial lengths, but the axial lengths are the same. Of course, the number of turns can be varied.
  • variable capacitors 50 and 52 are connected to one or both of the plurality of primary self-resonant coils 20 and 22 and the plurality of secondary self-resonant coils 24 and 26, and adjacent primary self-resonant coils.
  • the mutual resonant frequencies can be made different by changing the capacitances of the variable capacitors 50 and 52 connected to each other between the 20 and 22 (or adjacent secondary self-resonant coils 24 and 26).
  • the primary self-resonant coils 20 and 22 and the secondary self-resonant coils 24 and 26 are configured so that the resonance frequencies of the adjacent coils 20, 22, 24, and 26 are different between the power supply side and the vehicle side. May be different.
  • the diameters of the adjacent primary self-resonant coils 20 and 22 are made different from each other in order to make the resonance frequencies different from each other, and the lengths of the adjacent secondary self-resonant coils 24 and 26 are made to have different axial lengths. It may be allowed.
  • FIG. 14 is a schematic perspective view showing a state in which the primary self-resonant coil and the secondary self-resonant coil face each other in the second embodiment according to the present invention.
  • FIG. 15 is a schematic view of the arrangement configuration of the primary self-resonant coil and the secondary self-resonant coil when the vehicle moves on a road in the second embodiment, as viewed from above. 14 and 15, the coil having the first resonance frequency is represented by a solid line, and the plurality of coils having a second resonance frequency different from the first resonance frequency are represented by a broken line.
  • the plurality of secondary self-resonant coils 24 and 26 and the secondary power storage side coil 36 are front and rear in the moving direction of the vehicle 14. They are arranged in a plurality of rows (two rows in the example shown) along the direction (left-right direction in FIG. 15).
  • the plurality of primary self-resonant coils 20 and 22 and the primary power supply side coil 30 are arranged in rows corresponding to the plurality of secondary self-resonant coils 24 and 26 as the vehicle 14 moves. They are arranged in a plurality of rows (two rows in the illustrated example) so as to be able to face each other (vertical direction in FIG. 14, front and back direction in FIG. 15).
  • a plurality of primary self-resonant coils 20 and 22 are arranged on the road 10 side in a plurality of rows, for example, two rows along the linear direction (the left-right direction in FIG. 15) that is the moving direction of the vehicle 14. ing. Further, the plurality of primary self-resonant coils 20 and 22 are primary adjacent to each other in the linear direction and adjacent to each other in the lateral direction (vertical direction in FIG. 15) perpendicular to the linear direction. The self-resonant coils 20 and 22 have different resonance frequencies.
  • first primary self-resonant coil 20 having the first resonance frequency and the second primary self-resonance coil 22 having the second resonance frequency are alternately arranged in each line in the linear direction, and the first primary The self-resonant coil 20 and the second primary self-resonant coil 22 are opposed in the lateral direction.
  • a plurality of secondary self-resonant coils 24 and 26 are arranged on the vehicle 14 side in a plurality of rows, for example, two rows along the front-rear direction (the left-right direction in FIG. 15) which is the moving direction of the vehicle 14. Further, the plurality of secondary self-resonant coils 24, 26 are arranged in the width direction of the vehicle 14 perpendicular to the front-rear direction (the up-down direction in FIG. 15). The secondary self-resonant coils 24 and 26 adjacent to each other) have different resonance frequencies.
  • first secondary self-resonant coil 24 and the second secondary self-resonant coil 26 having different resonance frequencies are alternately arranged in the front-rear direction of the vehicle 14 in each row, and the first secondary self-resonant coil 24 and the second secondary self-resonant coil 26 are arranged so as to face each other in the width direction of the vehicle 14.
  • At least a plurality of intervals between the centers of the secondary self-resonant coils 24 and 26 adjacent in the front-rear direction of the vehicle 14 and intervals between the centers of the primary self-resonant coils 20 and 22 adjacent in the linear direction of the road 10 are provided.
  • the portions corresponding to a part of the primary self-resonant coils 20 and 22 or the portions corresponding to all of the primary self-resonant coils 20 and 22 are the same.
  • the distance between the centers of the secondary self-resonant coils 24 and 26 adjacent in the width direction of the vehicle 14 and the distance between the centers of the primary self-resonant coils 20 and 22 adjacent in the lateral direction of the road 10 are made the same. Yes.
  • the plurality of primary power supply side coils 30 are arranged opposite to the plurality of primary self-resonant coils 20 and 22, and the plurality of secondary power storage side coils 36 (see FIG. 1) are arranged in the plurality of secondary self-resonance coils.
  • the resonance coils 24 and 26 are disposed opposite to each other.
  • the frequency-converted power from the AC power source 28 to all the primary power source side coils 30 via the high frequency power driver 32 is supplied. Then, power is transmitted from the primary power supply side coil 30 to the corresponding primary self-resonant coils 20 and 22 by electromagnetic induction. Further, electric power is transmitted from the primary self-resonant coils 20 and 22 to the secondary self-resonant coils 24 and 26 on the vehicle 14 side by electromagnetic field resonance, and the secondary power-resonance side coil is transmitted from the secondary self-resonant coils 24 and 26 by electromagnetic induction. Power is transmitted to 36.
  • the power supply apparatus is not limited to the mobile power supply apparatus.
  • transmission efficiency can be increased when power transmission / reception using electromagnetic resonance is performed as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 車両充電システムは、道路(10)側に設けられた複数の一次自己共振コイル(20,22)と、車両(14)に設けられた複数の二次自己共振コイル(24,26)とを含み、一次自己共振コイル(20,22)から二次自己共振コイル(24,26)へ給電する。それぞれの一次自己共振コイル(20,22)は、隣り合う一次自己共振コイル(20,22)に対し互いの共振周波数を異ならせる。それぞれの二次自己共振コイル(24,26)は、隣り合う二次自己共振コイル(24,26)に対し互いの共振周波数を異ならせる。

