WO2011113129A2 - Agente de proteção solar nanoestruturado e processo - Google Patents

Agente de proteção solar nanoestruturado e processo Download PDF

Info

Publication number
WO2011113129A2
WO2011113129A2 PCT/BR2011/000076 BR2011000076W WO2011113129A2 WO 2011113129 A2 WO2011113129 A2 WO 2011113129A2 BR 2011000076 W BR2011000076 W BR 2011000076W WO 2011113129 A2 WO2011113129 A2 WO 2011113129A2
Authority
WO
WIPO (PCT)
Prior art keywords
sunscreen
nanostructured
agent
oxide
chemical
Prior art date
Application number
PCT/BR2011/000076
Other languages
English (en)
French (fr)
Other versions
WO2011113129A3 (pt
Inventor
Adriano Marim De Oliveira
Kleber LANIGRA GUIMARÃES
Natália NETO PEREIRA CERIZE
Original Assignee
Instituto De Pesquisas Tecnológicas Do Estado De São Paulo - Ipt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto De Pesquisas Tecnológicas Do Estado De São Paulo - Ipt filed Critical Instituto De Pesquisas Tecnológicas Do Estado De São Paulo - Ipt
Publication of WO2011113129A2 publication Critical patent/WO2011113129A2/pt
Publication of WO2011113129A3 publication Critical patent/WO2011113129A3/pt
Priority to US13/622,345 priority Critical patent/US20130177616A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/65Characterized by the composition of the particulate/core
    • A61K2800/654The particulate/core comprising macromolecular material

Definitions

  • the invention belongs to the field of cosmetics and pharmaceutical preparations (medicaments) of actives characterized by special nanostructured physical forms (nanoparticles) of the shell-core type, containing oxide particles on their surface and chemical actives inside, which provide protection against UVA and UVB radiation (light). Due to their size scale, composition and morphology, these nanoparticles can be applied in cosmetic formulations for the preparation of sunscreens, or in any other formulation whose main purpose is to protect against solar radiation.
  • the aim of the invention is to present a nanostructured sunscreen agent which provides UVA and UVB type sunscreen factors integrated in the same nanoparticulate system and its production process.
  • the sunscreen agent is obtained by polymerization of emulsion ethylene monomers in the presence of colloidal solid particles, and at least one light-absorbing chemical forming peel-core nanoparticles, where the peel is composed of nanoparticles. oxides and the nucleus by polymers and at least one chemical solar radiation protection agent which provide broad spectrum sun protection ranging from UVA to UVB.
  • the light-absorbing chemicals used in this nanoencapsulation may be any known in the art that is commonly employed in the preparation of sunscreens.
  • this sun protection agent In order for this sun protection agent to present this type of light protection (UVA and UVB) a process of preparation of the nanoparticles consisting of emulsion polymerization of acrylic ethylene monomers, employing colloidal oxide particles as stabilizer, and by this polymerization the in-situ encapsulation of the light-absorbing chemical occurs.
  • the colloidal oxide particles used as stabilizer during polymerization are anchored to the surface of the nanoparticles giving a physical barrier to light passage, especially wavelengths in the UVB region, and the chemical agent that has been nanocapsulated, and is inside the nanoparticles, confer protection mainly in the UVA region.
  • this nanostructured sunscreen agent can promote physical and chemical protection at the same time for a sunscreen formulation, avoiding the risks of irritability and allergy common to commonly used mixed protection systems.
  • the solar spectrum that reaches the earth's surface is predominantly ultraviolet (100-400 nm), visible (400-800 nm) and infrared (above 800 nm) radiation (Wolf et al, 2001).
  • IR radiation Infrared
  • Vis visible radiation
  • UV radiation ultraviolet radiation
  • melanin the manifestation of which is visible in the form of tanning of the skin, or may range from the production of simple inflammation to severe burns.
  • melanin the manifestation of which is visible in the form of tanning of the skin, or may range from the production of simple inflammation to severe burns.
  • UV radiation damages DNA and genetic material, oxidizes lipids to produce dangerous free radicals, causes inflammation in the skin, disrupts cell communication, modifies gene expression in response to stress and weakens the skin's immune response.
  • sunscreens aims to reduce the amount of UV radiation to be absorbed by human skin, serving as a protective barrier (Angeli, 2007).
  • UV radiation is the shortest wavelength and therefore the most energetic, that is, the most likely to induce photochemical reactions.
  • Another important consideration concerns the ability of this radiation to permeate the structure of the skin, as the lower energy UV radiation (320 to 400 nm) penetrates deeper into the skin and, upon reaching the dermis, is responsible for photoaging and may cause cancer. of skin.
  • This radiation known as UVA, has constant intensity and varies little throughout the day and throughout the year (Gawkrodger, 2002; Schulz et al, 2002).
  • UVB radiation penetrates the skin superficially, as it has high energy and often causes sunburn. It also induces skin tanning, being responsible for the transformation of epidermal ergosterol into vitamin D, and causes premature cell aging. Frequent and intense exposure to this radiation can cause DNA damage and suppress the skin's immune response.
  • Angeli, 2007; Gawkrodger, 2002; Schulz et al, 2002 its activity reduces the chance of a malignant cell being recognized and destroyed by the body (Angeli, 2007; Gawkrodger, 2002; Schulz et al, 2002 ).
  • the endogenous protection mechanism against UV radiation may be associated with the presence of melanin (pigment produced by melanocytes, basal cells of the epidermis), which among other functions gives color to the skin. Moderate exposure to sunlight results in increased melanin production and consequent tanning. This pigment acts by absorbing UV radiation and dissipating energy in the form of heat, preventing skin damage to skin tissues.
  • UVA radiation leads to oxidation of melanin and release of previously produced pigments contained in melanocytes, while UVB induces momentary tanning and stimulates the production of more melanin. Melanin's chemical properties make it an excellent photoprotector, more efficient than conventional sunscreens. Penetration of these compounds into the deeper layers of the skin may increase the amount of free radicals and reactive oxygen species (ROS) (Angeli, 2007).
  • ROS reactive oxygen species
  • sunscreens have been widely used to reduce the damage caused by solar radiation.
  • a sunscreen In addition to absorbing incident ultraviolet radiation, a sunscreen should be stable on human skin and heat, and be photostable under sunlight to allow protection for several hours, avoiding contact with degradation products.
  • sunscreens should not yet be irritating, sensitizing or phototoxic. They should cover and protect the surface of the skin but should not penetrate it so that there is no systemic exposure to these substances.
  • Sunscreens should not be toxic as traces of them are absorbed through the skin or ingested after application to the lips.
  • Another important feature of sunscreens is their compatibility with cosmetic formulations (Flori J et al 2007),
  • organic and inorganic routinely classified and respectively as chemical effect filters (chemical filters) and physical effect filters (physical filters).
  • chemical filters chemical filters
  • physical effect filters physical filters
  • organic compounds protect the skin from radiation absorption and inorganic compounds from radiation reflection.
  • organic filters that besides absorption also reflect UV radiation. It is noteworthy that the reflection and scattering phenomena depend among other factors on the particle size of the inorganic filter, and not on whether it is an organic or inorganic chemical compound (Flori J et al, 2007).
  • Inorganic sunscreens are used to prevent damage caused by UV radiation, acting mainly by the mechanism of reflection and scattering of light.
  • inorganic filters are made up of particles, preferably of the size of the order of radiation to be scattered. Due to their particle size, inorganic filters with adequate sizes, besides absorption, also present UV light scattering (Flori J et al, 2007). Zinc oxide and titanium dioxide are the main compounds used as inorganic filters, and when incorporated into the formulations are suspended, and particle size is of paramount importance not only in the effectiveness of sunscreen but also in the physical (cosmetic) appearance of the product. A negative point in using this type of sunscreen is the tendency to leave a white film on the skin, which can be aesthetically unpleasant (Angeli, 2007).
  • Microfine pigments need to be properly dispersed in the vehicle, usually an emulsion, to be effective, and poor dispersion will reduce product performance. Microfine pigments also need to be kept in suspension so that particle agglomeration does not occur as the final product performance will decrease if flocculation / agglomeration (coalescence) occurs and formation of larger aggregates during storage (Flori J et al, 2007).
  • organic filters are formed by organic molecules capable of absorbing UV radiation (high energy) and transform it into radiation with lower energies and harmless to the body.
  • These molecules are essentially aromatic compounds with carboxylic groups. In general, they have an electron donating group, which, when absorbing UV radiation, is excited to a lower energy empty orbital and, upon returning to the ground state, the excess energy is released as heat. It is observed that the effectiveness of these compounds is dependent on their absorption capacity of radiant energy, which is proportional to their concentration, absorption range and, especially, the wavelength at which maximum absorption occurs. Thus, some compounds have greater efficacy in the UVA region, while others have a maximum absorption peak and act more efficiently in the UVB region (Flori J et al, 2007).
  • UVA or UVB ultraviolet region
  • nanoparticle which can give the sunscreen formulation greater versatility, economy, ease of formulation and less problems with chemical and / or physical stability, and this is basically the inventive activity of the "Nanostructured and Processed Solar Protection Agent" , object of this patent.
  • WO / 2003/072077 “Substantially Visibly Transparent Topical Physical Sunscreen Formulation” describes a system containing broadly protected (UVA and UVB) physical filter (ZnO) nanoparticles coated with a surfactant-dispersed hydroxide or metal oxide .
  • Another composition in US 2009117384-A1 Metal oxide nanoparticle containing composition for UV-blocking composition used in sunscreen composition, has regular polyhedral nanocavities which are isolated from the surface of nanoparticle” describes only one physical form of UV protection using Ti0 2.
  • nanoparticle containing polyhedral cavities on the surface This system can be used in the composition of UV blocking formulas, in cosmetic application (sunscreen); industrial coating as well as solar energy conversion systems and lithium batteries.
  • Cavity nanoparticles have higher UV absorption (at wavelengths less than 360nm) when compared to those without cavities.
  • an alkaline solution autoclave at 150 - 190 ° C
  • US 2005/0208087 ⁇ Modified Oxidic Nano-particle with Hydrophobic Inclusions, Method for Production and Use of said Particle) also describes the production of nanoparticles of a physical filter, modified with hydrophobic inclusions consisting of halogenated molecules.
  • the main uses are related to toner, cosmetic sunscreens, insecticides or marker biomolecules.
  • the invention US 5955091 (Photobluing / whitening-resistant cosmetic / dermatological compositions comprising Ti02 pigments and deformable holiow particulates) is a topically used cosmetic or sunscreen or dermatological composition for improving the photoprotection of human skin and / or of hair, comprising at least one nanopigment ( ⁇ 02) and effective amount of deformable hollow particles (microspheres) in the range 1 to 250 micrometres, consisting of vinylidene chloride, acrylonitrile and methacrylate copolymer.