Description

給電装置
 本発明は、第1部分に設けられた複数の一次コイルと、第2部分に設けられた複数の二次コイルとを備え、一次コイルから二次コイルへ給電する給電装置に関する。
 従来から、電気自動車やハイブリッド車両等の電動車両において、車輪を駆動する走行用モータをバッテリから供給される電力により駆動することが考えられている。例えば、ハイブリッド車両は、走行用モータとエンジンとを搭載し、走行用モータとエンジンとの少なくとも一方を車両の駆動源として使用する。
 このような電動車両では、バッテリの充電電力がなくなると、エンジンにより発電機を駆動し、発電機により発電した電力をバッテリに供給し、充電したり、古いバッテリを新しいバッテリに交換したり、外部交流電源から供給される交流電力を直流電力に変換後、バッテリに供給し、充電することが考えられている。例えば、プラグインハイブリッド車と呼ばれる車両の場合、家庭用電源等の外部電源に接続されたコンセントに充電ケーブルの片側に設けられたプラグを接続し、充電ケーブルの他側に設けられたプラグを車両に設けた充電口に接続することで充電することが考えられている。これに対して、固定側に設けられた一次コイルから、移動体である車両側に設けられた二次コイルへワイヤレスで給電する移動体給電装置を用いて、車両にワイヤレスで外部電源から電力を送電し、バッテリを充電することが考えられている。
 例えば、特許文献1に記載されているように、電源コードや送電ケーブルを用いないワイヤレス送電である、共鳴法を用いた送電により、車両外部の電源から車載の蓄電装置への充電を可能とする充電システムが知られている。この充電システムは、電動車両と、給電装置とを備える。電動車両は、給電装置の一次共振コイルと電磁場の共鳴により電磁気的に結合され、一次共振コイルから高周波電力を受電可能な二次共振コイルと、二次共振コイルから電磁誘導によって受電可能に構成される二次コイルと、整流器と、蓄電装置とを含む。整流器は、二次コイルが受電した電力を整流し、蓄電装置は、整流器によって整流された電力を蓄電する。また、特許文献1には、車両側において、二次共振コイルと二次コイルとの一方または両方を複数セットとしたり、給電装置側において、一次共振コイルと一次コイルとの一方または両方を複数セットとすることが記載されている。
 また、特許文献2には、移動体の移動経路に設けられた多数の給電モジュールと、移動体に設けられた多数の受電モジュールとを備える非接触給電装置が記載されている。給電モジュールは、給電回路を給電用コイルに一体化している。受電モジュールは、受電回路を受電用コイルに一体化している。交流電源からの交流は、給電モジュールで高周波の正弦波に変換され、それぞれの給電用コイルに供給して高周波磁界を発生させる。移動体に設けた受電用コイルが給電用コイルに近接しているときに、受電用コイルに給電用コイルの間で発生する誘導起電力が受電され、受電された電力は整流された後、移動体を駆動させる電動モータ等の負荷へ供給するとされている。
特開2009-106136号公報 特開2006-121791号公報
 上記の特許文献1に記載された充電システムの場合、ワイヤレス送電である、共鳴法を用いた送電により、車両外部の電源から車載の蓄電装置への充電を可能としているが、固定側の一次共振コイルと、移動体側の二次共振コイルとをそれぞれ複数ずつ設けることは記載されていない。このため、車両の走行中に車両外部の給電装置から車載の蓄電装置へ送電する場合に、複数の一次共振コイルから複数の二次共振コイルで受電するようにし、個々のコイル当たりで送電または受電する電力を低減する面から改良の余地がある。個々のコイル当たりで送電または受電する電力が大きくなると銅損等により損失が大きくなる可能性がある。
 これに対して、特許文献2に記載された非接触給電装置の場合、複数の給電用コイル及び受電用コイルを設けているため、複数の給電用コイルから複数の受電用コイルに同時に送電して個々のコイル当たりで送電または受電する電力を低くできる可能性がないとはいえない。ただし、複数のコイルとして互いに同じ共振周波数のコイルを使用する場合には、電磁界共鳴を使った共鳴方式によりコイル間で送受電する場合に、近くに位置するコイル同士が共振して高い伝送効率での送電を行えない可能性がある。また、移動体の移動に伴ってコイル間の位置関係が変化する場合に共振周波数が変化することにより、送電する電力の周波数設定が複雑になる可能性がある。
 また、このような移動体給電装置に限定しない給電装置の構成で、第1部分に設けられた一次コイルから第2部分に設けられた二次コイルへ給電する場合でも、上記と同様に電磁界共鳴を使用した送受電を行う場合に伝送効率を高くすることが求められている。
 本発明は、給電装置において、複数の一次コイルと複数の二次コイルとを使用して、電磁界共鳴を使用した送受電を行う場合でも伝送効率を高くすることを目的とする。
 本発明に係る給電装置は、第1部分に設けられた複数の一次コイルと、第2部分に設けられた複数の二次コイルとを備え、一次コイルから二次コイルへ給電する給電装置であって、それぞれの一次コイルは、隣り合う一次コイルに対し互いの共振周波数を異ならせており、それぞれの二次コイルは、隣り合う二次コイルに対し互いの共振周波数を異ならせていることを特徴とする給電装置である。
 また、本発明に係る給電装置において、好ましくは、複数の一次コイルを設けた第1部分は固定側であり、複数の二次コイルを設けた第2部分である移動体への給電に用いられ、複数の一次コイルは、互いに共振周波数が異なる少なくとも1の第1一次コイルと少なくとも1の第2一次コイルとを含み、第1一次コイルと第2一次コイルとは、移動体の移動方向に関して交互に配置しており、複数の二次コイルは、互いに共振周波数が異なる少なくとも1の第1二次コイルと少なくとも1の第2二次コイルとを含み、第1二次コイルと第2二次コイルとは、移動体の移動方向に関して交互に配置している。
 また、本発明に係る給電装置において、好ましくは、複数の一次コイルを設けた第1部分は固定側であり、複数の二次コイルを設けた第2部分である移動体への給電に用いられ、複数の二次コイルは、移動体の移動方向に沿って一列に配置されており、複数の一次コイルは、移動体の移動に伴って、複数の二次コイルに上下方向に対向可能に一列に配置されている。
 また、本発明に係る給電装置において、好ましくは、複数の一次コイルを設けた第1部分は固定側であり、複数の二次コイルを設けた第2部分である移動体への給電に用いられ、複数の二次コイルは、移動体の移動方向に沿って複数列に配置されており、複数の一次コイルは、移動体の移動に伴って、複数の二次コイルの対応する列に上下方向に対向可能に複数列に配置されている。
 また、本発明に係る給電装置において、好ましくは、それぞれの一次コイルは、隣り合う一次コイルに対し、互いに半径と軸方向長さと巻き数とのいずれか1以上を異ならせることで、互いの共振周波数を異ならせており、それぞれの二次コイルは、隣り合う二次コイルに対し、互いに半径と軸方向長さと巻き数とのいずれか1以上を異ならせることで、互いの共振周波数を異ならせている。
 また、本発明に係る給電装置において、好ましくは、複数の一次コイル及び二次コイルの一方または両方のそれぞれに接続されたコンデンサを備え、複数の一次コイル及び二次コイルの一方または両方のそれぞれは、隣り合う一次コイルまたは隣り合う二次コイルに対し、それぞれに接続したコンデンサの容量を異ならせることで、互いの共振周波数を異ならせている。
 本発明に係る給電装置によれば、複数の一次コイルと複数の二次コイルとを使用して、電磁界共鳴を使用した送受電を行う場合でも伝送効率を高くできる。