  • US7344591 (Stabilized titanium dioxide nanoparticle suspension, eg for personal care application such as sunscreen, comprising dispersing agent containing organic molecules that have functional group, eg hydroxyl and / or carboxyl) describes a stabilized, solvent-free nanoparticulate ⁇ 2 suspension in a type of alcohol.
  • GB 2453195 Aqueous nano-particulate dispersion comprising a UV absorber / polymer mixture for pharmaceutical / cosmetic applications
  • a carrier polymer prepared by dispersed radical polymerization).
  • This carrier system (described as aqueous polymeric dispersion) is incorporated into a cosmetic composition exhibiting sunscreen effects and a pleasant skin feel.
  • the particle size is below 1000 nm and another is that cationic or nonionic surfactant is used in its obtaining process.
  • the present invention “Nanostructured Solar Protection Agent and Process” presents a carrier system containing sunscreen, however, it is noted that the constitution and structure, process of obtaining and benefit obtained in the application are novelties with substantial differences in regarding that job.
  • the nanostructured agent referred to in "NANO-STRUCTURED SOLAR PROTECTION AGENT” consists of shell-core nanoparticles, where the shell is composed of oxide nanoparticles and the core by polymers and a chemical radiation protection agent, which provides broad spectrum sun protection, ranging from UVA to UVB.
  • a chemical radiation protection agent which provides broad spectrum sun protection, ranging from UVA to UVB.
  • the inventors did not use oxide particles to stabilize colloidal dispersions and also provide protection from solar radiation, using only conventional emulsifiers, which may bring limitations on topical administration and dermal irritability effects. .
  • the nanoparticles prepared herein can be applied in cosmetic formulations for preparation. sunscreens, or any other formulation whose primary purpose is to protect against solar radiation.
  • nanostructured sunscreen agent that provides UVA and UVB type sunscreen factors integrated in the same nanoparticulate system containing chemical and physical protectors is a novelty and inventive activity in the concept of sunscreen regarding the mechanism. of action of these components.
  • Figure 1A shows the turbidimetry curves obtained with the polymer dispersion synthesized under the experimental conditions of Example 1.
  • Figure 1B shows the transmittance x wavelength (nm) spectrum of a sunscreen agent sample, at a concentration of 0.005% by mass, obtained under the experimental conditions of Example 1.
  • Figure 2A shows the turbidimetry curves obtained with the polymer dispersion synthesized under the experimental conditions of Example 2.
  • Figure 2B shows the transmittance x wavelength (nm) spectrum of a sunscreen agent sample, at a concentration of 0.005% by mass, obtained under the experimental conditions of Example 2.
  • Figures 2C and 2D show the microscopy images of the product prepared according to Example 2.
  • Figure 3A shows the turbidimetry curves obtained with the polymer dispersion synthesized under the experimental conditions of Example 3, showing small phase separation, indicated by the reduction of backscattering intensity at the end of the 3 days of analysis.
  • Figure 3B shows the transmittance x wavelength (nm) spectrum of a sunscreen agent sample, at a concentration of 0.005% by mass, obtained under the experimental conditions of Example 3.
  • Figure 4A shows the turbidimetry curves obtained with the polymer dispersion synthesized under the experimental conditions of Example 4, showing small phase separation, indicated by the reduction of backscattering intensity at the end of the 3 days of analysis.
  • Figure 4B shows the transmittance x wavelength (nm) spectrum of a sunscreen agent sample, at a concentration of 0.005% by mass, obtained under the experimental conditions of Example 4.
  • Figure 5A shows the turbidimetry curves obtained with the polymer dispersion synthesized under the experimental conditions of Example 5, showing small phase separation indicated by the reduction of backscattering intensity at the end of the 3 days of analysis:
  • Figure 5B shows the spectrum Transmittance X wavelength (nm) of a sunscreen agent sample at a concentration 0,005% by mass obtained under the experimental conditions of Example 5.
  • Figure 6 shows an overlap graph of the transmittance x wavelength (nm) curves in the UV spectroscopy of the nanostructured sunscreen agent at a concentration of 0.005% by mass, with the dashed curve corresponding to nanoparticle without 3-benzophenone; the dotted curve corresponding to Example "; the dotted and dashed curve corresponding to Example 2; and the full line curve corresponding to Example S,
  • NANO-STRUCTURED SOLAR PROTECTION AGENT AND PROCESS is a product that combines two sun protection mechanisms (physical and chemical) in a same nanoparticle that has shell-core morphology, where the shell is formed by oxide nanoparticles, such as silica, titanium oxide, zinc oxide, the core is formed of polymer, which may be of the types acrylates, methacrylates, vinyls, styrenics, acrylamides, methacrylamides, preferably acrylates and methacrylates, and a chemical radiation shielding agent for solar radiation. any belonging to the prior art.
  • this sunscreen agent is done by the usual polymerization technique, which can be conducted in a conventional polymerization reactor equipped with mechanical stirrer, reflux condenser and water circulation jacket.
  • the colloidal dispersion of the oxide (in a mass ratio of 0.01 to 10%, preferably 1%, relative to the final product, with appropriate particle size to product size) is prepared directly in the reactor and heated to the reaction temperature.
  • the monomer filler consisting of a mixture of hydrophobic monomer (in a weight ratio of 1 to 70%, preferably 20% relative to the final product) which will produce the polymer of interest together with the chemical protecting agent is added. (in a mass ratio of 0.0005 to 30%, preferably 4%, relative to the final product), which was previously solubilized in the monomers.
  • the initiator charge which will be responsible for initiating the polymerization reaction is added.
  • the polymerization reaction is conducted for different times, which may vary from 1 to 24 hours of reaction and at temperatures ranging from 50 to 100 ° C, depending on the materials used.
  • the polymeric dispersion can be used as such without any post-processing step, or recovered as a powder by classical particle drying methods such as lyophilization or spray drying.
  • nanometric dispersions obtained in aqueous medium can be characterized by different techniques, such as: laser diffraction, zeta-potential, turbidimetry, gravimetry, potentiometry, tensiometry and electron microscopy, high performance liquid chromatography and Ultra-violet spectroscopy.
  • EXAMPLE 1 Obtaining sunscreen containing n-encapsulated poly (methyl methacrylate) 3-benzophenone (3-BZ) In a jacketed glass reactor and bottom outlet with volume equal to 200 mL was added 80 g of a suspension of colloidal silica at a mass concentration of 1%. After temperature adjustment to 70 ° C 20 g of methyl methacrylate and 1 g of 3-benzophenone were added under stirring at a speed of 150 rpm and the reaction was started by the addition of 0.2 g of potassium persulfate dissolved in 10 g deionized water, the reaction was conducted at this temperature for 4 hours and after this time the obtained polymeric dispersion was characterized.
  • Figure 1A shows the turbidimetry curves obtained with the polymer dispersion synthesized under the experimental conditions of this example. This result demonstrates that for this colloidal dispersion sample there was a small phase separation indicated by the reduction of backscattering intensity after 3 days of analysis. However, this separation is reversible as gentle agitation in the sample vial is enough to resuspend the particles.
  • Figure 1B shows the transmittance curve of a diluted sample at a concentration of 0.005% by mass. What can be seen from this result is the ability of nanoparticles to absorb light, especially at wavelengths below 400 nm.
  • Figure 2A shows the turbidimetry curves obtained with the polymer dispersion synthesized under the experimental conditions of this example.
  • Figure 2B shows the transmittance curve and dilution of a nanoparticle sample to a concentration of 0.005 wt.%, With retention of light passage at wavelengths below 400 nm.
  • Figures 20 and 20 illustrate field emission scanning electron microscopy (SEM-FEG) images of the product obtained in Example 2.
  • Figure 3A shows the turbidimetry curves obtained with the polymer dispersion synthesized under the experimental conditions of this example. This result also showed small phase separation, indicated by the reduction of the backscattering intensity at the end of the 3 days of analysis. With Figure 3B it was also possible to prove the light retention with this prepared sample.
  • Table 3 Results obtained with the product produced under the experimental conditions of Example 3.
  • EXAMPLE 4 Obtaining nanoencapsulated poly (methyl methacrylate) octylmethoxycinnamate (WTO) sunscreen
  • Figure 4A shows the turbidimetry curves obtained with the polymer dispersion synthesized under the experimental conditions of this example. This result demonstrates that for this colloidal dispersion sample there was a small phase separation indicated by the reduction of the backscattering intensity at the end of the 3 days of analysis. However, this separation is reversible since gentle agitation in the sample vial is sufficient to resuspend the particles.
  • Figure 46 shows the transmittance curve of a diluted sample at a concentration of 0.005% by mass. The result allows us to understand the ability of nanoparticles to absorb light mainly at wavelengths below 400 nm.
  • Figure 5A shows the turbidimetry curves obtained with the polymer dispersion synthesized under the experimental conditions of this example. This result demonstrates that for this colloidal dispersion sample there was a small phase separation indicated by the reduction of the backscattering intensity at the end of the 3 days of analysis. However, this separation is reversible since gentle agitation in the sample vial is sufficient to resuspend the particles.
  • Figure 58 shows the transmittance curve of a diluted sample to a concentration of 0.005% by mass. What if You can see from this result that nanoparticles can absorb light, especially at wavelengths of less than 400 nm.
  • EXAMPLE 6 UV spectroscopy transmittance curves of the nanostructured sunscreen containing 3-benzophenone.
  • Aqueous nano-particulate dispersion comprising a UV absorber / polymer mixture for pharmaceutical / cosmetic applications; 2009
  • Stabilized titanium dioxide nanoparticle suspicion e.g. for personal care applicability such as sunscreen, comprises dispersing agent account ining Thai organic molecules have functional group, e.g. hydroxyl and / or carboxyl; 2008