本発明の第1の実施の形態の給電装置である車両充電システムを示す全体構成図である。 図1において、二次蓄電側コイルから蓄電部に充電し、蓄電部によりモータを駆動するための回路を示す図である。 第1の実施の形態において、道路側の一次自己共振コイルと、車両側の二次自己共振コイルとが対向した様子を示す模式図である。 第1の実施の形態において、互いに隣り合う2種類の一次自己共振コイルまたは二次自己共振コイルを示す斜視図である。 本発明の範囲から外れる比較例において、互いに共振周波数が同じ2の一次コイルと、互いに共振周波数が同じ2の二次コイルとを配置し、一次コイルと二次コイルとを対向させた様子を示す模式図である。 図5の配置位置で1の一次コイルから自己及び別のコイルへ電力が送電される場合の伝送効率と周波数との関係のシミュレーション結果の1例を示す図である。 一次コイル及び二次コイルをそれぞれ1のみ設けて、一次コイル及び二次コイルを対向させた様子を示す模式図である。 図7の配置位置で一次コイルから自己及び別のコイルへ電力が送電される場合の伝送効率と周波数との関係のシミュレーション結果の1例を示す図である。 第1の実施の形態の効果を確認するために行ったシミュレーションに使用した構成を示す模式図である。 図9のコイル構成で、それぞれの組が軸方向に正対する一次コイルと二次コイルとにより構成される2の組が互いに大きく離れて存在すると仮定した場合に、一次コイルから自己及び対向する二次コイルに電力が送電される場合の伝送効率と周波数との関係のシミュレーション結果の1例を示す図である。 図9の配置構成で、1の一次コイルから自己及び別のコイルへ電力が送電される場合の伝送効率と周波数との関係のシミュレーション結果を示す図である。 図9の配置構成で、別の一次コイルから自己及び別のコイルへ電力が送電される場合の伝送効率と周波数との関係のシミュレーション結果を示す図である。 第1の実施の形態において、互いに隣り合う2種類の一次自己共振コイルまたは二次自己共振コイルの別例の第1例を示す斜視図である。 第1の実施の形態において、互いに隣り合う2種類の一次自己共振コイルまたは二次自己共振コイルの別例の第2例を示す斜視図である。 第1の実施の形態において、互いに隣り合う2種類の一次自己共振コイルまたは二次自己共振コイルの別例の第3例を示す斜視図である。 本発明に係る第2の実施の形態において、一次自己共振コイル及び二次自己共振コイルが対向する様子を示す略斜視図である。 第2の実施の形態において、道路上で車両が移動する場合の一次自己共振コイル及び二次自己共振コイルの配置構成を上方から下方に見た略図である。
[第1の発明の実施の形態]
 以下において、図面を用いて本発明に係る実施の形態につき詳細に説明する。図1から図4は、本発明の第1の実施の形態を示している。図1に示すように、本実施の形態の給電装置であり、移動体給電装置である車両充電システムは、第1部分であり、かつ、固定側である道路10側に設けられた一次自己共振コイル群12と、第2部分であり、かつ、移動体である車両14に設けられた二次自己共振コイル群16とを備え、一次自己共振コイル群12から二次自己共振コイル群16へ給電する。すなわち、車両充電システムは、車両14への給電のために用いられる。このため、車両充電システムは、給電装置18と、電動車両である車両14とを備える。
 給電装置18は、交流電源28と、複数の一次電源側コイル30と、一次自己共振コイル群12と、図示しない制御部である一次側コントローラと、図示しない切換スイッチとを含む。一次自己共振コイル群12は、それぞれ一次コイルである複数ずつの第1一次自己共振コイル20及び第2一次自己共振コイル22により構成する。交流電源28は、外部電源であり、例えば系統電源である。交流電源28と各一次電源側コイル30とは、高周波電力ドライバ32を介して接続している。また、切換スイッチは、交流電源28と複数の高周波電力ドライバ32との間に各高周波電力ドライバ32で共通に設けている。一次側コントローラは、切換スイッチの接続遮断の切り換えを制御する。切換スイッチの接続により、交流電源28から各高周波電力ドライバ32に交流電力が供給される。高周波電力ドライバ32は、交流電源28から出力される電力を周波数変換した電力を一次電源側コイル30へ出力する。
 一次電源側コイル30は、電磁誘導によって対応する一次自己共振コイル20(または22)へ送電可能に構成される。好ましくは、一次電源側コイル30は、対応する一次自己共振コイル20(または22)と同軸上に配置される。一次電源側コイル30は、交流電源28からの電力を、対応する一次自己共振コイル20(または22)へ出力する。図3に模式図で示すように、各一次自己共振コイル20,22は、道路10の充電専用区間である直線路に、車両14(図1)の移動方向である直線方向(図3の左右方向)に、第1一次自己共振コイル20と第2一次自己共振コイル22とを交互に、かつ、一列に並ぶように配置している。例えば、複数の一次自己共振コイル20、22は、軸方向を上下方向に向けるように、直線上に一列等、それぞれの中心軸同士の間隔が同じとなるように配置している。また、第1一次自己共振コイル20と第2一次自己共振コイル22とは、後で詳しく説明するように、互いに共振周波数を異ならせている。
 また、図1に示すように、一次電源側コイル30は、道路10の直線路の地面近傍に、一次自己共振コイル20(または22)の下側にそれぞれ上下方向に略対向するように配置される。また、一次自己共振コイル20,22は両端がオープンである非接続のLC共振コイルである。また、高周波電力ドライバ32は、交流電源28から出力される電力を、対応する一次自己共振コイル20(または22)から車両14側の対応する二次自己共振コイル24(または26)へ送電可能な高周波電力に変換し、その変換した高周波電力を、対応する一次電源側コイル30へ供給する。
 一方、車両14は、例えば図示しないエンジンと走行用モータ34との少なくとも一方を主駆動源とするハイブリッド車両、または走行用モータ34を主駆動源とする電気自動車である電動車両である。車両14は、床部付近に配置された二次自己共振コイル群16と、複数の二次蓄電側コイル36と、整流器38と、蓄電部40と、インバータ回路を含む駆動部41と、制御部である二次側コントローラ42(図2)と、走行用モータ44とを備える。
 二次自己共振コイル群16は、それぞれ二次コイルである複数ずつの第1二次自己共振コイル24及び第2二次自己共振コイル26を含む。また、複数の二次蓄電側コイル36は、複数の二次自己共振コイル24、26に上下方向に対向して配置される。また、整流器38は、二次蓄電側コイル36にそれぞれ接続される。
 二次自己共振コイル24,26は両端がオープンのLC共振コイルである。複数の二次自己共振コイル24,26は、例えば、軸方向を上下方向に向けるように、車両14の前後方向に並ぶように配置している。図3に模式図で示すように、車両14(図1)において、車両14の移動方向である前後方向(図1の左右方向)に、第1二次自己共振コイル24と第2二次自己共振コイル26とを交互に、かつ、一列に並ぶように配置している。また、道路10側に配置される複数の一次自己共振コイル20,22は、車両14の移動に伴って、複数の二次自己共振コイル24,26に上下方向に対向可能に一列に配置している。また、第1二次自己共振コイル24と第2二次自己共振コイル26とは、後で詳しく説明するように互いに共振周波数を異ならせている。
 二次自己共振コイル24,26は、道路10側の一次自己共振コイル20,22に対し電磁場の共鳴により電磁気的に結合され、一次自己共振コイル20,22から電力の受電可能に構成される。二次自己共振コイル24,26は、蓄電部40(図1、図2)の電圧、一次自己共振コイル20,22と二次自己共振コイル24,26との間の距離、一次自己共振コイル20,22と二次自己共振コイル24,26との共鳴周波数等に基づいて、一次自己共振コイル20,22と二次自己共振コイル24,26とのコイルの共振の鋭さを表す値(Q値)及びその結合度を示す値等が大きくなるように巻数が設定されている。
 図2に示すように、二次蓄電側コイル36は、電磁誘導によって二次自己共振コイル24,26(図1)からの電力の受電可能に構成され、好ましくは対応する二次自己共振コイル24,26と同軸上に配置される。二次蓄電側コイル36は、二次自己共振コイル24,26から受電した電力を整流器38へ出力する。整流器38は、二次蓄電側コイル36から受ける高周波の交流電力を直流電力に整流して蓄電部40へ出力する。なお、整流器38に代えて、二次蓄電側コイル36から受ける高周波の交流電力を、蓄電部40に供給する直流電力に変換するAC/DCコンバータを用いることもできる。
 蓄電部40は、充放電可能な直流電源であり、たとえばリチウムイオンバッテリやニッケル水素バッテリ等の二次電池により構成している。蓄電部40は、整流器38から供給される電力を蓄える以外に、車輪の制動に伴って走行用モータ44で発電された電力を蓄える機能も有する。蓄電部40は、二次側コントローラ42へ電力を供給可能である。なお、蓄電部40として、大容量のキャパシタを使用することもできる。
 駆動部41は、蓄電部40から供給される電力を交流電圧に変換して走行用モータ44へ出力し、走行用モータ44を駆動する。また、駆動部41は、走行用モータ44により発電された電力を直流電力に整流して蓄電部40へ出力し、蓄電部40を充電する。
 走行用モータ44は、蓄電部40から駆動部41を介して電力を供給され、車両駆動力を発生し、その発生した駆動力を車輪へ出力する。
 また、図2に詳しく示すように、蓄電部40に対し第1スイッチ46を介して、二次蓄電側コイル36に接続した整流器38を接続し、蓄電部40の正極側及び負極側と駆動部41との間に第2スイッチ48を設けている。例えば、二次側コントローラ42は、運転者によるスイッチ等の操作部の操作に基づいて、第1スイッチ46と第2スイッチ48との一方を接続し、他方を遮断することで、走行用モータ44に電力を供給することにより、走行用モータ44を駆動するか、または交流電源28(図1)から蓄電部40へ充電するかを切換可能としている。
 また、図3に示すように、互いに隣り合う第1一次自己共振コイル20と第2一次自己共振コイル22との共振周波数を異ならせている。このため、複数の一次自己共振コイル20,22のそれぞれは、隣り合う一次自己共振コイル20(または22)に対し互いの共振周波数が異なっている。このために、図4に示すように、隣り合う第1一次自己共振コイル20及び第2一次自己共振コイル22同士で半径R20,R22を異ならせている。すなわち、図3に示すように、一次自己共振コイル群12は、車両14(図1)の移動方向(図3の矢印方向)に沿って1つ置きで配置された、同じ第1の半径R20を有する第1一次自己共振コイル20と、2の第1一次自己共振コイル20の間に配置され、第1の半径R20とは異なる第2の半径R22を有する第2一次自己共振コイル22とを含む。そして、互いに隣り合う第1一次自己共振コイルと第2一次自己共振コイルとの共振周波数を異ならせている。このため、複数の一次自己共振コイル20,22は、車両14の移動方向に関して交互に共振周波数が変化している。また、第1一次自己共振コイル20と、第2一次自己共振コイル22とは、半径を除いて、軸方向長さ等の他の形状を同じにしている。
 また、複数の二次自己共振コイル24,26は、車両14(図1)の前後方向(図3の矢印方向)に隣り合う二次自己共振コイル24(または26)に対し互いの共振周波数が異なっている。このために、図4に示すように、隣り合う第1二次自己共振コイル24及び第2二次自己共振コイル26同士で半径R24,26を異ならせている。すなわち、二次自己共振コイル群16(図3)は、車両14の移動方向に沿って1つ置きで配置された同じ第1の半径R24を有する第1二次自己共振コイル24と、2の第1二次自己共振コイル24の間に配置され、第1の半径R24とは異なる第2の半径R26を有する第2二次自己共振コイル26とを含む。したがって、複数の二次自己共振コイル24,26は、車両14の移動方向に関して交互に共振周波数が変化している。また、第1二次自己共振コイル24と、第2二次自己共振コイル26とは、半径を除いて、軸方向長さ等の他の形状を同じにしている。
 また、第1二次自己共振コイル24の共振周波数は、第1一次自己共振コイル20の共振周波数と一致させ、第2二次自己共振コイル26の共振周波数は、第2一次自己共振コイル22の共振周波数と一致させている。また、隣り合う二次自己共振コイル24,26の中心間の間隔と、隣り合う一次自己共振コイル20,22の中心間の間隔とを、少なくとも複数の一次自己共振コイル20,22の一部に対応する部分または全部に対応する部分で同じにしている。なお、図1に示す交流電源28と一次電源側コイル30との間に設ける高周波電力ドライバ32は、2種類の第1一次自己共振コイル20と第2一次自己共振コイル22とに応じて2を設けて、2の高周波電力ドライバ32のそれぞれに、対応する同じ周波数の電力を出力する複数の一次電源側コイル30を接続することもできる。また、第1一次自己共振コイル20、第2一次自己共振コイル22、第1二次自己共振コイル24、及び第2二次自己共振コイル26は、それぞれ1以上とすることができる。
 このような本実施の形態で道路10側から車両14へ電力を送電する方法は次のようにして行う。すなわち、交流電源28からすべての一次電源側コイル30に、高周波電力ドライバ32を介して周波数変換された電力を供給し、一次電源側コイル30から電磁誘導によって対応する一次自己共振コイル20,22へ電力を送電する。また、一次自己共振コイル20,22から車両14側の二次自己共振コイル24,26に、電磁場共鳴により電力を送電し、二次自己共振コイル24,26から電磁誘導によって、二次蓄電側コイル36に電力を送電する。二次蓄電側コイル36からは整流器38により、直流に整流された電流が蓄電部40に送られ、蓄電部40が充電される。
 本実施の形態によれば、移動体である車両14が移動する場合でも送電する電力の周波数設定を容易に行えるようにできる。また、複数の一次自己共振コイル20,22と複数の二次自己共振コイル24,26とを使用して、電磁界共鳴を使用した電力の送受電を行う場合でも伝送効率を高くできる。すなわち、本実施の形態のように、電力の送受電に使用するコイル数を多くすると、個々のコイル当たりで伝送される電力を低減できるため、個々のコイルを流れる電流を低減できる。このため、銅損を低下でき、伝送効率を高くできる。ただし、本実施の形態と異なり、各コイルに同じ共振周波数のコイルを使用する場合には、電磁界共鳴を使った共鳴方式による非接触電力伝送では、伝送効率が悪化する可能性がある。特に、送電側と受電側とのコイルがそれぞれ複数ずつで、送電側コイル及び受電側コイル間で電力を送受電する場合に、送電側の隣り合うコイル同士の距離、及び、受電側の隣り合うコイル同士の距離が近いと、伝送効率が悪化する可能性がある。次にこの理由を詳しく説明する。
 例えば、図5は、本発明の範囲から外れる比較例において、互いに共振周波数が同じ2の一次コイルC1,C2と、互いに共振周波数が同じ2の二次コイルC3,C4とを配置し、一次コイルC1,C2と二次コイルC3,C4とを対向させた様子を示す模式図である。また、図6は、図5の配置位置で1の一次コイルC1から自己及び別のコイルへ電力が送電される場合の伝送効率と周波数との関係の計算結果の1例を示す図である。
 図5では、本実施の形態と同様に、交流電源から高周波ドライバで周波数変換された交流電力を2の一次電源側コイル30から、それぞれに対向する2の一次自己共振コイルである一次コイルC1,C2に電磁誘導により伝送可能としている。また、各一次コイルC1,C2から、2の二次自己共振コイルである二次コイルC3,C4に伝送された交流電力を、それぞれの二次コイルC3,C4に対向する2の二次蓄電側コイル36へ電磁誘導により伝送可能としている。
 また、図5に示すように、各コイルC1~C4の半径Rを定め(例えば30cmとし)、隣り合う一次コイルC1,C2同士、及び、隣り合う二次コイルC3,C4同士の間隔dをそれぞれ定め(例えば10cmとして)、1の一次コイルC1から1の一次コイルC1自身及び別のコイルC2~C4へ電力が伝送される場合の伝送効率と周波数との関係を求める計算、すなわちシミュレーションを行った。また、各コイルC1~C4の形状は、軸方向長さ、巻き数等を含めてすべて同じとしている。図6はそのシミュレーション結果を表している。
 なお、図6では、破線S11により、1の一次コイルC1から1の一次コイルC1自身に戻ってくる電力の伝送効率を表し、一点鎖線S21により、1の一次コイルC1から隣り合う別の一次コイルC2に送電される電力の伝送効率を表している。また、二点鎖線S31により、1の一次コイルC1から、1の一次コイルC1と軸方向に正対する1の二次コイルC3に送電される電力の伝送効率を表し、実線S41により、1の一次コイルC1から、別の一次コイルC2と軸方向に正対する別の二次コイルC4に送電される電力の伝送効率を表している。なお、以下の図6の説明では、図5に示す符号を用いて説明する。
 図6に示す結果から明らかなように、図5に示すコイル配置の場合には、電源側である1の一次コイルC1から受電コイルである各二次コイルC3,C4への送電電力の伝送効率は、伝送効率の最も高い共振周波数点faで、各二次コイルC3,C4への伝送効率の和である85%程度(=S31+S41)となった。また、別の一次コイルC2から別の一次コイルC2自身及び別のコイルC1,C3,C4へ電力が伝送される場合の伝送効率と周波数との関係を求めるシミュレーション結果も、図6の結果と同様になった。