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

Revela um sistema constituído por nanopartículas do tipo casca-núcleo. onde a casca é constituída por nanopartículas de óxidos e o núcleo por polímeros e agentes químicos de proteção à radiação solar, o qual confere proteção solar em larga faixa espectral, variando desde UVA até UVB, devido a sua composição química que contém agentes de proteção fisica, nanopartículas de óxidos, e agentes de proteção química nanoencapsulado na matriz polimérica. Devido a sua escala de tamanho, composição e morfologia, as nanopartículas preparadas podem ser aplicadas em formulações cosméticas, na preparação de protetores solares, ou em qualquer outra formulação que tenha como objetivo principal a proteção contra a radiação solar.

Description

AGENTE DE PROTEÇÃO SOLAR NANOESTRUTURADO E
PROCESSO
CAMPO DE ATUAÇÃO
A invenção pertence ao setor de cosméticos e preparações farmacêuticas (medicinais) de ativos caracterizadas por formas físicas especiais nanoestruturadas (nanopartículas), do tipo casca-núcleo, contendo partículas dê óxidos em sua superfície e ativos químicos em seu interior, os quais conferem proteção contra radiação do tipo UVA e UVB (luz). Devido a sua escala de tamanho, composição e morfologia, essas nanopartículas podem ser aplicadas em formulações cosméticas para preparação de protetores solares, ou em qualquer outra formulação que tenha como objetivo principal a proteção contra a radiação solar,
OBJETIVO DA INVENÇÃO
O objetivo da invenção é a apresentação de um agente de proteção solar nanoestruturado que confira fator de proteção solar do tipo UVA e UVB integrados em um mesmo sistema nanoparticulado e seu processo de produção.
RESUMO DA INVENÇÃO
O agente de proteção solar é obtido por meio de polimerização de monômeròs etilênicos em emulsão na presença de partículas sólidas coloidais, e pelo menos um agente químico de absorção de luz, formando nanopartículas do tipo casca-núcleo, onde a casca é constituída por nanopartículas de óxidos e o núcleo por polímeros e pelo menos um agente químico de proteção à radiação solar, as quais conferem proteção solar em larga faixa espectral, variando desde UVA até UVB. Os agentes químicos de absorção de luz utilizados nesta nanoencapsulação podem ser quaisquer já conhecidos do estado da técnica que sejam normalmente empregados na preparação de protetores solares.
Para que este agente de proteção solar apresente este tipo de proteção à luz (UVA e UVB) utiliza-se de um processo de preparação das nanopartículas que consiste na polimerização em emulsão de monômeros etilênicos, do tipo acrilatos, empregando partículas de óxido coloidal como estabilizante, e por meio desta polimerização ocorre a encapsulaçâo in-situ do agente químico de absorção de luz. Neste sistema nanoestruturado as partículas de óxido coloidal utilizadas como estabilizante durante a polimerização ficam ancoradas na superfície das nanopartículas conferindo uma barreira física a passagem de luz, principalmente comprimentos de onda na região de UVB, e o agente químico que foi nanoencapsulado, e encontra-se no interior das nanopartículas, conferem a proteção principalmente na região de UVA. Com isso, este agente de proteção solar nanoestruturado pode promover proteção física e química ao mesmò tempo para uma formulação de protetor solar, evitando os riscos dê irritabilidade e alergia comuns aos sistemas mistos de proteção normalmente empregados.
Outras vantagens associadas a este agente de proteção solar consistem na possibilidade de se trabalhar em escala nanométrica, o que confere maior poder de cobertura durante a aplicação dérmica do produto, ou seja, maior área superficial das nanopartículas, além do fato destas partículas serem da ordem de tamanho da radiação que se quer espalhar. Ressalte-se também a associação dos efeitos de proteção física e química que o processo de nanoencapsulação confere ao agente químico de absorção dos raios UV.
Ainda, vários destes agentes químicos podem ser facilmente degradados quando expostos à radiação UV, o que pode levar â uma deficiência no fator de proteção do filtro solar, sendo que a fotodegradação ocorre principalmente na faixa de radiação UVA. Além disso, estes agentes químicos não podem dissipar a energia do estado excitado tão eficientemente como a melanina e, portanto, a penetração destes ingredientes nas camadas mais profundas da pele pode resultar no aumento da produção de radicais livres e de espécies reativas de oxigénio. Ademais, outra vantagem do sistema proposto consiste na proteção do usuário a possíveis compostos químicos tóxicos formados a partir da fotodegradação do agente químico, que em alguns casos pode ser mais danoso à pele do que a própria luz (Wright et al, 2001 ). Finalmente, temos a vantagem da possibilidade de se trabalhar com concentrações maiores do agente químico nas formulações de protetor solar, sem que este cause irritação ou irritabilidade cutânea, visto que se encontra nanoencapsuladó em uma matriz polimérica e recoberto por uma camada de partículas inorgânicas e desse modo o sistema nanoestruturado evitará que o agente químico tenha o mesmo efeito de toxicidade comparado às situações em que se encontra livre na formulação,
ESTADO DA TÉCNICA
O espectro solar que atinge a superfície terrestre é formado predominantemente por radiações ultravioletas (100-400 nm), visíveis (400-800 nm) e infravermelhas (acima de 800 nm) (Wolf et al, 2001).
O organismo humano percebe a presença destas radiações do espectro solar de diferentes formas. A radiação infravermelha (IV) é percebida sob a forma de calor, a radiação visível (Vis) através das diferentes cores detectadas pelo sistema óptico e a radiação ultravioleta (UV) através de reações fotoquímicas. Tais reações podem estimular a produção de melanina, cuja manifestação é visível sob a forma de bronzõamento da peie, ou pode levar desde a produção de simples inflamações até graves queimaduras. Também, há a possibilidade de ocorrerem mutações genéticas e comportamentos anormais das células (Wolf et al, 2001 ).
Pesquisas têm mostrado que a radiação UV danifica o DNA e o material genético, oxida os lipídios produzindo perigosos radicais livres, causa inflamação na pele, rompe a comunicação celular, modifica a expressão dos genes em resposta ao estresse e enfraquece a resposta imune da pele. O uso de protetores solares tem o objetivo de reduzir a quantidade de radiação UV a ser absorvida pela pele humana, servindo como uma barreira protetora (Angeli, 2007).
A energia da radiação solar aumenta com a redução do comprimento de onda, assim a radiação UV é a de menor comprimento de onda e, consequentemente, a mais energética, ou seja, a mais propensa a induzir reações fotoquímicas. Outra consideração importante diz respeito à capacidade desta radiação permear a estrutura da pele, visto que a radiação UV de menor energia (320 a 400 nm) penetra mais profundamente na pele e, ao atingir a derme, é responsável pelo fotoenvelhecimento, podendo causar o câncer de pele. Esta radiação, conhecida por UVA, tem intensidade constante e varia pouco ao longo do dia e ao longo do ano (Gawkrodger, 2002; Schulz et al, 2002).
A radiação UVB penetra superficialmente na pele, visto que possui alta energia, e ocasiona com frequência queimaduras solar. Também, induz o bronzeamento da pele, sendo responsável pela transformação do ergosterol epidérmico em vitamina D, e causa o envelhecimento precoce das células. A exposição frequente e intensa a esta radiação pode causar lesões no DNA, além de suprimir a resposta imunológica da pele. Dèsta forma, além de aumentar o risco de mutações fatais, manifestado sob a forma de câncer de pele, sua atividade reduz a chance de uma célula maligna ser reconhecida e destruída pelo organismo (Angeli, 2007; Gawkrodger, 2002; Schulz et al, 2002).
O mecanismo endógeno de proteção contra a radiação UV pode ser associado com a presença da melanina (pigmento produzido pelos melanócitos, células basais da epiderme), a qual dentre outras funções confere cor à pele. A exposição moderada à luz solar resulta em aumento da produção de melanina e consequente bronzeamento. Este pigmento age absorvendo a radiação UV e dissipando a energia na forma de calor, evitando danos cutâneos aos tecidos da pele. A radiação UVA leva à oxidação da melanina e liberação dos pigmentos anteriormente produzidos, contidos nos melanócitos, enquanto a UVB induz o bronzeamento momentâneo e estimula a produção de mais melanina. As propriedades químicas da melanina tornam-na um excelente fotoprotetor, mais eficiente que os filtros solares convencionalmente utilizados. A penetração destes compostos nas camadas mais profundas da pele pode aumentar a quantidade de radicais livres e de espécies reativas de oxigénio (EROs) (Angeli, 2007).