 この場合、図6で、破線S11が、別の一次コイルC2から別の一次コイルC2自身に戻ってくる電力の伝送効率であるS22となり、一点鎖線S21が、別の一次コイルC2から隣り合う1の一次コイルC1に送電される電力の伝送効率であるS12となる。また、二点鎖線S31が、別の一次コイルC2から、別の一次コイルC2と軸方向に正対する別の二次コイルC4に送電される電力の伝送効率であるS42となり、実線S41が、別の一次コイルC2から、1の一次コイルC1と軸方向に正対する1の二次コイルC3に送電される電力の伝送効率であるS32となる。そして、この場合も、電源側である別の一次コイルC2から受電コイルである各二次コイルC3,C4への送電電力の伝送効率は、伝送効率の最も高い共振周波数点で、各二次コイルC3,C4への伝送効率の和である85%程度(=S32+S42)となった。ただし、送電側、受電側のコイルをそれぞれ1のみ配置し、送電側の1のコイルから受電側の1のコイルに電力が伝送される場合の伝送効率は95%程度となることが分かっており、上記のように送電側、受電側のコイルをそれぞれ複数ずつ配置した場合には、それぞれの送電側のコイルからの伝送効率はかなり悪化していることが分かる。
 このように伝送効率が悪化する理由として、1の一次コイルC1から別の一次コイルC2への伝送効率S21、及び、別の一次コイルC2から1の一次コイルC1への伝送効率S12が、それぞれ5%程度生じることがある。すなわち、送電側のコイルC1,C2同士が共振して、送電側のコイルC1,C2同士の間で電力が送られてしまっていることがある。このため、本発明者は、同じ共振周波数のコイルC1,C2(またはC3,C4)を送電側と受電側とでそれぞれ複数ずつ配置しても、何ら工夫しない従来構成の場合には、効率向上が必ずしも望めないと考えた。
 一方、送電側のコイル及び受電側のコイルをそれぞれ1ずつとし、1の送電側コイルから1の受電側コイルに送電する場合、すなわち密結合で送受電する場合には、伝送効率が高くなる共振点が2つ存在し、しかもコイル間での伝送効率はそれぞれの共振点で95%程度と高くなる。例えば、図7は、一次コイル及び二次コイルをそれぞれ1のみ設けて、一次コイル及び二次コイルを対向させた様子を示す模式図である。また、図8は、図7の配置位置で一次コイルから自己及び別のコイルへ電力が送電される場合の伝送効率と周波数との関係のシミュレーション結果の1例を示す図である。
 図7では、一次自己共振コイルである一次コイルC1aと二次自己共振コイルである二次コイルC3aとが、それぞれ1のみ配置される以外は、上記の図5の場合と同様である。図8では、一次コイルC1aから一次コイルC1a自身及び二次コイルC3aへ電力が伝送される場合の伝送効率と周波数との関係を求める計算、すなわちシミュレーションを行った結果を示している。
 なお、図8では、破線S11aにより、一次コイルC1aから一次コイルC1a自身に戻ってくる電力の伝送効率を表し、実線S31aにより、一次コイルC1aから二次コイルC3aに送電される電力の伝送効率を表している。
 図8に示す結果から明らかなように、送電側のコイルC1a及び受電側のコイルC3aがそれぞれ1ずつで、1の送電側コイルC1aから1の受電側コイルC3aに送電する、すなわち密結合で送電する場合には、伝送効率が高くなる共振点が2つ存在し、それぞれの共振点で伝送効率は95%程度となることが分かる。
 これに対して、送電側のコイル及び受電側のコイルをそれぞれ複数ずつとすると、上記の図6に示すシミュレーション結果から明らかなように、伝送効率が高くなる共振点が、密結合の場合に生じる2つの共振点の中間の周波数帯となり、しかも本発明者が行ったシミュレーションによると、伝送効率が高くなるその周波数は、コイルの位置関係によって変化する。このため、受電側のコイルを備える移動体が移動し、受電側のコイルが送電側のコイルに対し移動する場合に、送電する電力の周波数設定がより複雑になるという不都合が生じる可能性がある。
 これに対して、上記の図1から図4で説明した本実施の形態の場合には、それぞれの一次自己共振コイル20,22は、隣り合う一次自己共振コイル20,22に対し互いの共振周波数を異ならせており、それぞれの二次自己共振コイル24,26は、隣り合う二次自己共振コイル24,26に対し互いの共振周波数を異ならせている。このため、それぞれの組が軸方向に略正対する1の一次自己共振コイルと1の二次自己共振コイルとにより構成される複数の組で、隣り合う組同士の間で異なる周波数で共振し、しかも高い効率で電力を伝送できる。例えばそれぞれの組で、一次自己共振コイル20(または22)から二次自己共振コイル24(または26)への電力の伝送効率を95%程度の高い効率にすることができる。
 次に、本実施の形態の効果を確認するために行ったシミュレーション結果を説明する。図9は、本実施の形態の効果を確認するために行ったシミュレーションに使用した構成を示す模式図である。この構成では、互いに共振周波数が異なる2の一次コイルと、互いに共振周波数が異なる2の二次コイルとを配置し、一次コイルと二次コイルとを対向させている。また、図10は、図9のコイル構成で、それぞれの組が軸方向に正対する一次コイルと二次コイルとにより構成される2の組が互いに大きく離れて、すなわち独立して存在すると仮定した場合に、一次コイルから自己及び対向する二次コイルに電力が送電される場合の伝送効率と周波数との関係のシミュレーション結果の1例を示す図である。
 すなわち図9に示すように、シミュレーションに用いた構成では、一次自己共振コイルである2の一次コイルC5,C6は、形状、すなわち半径R5,R6を異ならせることで共振周波数を互いに異ならせている。また、二次自己共振コイルである2の二次コイルC7,C8は、形状、すなわち半径R7,R8を異ならせることで共振周波数を互いに異ならせている。それ以外の構成は、上記の図5の場合と同様である。図10では、各一次コイルC5,C6から各一次コイルC5,C6自身及び軸方向に正対する二次コイルC7,C8のみへ電力が伝送されると仮定した場合の伝送効率と周波数との関係を求める計算、すなわちシミュレーションを行った結果を示している。
 なお、図10では、破線S55により、1の一次コイルC5から1の一次コイルC5自身に戻ってくる電力の伝送効率を表し、一点鎖線S75により、1の一次コイルC5から、1の一次コイルC5と軸方向に正対する1の二次コイルC7に送電される電力の伝送効率を表している。また、二点鎖線S66により、別の一次コイルC6から、別の一次コイルC6自身に戻ってくる電力の伝送効率を表し、実線S86により、別の一次コイルC6から、別の一次コイルC6と軸方向に正対する別の二次コイルC8に送電される電力の伝送効率を表している。
 図10に示すように、それぞれの組で互いに軸方向に正対する一次コイルC5(またはC6)と二次コイルC7(またはC8)とにより構成する複数の組のそれぞれでは、互いに異なる周波数で共振し、かつ、95%程度の効率で電力を送電できる。
 そして、このように異なる周波数で共振する2の組の一次コイルC5,C6及び二次コイルC7,C8を配置して1の一次コイルC5から自己または別のコイルへ電力を伝送する場合の効率と周波数とを求めたシミュレーション結果の1例を、図11に示している。また、同様に、別の一次コイルC6から自己または別のコイルへ電力を伝送する場合の効率と周波数とを求めたシミュレーション結果の1例を、図12に示している。図11では、二点鎖線S55により、1の一次コイルC5から1の一次コイルC5自身に戻ってくる電力の伝送効率を表し、実線S65により、1の一次コイルC5から隣り合う別の一次コイルC6に送電される電力の伝送効率を表している。また、一点鎖線S75により、1の一次コイルC5から、1の一次コイルC5と軸方向に正対する1の二次コイルC7に送電される電力の伝送効率を表し、破線S85により、1の一次コイルC5から、別の一次コイルC6と軸方向に正対する別の二次コイルC8に送電される電力の伝送効率を表している。
 また、図12では、二点鎖線S66により、別の一次コイルC6から別の一次コイルC6自身に戻ってくる電力の伝送効率を表し、実線S56により、別の一次コイルC6から隣り合う1の一次コイルC5に送電される電力の伝送効率を表している。また、破線S76により、別の一次コイルC6から、1の一次コイルC5と軸方向に正対する1の二次コイルC7に送電される電力の伝送効率を表し、一点鎖線S86により、別の一次コイルC6から、別の一次コイルC6と軸方向に正対する別の二次コイルC8に送電される電力の伝送効率を表している。