Neste contexto, os filtros solares têm sido amplamente utilizados, visando à redução dos danos causados pela radiação solar. Além de absorver a radiação ultravioleta incidente, um produto para proteção solar deve ser estável na pele humana e ao calor, e ser fotoestável sob a luz do sol para permitir proteção durante várias horas, evitando contato com produtos de degradação. Paralelamente, os filtros solares ainda não devem ser irritantes, sensibilizantes ou fototóxicos. Eles devem recobrir e proteger a superfície da pele, mas não devem penetrá-la, para que não se tenha uma exposição sistémica a essas substâncias. Os filtros solares não devem ser tóxicos, já que são absorvidos traços deles através da pele ou ingeridos após a aplicação nos lábios. Outra característica importante dos filtros solares é a sua compatibilidade com formulações cosméticas (Flori J et ai 2007),
Existem duas classes de filtros solares: orgânicos e inorgânicos, classificados rotineira e respectivamente como filtros de efeito químico (filtros químicos) e filtros de efeito físico (filtros físicos). Geralmente, os compostos orgânicos protegem a pele pela absorção da radiação e os inorgânicos pela reflexão da radiação. Existem no mercado, atualmente, filtros orgânicos que além da absorção também refletem a radiação UV. Ressalte-se que os fenómenos reflexão e espalhamento dependem entre outros fatores do tamanho de partículas do filtro inorgânico, e não do fato de ser composto químico orgânico ou inorgânico (Flori J et ai, 2007). Os filtros solares inorgânicos são utilizados na prevenção dos danos causados pela radiação UV, atuando principalmente pelo mecanismo de reflexão e espalhamento de luz. São considerados como uma forma mais segura e eficaz de proteção da pele, pois apresentam baixo potencial de irritação, sendo inclusive os filtros solares recomendados no preparo de fotoprotetores para usô infantil e pessoas com peies sensíveis. Vale ressaltar que os filtros inorgânicos são constituídos de partículas, de preferência com tamanhos da ordem da radiação que se quer espalhar. Por se tratar de partículas, os filtros inorgânicos com tamanhos adequados, além de absorção, apresentam também espalhamento da luz UV (Flori J et al, 2007). Óxido de zinco e dióxido de titânio são os principais compostos utilizados como filtros inorgânicos, e quando incorporados às formulações ficam suspensos, sendo o tamanho das partículas de suma importância não apenas na eficácia do protetor solar como também na aparência física (cosmética) do produto. Um ponto negativo na utilização deste tipo de filtro solar é a tendência em deixar uma película branca sobre a pele, que pode ser esteticamente desagradável (Angeli, 2007).
O espalhamento máximo da luz ocorre na presença de partículas com diâmetro aproximadamente igual ao comprimento de onda da luz incidente. Para não ocorrer a formação da película branca sobre a pele, o tamanho de partículas não pode ser da mesma ordem de grandeza do comprimento de onda da faixa da radiação visível, assim as partículas devem ser menores que 400 nm (Angeli, 2007).
Podem ocorrer algumas intera ões não muito favoráveis associadas ao uso dos filtros solares inorgânicos. Os pigmentos microfinos precisam estar adequadamente dispersos no veículo, normalmente uma emulsão, para que se tenha eficácia, sendo que a má dispersão irá reduzir o desempenho do produto. Pigmentos microfinos também precisam ser mantidos em suspensão, de modo que não ocorra aglomeração das partículas, pois o desempenho final do produto diminuirá se ocorrer floculação/aglomeração (coalescência) e formação de agregados maiores durante o armazenamento (Flori J et ai, 2007).
Em paralelo, os filtros orgânicos são formados por moléculas orgânicas capazes de absorver a radiação UV (alta energia) e transformá-la em radiações com energias menores e inofensivas ao organismo. Estas moléculas são, essencialmente, compostos aromáticos com grupos carboxíiicos. De forma geral, apresentam um grupo doador de elétrons, que ao absorver a radiação UV são excitados para orbital vazio de mais baixa energia e, ao retornarem para o estado fundamental, o excesso de energia é liberado em forma de calor. Observa- se que a eficácia destes compostos é dependente da sua capacidade de absorção da energia radiante, que é proporcional à sua concentração, intervalo de absorção e, principalmente, comprimento de onda em que ocorre a absorção máxima. Sendo assim, alguns compostos têm maior eficácia na região do UVA, enquanto outros têm pico de absorção máxima e atuam de forma mais eficiente na região do UVB (Flori J et al, 2007).
Como os filtros solares absorvem apenas parte da região do ultravioleta (UVA ou UVB), para se ter uma proteção completa são utilizadas combinações entre estes filtros. Por outro lado, a combinação de diferentes tipos de filtros pode causar alto grau de irritabilidade quando aplicada à pele.
Algumas invenções já foram patenteadas utilizando nanopartículas de filtros solares, sendo que a maioria delas se refere ao desenvolvimento e aplicação de filtros físicos na forma de nanopartículas, entretanto nenhuma delas demonstra a possibilidade de conjugação de dois mecanismos de proteção solar (física e química) numa mesma nanoparticula, o que pode conferir à formulação do protetor solar maior versatilidade, economia, facilidade de formulação e menos problemas com estabilidade química e/ou física, sendo basicamente esta a novidade é a atividade inventiva do "AGENTE DE PROTEÇÃO SOLAR NANOESTRUTURADO E PROCESSO", objeto desta patente.
A patente WO/2003/072077 "A Substantially Visibly Transparent Topical Physical Sunscreen Formulation", descreve um sistema contendo nanopartículas de filtro físico (ZnO), de ampla proteção (UVA e UVB), recobertas com um hidróxido ou óxido metálico, dispersas com tensoativo. Outra composição, em US 2009117384-A1 "Metal oxide nanoparticle containing composition for UV-blocking composition used in sunscreen composition, has regular polyhedral nanocavities which are isolated from suríace of nanoparticle", descreve apenas uma forma física de proteção a raios UV utilizando Ti02 nanoparticulado contendo cavidades poliédricas na superfície. Este sistema pode ser empregado na composição de fórmulas bloqueadoras de UV, na aplicação cosmética (filtro solar); revestimento industrial, e também em sistemas de conversão de energia solar e baterias de lítio. As nanopartículas com cavidades têm maior absorção UV (em comprimento de onda menor que 360nm) quando comparadas àquelas sem cavidade. Através do tratamento do óxido em pó com uma solução alcalina (em autoclave a 150 - 190°C), lavagem com solução ácida e aquecimento a 550 - 750°C em atmosfera de oxigénio e amónia formam-se as nanopartículas com cavidades poliédricas.
No documento US 2005/0208087 {Modified Oxidic Nano-particle with Hydrophobic Inclusions, Method for the Production and Use of said Particle) também é descrita a produção de nanopartículas de um filtro físico, modificadas com inclusões hidrofóbicas constituídas de moléculas halogenadas. As principais utilizações são relacionadas a toner, filtros solares cosméticos, imseticidas ou biomoléculas marcadoras.
A invenção US 5955091 {Photobluing / whitening-resistant cosmetic / dermatological compositions comprising Ti02 pigments and deformable holiow particulates) trata de uma composição cosmética, ou filtro solar, ou dermatológico, de uso tópico, indicada para melhorar a fotoproteção da pele humana e/ou dos cabelos, compreendendo ao menos um nanopigmento (ΤΊ02) e quantidade efetiva partículas ocas deformáveis (microesferas) de faixa de tamanho entre 1 e 250 micrômetros, constituída por copolímero de cloreto de vinilideno, acrilonítrila e metacrilato.
Em US7344591 (Stabilized titanium dioxide nanoparticle suspension, e.g. for personal care application such as sunscreen, comprises dispersing agent containing organic molecules that have functional group, e.g. hydroxyl and/or carboxyl) descreve-se uma suspensão de ΤΊΟ2, nanoparticulado livre de solvente, estabilizada em um tipo de álcool.
O trabalho que apresenta alguns aspectos semelhantes com a presente invenção é GB 2453195 (Aqueous nano-particulate dispersion comprising a UV absorber/polymer mixture for pharmaceutical/cosmetic applications) que se caracteriza pela presença de um polímero carreador (preparado por polimerização radicalar em meio disperso) com unidades etilênicas insaturadas e filtro solar UV lipofilico em concentrações de aproximadamente 2:1 em razão mássica polímero:filtro. Este sistema carreador (descrito como dispersão poliméríca aquosa) é incorporado em uma composição cosmética exibindo efeitos de proteção solar e sensação agradável para a pele. Um aspecto dessa suspensão é que o tamanho de partícula está abaixo de 1000 nm e outro é que se utiliza tensoativo catiôniço ou não-iônico no seu processo de obtenção. De maneira análoga, a presente invenção "AGENTE DE PROTEÇÃO SOLAR NANOESTRUTURADO E PROCESSO" apresenta um sistema polimérico carreador contendo filtro solar, entretanto, ressalte-se que a constituição e estrutura, processo de obtenção e benefício obtido na aplicação são novidades com diferenças substanciais em relação àquele trabalho.
O agente nanoestruturado citado em "AGENTE DE PROTEÇÃO SOLAR NANOESTRUTURADO E PROCESSO" é constituído por nanopartículas do tipo casca-núcleo, onde a casca é constituída por nanopartículas de óxido e o núcleo por polímeros e um agente químico de proteção à radiação solar, o qual confere proteção solar em larga faixa espectral, variando desde UVA até UVB. No caso da patente GB 2453195, os inventores não se utilizaram de partículas de óxidos para estabilização das dispersões coloidais e que também conferem proteção a radiação solar, usando apenas emulsificantes convencionais, os quais podem trazer limitações em relação à administração tópica e efeitos de irritabilidade dérmica. Devido a sua composição química, que contêm agentes de proteção física, nanopartículas de óxidos e agentes de proteção química nanoencapsulado na matriz polimérica, como também a sua escala de tamanho, composição e morfologia, as nanopartículas aqui preparadas podem ser aplicadas em formulações cosméticas para preparação de protetores solares, ou em qualquer outra formulação que tenha como objetivo principal a proteção contra a radiação solar.
A apresentação de um agente de proteção solar nanoestruturado que confira fator de proteção solar do tipo UVA e UVB integrados em um mesmo sistema nanoparticulado contendo protetores químico e físico trata-se de novidade e atividade inventiva no conceito de filtro solar no que condiz com o mecanismo de ação destes componentes.
DESCRIÇÃO DAS FIGURAS
Figura 1A apresenta as curvas de turbidimetria obtida com a dispersão polimérica sintetizada nas condições experimentais do Exemplo 1. Figura 1 B apresenta o espectro de transmitância X comprimento de onda (nm) de uma amostra do agente de proteção solar, numa concentração 0,005% em massa, obtido de acordo com as condições experimentais do Exemplo 1 . A Figura 2A apresenta as curvas de turbidimetria obtida com a dispersão polimérica sintetizada nas condições experimentais do Exemplo 2.
A Figura 2B apresenta o espectro de transmitância X comprimento de onda (nm) de uma amostra do agente de proteção solar, numa concentração 0,005% em massa, obtido de acordo com as condições experimentais do Exemplo 2.
As Figuras 2C e 2D apresentam as imagens de microscopia do produto preparado de acordo com o Exemplo 2.
A Figura 3A apresenta as curvas de turbidimetria obtida com a dispersão polimérica sintetizada nas condições experimentais do Exemplo 3, mostrando pequena separação de fase, indicada pela redução da intensidade do "backscattering" ao final dos 3 dias de análise,
A Figura 3B apresenta o espectro de transmitância X comprimento de onda (nm) de uma amostra do agente de proteção solar, numa concentração 0,005 % em massa, obtido de acordo com as condições experimentais do Exemplo 3.
A Figura 4A apresenta as curvas de turbidimetria obtida com a dispersão polimérica sintetizada nas condições experimentais do Exemplo 4, mostrando pequena separação de fase, indicada pela redução da intensidade do "backscattering" ao final dos 3 dias de análise. A Figura 4B apresenta o espectro de transmitância X comprimento de onda (nm) de uma amostra do agente de proteção solar, numa concentração 0,005% em massa, obtido de acordo com as condições experimentais do Exemplo 4. A Figura 5A apresenta as curvas de turbidimetria obtida com a dispersão polimérica sintetizada nas condições experimentais do Exemplo 5, mostrando pequena separação de fase, indicada pela redução da intensidade do "backscattering" ao final dos 3 dias de análise: A Figura 5B apresenta o espectro de transmitância X comprimento de onda (nm) de uma amostra do agente de proteção solar, numa concentração 0,005% em massa, obtido de acordo com as condições experimentais do Exemplo 5.
A Figura 6 apresenta um gráfico de sobreposição das curvas de transmitância X comprimento de onda (nm) em espectroscopia no UV do agente de proteção solar nanoestruturado, numa concentração de 0,005% em massa, sendo a curva tracejada correspondente a nanopartícula sem 3-benzofenona; a curva pontilhada correspondente ao Exemplo"! ; a curva pontilhada e tracejada correspondente ao Exemplo 2; e a curva em linha cheia correspondente ao Exemplo S,
DETALHAMENTO DA INVENÇÃO
O "AGENTE DE PROTEÇÃO SOLAR NANOESTRUTURADO E PROCESSO" aqui apresentado é um produto com conjugação de dois mecanismos de proteção solar (física e química) numa mesma nanopartícula que tem morfologia do tipo casca-núcleo, onde a casca é formada por nanopartículas de óxidos, tais como sílica, óxido de titânio, óxido de zinco, o núcleo é formado por polímero, que pode ser dos tipos acrilatos, metacrilatos, vinílicos, éstirênicos, acrilamidas, metacrilamidas, preferencialmente acrilatos e metacrilatos, e um agente químico dè proteção a radiação solar qualquer pertencente ao estado da técnica.
A síntese deste agente de proteção solar é feita por meio da técnica usual de polimerização, a qual pode ser conduzida em um reator convencional de polimerização equipado com agitador mecânico, condensador de refluxo e camisa de circulação de água. A dispersão coloidal do óxido (em proporção mássica de 0,01 a 10%, preferencialmente 1 %, em relação ao produto final, com granulometria apropriada em relação a granu!ometria do produto) é preparada diretamente no reator e aquecida na temperatura de reação. Em seguida, é adicionada a carga de monômeros, constituída de uma mistura do monômero hidrofóbico (em proporção mássica de 1 a 70%, preferencialmente 20%, em relação ao produto final) que produzirá o polímero de interesse juntamente com o agente químico de proteção solar (em proporção mássica de 0,0005 a 30%, preferencialmente 4%, em relação ao produto final), este previamente solubilizado nos monômeros,. Após a adição dos monômeros e uma leve homogeneização do meio reacíonal (de 10 a 1000 rpm, preferencialmente 200 rpm), é adicionada a carga de iniciador que será responsável pelo começo da reação de polimerização. A reação de polimerização é conduzida por diferentes tempos, que podem variar de 1 até 24 horas de reação e em temperaturas que variam de 50 a 100 °C, em função dos materiais utilizados. Ao final da reação, a dispersão poliméríca pode ser utilizada tal qual, sem nenhuma etapa de pós processamento, ou recuperada na forma de pó por métodos clássicos de secagem de partículas, como liofilização ou secagem por aspersão (spray drying).
Para confirmação da formação do agente proteção solar, as dispersões nanométricas obtidas em meio aquoso podem ser caracterizadas por diferentes técnicas, como: difração de laser, zeta-potencial, turbidimetria, gravimetria, potenciometria, tensiometria e microscopia eletrônica, cromatografia líquida de alta eficiência e espectroscopia de Ultra- Violeta.
EXEMPLOS
EXEMPLO 1 : Obtenção de agente de proteção solar contendo 3-benzofenona (3-BZ) nanoencapsulada por poli(metacrilato de metíla) Em um reator de vidro encamisado e saída de fundo com volume igual a 200 mL foram adicionados 80 g de uma suspensão de sílica coloidal numa concentração mássica de 1 %. Após ajuste de temperatura para 70 °C foram adicionados 20 g de metacrilado de metila e 1 g de 3-benzofenona, sob agitação numa velocidade de 150 rpm e a reação foi iniciada com a adição de 0,2 g de persulfato de potássio dissolvido em 10 g de água deionizada, A reação foi conduzida nesta temperatura por 4 horas e após este tempo a dispersão polimérica obtida foi caracterizada.