 図11、図12の結果から明らかなように、本実施の形態では、複数の一次自己共振コイル20,22と複数の二次自己共振コイル24,26とを使用して、電磁界共鳴を使用した電力の送受電を行う場合でも、それぞれのコイル20,22,24,26の共振点で、伝送効率を高くできる。なお、図11、図12から、それぞれの一次自己共振コイル20,22から正対する二次自己共振コイル24,26に送電する場合に共振周波数が2存在することが分かるが、これらの共振周波数のいずれか1を電源側の周波数として設定することができる。
 なお、本実施の形態では、複数の一次自己共振コイル20,22において、隣り合う一次自己共振コイル20,22に対し互いの共振周波数を異ならせるために、隣り合う第1一次自己共振コイル20及び第2一次自己共振コイル22同士で直径を異ならせている。また、複数の二次自己共振コイル24,26において、隣り合う二次自己共振コイル24,26に対し互いの共振周波数を異ならせるために、隣り合う第1二次自己共振コイル24及び第2二次自己共振コイル26同士で直径を異ならせている。ただし、本実施の形態は、このような構成に限定するものではなく、図13Aに示すように、隣り合う一次自己共振コイル20,22同士(または隣り合う二次自己共振コイル24,26同士)で、軸方向長さを異ならせることで共振周波数を異ならせることもできる。また、図13Bに示すように、隣り合う一次自己共振コイル20,22同士(または隣り合う二次自己共振コイル24,26同士)で、巻き数、すなわちターン数を異ならせることで共振周波数を異ならせることもできる。なお、図13Bでは、隣り合う一次自己共振コイル20,22同士(または隣り合う二次自己共振コイル24,26同士)で、軸方向長さも異ならせているが、軸方向長さを同じにして、巻き数を異ならせることができるのも勿論である。また、隣り合う一次自己共振コイル20,22同士と、隣り合う二次自己共振コイル24,26同士との一方または両方で、直径と、軸方向長さと、巻き数とのいずれか1以上、すなわち、1または2または3を異ならせることで、互いの共振周波数を異ならせることもできる。
 また、図13Cに示すように、複数の一次自己共振コイル20,22及び複数の二次自己共振コイル24,26の一方または両方に可変容量コンデンサ50,52を接続し、隣り合う一次自己共振コイル20,22同士(または隣り合う二次自己共振コイル24,26同士)で、それぞれに接続した可変容量コンデンサ50,52の容量を異ならせることで互いの共振周波数を異ならせることもできる。
 なお、一次自己共振コイル20,22と二次自己共振コイル24,26とで、隣り合うコイル20,22,24,26の共振周波数を異ならせるための構成は、電源側と車両側との間で異ならせてもよい。例えば、隣り合う一次自己共振コイル20,22の共振周波数を異ならせるために互いに直径を異ならせ、隣り合う二次自己共振コイル24,26の共振周波数を異ならせるために互いに軸方向長さを異ならせてもよい。
[第2の発明の実施の形態]
 図14は、本発明に係る第2の実施の形態において、一次自己共振コイル及び二次自己共振コイルが対向する様子を示す略斜視図である。図15は、第2の実施の形態において、道路上で車両が移動する場合の一次自己共振コイル及び二次自己共振コイルの配置構成を上方から下方に見た略図である。なお、図14,15では、第1の共振周波数を有するコイルを実線で表し、第1の共振周波数とは異なる第2の共振周波数を有する複数のコイルを破線で表している。
 図14,15に示すように、本実施の形態では、複数の二次自己共振コイル24,26及び二次蓄電側コイル36(図1、図2参照)は、車両14の移動方向である前後方向(図15の左右方向)に沿って複数列(図示の例では2列)に配置している。また、複数の一次自己共振コイル20,22及び一次電源側コイル30(図1参照)は、車両14の移動に伴って、複数の二次自己共振コイル24,26に対応する列で、上下方向(図14の上下方向、図15の表裏方向)に対向可能に複数列(図示の例では2列)に配置している。
 すなわち、本実施の形態では、道路10側に複数の一次自己共振コイル20,22を車両14の移動方向である直線方向(図15の左右方向)に沿って複数列、例えば2列に配置している。また、複数の一次自己共振コイル20,22は、互いに直線方向に隣り合う一次自己共振コイル20,22同士、及び、互いに直線方向に対し直交する横方向(図15の上下方向)に隣り合う一次自己共振コイル20,22同士で、共振周波数を異ならせている。このため、第1の共振周波数を有する第1一次自己共振コイル20と第2の共振周波数を有する第2一次自己共振コイル22とを、各列で直線方向に交互に配置するとともに、第1一次自己共振コイル20と第2一次自己共振コイル22とを横方向に対向させている。
 また、車両14側に複数の二次自己共振コイル24,26を車両14の移動方向である前後方向(図15の左右方向)に沿って複数列、例えば2列に配置している。また、複数の二次自己共振コイル24,26は、互いに前後方向に隣り合う二次自己共振コイル24,26同士、及び、互いに前後方向に対し直交する車両14の幅方向(図15の上下方向)に隣り合う二次自己共振コイル24,26同士で、共振周波数を異ならせている。このため、互いに共振周波数が異なる第1二次自己共振コイル24と第2二次自己共振コイル26とを、各列で車両14の前後方向に交互に配置するとともに、第1二次自己共振コイル24と第2二次自己共振コイル26とが車両14の幅方向に対向するように配置している。
 また、車両14の前後方向に隣り合う二次自己共振コイル24,26の中心間の間隔と、道路10の直線方向に隣り合う一次自己共振コイル20,22の中心間の間隔とを、少なくとも複数の一次自己共振コイル20,22の一部に対応する部分または全部に対応する部分で同じにしている。また、車両14の幅方向に隣り合う二次自己共振コイル24,26の中心間の間隔と、道路10の横方向に隣り合う一次自己共振コイル20,22の中心間の間隔とを同じにしている。
 また、複数の一次電源側コイル30(図1参照)は、複数の一次自己共振コイル20,22に対向配置し、複数の二次蓄電側コイル36(図1参照)は、複数の二次自己共振コイル24,26に対向配置している。
 このような本実施の形態の場合も、道路10側から車両14への電力の送電時には、交流電源28からすべての一次電源側コイル30に、高周波電力ドライバ32を介して周波数変換された電力を供給し、一次電源側コイル30から電磁誘導によって対応する一次自己共振コイル20,22へ電力を送電する。また、一次自己共振コイル20,22から車両14側の二次自己共振コイル24,26に、電磁場共鳴により電力を送電し、二次自己共振コイル24,26から電磁誘導によって、二次蓄電側コイル36に電力を送電する。
 また、本実施の形態の場合も、車両14が移動する場合でも送電する電力の周波数設定を容易に行えるようにでき、かつ、複数の一次自己共振コイル20,22と複数の二次自己共振コイル24,26とを使用して、電磁界共鳴を使用した電力の送受電を行う場合でも伝送効率を高くできる。その他の構成及び作用は、上記の第1の実施の形態と同様であるため、重複する説明を省略する。
 なお、上記では、移動体へ給電する移動体給電装置に本発明を適用した場合を説明したが、給電装置は移動体給電装置に限定するものではない。例えば、固定側または移動体である第1部分に設けられた一次コイルから、固定側の別の部分または移動体である第2部分に設けられた二次コイルへ給電する場合でも、本発明を適用することにより、上記と同様に電磁界共鳴を使用した送受電を行う場合に伝送効率を高くすることができる。
 10 道路、12 一次自己共振コイル群、14 車両、16 二次自己共振コイル郡、18 給電装置、20 第1一次自己共振コイル、22 第2一次自己共振コイル、24 第1二次自己共振コイル、26 第2二次自己共振コイル、28 交流電源、30 一次電源側コイル、32 高周波電力ドライバ、34 走行用モータ、36 二次蓄電側コイル、38 整流器、40 蓄電部、41 駆動部、42 二次側コントローラ、44 走行用モータ、46 第1スイッチ、48 第2スイッチ、50,52 コンデンサ。