Os resultados obtidos para este exemplo encontram-se na Tabela 1 . A Figura 1A apresenta as curvas de turbidimetria obtida com a dispersão polimérica sintetizada nas condições experimentais deste exemplo. Este resultado demonstra que para esta amostra de dispersão coloidal ocorreu uma pequena separação de fase indicada pela redução da intensidade do "backscattering" ao final de 3 dias de análise, No entanto, esta separação é reversível, pois uma agitação branda no frasco de amostra é suficiente para ressuspender as partículas. Na Figura 1 B é apresentada a curva de transmitância de uma amostra diluída em concentração de 0,005% em massa. O que se pode perceber com este resultado é a capacidade das nanopartículas absorverem a luz, principalmente nos comprimentos de onda inferiores a 400 nm.
Tabela T: Resultados obtidos com o produto produzido de acordo com as condições experimentais do Exemplo 1 .
Figure imgf000015_0001
EXEMPLO 2: Obtenção de agente de proteção solar contendo 3-benzofenona nanoencapsulada por poli(metacrilato de metila)
Em um reator de vidro encamisado e saída de fundo com volume igual a 200 mL foram adicionados 80g de uma suspensão de sílica coloidal numa concentração mássica de í%. Após ajuste de temperatura para 70 °C foram adicionados 20 g de metacrilado de metila e 2 g de 3-benzofenona, sob agitação em velocidade de 150 rpm e a reação foi iniciada com a adição de 0,2 g de persulfato de potássio dissolvido em 10 g de água deionizada. A reação foi conduzida nesta temperatura por 4 horas e após este tempo a dispersão polimérica obtida foi caracterizada, Os resultados obtidos para este exemplo encontram-se na Tabela 2.
A Figura 2A apresenta as curvas de turbidimetria obtida com a dispersão polimérica sintetizada nas condições experimentais deste exemplo. A Figura 2B mostra a curva de transmitância éa diluição de uma amostra de nanopartículas até a concentração de 0,005% em massa, sendo possível observar a retenção da passagem da luz nos comprimentos de onda inferiores a 400 nm. As Figuras 20 e 20 ilustram imagens de microscopia eletrônica de varredura do tipo emissão de campo (MEV-FEG) do produto obtido no Exemplo 2.
Tabela 2: Resultados obtidos Com o produto produzido de acordo com as condições experimentais do Exemplo 2.
Figure imgf000016_0001
EXEMPLO 3; Obtenção de agente de proteção solar contendo 3-benzofenona nanoencapsuíada por pòli(metacrilato de metila)
Em um reatòr de vidro encamisado e saída de fundo com volume igual a 200 mL foram adicionados 80 g de uma suspensão de sílica coloidal numa concentração mássica de 1 %. Após ajuste de temperatura para 70 °C foram adicionados 20 g de metacrilado de metila e 4 g de 3-benzofenona, sob agitação em velocidade de 150 rpm e a reação foi iniciada com a adição de 0,2 g de persulfato de potássio dissolvido em 10 g de água deíonizada. A reação foi conduzida nesta temperatura por 4 horas e após este tempo a dispersão polimérica obtida foi caracterizada. Os resultados obtidos para este exemplo seguem na Tabela 3.
A Figura 3A apresenta as curvas de turbidimetria obtida com a dispersão polimérica sintetizada nas condições experimentais deste exemplo. Este resultado também mostrou pequena separação de fase, indicada pela redução da intensidade do "backscattering" ao final dos 3 dias de análise. Com Figura 3B também foi possível comprovar a retenção de luz com esta amostra preparada. Tabela 3: Resultados obtidos com o produto produzido de acordo com as condições experimentais do Exemplo 3.
Figure imgf000017_0001
EXEMPLO 4: Obtenção de agente de proteção solar contendo octilmetoxicinamato (OMC) nanoencapsulado por poli(metacrilato de metila)
Em um reator de vidro encamisado e saída de fundo com volume igual a 200 ml_ foram adicionados 80 g de uma suspensão de sílica coloidal numa concentração mássica de 1 %. Após ajuste de temperatura para 70 °C foram adicionados 20 g de metacrilado de metila e 2 g de OMC, sob agitação em velocidade de 150 rpm e a reaçâo foi iniciada com a adição de 0,2 g de persulfato de potássio dissolvido em 10 g de água deionizada. A reaçâo foi conduzida nesta temperatura por 4 horas e após este tempo a dispersão polimérica obtida foi caracterizada. Os resultados obtidos para este exemplo seguem na Tabela 4.
A Figura 4A apresenta as curvas de turbidimetria obtida com a dispersão polimérica sintetizada nas condições experimentais deste exemplo. Este resultado demonstra que para esta amostra de dispersão coloidal ocorreu uma pequena separação de fase indicada pela redução da intensidade do "backscattering" ao final dos 3 dias de análise. No entanto, esta separação é reversível, pois uma agitação branda no frasco de amostra é suficiente para ressuspender as partículas. Na Figura 46 é apresentada a curva de transmitância de uma amostra diluída em concentração de 0,005 % em massa. O resultado permite perceber a capacidade dás nanopartículas absorverem a luz principalmente nos comprimentos de onda inferiores a 400 nm.
Tabela 4: Resultados obtidos com o produto produzido de acordo com as condições experimentais do Exemplo 4.
Figure imgf000018_0001
EXEMPLO 5: Obtenção de agente de proteção solar contendo octilmetoxicinamato (OMC) nanoencapsulada por poli(metacrilato de metila)
Em um reator de vidro encamisado e saída de fundo com volume igual a 200 mL foram adicionados 80 g de uma suspensão de sílica coloidal numa concentração mássica de 1 %. Após ajuste de temperatura para 70 °C foram adicionados 20 g de metacrilado de metila e 4 g de OMC, sob agitação em velocidade de 150 rpm e a reação foi iniciada com a adição de 0,2 g de persulfato de potássio dissolvido em 10 g de água deionizada. A reação foi conduzida nesta temperatura por 4 horas e após este tempo a dispersão polimérica obtida foi caracterizada. Os resultados obtidos para este exemplo encontram-se na Tabela 5.
A Figura 5A apresenta as curvas de turbidimetria obtida com a dispersão polimérica sintetizada nas condições experimentais deste exemplo. Este resultado demonstra que para esta amostra de dispersão coloidal ocorreu uma pequena separação de fase indicada pela redução da intensidade do "backscattering" ao final dos 3 dias de análise. No entanto, esta separação é reversível, pois uma agitação branda no frasco de amostra é suficiente para ressuspender as partículas. Na Figura 58 é apresentada a curva de transmitância de uma amostra diluída até uma concentração de 0,005% em massa. O que se pode perceber com este resultado é capacidade das nanopartículas absorverem a luz, principalmente nos comprimentos de onda inferiores a 400 nrri.
Tabela 5: Resultados obtidos com o produto produzido de acordo com as condições experimentais do Exemplo 5.
Figure imgf000019_0001
EXEMPLO 6: Curvas de transmitância em espectroscopia no UV do agente de proteção solar nanoestruturado contendo 3-benzofenona.
A sobreposição das curvas de transmitância vs comprimento de onda das amostras de agente de proteção sintetizados nos exemplos desta invenção demonstram a influência da concentração do agente químico na redução da passagem de luz pela amostra diluída, indicando que quanto maior a concentração do agente químico nanoencapsulado maior será a eficiência na retenção da luz.
REFERÊNCIAS
• Angeli WV. Desenvolvimento e Caracterização de Formulações Fotoprotetoras contendo Nanocápsulas. Tese de Doutoramento - UFRGS,
Porto Alegre, Brasil, 2007.
• Flori J, Davolosl MR, Correall MA. Sunscreens. Quím Nova, v0, n1. São Paulo, 2007.
• Gawkrodger D. Dermatologia. Rio de Janeiro: Guanabara Koogan, 2002. · Schulz J, Hohenberge H, Pflucker F, Garter E, Will T, Pfeiffer S, Wepf R, Wendel V, Gers-Barlag H, Wittern P. Distribution of sunscreens on skin. Adv Drug Del Rev. SuppH , v54, p157-163, 2002. Wolf R, Wilf D, Morganti, Ruocco V. Sunscreens. Glinics in Dermatology, v19, p452-459; 2001
Wright, MW, Wright ST, Wagner RF, Mechanisms of sunscreen failure. J Am Acad Dermatol v44, p781-784, 2001.
GB 2453195. Aqueous nano-particulate dispersion comprising a UV absorber/polymer mixture for pharmaceutical/cosmetic applications; 2009.
US 2005/0208087. Modified Oxidic Nano-particle with Hydrophobic Inclusions, Method for lhe Production and Use of said Particle; 2005.
US 20091 17384-A1. Metal oxide nanoparticle conta ining composition for UV-blocking composition used in sunscreen composition, has regular polyhedral nanocavities which are isolated from surface of nanoparticles 2009.
US 5955091. Photobluing / whitening-resistant cosmetic / dermatological compositions comprising Ti02 pigments and deformable hollow particulates; 1999.
US7344591. Stabilized titanium dioxide nanoparticle suspehsion, e.g. for personal care applicãtion such as sunscreen, comprises dispersing agent conta ining organic molecules thai have functional group, e.g. hydroxyl and/ór carboxyl; 2008.
WO/2003/072077: A Substantially Visibly Transparent Topical Physical Sunscreen Formulation; 2003.

Claims

REIVINDICAÇÕES
1. "AGENTE DE PROTEÇÃO SOLAR NANOESTRUTURADO", caracterizado por ser um produto com conjugação de dois mecanismos de proteção soiar (física e química) numa mesma namopartícula que tem morfologia do tipo casca-núcleo, onde a casca é formada por nanopartículas de óxidos e o núcleo ser formado por polímero, e um agente químico de proteção à radiação solar, sendo os óxidos sílica, óxido de titânio e óxido de zinco, o polímero do núcleo ser originado de monômeros hidrofóbicos, como os tipos acrilatos, metacrilatos, vinílicos, estirênicos, acrilamidas e metacrilamidas e o agente químico de proteção à radiação ser qualquer pertencente ao estado da técnica,
2. "AGENTE DE PROTEÇÃO SOLAR NANOESTRUTURADO", de acordo com a reivindicação 1 , caracterizado por o polímero do núcleo ser de acrilatos e metacrilatos.
3. "AGENTE DE PROTEÇÃO SOLAR NANOESTRUTURADO", de acordo com a reivindicação 1 , caracterizado por as partículas do produto serem menores que 1000 nm e a granulometria dos óxidos serem compatíveis com a granulometria desejada do produto final,
4. "AGENTE DE PROTEÇÃO SOLAR NANOESTRUTURADO", de acordo com a reivindicação 1 , caracterizado por a relação mássica de óxidos ser dè 0,01 % a 10 %, a de monômeros de 1 % a 70% e a de agentes de proteção 0,0005 % a 30%.
5. "AGENTE DE PROTEÇÃO SOLAR NANOESTRUTURADO", de acordo com a reivindicação 1 , caracterizado por a relação mássica de óxidos ser de 1 %, a de monômeros de 20 % e a de agentes de proteção 4 %.
6. "PROCESSO" de produção de agente de proteção solar nanoestruturado, de acordo com a reivindicação 1 , caracterizado por consistir a síntese ser conduzida em um reator convencional de polimerização sendo a dispersão coloidal do óxido preparada diretamente no reator e aquecida na temperatura de reação; Em seguida, adiciona-se a carga de monômeros, juntamente com o agente químico de proteção solar previamente solubilizado nos monômeros, procedendo-se uma leve homogeneização do meio reacional e adição da carga de iniciador para começo da reação de polimerização, sendo que ao final da reação a dispersão polimérica pode ser utilizada tal qual, sem nenhuma etapa de pós processamento.
7. "PROCESSO" de produção de agente de proteção solar nanoestruturado, de acordo com a reivindicação 6, caracterizado por a dispersão polimérica ser recuperada na forma de pó por métodos clássicos de secagem de partículas.
8. "PROCESSO" de produção de agente de proteção solar nanoestruturado, de acordo com a reivindicação 6, caracterizado por a dispersão coloidal do óxido ser aquecida na temperatura de reação, que varia em função do monômero hidrofóbico utilizado para a formação do polímero.
9. "PROCESSO" de produção de agente de proteção solar nanoestruturado, de acordo com a reivindicação 6, caracterizado por a agitação para homogeneização do meio reacional após a adição dos monômeros ser de 10 a 1000 rpm
10. "PROCESSO" de produção de agente de proteção solar nanoestruturado, de acordo com a reivindicação 6, caracterizado por a agitação para homogeneização do meio reacional após a adição dos monômeros ser de 200 rpm. . "PROCESSO" dé produção de agente de proteção solar nanoestruturado, de acordo com a reivindicação 6, caracterizado por reação de polimerização ser conduzida por diferentes tempos, que podem variar dê 1 até 24 horas dé reação, e em temperaturas que variam de 50 a 100 °C, em função dos materiais utilizados.
PCT/BR2011/000076 2010-03-19 2011-03-21 Agente de proteção solar nanoestruturado e processo WO2011113129A2 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/622,345 US20130177616A1 (en) 2010-03-19 2012-09-18 Nanostructured sun protection agent and process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1000919-1 2010-03-19
BRPI1000919 BRPI1000919A2 (pt) 2010-03-19 2010-03-19 agente de proteção solar nanoestruturado e processo

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/622,345 Continuation US20130177616A1 (en) 2010-03-19 2012-09-18 Nanostructured sun protection agent and process

Publications (2)

Publication Number Publication Date
WO2011113129A2 true WO2011113129A2 (pt) 2011-09-22
WO2011113129A3 WO2011113129A3 (pt) 2011-11-10

Family

ID=44649644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2011/000076 WO2011113129A2 (pt) 2010-03-19 2011-03-21 Agente de proteção solar nanoestruturado e processo

Country Status (2)

Country Link
BR (1) BRPI1000919A2 (pt)
WO (1) WO2011113129A2 (pt)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827508A (en) * 1996-09-27 1998-10-27 The Procter & Gamble Company Stable photoprotective compositions
WO2007048057A2 (en) * 2005-10-21 2007-04-26 Kobo Products Inc. Zinc oxide powder blends, their production and use
US20070196290A1 (en) * 2004-03-03 2007-08-23 Frank Pflucker Uv filters in powder form
US20070231355A1 (en) * 2006-01-23 2007-10-04 L'oreal Cosmetic composition comprising multiphasic particles
GB2453195A (en) * 2007-07-09 2009-04-01 Ciba Holding Inc Aqueous nano-particulate dispersion comprising a UV absorber/polymer mixture for pharmaceutical /cosmetic applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827508A (en) * 1996-09-27 1998-10-27 The Procter & Gamble Company Stable photoprotective compositions
US20070196290A1 (en) * 2004-03-03 2007-08-23 Frank Pflucker Uv filters in powder form
WO2007048057A2 (en) * 2005-10-21 2007-04-26 Kobo Products Inc. Zinc oxide powder blends, their production and use
US20070231355A1 (en) * 2006-01-23 2007-10-04 L'oreal Cosmetic composition comprising multiphasic particles
GB2453195A (en) * 2007-07-09 2009-04-01 Ciba Holding Inc Aqueous nano-particulate dispersion comprising a UV absorber/polymer mixture for pharmaceutical /cosmetic applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FERREIRA, F. C. P. ET AL.: 'Preparation and Characterization of Nanostructured Particles to Encapsulation of UV-filters.' IN IX ENCONTRO DA SOCIEDADE BRASILEIRA DE PESQUISA EM MATERIAIS SBPMAT 24 October 2010 - 28 October 2010, *

Also Published As

Publication number Publication date
BRPI1000919A2 (pt) 2011-11-08
WO2011113129A3 (pt) 2011-11-10

Similar Documents

Publication Publication Date Title
JP4162857B2 (ja) 紫外線光遮蔽組成物
Manaia et al. Inorganic UV filters
KR101148427B1 (ko) 적외선 및 자외선 동시차단용 복합분체 및 그를 이용한 화장료 조성물
Niculae et al. Rice bran and raspberry seed oil-based nanocarriers with self-antioxidative properties as safe photoprotective formulations
Lacatusu et al. Design of soft lipid nanocarriers based on bioactive vegetable oils with multiple health benefits
US20130177616A1 (en) Nanostructured sun protection agent and process
Niculae et al. Coencapsulation of butyl‐methoxydibenzoylmethane and octocrylene into lipid nanocarriers: UV performance, photostability and in vitro release
BRPI0811778A2 (pt) Microcápsulas altamente carregadas
Damiani et al. Nanocarriers and microcarriers for enhancing the UV protection of sunscreens: an overview
BR112015020889B1 (pt) Microcápsula compreendendo agentes de proteção solar, composição, processo de preparação de microcápsulas contendo o agente de proteção solar e formulação cosmética ou cosmecêutica
JPH06502874A (ja) 皮膚への局所投与による上側表皮層の持続的な化粧品学的および/または製薬学的処置を提供する組成物
de Souza et al. Evaluation of photodynamic activity, photostability and in vitro drug release of zinc phthalocyanine-loaded nanocapsules
Lin et al. UV protection and antioxidant activity of nanodiamonds and fullerenes for sunscreen formulations
Badea et al. Naringenin improves the sunscreen performance of vegetable nanocarriers
ES2304985T3 (es) Una particula que comprende una red hospedadora y un huesped, su preparacion y uso en composiciones de ientificacion de luz ultravioleta.
Sanad et al. Preparation and characterization of oxybenzone-loaded solid lipid nanoparticles (SLNs) with enhanced safety and sunscreening efficacy: SPF and UVA-PF
TW201503903A (zh) 具防曬效果之微膠囊製備方法
CN116509756A (zh) 一种基于氧化铈粘土复合防晒乳及其制备方法
WO2011113129A2 (pt) Agente de proteção solar nanoestruturado e processo
TW201922199A (zh) 包含有機uv吸收劑的水矽型態化妝品組成物
Yadav et al. Sunscreens
JP2005524653A (ja) 実質的に目に見えて透明の局所的物理的日焼け止め配合物
US8231884B2 (en) Diffusing particles based on organogelling xerogel fibers, method for preparing same and use in cosmetic formulations
KR20120050951A (ko) 적외선 및 자외선 동시차단용 복합분체 및 그를 이용한 화장료 조성물
ES2363678B1 (es) Composición fotoprotectora de radiaciones uv/vis/ir con microesferas de silicio como compuesto activo.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755582

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11755582

Country of ref document: EP

Kind code of ref document: A2