Claims (6)

  1.  第1部分に設けられた複数の一次コイルと、第2部分に設けられた複数の二次コイルとを備え、
     一次コイルから二次コイルへ給電する給電装置であって、
     それぞれの一次コイルは、隣り合う一次コイルに対し互いの共振周波数を異ならせており、
     それぞれの二次コイルは、隣り合う二次コイルに対し互いの共振周波数を異ならせていることを特徴とする給電装置。
  2.  請求項1に記載の給電装置において、
     複数の一次コイルを設けた第1部分は固定側であり、
     複数の二次コイルを設けた第2部分である移動体への給電に用いられ、
     複数の一次コイルは、互いに共振周波数が異なる少なくとも1の第1一次コイルと少なくとも1の第2一次コイルとを含み、
     第1一次コイルと第2一次コイルとは、移動体の移動方向に関して交互に配置しており、
     複数の二次コイルは、互いに共振周波数が異なる少なくとも1の第1二次コイルと少なくとも1の第2二次コイルとを含み、
     第1二次コイルと第2二次コイルとは、移動体の移動方向に関して交互に配置していることを特徴とする給電装置。
  3.  請求項1または請求項2に記載の給電装置において、
     複数の一次コイルを設けた第1部分は固定側であり、
     複数の二次コイルを設けた第2部分である移動体への給電に用いられ、
     複数の二次コイルは、移動体の移動方向に沿って一列に配置されており、
     複数の一次コイルは、移動体の移動に伴って、複数の二次コイルに上下方向に対向可能に一列に配置されていることを特徴とする給電装置。
  4.  請求項1または請求項2に記載の給電装置において、
     複数の一次コイルを設けた第1部分は固定側であり、
     複数の二次コイルを設けた第2部分である移動体への給電に用いられ、
     複数の二次コイルは、移動体の移動方向に沿って複数列に配置されており、
     複数の一次コイルは、移動体の移動に伴って、複数の二次コイルの対応する列に上下方向に対向可能に複数列に配置されていることを特徴とする給電装置。
  5.  請求項1から請求項4のいずれか1に記載の給電装置において、
     それぞれの一次コイルは、隣り合う一次コイルに対し、互いに半径と軸方向長さと巻き数とのいずれか1以上を異ならせることで、互いの共振周波数を異ならせており、
     それぞれの二次コイルは、隣り合う二次コイルに対し、互いに半径と軸方向長さと巻き数とのいずれか1以上を異ならせることで、互いの共振周波数を異ならせていることを特徴とする給電装置。
  6.  請求項1から請求項4のいずれか1に記載の給電装置において、
     複数の一次コイル及び二次コイルの一方または両方のそれぞれに接続されたコンデンサを備え、
     複数の一次コイル及び二次コイルの一方または両方のそれぞれは、隣り合う一次コイルまたは隣り合う二次コイルに対し、それぞれに接続したコンデンサの容量を異ならせることで、互いの共振周波数を異ならせていることを特徴とする給電装置。
PCT/JP2011/055641 2010-03-23 2011-03-10 給電装置 WO2011118404A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/577,689 US20130009462A1 (en) 2010-03-23 2011-03-10 Power-feed device
EP11759211A EP2551991A1 (en) 2010-03-23 2011-03-10 Power-feed device
CN2011800152456A CN102835002A (zh) 2010-03-23 2011-03-10 供电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-065605 2010-03-23
JP2010065605A JP2011200052A (ja) 2010-03-23 2010-03-23 給電装置

Publications (1)

Publication Number Publication Date
WO2011118404A1 true WO2011118404A1 (ja) 2011-09-29

Family

ID=44672965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055641 WO2011118404A1 (ja) 2010-03-23 2011-03-10 給電装置

Country Status (5)

Country Link
US (1) US20130009462A1 (ja)
EP (1) EP2551991A1 (ja)
JP (1) JP2011200052A (ja)
CN (1) CN102835002A (ja)
WO (1) WO2011118404A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102848928A (zh) * 2012-10-15 2013-01-02 长春中信光电科技发展有限公司 电动汽车、电动摩托车的无线供电驱动方法及装置
WO2014069239A1 (ja) * 2012-10-30 2014-05-08 シャープ株式会社 給電装置およびワイヤレス給電システム
CN103795131A (zh) * 2012-10-29 2014-05-14 株式会社日立制作所 移动体用非接触充电装置及移动体用非接触充电方法
WO2015173890A1 (ja) * 2014-05-13 2015-11-19 三菱電機エンジニアリング株式会社 無線電力伝送による可動部伝送システム
WO2016135893A1 (ja) * 2015-02-25 2016-09-01 株式会社 東芝 制御装置、送電装置、受電装置、無線電力伝送装置および制御方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691458B2 (ja) * 2010-03-31 2015-04-01 日産自動車株式会社 非接触給電装置及び非接触給電方法
WO2012164743A1 (ja) * 2011-06-03 2012-12-06 トヨタ自動車株式会社 車両、電気機器および電力送受電システム
JP6168500B2 (ja) * 2012-04-10 2017-07-26 パナソニックIpマネジメント株式会社 無線電力伝送装置、送電装置、および受電装置
CN104271384B (zh) * 2012-05-09 2017-10-10 丰田自动车株式会社 车辆
US20130328387A1 (en) * 2012-06-08 2013-12-12 Sagar Venkateswaran Supercapacitor vehicle and roadway system
JP5965741B2 (ja) * 2012-06-26 2016-08-10 オリンパス株式会社 医療用無線給電システム
JP5938310B2 (ja) * 2012-09-12 2016-06-22 株式会社半導体エネルギー研究所 送電装置、給電システム、及び給電方法
CN104143861A (zh) * 2013-05-09 2014-11-12 泰科电子(上海)有限公司 非接触式供电电路
BR112016023253B1 (pt) 2014-04-08 2022-04-12 Nissan Motor Co. Ltd. Sistema de suprimento de energia sem fio e dispositivo de recepção de energia sem fio
US9533590B2 (en) * 2014-04-18 2017-01-03 Qualcomm Incorporated Base array network design for multiple vehicle pads
US9469207B2 (en) * 2014-04-18 2016-10-18 Qualcomm Incorporated Base magnetics and sequence design for dynamic systems
EP2940830B1 (en) * 2014-04-30 2020-03-04 WITS Co., Ltd. Wireless power reception device
KR101670128B1 (ko) * 2014-04-30 2016-10-27 삼성전기주식회사 무선 전력 수신 장치 및 이를 구비하는 전자기기
WO2015189976A1 (ja) 2014-06-13 2015-12-17 株式会社 東芝 インダクタユニット、無線電力伝送装置、及び電動車両
KR102025899B1 (ko) * 2014-09-11 2019-09-26 주식회사 위츠 비접촉 방식 충전 장치 및 비접촉 방식 배터리 장치
CN108390467B (zh) 2015-07-17 2021-06-15 南京矽力微电子技术有限公司 驱动电路、无线电能发射端和应用其的无线供电系统
JP6583037B2 (ja) * 2016-02-16 2019-10-02 Tdk株式会社 ワイヤレス電力伝送システム
WO2017149599A1 (ja) * 2016-02-29 2017-09-08 三菱電機エンジニアリング株式会社 共振型無線電力伝送装置
US10097046B2 (en) 2016-03-18 2018-10-09 Global Energy Transmission, Co. Wireless power assembly
KR20240006716A (ko) * 2016-03-18 2024-01-15 글로벌 에너지 트랜스미션, 컴퍼니 무선 전력 전송을 위한 시스템
SG10201705912TA (en) * 2016-08-04 2018-03-28 Gen Electric System and method for charging receiver devices
JP6600607B2 (ja) * 2016-09-06 2019-10-30 株式会社東芝 インダクタユニット、無線電力伝送装置、電動車両、および充電施設
US11081274B2 (en) 2017-02-24 2021-08-03 Greatbatch Ltd. Wirelessly powered devices for minimally invasive surgery
US10850634B2 (en) * 2017-10-20 2020-12-01 Toyota Motor Engineering & Manufacturing North America, Inc. Multi-turn configurable grid charging coil
US20200274398A1 (en) * 2018-05-01 2020-08-27 Global Energy Transmission, Co. Systems and methods for wireless power transferring
US10790700B2 (en) * 2018-05-18 2020-09-29 Tectus Corporation Power generation necklaces with field shaping systems
DE102018216916A1 (de) * 2018-10-02 2020-04-02 Universität Stuttgart Einrichtung zur kontaktlosen induktiven Energieübertragung, insbesondere für induktive Ladevorgänge bei Kraftfahrzeugen
JP7092068B2 (ja) * 2019-02-28 2022-06-28 株式会社デンソー 走行中非接触給電システム
US11521792B2 (en) * 2019-09-16 2022-12-06 Utah State University Wireless power transfer with active field cancellation using multiple magnetic flux sinks
CN112803600A (zh) * 2019-11-14 2021-05-14 Oppo广东移动通信有限公司 无线充电的接收端设备、发射端设备和无线充电系统
EP4047786A4 (en) * 2019-11-15 2022-10-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS RECEIVER DEVICE, WIRELESS CHARGING SYSTEM AND WIRELESS CHARGING METHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121791A (ja) * 2004-10-20 2006-05-11 Chugoku Electric Power Co Inc:The 移動体の非接触給電装置
WO2009131121A1 (ja) * 2008-04-22 2009-10-29 オリンパス株式会社 送電システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529436B2 (ja) * 1989-11-28 1996-08-28 三菱電機株式会社 非接触型icカ―ドシステム
JPH0714730A (ja) * 1993-06-15 1995-01-17 Japan Aviation Electron Ind Ltd 非接触型コネクタ
WO2009042214A1 (en) * 2007-09-26 2009-04-02 Governing Dynamics, Llc Self-charging electric vehicles and aircraft, and wireless energy distribution system
JP4453741B2 (ja) * 2007-10-25 2010-04-21 トヨタ自動車株式会社 電動車両および車両用給電装置
US7893564B2 (en) * 2008-08-05 2011-02-22 Broadcom Corporation Phased array wireless resonant power delivery system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121791A (ja) * 2004-10-20 2006-05-11 Chugoku Electric Power Co Inc:The 移動体の非接触給電装置
WO2009131121A1 (ja) * 2008-04-22 2009-10-29 オリンパス株式会社 送電システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102848928A (zh) * 2012-10-15 2013-01-02 长春中信光电科技发展有限公司 电动汽车、电动摩托车的无线供电驱动方法及装置
CN103795131A (zh) * 2012-10-29 2014-05-14 株式会社日立制作所 移动体用非接触充电装置及移动体用非接触充电方法
EP2724887A3 (en) * 2012-10-29 2015-02-25 Hitachi Ltd. Non-contact charging apparatus for mobile body and non-contact charging method for mobile body
WO2014069239A1 (ja) * 2012-10-30 2014-05-08 シャープ株式会社 給電装置およびワイヤレス給電システム
WO2015173890A1 (ja) * 2014-05-13 2015-11-19 三菱電機エンジニアリング株式会社 無線電力伝送による可動部伝送システム
JPWO2015173890A1 (ja) * 2014-05-13 2017-04-20 三菱電機エンジニアリング株式会社 無線電力伝送による可動部伝送システム
US10432027B2 (en) 2014-05-13 2019-10-01 Mitsubishi Electric Engineering Company, Limited Movable portion transmission system using wireless power transmission
WO2016135893A1 (ja) * 2015-02-25 2016-09-01 株式会社 東芝 制御装置、送電装置、受電装置、無線電力伝送装置および制御方法
JPWO2016135893A1 (ja) * 2015-02-25 2017-04-27 株式会社東芝 制御装置、送電装置、受電装置、無線電力伝送装置および制御方法

Also Published As

Publication number Publication date
EP2551991A1 (en) 2013-01-30
CN102835002A (zh) 2012-12-19
US20130009462A1 (en) 2013-01-10
JP2011200052A (ja) 2011-10-06

Similar Documents

Publication Publication Date Title
WO2011118404A1 (ja) 給電装置
JP5537981B2 (ja) 移動体給電装置
EP2598367B1 (en) Coil unit, non-contact power transmitting apparatus, non-contact power receiving apparatus, vehicle, and non-contact power supply system
JP5622518B2 (ja) 電池パックを備えた電動機械および電源システム
CN102791513B (zh) 电动车
EP2360049B1 (en) Electric vehicle
JP5487944B2 (ja) 非接触給電装置
CN102177042B (zh) 非接触电力传递装置及具有非接触电力传递装置的车辆
CN104025422B (zh) 非接触受电装置、非接触送电装置以及非接触送电受电系统
JP5867511B2 (ja) 送電装置、受電装置および電力伝送システム
CN107710358B (zh) 初级绕组结构的初级侧装置、初级侧装置的制造方法、用于感应电力传输的系统以及向车辆感应式地供电的方法
CN103620712A (zh) 送电装置、受电装置以及电力传输系统
CN102449711A (zh) 线圈单元、非接触受电装置、非接触送电装置、非接触供电系统以及车辆
CN103561995A (zh) 车辆、电气设备以及电力送受电系统
US20160197487A1 (en) Wireless power receiving device
JP2013070514A (ja) 電動車両および電力伝送システム
JP2011167036A (ja) 車両用給電装置および受電装置
CN104426247A (zh) 电力接收设备、电力发送设备和电力传输系统
CN103370217B (zh) 车辆及外部供电装置
TW201717517A (zh) 用於感應式能量傳送的方法及用於操作感應式能量傳送裝置的裝置
JP2014150653A (ja) 車両用ワイヤレス給電装置
WO2017125986A1 (ja) 送電装置、受電装置および送受電システム
JP6138504B2 (ja) 送電装置および受電装置
WO2024048061A1 (ja) 地上給電装置及び配線
JP2015027224A (ja) 非接触受電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015245.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759211

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13577689

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011759211

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE