WO2011111776A1 - エンジン排気ガス熱交換器およびこれを使用したエネルギー供給装置 - Google Patents

エンジン排気ガス熱交換器およびこれを使用したエネルギー供給装置 Download PDF

Info

Publication number
WO2011111776A1
WO2011111776A1 PCT/JP2011/055633 JP2011055633W WO2011111776A1 WO 2011111776 A1 WO2011111776 A1 WO 2011111776A1 JP 2011055633 W JP2011055633 W JP 2011055633W WO 2011111776 A1 WO2011111776 A1 WO 2011111776A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
heat exchanger
passage
pipe
engine
Prior art date
Application number
PCT/JP2011/055633
Other languages
English (en)
French (fr)
Inventor
洋志 東
航典 松浦
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010055575A external-priority patent/JP2011190708A/ja
Priority claimed from JP2010055573A external-priority patent/JP5551476B2/ja
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to EP11753434.7A priority Critical patent/EP2546491B1/en
Priority to ES11753434.7T priority patent/ES2575583T3/es
Priority to CA2792916A priority patent/CA2792916A1/en
Priority to US13/583,774 priority patent/US8904772B2/en
Publication of WO2011111776A1 publication Critical patent/WO2011111776A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2889Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with heat exchangers in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/08Exhaust treating devices having provisions not otherwise provided for for preventing heat loss or temperature drop, using other means than layers of heat-insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/02Tubes being perforated
    • F01N2470/04Tubes being perforated characterised by shape, disposition or dimensions of apertures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/18Structure or shape of gas passages, pipes or tubes the axis of inlet or outlet tubes being other than the longitudinal axis of apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine exhaust gas heat exchanger used in an engine driven air conditioner or a cogeneration system.
  • the conventional engine exhaust gas heat exchanger is configured to inject the entire amount of exhaust gas all at once in the entire area of the exhaust gas flow direction of the heat exchanger, the number of nozzle holes is increased to increase the heat transfer area. In this case, it was difficult to maintain a predetermined average heat passage rate (K value) due to a decrease in the flow rate per nozzle hole.
  • the injection hole is merely opened in a cylindrical shape, and its specific shape is not disclosed.
  • the present invention has been made in view of such circumstances, and has an injection hole capable of improving heat exchange efficiency in an engine exhaust gas heat exchanger that causes exhaust gas to collide with a cooling water passage from the injection hole.
  • the object is to provide an engine exhaust gas heat exchanger.
  • An engine exhaust gas heat exchanger for solving the above-described problem is a heat exchanger between engine exhaust gas and cooling water, and is arranged in the circumferential direction of the exhaust gas passage and in the exhaust gas flow direction.
  • a first face having a plurality of nozzle holes in the circumferential direction and the flow direction is closed.
  • a second exhaust gas having an exhaust gas passage, a partition also serving as a cooling water passage facing the nozzle hole, and an outlet of the first exhaust gas passage at the next stage or an outlet from the engine exhaust gas heat exchanger
  • a plurality of unit exhaust gas passages each including a passage are provided.
  • cooling water passages are provided on both the inner peripheral side and the outer peripheral side of the unit exhaust gas passage, and nozzle holes facing the respective cooling water passages are provided in the first exhaust gas passage.
  • the number of nozzle holes facing the outer peripheral cooling water passage is larger than the number of nozzle holes facing the inner peripheral cooling water passage.
  • a partition having a nozzle hole of the first exhaust gas passage is provided for each unit exhaust gas passage, and an axis of the unit exhaust gas passage is formed by a partition wall which is a combination of the nozzle hole of the second exhaust gas passage and the cooling water passage. It is elastically supported in the direction.
  • a part or all of the exhaust gas purification catalyst is housed in the first exhaust gas passage of the first unit exhaust gas passage, and the outflow surface of the catalyst and the first exhaust gas passage
  • An exhaust gas temperature sensor is provided between the closed surface and the exhaust gas.
  • the total area of the plurality of nozzle holes in each unit exhaust gas passage is set to a different area in all or a plurality of stages.
  • each nozzle hole has a shape in which the exhaust gas passage area gradually decreases from the inlet to the outlet.
  • the exhaust gas passage area from the middle of each nozzle hole is made equal to the outlet area.
  • grooves are formed on the exhaust gas collision surface of the cooling water passage.
  • an energy supply device of the present invention for solving the above-described problems is the use of the engine exhaust gas heat exchanger in an engine exhaust gas path in an energy supply device such as an engine-driven heat pump and cogeneration. .
  • the exhaust gas passage is divided into unit exhaust gas passages and the entire amount is injected for each unit passage, the number of nozzle holes is increased to increase the heat transfer area.
  • a predetermined average heat passage rate can be maintained by preventing a decrease in flow rate per nozzle hole.
  • FIG. 2 is a cooling water circuit diagram of an engine provided with the engine exhaust gas heat exchanger shown in FIG. 1.
  • (A) is sectional drawing which shows other embodiment of the engine exhaust gas heat exchanger which concerns on this invention
  • (b) is II-II sectional view taken on the line of the figure (a).
  • It is a partial expanded sectional view which shows the connection member of the engine exhaust gas heat exchanger which concerns on this invention.
  • FIG. 4 is a cross-sectional view taken along the line III-III in FIG.
  • (A) is an expanded sectional view which shows the nozzle hole of the engine exhaust gas heat exchanger which concerns on other embodiment of this invention
  • (b) is an expanded sectional view which shows the other shape of a nozzle hole.
  • or (h) is a fragmentary sectional view which shows the shape of the various internal peripheral surfaces of the inner cylinder pipe of the engine exhaust gas heat exchanger which concerns on other embodiment of this invention.
  • FIG. 1 shows an engine exhaust gas heat exchanger 1 according to the present invention
  • FIG. 2 shows an example of a cooling water circuit diagram of a gas engine 11 provided with the engine exhaust gas heat exchanger 1.
  • the engine exhaust gas heat exchanger 1 has a three-stage unit exhaust gas passage 3a constituted by the first exhaust gas passage A and the second exhaust gas passage B in the inner tube 21 of the heat exchanger 2. , 3b, 3c are provided.
  • the engine exhaust gas heat exchanger 1 is configured such that the exhaust from the engine 11 to the silencer 12 passes through the engine exhaust gas heat exchanger 1, the front chamber 5, the engine exhaust gas purification catalyst ( Hereinafter, it is simply referred to as a catalyst.) 4 and the unit exhaust gas passages 3a, 3b, 3c, and the cooling water of the engine 11 passes through the heat exchanger 2 of the engine exhaust gas heat exchanger 1. It is provided to be introduced into the engine 11 afterwards.
  • the cooling water after passing through the engine 11 is configured to circulate by a pump 13. Further, the temperature of the cooling water can be controlled by the thermostat 14, and the flow can be switched to the radiator 16 or the heat exchanger 17 by the three-way valve 15.
  • the heat exchanger 2 includes an inner tube 21, an outer tube 22, inner lids 21 a and 21 b and outer lids 22 a and 22 b provided at both ends of the heat exchanger 2.
  • a passage 20 is provided.
  • the outer lid 22 b at the other end is provided with a cooling water inflow pipe 23 that communicates with the cooling water passage 20, and the outer cylinder pipe 22 at one end communicates with the cooling water passage 20.
  • a cooling water outflow pipe 24 is provided. Thereby, the cooling water is introduced into the cooling water passage 20 from the cooling water inflow pipe 23, flows from the other end side to the one end side of the heat exchanger 2, and then drained from the cooling water outflow pipe 24. It is made like that.
  • the heat exchanger 2 is provided with an exhaust gas inflow pipe 25 that penetrates the inner cylindrical pipe 21 and the outer cylindrical pipe 22 at one end and communicates with the inner cylindrical pipe 21, and the inner cylindrical pipe at the other end.
  • An exhaust gas outflow pipe 26 that passes through the inner cylinder pipe 21 through the 21 and the outer cylinder pipe 22 is provided.
  • exhaust gas is introduced from the exhaust gas inflow pipe 25 into the inner cylinder pipe 21, and from the front chamber 5 formed in the inner cylinder pipe 21, the catalyst 4 and the three-stage unit exhaust gas passages 3a, After passing through 3b and 3c, the exhaust gas outlet pipe 26 is configured to exhaust the gas.
  • the front chamber 5 includes a pipe member 51 formed in the inner tube 21 so as to be gradually reduced in diameter while forming a curved surface with a slightly smaller diameter than the inner tube 21. 21 is formed so as to form a gap S between the two.
  • One end of the pipe member 51 on the reduced diameter side is fixed to an inner lid 21 a provided at one end of the heat exchanger 2.
  • the exhaust gas inflow pipe 25 communicates with the pipe material 51.
  • the other end of the pipe member 51 is provided with a cylindrical connection member 52 for receiving and connecting the catalyst 4 and the exhaust gas ejection pipe 31.
  • the connecting member 52 is further reduced in diameter from the cylindrical main body 52a portion in contact with the inner peripheral surface of the inner cylindrical tube 21 to form an exhaust gas ejection pipe connecting portion 52b and a catalyst connecting portion 52c.
  • the portion of the main body 52a having the maximum diameter is interposed between the inner tube 21 and the tube material 51, and is fixed so as to maintain a gap S between the inner tube 21 and the tube material 51.
  • the exhaust gas ejection pipe connecting portion 52b is configured to receive and connect the exhaust gas ejection pipe 31 to the outside thereof so as to form a gap d between the inner tube 21 and the exhaust gas ejection pipe 31.
  • the catalyst connection portion 52c is configured to receive and connect the catalyst 4 inside thereof.
  • the unit exhaust gas passage 3 a is configured by an exhaust gas ejection pipe 31 connected to the exhaust gas ejection pipe connection portion 52 b of the connection member 52 and a connection member 32 provided on the downstream side of the exhaust gas ejection pipe 31. Yes.
  • the exhaust gas ejection pipe 31 is formed in a cylindrical shape having a diameter and a length that can form a gap d between the exhaust pipe 31 and the inner cylindrical pipe 21 and can accommodate the catalyst 4.
  • a plurality of nozzle holes 30 are provided in the circumferential wall of the exhaust gas ejection pipe 31 at equal intervals along the longitudinal direction and the circumferential direction. Further, the exhaust gas ejection pipe 31 is closed at the downstream end by a lid body 31a.
  • the exhaust gas ejection pipe 31 is fixed in the inner cylinder pipe 21 by a rib piece 31b appropriately provided at a position not interfering with the nozzle hole 30 with the inner peripheral surface of the inner cylinder pipe 21.
  • the rib piece 31 b is also provided on the inner peripheral surface of the exhaust gas ejection pipe 31 so that the catalyst 4 built in the exhaust gas ejection pipe 31 can be held.
  • a thermometer is passed between the catalyst 4 and the lid 31a through the outer tube 22 and the inner tube 21 of the heat exchanger 2 and the exhaust gas jet tube 31. 6 is provided.
  • the catalyst 4 is desirably temperature-controlled because the purification action may not function effectively depending on the exhaust gas temperature, but the temperature of the catalyst 4 is measured by the thermometer 6 at a position immediately after passing through the catalyst 4. The purification state can be grasped to some extent.
  • the connecting member 32 is further reduced in diameter from the cylindrical main body 32a portion to form the exhaust gas ejection pipe connecting portion 32b.
  • the portion of the main body 32 a having the maximum diameter is fixed to the inner peripheral surface of the inner tube 21 on the downstream side adjacent to the exhaust gas ejection pipe 31.
  • the exhaust gas ejection pipe connecting portion 32b is connected to the exhaust gas ejection pipe 33 constituting the unit exhaust gas passage 3b of the next stage on the outside thereof, and is spaced between the inner tube 21 and the exhaust gas ejection pipe 33. d is formed.
  • the exhaust gas passage 3a passes through the first exhaust gas passage A in which the exhaust gas that has passed through the catalyst is stopped by the lid 31a and is ejected from the nozzle hole 30, and the exhaust gas after being ejected from the nozzle hole 30.
  • a second exhaust gas passage B that passes through the gap d between the gas ejection pipe 31 and the inner cylindrical pipe 21 and allows the exhaust gas to pass from the ejection pipe connecting portion 32b of the connection member 32 to the ejection pipe 33 of the next stage is formed. It will be.
  • the unit exhaust gas passage 3b includes an exhaust gas ejection pipe 33 connected to the exhaust gas ejection pipe connection portion 32b of the connection member 32 and a connection member 34 provided on the downstream side of the exhaust gas ejection pipe 33. Yes.
  • the exhaust gas ejection pipe 33 is formed in a cylindrical shape capable of forming a gap d with the inner cylinder pipe 21.
  • a plurality of nozzle holes 30 are provided in the circumferential wall of the exhaust gas ejection pipe 33 at equal intervals along the longitudinal direction and the circumferential direction. Further, the exhaust gas ejection pipe 33 is closed at the downstream end by a lid 33a.
  • the exhaust gas ejection pipe 33 is inserted into the inner cylinder pipe 21 by a rib piece 33b appropriately provided at a position on the outer peripheral surface of the downstream end that does not obstruct the nozzle hole 30 between the exhaust pipe 33 and the inner circumference surface of the inner cylinder pipe 21. Fixed.
  • the connecting member 34 is further reduced in diameter from the cylindrical main body 34a portion to form an exhaust gas ejection pipe connecting portion 34b.
  • the portion of the main body 34 a having the maximum diameter is fixed to the inner peripheral surface of the inner tube 21 on the downstream side adjacent to the exhaust gas ejection pipe 33.
  • the exhaust gas ejection pipe connecting portion 34b is connected to the outside thereof by receiving and connecting an exhaust gas ejection pipe 35 constituting the unit exhaust gas passage 3c of the next stage, and is spaced between the inner tube 21 and the exhaust gas ejection pipe 35. d is formed.
  • the unit exhaust gas passage 3b includes the first exhaust gas passage A configured such that the exhaust gas that has passed through the ejection pipe connection portion 32b of the connection member 32 is stopped by the lid body 33a and is ejected from the injection hole 30.
  • the second gas passes through the gap d between the exhaust gas ejection pipe 33 and the inner cylinder pipe 21, and passes the exhaust gas from the ejection pipe connection portion 34 b of the connection member 34 to the ejection pipe 35 of the next stage.
  • the exhaust gas passage B is formed.
  • the unit exhaust gas passage 3c includes an exhaust gas ejection pipe 35 connected to the exhaust gas ejection pipe connection portion 34b of the connection member 34 and an exhaust gas outflow pipe 26.
  • the exhaust gas ejection pipe 35 is formed in a cylindrical shape capable of forming a gap d with the inner cylinder pipe 21.
  • a plurality of nozzle holes 30 are provided in the circumferential wall of the exhaust gas ejection pipe 35 at equal intervals along the longitudinal direction and the circumferential direction. Further, the length of the exhaust gas ejection pipe 35 is adjusted so that the downstream end is closed by the inner lid 21 b on the other end side of the heat exchanger 2. The downstream end of the exhaust gas ejection pipe 35 is fixed to the inner lid 21 b on the other end side of the heat exchanger 2.
  • the unit exhaust gas passage 3c includes the first exhaust gas passage A configured such that the exhaust gas that has passed through the ejection pipe connection portion 34b of the connection member 34 stops at the inner lid 21b and is ejected from the nozzle hole 30. After ejection from the nozzle hole 30, a second exhaust gas passage B that passes through the gap d between the exhaust gas ejection pipe 33 and the inner cylinder pipe 21 and is exhausted from the exhaust gas outflow pipe 26 is formed.
  • the exhaust gas from the engine passes through the exhaust gas inflow pipe 25, the exhaust gas front chamber 5, the catalyst 4, and the unit exhaust gas passages 3a, 3b, 3c,
  • the exhaust gas outflow pipe 26 is exhausted.
  • the exhaust gas is not ejected from all the nozzle holes 30 at once, but is ejected from the nozzle holes 30 of the unit exhaust gas passage 3a and then recovered, and the nozzle holes of the next unit exhaust gas passage 3b are collected.
  • the exhaust gas injection speed can be kept constant without being lowered in each unit exhaust gas passage 3a, 3b, 3c. Therefore, it is possible to prevent a decrease in flow rate per nozzle hole 30 and maintain a predetermined average heat passage rate (K value).
  • the front chamber 5 forms a gap S between the pipe material 51 and the inner tube 21, the exhaust gas flowing from the exhaust gas inflow tube 25 is cooled by the cooling water through the inner tube 21. Can be prevented. Therefore, it is possible to prevent the temperature of the exhaust gas before flowing into the catalyst 4 from decreasing and activate the reaction at the catalyst 4.
  • the said average heat passage rate (K value) has dependence with respect to the injection speed (injection hole passage flow velocity) of the exhaust gas injected toward the inner cylinder pipe 21 of the heat exchanger 2 from the injection hole 30, When the flow rate is increased, the average heat passage rate is increased.
  • the number of nozzle holes 30 in the upper stage where the engine exhaust gas temperature is high is reduced, or the diameter of the nozzle holes 30 is reduced to increase the flow velocity. You may make it let it.
  • This makes it possible to increase the average heat passage rate (K value) at the portion where the temperature difference between the engine exhaust gas temperature and the coolant temperature is high, and the average at the lower stage where the temperature difference between the engine exhaust gas temperature and the coolant temperature is low. It becomes possible to obtain a larger amount of heat exchange than increasing the heat passage rate (K value).
  • the exhaust gas passing through the nozzle hole 30 of the first stage unit exhaust gas passage 3a is heat-exchanged and then ejected from the nozzle hole 30 of the second stage unit exhaust gas passage 3b, where heat exchange is further performed. After that, the gas is ejected from the nozzle hole 30 of the third unit exhaust gas passage 3c. Therefore, even if the exhaust gas is prevented from lowering the flow velocity when ejected from the nozzle hole 30, the temperature decreases as it goes downward. If it becomes difficult to maintain a predetermined average heat transmission rate (K value) due to an increase in exhaust gas density and a decrease in flow velocity due to this, the number of nozzle holes 30 increases toward the lower stage. Or the diameter of the nozzle hole 30 may be reduced to increase the flow velocity.
  • K value average heat transmission rate
  • a predetermined average heat passage rate (K value) from the nozzle hole 30 can be maintained.
  • the total area of the plurality of nozzle holes in each unit exhaust gas passage depends on the heat exchange performance required of the engine exhaust gas heat exchanger. Optimum heat exchange performance can be obtained by providing all or a plurality of stages differently.
  • the engine exhaust gas heat exchanger 1 has a large temperature difference between the inner tube 21 through which the cooling water passes and the exhaust gas ejection pipes 31, 33, 35 through which the exhaust gas is ejected. Arise.
  • the inner cylinder tube 21 acts in a direction that is cooled by the cooling water and contracts, and the exhaust gas ejection pipes 31, 33, and 35 act in a direction that expands when heated by the exhaust gas.
  • the lengths of the exhaust gas ejection pipes 31, 33 and 35 are longer than the pipe 21. At this time, for example, as shown in FIG.
  • the reduced diameter portion 32c between the main body 32a of the connecting member 32 and the exhaust gas ejection pipe connecting portion 32b is made of a material that can be elastically deformed, such heat can be obtained. It is possible to cope with a change in length due to thermal expansion of the exhaust gas ejection pipe 33 due to expansion. By similarly configuring the connection member 34, it is possible to cope with a change in length due to thermal expansion of the exhaust gas ejection pipe 35.
  • FIG. 3 shows an engine exhaust gas heat exchanger 1a according to another embodiment of the present invention. 3, the same members as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the engine exhaust gas heat exchanger 1a is configured such that cooling water enters inside the second stage unit exhaust gas passage 3b and the third stage unit exhaust gas passage 3c.
  • the gas passage 3b and the third-stage unit exhaust gas passage 3c are configured to exchange heat with the cooling water that has entered inside.
  • the engine exhaust gas heat exchanger 1a has a first unit exhaust gas passage 3a, a second unit exhaust gas passage 3b, and a second stage unit exhaust gas passage 3b at the position of the main body 32a of the connecting member 32 constituting the first unit exhaust gas passage 3a.
  • a shielding plate 36 that shields between the two is provided.
  • the cooling water inflow pipe 23 extends through the inner lid 21b and the outer lid 22b at the other end of the heat exchanger 2 so as to enter the position of the shielding plate 36, and is open at the extending tip. A portion 23a is provided.
  • a core pipe 27 is provided outside the cooling water inflow pipe 23. The core tube 27 is provided between the inner lid 21b at the other end of the heat exchanger 2 and the shielding plate 36, and communicates with the cooling water passage 20 inside the inner lid 21b.
  • the cooling water is introduced to the position of the second unit exhaust gas passage 3b in which the opening 23a of the cooling water inflow pipe 23 is provided, and then flows out to the core pipe 27 and the other end of the heat exchanger 2 Then, it flows to the cooling water passage 20 and is drained from the cooling water outflow pipe 24.
  • the shielding plate 36 is provided with a plurality of exhaust gas passages 36a in a ring shape at a predetermined radius of curvature.
  • an exhaust gas jet pipe having a double pipe structure of an exhaust gas jet inner pipe 37a and an exhaust gas jet outer pipe 37b. 37 is provided, and the exhaust gas from the exhaust gas passage port 36a of the shielding plate 36 is introduced between the exhaust gas ejection inner pipe 37a and the exhaust gas ejection outer pipe 37b.
  • the exhaust gas ejection pipe 37 is closed by providing an annular lid 37c at the downstream end of the exhaust gas ejection inner pipe 37a and the exhaust gas ejection outer pipe 37b.
  • the exhaust gas ejection pipe 37 is provided with a plurality of nozzle holes 30 at equal intervals along the longitudinal direction and the circumferential direction on the peripheral walls of the exhaust gas ejection inner pipe 37a and the exhaust gas ejection outer pipe 37b.
  • the exhaust gas ejection inner pipe 37a is provided with the nozzle holes 30 at a pitch of 90 degrees in the circumferential direction
  • the exhaust gas ejection outer pipe 37b is a nozzle hole at a pitch of 45 degrees in the circumferential direction. 30 is provided.
  • the nozzle hole 30 provided in the exhaust gas ejection outer pipe 37b injects exhaust gas toward the inner peripheral surface of the inner tube 21 having a diameter larger than that of the exhaust gas ejection outer pipe 37b.
  • the nozzle hole 30 provided in the gas ejection inner pipe 37a injects exhaust gas toward the core pipe 27 having a smaller diameter than the exhaust gas ejection inner pipe 37a.
  • the number of nozzle holes 30 provided in the exhaust gas outlet outer pipe 37b by changing the pitch of the nozzle holes 30 with the exhaust gas outlet inner pipe 37a is larger than the number of nozzle holes 30 provided in the exhaust gas outlet inner pipe 37a. By doing so, the unit heat transfer area per one nozzle hole 30 can be made uniform.
  • the pitch is not particularly limited to 90 degrees or 45 degrees, and the pitch is ejected from the size of the inner peripheral surface of the inner tube 21 ejected from the exhaust gas ejection outer pipe 37b or from the exhaust gas ejection inner pipe 37a. It is determined appropriately according to the size of the outer peripheral surface of the core tube 27.
  • a core connection member 38 is provided at the position of the core tube 27 corresponding to the position of the connection member 34.
  • the core connecting member 38 is further expanded in diameter from a cylindrical main body 38a portion that can be fixed to the outer peripheral surface of the core tube 27 to form an inner tube connecting portion 38b.
  • the exhaust gas jet pipe connecting portion 34b of the connection member 34 is configured to receive and connect an exhaust gas jet outer pipe 39b constituting the unit exhaust gas passage 3c at the next stage to the outside thereof.
  • the inner pipe connecting portion 38b of the core connecting member 38 is configured to receive and connect the exhaust gas jetting inner pipe 39a constituting the unit exhaust gas passage 3c at the next stage on the inner side thereof.
  • the exhaust gas that has passed through the exhaust gas passage port 36a of the shielding plate 36 stops by the lid body 37c, and the exhaust gas ejection inner pipe 37a and the exhaust gas ejection outer pipe 37b respectively.
  • the first exhaust gas passage A designed to be ejected from the nozzle hole 30, the gap d between the exhaust gas ejection outer pipe 37 b and the inner cylinder pipe 21, and the exhaust gas ejection inner pipe 37 a after ejection from the nozzle hole 30. Passing through the gap d with the core pipe 27, the exhaust gas passes from between the jet pipe connecting portion 34b of the connecting member 34 and the inner pipe connecting portion 38b of the core pipe connecting member 38 to the exhaust gas jet pipe 39 of the next stage.
  • the second exhaust gas passage B to be formed is formed.
  • the unit exhaust gas passage 3c includes an exhaust gas ejection pipe 39 connected to the exhaust gas ejection pipe connection part 34b of the connection member 34 and the inner pipe connection part 38b of the core pipe connection member 38, and an exhaust gas outflow pipe 26. Has been.
  • the exhaust gas ejection pipe 39 has a double pipe structure of an exhaust gas ejection inner pipe 39a and an exhaust gas ejection outer pipe 39b.
  • Exhaust gas can be ejected toward the pipe 21 and the core pipe 27.
  • the nozzle holes 30 of the exhaust gas ejection inner pipe 39a are provided at a pitch of 90 degrees in the circumferential direction
  • the nozzle holes 30 of the exhaust gas ejection outer pipe 39b are provided at a pitch of 45 degrees in the circumferential direction.
  • the downstream end portion of the exhaust gas ejection inner pipe 39a is expanded in diameter so as to contact and be fixed to the exhaust gas ejection outer pipe 39b.
  • the downstream end portion of the exhaust gas ejection outer pipe 39b is fixed in a state of being in contact with the inner lid 21b on the other end side of the heat exchanger 2. Further, in the vicinity of the downstream end portion of the exhaust gas ejection outer pipe 39b, a passage port 39c through which the exhaust gas ejected from the exhaust gas ejection inner pipe 39a passes is provided.
  • the third unit exhaust gas passage 3c is connected to the exhaust gas ejection inner pipe 39a and the exhaust gas from the gap between the exhaust gas ejection pipe connection part 34b of the connection member 34 and the inner pipe connection part 38b of the core pipe connection member 38.
  • the first exhaust gas passages are configured such that the exhaust gas passing between the ejection outer pipe 39b stops at the downstream end and is ejected from the respective injection holes 30 of the exhaust gas ejection inner pipe 39a and the exhaust gas ejection outer pipe 39b.
  • exhaust gas can be ejected from the exhaust gas ejection inner pipes 37a and 39a and heat can be exchanged also from the outer peripheral surface of the core pipe 27.
  • a large heat transfer area can be secured without increasing the overall length and overall diameter of the heat exchanger 1.
  • FIG. 6 shows another embodiment of the injection hole 30 in the engine exhaust gas heat exchanger 1 of the present invention.
  • the same members as those in FIG. 6 are same members as those in FIG. 6
  • the nozzle hole 30 has a shape in which the exhaust gas passage area gradually decreases from the inlet 30 to the outlet.
  • the shape of the injection hole 30 may be one that is perforated into a truncated cone shape that gradually decreases over the entire thickness direction of the exhaust gas injection pipe 31, or FIG. 6 (b).
  • the exhaust gas ejection pipe 31 may be perforated into a truncated cone shape that gradually decreases from the inlet side until the middle in the thickness direction, and may be perforated into a cylindrical shape having the same diameter as the outlet side from this middle.
  • each nozzle hole 30 provided in the exhaust gas jet pipes 31, 33, 35 has a passage area from the inlet to the outlet of the exhaust gas. Therefore, the pressure loss of the exhaust gas can be reduced at the same nozzle hole passage flow velocity. Therefore, the nozzle hole passage flow velocity with respect to the design allowable pressure loss value of the heat exchanger 2 can be increased, the average heat passage rate can be increased, and the heat exchange amount can be increased.
  • the injection speed of the exhaust gas can be kept constant without being lowered in each of the unit exhaust gas passages 3a, 3b, 3c. The configuration of 30 works effectively.
  • the shape change of the nozzle hole 30 in the engine exhaust gas heat exchanger 1 corresponding to FIG. 1 is described.
  • the configuration of the nozzle hole 30 has an engine exhaust corresponding to FIG. You may apply to the gas heat exchanger 1a. That is, not only the injection hole 30 facing the inner tube 21 but the injection hole 30 facing the core tube 27 may be the injection hole 30 as shown in FIG.
  • the shape of the nozzle hole 30 is gradually reduced from the inner side to the outer side of the peripheral wall.
  • the gas jetted from the nozzle hole 30 is Groove processing may be performed on the inner peripheral surface of the inner tube 21 that hits.
  • the heat exchange amount can be increased.
  • a protrusion 21a protruding toward the inner peripheral surface may be formed along the length direction of the inner tube 21 (FIG. 7). (See (a)), it may be formed along the circumferential direction (see FIG.
  • the groove processing may be formed with a groove 21b having a shape in which the inner peripheral surface side of the inner tube 21 is depressed.
  • dimple processing may be performed on the inner peripheral surface of the inner tube 21 to which the gas ejected from the nozzle hole 30 hits.
  • the shape of the dimple as shown in FIG. 7G, there is a concave portion 21c in which a circular depression as provided in a golf ball is formed.
  • this dimple processing may be performed by forming a convex portion 21 d protruding in a circular shape on the inner peripheral surface side of the inner tube 21.
  • the engine exhaust gas heat exchanger 1 is configured by providing the three unit exhaust gas passages 3a, 3b, 3c, but the number is particularly limited to three as long as it is plural. Instead, it may be two or four or more.
  • the present invention can be used as an exhaust gas heat exchanger for various engines used in air conditioners and cogeneration systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)

Abstract

【課題】排気ガス経路を複雑化させることなく触媒を内蔵して排気圧損および製造コストの低下を可能とする構成を提供する。 【解決手段】エンジン排気ガス浄化触媒2を内蔵し、エンジン排気ガスとエンジン冷却水間で熱回収を行うエンジン排気ガス熱交換器1において、エンジン排気ガス浄化触媒2を排気ガス流入部の排気ガス流れ経路上に配置し、前記触媒2の一部または全部を、周壁に熱交換器4の内壁41と対向した複数の噴孔30を設けた収納部材3に収め、熱交換器4の内壁41と熱交換器4の外壁42との間をエンジン冷却水通路としたものである。触媒2外周に接合される触媒支持具21の一箇所または複数箇所に、ガスの流通を可能とした切欠部21bを設けるようにした上記エンジン排気ガス交換器1である。上記エンジン排気ガス熱交換器1をエンジンの排気ガス経路に使用したエネルギー供給装置。

Description

エンジン排気ガス熱交換器およびこれを使用したエネルギー供給装置
 本発明は、エンジン駆動式空気調和機やコージェネレーションシステムなどで使用されるエンジン排気ガス熱交換器に関するものである。
 従来より、エンジンの排気ガスと冷却水との間の熱交換器において、排気ガス通路の周方向および排気ガス流れ方向に冷却水通路と対向した噴孔を複数設けて排気ガス全量を冷却水通路に衝突させるようにした構成が公知である(特許文献1,2参照)。
特許第4324216号公報 特許第4324219号公報
 しかし、上記従来のエンジン排気ガス熱交換器は、熱交換器の排気ガス流れ方向の全域で一度に排気ガス全量を噴射する構成であるため、噴孔の数を増加して伝熱面積を大きくした場合に一つの噴孔当たりの流速が低下して所定の平均熱通過率(K値)を保つことが困難であった。
 また、上記従来のエンジン排気ガス熱交換器の場合、噴孔は、単に円筒状に開口されているだけで、その具体的形状が開示されていない。
 本発明は、係る実情に鑑みてなされたものであって、排気ガスを噴孔から冷却水通路に衝突させるエンジン排気ガス熱交換器において、熱交換効率の向上を図ることができる噴孔を有するエンジン排気ガス熱交換器を提供することを目的としている。
 また、本発明は、噴孔の数を増加して伝熱面積を大きくしながら一噴孔当たりの流速低下を防止して所定の平均熱通過率を維持できる構成を提供することを目的としている。
 上記課題を解決するための本発明のエンジン排気ガス熱交換器は、エンジン排気ガスと冷却水との間の熱交換器であって、排気ガス通路の周方向および排気ガス流れ方向に冷却水通路と対向した噴孔を複数設けて排気ガス全量を冷却水通路に衝突させるエンジン排気ガス熱交換器において、流入口との対面を閉塞し、周方向および流れ方向に複数の噴孔を有する第1排気ガス通路と、噴孔と対向する冷却水通路と兼用の隔壁および次段の第1排気ガス通路の流入口あるいはエンジン排気ガス熱交換器からの流出口を兼ねる流出口を有する第2排気ガス通路とで構成される単位排気ガス通路を複数段設けたものである。
 上記エンジン排気ガス熱交換器において、単位排気ガス通路の内周側と外周側の両側に冷却水通路を設け、各冷却水通路に対向した噴孔を第1排気ガス通路に設けたものである。
 上記エンジン排気ガス熱交換器において、外周側の冷却水通路に対向した噴孔を内周側の冷却水通路に対向した噴孔よりも多く設けたものである。
 上記エンジン排気ガス熱交換器において、単位排気ガス通路毎に第1排気ガス通路の噴孔を有する隔壁を第2排気ガス通路の噴孔と冷却水通路との兼用隔壁によって単位排気ガス通路の軸線方向に弾性支持したものである。
 上記エンジン排気ガス熱交換器において、第1段目の単位排気ガス通路の第1排気ガス通路に排気ガス浄化触媒の一部または全部を収納し、前記触媒の流出面と前記第1排気ガス通路の閉塞面との間に排気ガス用温度センサを設けたものである。
 上記エンジン排気ガス熱交換器において、各単位排気ガス通路における複数の噴孔の総面積を、各複数段全て、もしくは一部異なる面積としたものである。
 上記エンジン排気ガス熱交換器において、各噴孔を入口から出口にかけて排気ガスの通過面積が漸減する形状としたものである。
 上記エンジン排気ガス熱交換器において、各噴孔の途中部から排気ガスの通過面積を出口面積と等しくしたものである。
 上記エンジン排気ガス熱交換器において、冷却水通路の排気ガス衝突面に溝加工を行ったものである。
 また、上記課題を解決するための本発明のエネルギー供給装置は、エンジン駆動式ヒートポンプおよびコージェネレーションなどのエネルギー供給装置において、上記エンジン排気ガス熱交換器をエンジンの排気ガス経路に使用したものである。
 以上述べたように、本発明によると、排気ガス通路を単位排気ガス通路に区切って単位通路毎に全量を噴射する構成としたので、噴孔の数を増加して伝熱面積を大きくしながら一噴孔当たりの流速低下を防止して所定の平均熱通過率を維持できる。
(a)は本発明の実施形態に係るエンジン排気ガス熱交換器の断面図、(b)は同図(a)のI-I 線断面図である。 図1に示すエンジン排気ガス熱交換器を設けたエンジンの冷却水回路図である。 (a)は本発明に係るエンジン排気ガス熱交換器の他の実施の形態を示す断面図、(b)は同図(a)のII-II 線断面図である。 本発明に係るエンジン排気ガス熱交換器の接続部材を示す部分拡大断面図である。 図3(a)のIII-III 線断面図である。 (a)は本発明のさらに他の実施の形態に係るエンジン排気ガス熱交換器の噴孔を示す拡大断面図、(b)は噴孔の他の形状を示す拡大断面図である。 (a)ないし(h)は本発明のさらに他の実施の形態に係るエンジン排気ガス熱交換器の内筒管の各種内周面の形状を示す部分断面図である。
 本発明の実施の形態を図に基づいて説明する。
 図1は本発明に係るエンジン排気ガス熱交換器1を示し、図2は同エンジン排気ガス熱交換器1を設けたガスエンジン11の冷却水回路図の一例を示している。
 すなわち、このエンジン排気ガス熱交換器1は、熱交換器2の内筒管21内に、第一排気ガス通路Aと第二排気ガス通路Bとで構成される3段の単位排気ガス通路3a,3b,3cを設けて構成している。
 エンジン排気ガス熱交換器1は、図1および図2に示すように、エンジン11からサイレンサ12へと向かう排気が、エンジン排気ガス熱交換器1内で、前室5、エンジン排気ガス浄化触媒(以下、単に触媒という。)4および単位排気ガス通路3a,3b,3cを通過するように設けられ、かつ、エンジン11の冷却水が、エンジン排気ガス熱交換器1の熱交換器2を通過してからエンジン11に導入するように設けられている。エンジン11を通過した後の冷却水は、ポンプ13によって循環するように構成されている。また、冷却水は、サーモスタット14によって温度管理することができるようになされており、三方弁15によって、ラジエータ16または熱交換器17へと流れを切り替えることができるようになされている。
 熱交換器2は、内筒管21と、外筒管22と、その両端に設けられた内蓋21a,21bおよび外蓋22a,22bとからなり、その間隙は、冷却水が通過する冷却水通路20となされている。
 この熱交換器2は、他端部の外蓋22bには、冷却水通路20と連通する冷却水流入管23が設けられており、一端部の外筒管22には、冷却水通路20と連通する冷却水流出管24が設けられている。これにより、冷却水は、冷却水流入管23から冷却水通路20内へと導入され、熱交換器2の他端部側から一端部側へと流れた後、冷却水流出管24から排水されるようになされている。
 また、熱交換器2は、一端部の内筒管21および外筒管22を貫通して内筒管21内に連通する排気ガス流入管25が設けられており、他端部の内筒管21および外筒管22を貫通して内筒管21内に連通する排気ガス流出管26が設けられている。これにより、排気ガスは、排気ガス流入管25から内筒管21内へと導入され、この内筒管21内に形成された前室5から、触媒4および3段の単位排気ガス通路3a、3b、3cを通過した後、排気ガス流出管26から排気されるように構成されている。
 前室5は、内筒管21内に、この内筒管21よりも若干小径の筒状で一端が曲面を形成しながら漸次的に縮径するように形成された管材51を、内筒管21との間に空隙Sを形成するように設けて構成されている。管材51の縮径された側の一端は、熱交換器2の一端に設けられた内蓋21aに固定される。排気ガス流入管25は、この管材51内に連通するようになされている。この管材51の他端は、触媒4および排気ガス噴出管31を受挿接続するための筒状の接続部材52が設けられている。この接続部材52は、内筒管21の内周面に接する筒状の本体52a部分からさらに二段階に縮径して排気ガス噴出管接続部52b、触媒接続部部52cを形成するようになされている。最大径の本体52aの部分は、内筒管21と管材51との間に介在して、これら内筒管21と管材51との間に空隙Sを維持するように固定される。排気ガス噴出管接続部52bは、その外側に排気ガス噴出管31を受挿接続して内筒管21と排気ガス噴出管31との間に間隔dを形成するようになされている。触媒接続部52cは、その内側に触媒4を受挿接続するようになされている。
 単位排気ガス通路3aは、上記接続部材52の排気ガス噴出管接続部52bに接続される排気ガス噴出管31と、この排気ガス噴出管31の下流側に設けられる接続部材32とによって構成されている。
 排気ガス噴出管31は、内筒管21との間に間隙dを形成することが可能で、かつ、触媒4を内装可能な直径および長さの円筒状に形成されている。この排気ガス噴出管31の周壁には、長手方向および周方向に沿って等間隔で複数の噴孔30が設けられている。また、排気ガス噴出管31は、下流側端部が蓋体31aによって閉塞されている。この排気ガス噴出管31は、内筒管21の内周面との間で噴孔30を邪魔しない位置に適宜に設けたリブ片31bによって、内筒管21内に固定される。また、このリブ片31bは、排気ガス噴出管31の内周面にも設けられ、この排気ガス噴出管31に内装される触媒4を保持することができるようになされている。この触媒4を保持した状態で、触媒4と蓋体31aとの間には、熱交換器2の外筒管22および内筒管21と、この排気ガス噴出管31とを貫通して温度計6が設けられている。触媒4は、排気ガス温度により浄化作用が有効に機能しないことがあるため温度管理をすることが望ましいが、この触媒4を通過直後の位置で温度計6によって温度測定することで、触媒4の浄化状態をある程度把握できることとなる。
 接続部材32は、筒状の本体32a部分からさらに縮径して排気ガス噴出管接続部32bを形成するようになされている。最大径の本体32aの部分は、上記排気ガス噴出管31に隣接する下流側で、内筒管21の内周面に固定される。排気ガス噴出管接続部32bは、その外側に、次段の単位排気ガス通路3bを構成する排気ガス噴出管33を受挿接続して内筒管21と排気ガス噴出管33との間に間隔dを形成するようになされている。
 これにより、単位排気ガス通路3aは、触媒を通過した排気ガスが蓋体31aによって行き止まり、噴孔30から噴出するようになされた第一排気ガス通路Aと、この噴孔30から噴出後、排気ガス噴出管31と内筒管21との間隙dを通過し、接続部材32の噴出管接続部32bから次段の噴出管33へと排気ガスを通過させる第二排気ガス通路Bとを形成することとなる。
 単位排気ガス通路3bは、上記接続部材32の排気ガス噴出管接続部32bに接続される排気ガス噴出管33と、この排気ガス噴出管33の下流側に設けられる接続部材34とによって構成されている。
 排気ガス噴出管33は、内筒管21との間に間隙dを形成することが可能な円筒状に形成されている。この排気ガス噴出管33の周壁には、長手方向および周方向に沿って等間隔で複数の噴孔30が設けられている。また、排気ガス噴出管33は、下流側端部が蓋体33aによって閉塞されている。この排気ガス噴出管33は、内筒管21の内周面との間で噴孔30を邪魔しない下流側端部外周面の位置に適宜に設けたリブ片33bによって、内筒管21内に固定される。
 接続部材34は、筒状の本体34a部分からさらに縮径して排気ガス噴出管接続部34bを形成するようになされている。最大径の本体34aの部分は、上記排気ガス噴出管33に隣接する下流側で、内筒管21の内周面に固定される。排気ガス噴出管接続部34bは、その外側に、次段の単位排気ガス通路3cを構成する排気ガス噴出管35を受挿接続して内筒管21と排気ガス噴出管35との間に間隔dを形成するようになされている。
 これにより、単位排気ガス通路3bは、接続部材32の噴出管接続部32bを通過した排気ガスが蓋体33aによって行き止まり、噴孔30から噴出するようになされた第一排気ガス通路Aと、この噴孔30から噴出後、排気ガス噴出管33と内筒管21との間隙dを通過し、接続部材34の噴出管接続部34bから次段の噴出管35へと排気ガスを通過させる第二排気ガス通路Bとを形成することとなる。
 単位排気ガス通路3cは、上記接続部材34の排気ガス噴出管接続部34bに接続される排気ガス噴出管35と、排気ガス流出管26とによって構成されている。
 排気ガス噴出管35は、内筒管21との間に間隙dを形成することが可能な円筒状に形成されている。この排気ガス噴出管35の周壁には、長手方向および周方向に沿って等間隔で複数の噴孔30が設けられている。また、排気ガス噴出管35は、下流側端部が熱交換器2の他端側の内蓋21bによって閉塞されるように、その長さが調整されている。この排気ガス噴出管35の下流側端部は、熱交換器2の他端側の内蓋21bに固定される。
 これにより、単位排気ガス通路3cは、接続部材34の噴出管接続部34bを通過した排気ガスが内蓋21bによって行き止まり、噴孔30から噴出するようになされた第一排気ガス通路Aと、この噴孔30から噴出後、排気ガス噴出管33と内筒管21との間隙dを通過し、排気ガス流出管26から排気される第二排気ガス通路Bとを形成することとなる。
 このように構成されたエンジン排気ガス熱交換器1によると、エンジンからの排気ガスは、排気ガス流入管25から排気ガス前室5、触媒4、単位排気ガス通路3a,3b,3cを経て、排気ガス流出管26から排気されることとなる。この際、排気ガスは、全ての噴孔30から一挙に噴出させるのではなく、単位排気ガス通路3aの噴孔30から噴出させた後、回収され、次段の単位排気ガス通路3bの噴孔30から噴出させた後、再度回収され、次段の単位排気ガス通路3cの噴孔30から噴出させるといった構成としているため、噴孔30から熱交換器2の内筒管21に向けて噴出される排気ガスの噴射速度は、各単位排気ガス通路3a,3b,3cで低下させることなく一定に保つことができる。したがって、噴孔30当たりの流速の低下を防止して所定の平均熱通過率(K値)を維持することが可能となる。
 また、前室5は、管材51と内筒管21との間に空隙Sを形成しているので、排気ガス流入管25から流入した排気ガスが、内筒管21を介して冷却水によって冷却されるのを防止することができる。したがって、触媒4に流入される前の排気ガスの温度低下を防止して触媒4での反応を活性化することができる。
 なお、上記平均熱通過率(K値)は噴孔30から熱交換器2の内筒管21に向けて噴出される排気ガスの噴射速度(噴孔通過流速)に対して依存性があり、流速を上昇すると平均熱通過率が上昇する特性を有する。
 さらに、上記エンジン排気ガス熱交換器全体の熱交換量をさらに上昇する手段として、エンジン排気ガス温度が高い上段での噴孔30の数を減らす、または噴孔30の径を小さくし流速を上昇させるようにしても良い。これによって、エンジン排気ガス温度と冷却水温度の温度差の高い部分で平均熱通過率(K値)を上昇することが可能となり、エンジン排気ガス温度と冷却水温度の温度差の低い下段で平均熱通過率(K値)を上昇するよりも大きな熱交換量を得ることが可能となる。
 また、一段目の単位排気ガス通路3aの噴孔30を通過する排気ガスは、熱交換された後、二段目の単位排気ガス通路3bの噴孔30から噴出され、ここでさらに熱交換された後、三段目の単位排気ガス通路3cの噴孔30から噴出されることとなる。そのため、排気ガスは、噴孔30から噴出される際の流速の低下を防止しても、下段に向かうにしたがって、温度が低下していくこととなる。これが原因で排気ガス密度が上昇し流速の低下が発生することにより所定の平均熱通過率(K値)を維持することが困難になるような場合、下段に向かうにしたがって、噴孔30の数を減らす、または噴孔30の径を小さくし、流速を上昇させるようにしても良い。これによって、噴孔30からの所定の平均熱通過率(K値)を維持することが可能となる。このように、各単位排気ガス通路における複数の噴孔の総面積(噴孔30の噴孔数×1噴孔当たりの面積)は、エンジン排気ガス熱交換器の要求される熱交換性能により各複数段全て、もしくは一部異なるように設けることで最適な熱交換性能を得ることが可能となる。
 また、本実施の形態に係るエンジン排気ガス熱交換器1は、冷却水が通過する内筒管21と、排気ガスが噴出される排気ガス噴出管31,33,35とでは、大きな温度差を生じる。この場合、内筒管21は冷却水で冷やされて収縮する方向に作用し、排気ガス噴出管31,33,35は排気ガスで加熱されて膨張する方向に作用することとなるため、内筒管21に対して排気ガス噴出管31,33,35の長さが長くなる。この際、例えば図4に示すように、接続部材32の本体32aと排気ガス噴出管接続部32bとの間の縮径部分32cを弾性変形可能な素材で構成しておけば、このような熱膨張による排気ガス噴出管33の熱膨張による長さの変化に対応することができることとなる。接続部材34についても同様に構成することで排気ガス噴出管35の熱膨張による長さの変化に対応することができることとなる。
 図3は、他の実施の形態に係る本発明のエンジン排気ガス熱交換器1aを示している。図3において、図1および図2と同部材には同符号を付して説明を省略する。
 このエンジン排気ガス熱交換器1aは、二段目の単位排気ガス通路3bおよび三段目の単位排気ガス通路3cの内側に冷却水が入り込むように構成されており、これら二段目の単位排気ガス通路3bおよび三段目の単位排気ガス通路3cでは、この内側に入り込んだ冷却水との間でも熱交換を行うように構成されている。
 エンジン排気ガス熱交換器1aは、一段目の単位排気ガス通路3aを構成する接続部材32の本体32a部分の位置に、一段目の単位排気ガス通路3aと二段目の単位排気ガス通路3bとの間を遮蔽する遮蔽板36が設けられている。
 冷却水流入管23は、この遮蔽板36の位置まで入り込むように、熱交換器2の他端部の内蓋21bおよび外蓋22bを貫通して延設されており、延設先端部には開口部23aが設けられている。この冷却水流入管23の外側にはコア管27が設けられている。このコア管27は、熱交換器2の他端部の内蓋21bと遮蔽板36との間に設けられ、内蓋21b内部の冷却水通路20と連通するようになされている。これにより、冷却水は、冷却水流入管23の開口部23aが設けられた二段目の単位排気ガス通路3bの位置まで導入された後、コア管27に流れ出し、熱交換器2の他端部の位置まで流れた後、冷却水通路20へと流れて行き、冷却水流出管24から排水される。
 遮蔽板36は、所定の曲率半径の位置に、複数の排気ガス通過口36aが環状に設けられている。遮蔽板36の下流側、すなわち、二段目の単位排気ガス通路3b側の面には、排気ガス噴出内管37aと排気ガス噴出外管37bとの二重管構造となった排気ガス噴出管37が設けられ、遮蔽板36の排気ガス通過口36aからの排気ガスは、排気ガス噴出内管37aと排気ガス噴出外管37bとの間に導入される。
 この排気ガス噴出管37は、排気ガス噴出内管37aおよび排気ガス噴出外管37bの下流側端部に環状の蓋体37cが設けられて閉塞されている。排気ガス噴出管37は、排気ガス噴出内管37aおよび排気ガス噴出外管37bの周壁に、長手方向および周方向に沿って等間隔で複数の噴孔30が設けられている。図5に示すように、排気ガス噴出内管37aは、周方向に90度のピッチで噴孔30が設けられており、排気ガス噴出外管37bは、周方向に45度のピッチで噴孔30が設けられている。すなわち、排気ガス噴出外管37bに設けられた噴孔30が、この排気ガス噴出外管37bよりも径の大きい内筒管21の内周面に向けて排気ガスを噴射するのに対し、排気ガス噴出内管37aに設けられた噴孔30は、この排気ガス噴出内管37aよりも径の小さいコア管27に向けて排気ガスを噴射するため、上記したように排気ガス噴出外管37bと排気ガス噴出内管37aとで噴孔30のピッチを変えて排気ガス噴出外管37bに設けられた噴孔30の数を排気ガス噴出内管37aに設けられた噴孔30の数よりも多くすることによって、一つの噴孔30当たりの単位伝熱面積を均等にすることができることとなる。なお、このピッチは特に90度や45度に限定されるものではなく、排気ガス噴出外管37bから噴出される内筒管21の内周面の大きさや排気ガス噴出内管37aから噴出されるコア管27の外周面の大きさに応じて適宜決定される。
 接続部材34の位置に相当するコア管27の位置には、コア接続部材38が設けられる。このコア接続部材38は、コア管27の外周面に固定可能な筒状の本体38a部分からさらに拡径して内管接続部38bを形成するようになされている。接続部材34の排気ガス噴出管接続部34bは、その外側に、次段の単位排気ガス通路3cを構成する排気ガス噴出外管39bを受挿接続するようになされている。また、コア接続部材38の内管接続部38bは、その内側に、次段の単位排気ガス通路3cを構成する排気ガス噴出内管39aを受挿接続するようになされている。
 これにより、二段目の単位排気ガス通路3bは、遮蔽板36の排気ガス通過口36aを通過した排気ガスが蓋体37cによって行き止まり、排気ガス噴出内管37aおよび排気ガス噴出外管37bのそれぞれの噴孔30から噴出するようになされた第一排気ガス通路Aと、この噴孔30から噴出後、排気ガス噴出外管37bと内筒管21との間隙dおよび排気ガス噴出内管37aとコア管27との間隙dを通過し、接続部材34の噴出管接続部34bとコア管接続部材38の内管接続部38bとの間から次段の排気ガス噴出管39へと排気ガスを通過させる第二排気ガス通路Bとを形成することとなる。
 単位排気ガス通路3cは、上記接続部材34の排気ガス噴出管接続部34bおよびコア管接続部材38の内管接続部38bに接続される排気ガス噴出管39と、排気ガス流出管26とによって構成されている。
 排気ガス噴出管39は、上記排気ガス噴出管37と同様に、排気ガス噴出内管39aと排気ガス噴出外管39bとの二重管構造となされ、それぞれに設けられた噴孔30から内筒管21およびコア管27に向けて排気ガスを噴出することができるようになされている。排気ガス噴出内管39aの噴孔30は、周方向に90度のピッチで設けられており、排気ガス噴出外管39bの噴孔30は、周方向に45度のピッチで設けられている。排気ガス噴出内管39aの下流端部は拡径されて排気ガス噴出外管39bに当接固定するようになされている。排気ガス噴出外管39bの下流端部は、熱交換器2の他端側の内蓋21bに当接した状態で固定するようになされている。また、この排気ガス噴出外管39bの下流端部近傍には、排気ガス噴出内管39aから噴出された排気ガスを通過させる通過口39cが設けられている。
 これにより、三段目の単位排気ガス通路3cは、接続部材34の排気ガス噴出管接続部34bとコア管接続部材38の内管接続部38bとの間隙から排気ガス噴出内管39aと排気ガス噴出外管39bとの間を通過する排気ガスが下流端部で行き止まり、排気ガス噴出内管39aおよび排気ガス噴出外管39bのそれぞれの噴孔30から噴出するようになされた第一排気ガス通路Aと、この噴孔30から噴出後、排気ガス噴出外管39bと内筒管21との間隙dおよび排気ガス噴出内管39aとコア管27との間隙dを通過し、排気ガス流出管26から排気される第二排気ガス通路Bとを形成することとなる。
 このように構成されたエンジン排気ガス熱交換器1aによると、排気ガス噴出内管37a、39aから排気ガスを噴出させて、コア管27の外周面からも熱交換することができる為、排気ガス熱交換器1の全長および全体の直径を増加させることなく伝熱面積を大きく確保できる。
 図6は、本発明のエンジン排気ガス熱交換器1における噴孔30の他の実施の形態を示している。図6において、図1と同部材には同符号を付して説明を省略する。
 すなわち、この噴孔30は、噴孔30を入口から出口にかけて排気ガスの通過面積が漸減する形状としている。
 噴孔30の形状としては、図6(a)に示すように、排気ガス噴出管31の厚み方向全体にわたって漸減する円錐台形状に穿孔されたものであってもよいし、図6(b)に示すように、排気ガス噴出管31の厚み方向の途中までは入口側から漸減する円錐台形状に穿孔され、この途中から出口側と同じ直径の円柱状に穿孔されものであってもよい。
 このように漸減する形状とした噴孔30にしたエンジン排気ガス熱交換器1の場合、排気ガス噴出管31,33,35に設けた各噴孔30は、排気ガスの入口から出口にかけて通過面積が漸減する形状としているので、同一噴孔通過流速において、排気ガスの圧力損失を低減できる。したがって、熱交換器2の設計許容圧力損失値に対する噴孔通過流速をあげることができ、平均熱通過率を上昇し熱交換量を増加できる。特に、上記構成のエンジン排気ガス熱交換器1の場合、排気ガスの噴射速度は、各単位排気ガス通路3a,3b,3cで低下させることなく一定に保つことができるので、このような噴孔30の構成は有効に作用することとなる。
 なお、本実施の形態では、図1に相当するエンジン排気ガス熱交換器1における噴孔30の形状変更について述べているが、このような噴孔30の構成は、図3に相当するエンジン排気ガス熱交換器1aに適用してもよい。すなわち、内筒管21に対向する噴孔30のみならず、コア管27に対向する噴孔30を図6に示すような噴孔30にしてもよい。
 また、本実施の形態では、噴孔30の形状を周壁の内側から外側に向かって漸減する形状となされているが、この噴孔30の構成と併せて、噴孔30から噴出されたガスが当たる内筒管21の内周面に、溝加工を施してもよい。この場合、内筒管21の内周面で、この内周面に噴きつけられた排気ガスの乱れを誘起できるので、熱交換量を増加できることとなる。溝加工の形状としては、図7に示すように、内周面側に突出する突条21aが、内筒管21の長さ方向に沿って形成されたものであってもよいし(図7(a)参照)、周方向に沿って形成されたものであってもよいし(図7(b)参照)、排気ガスの流れ方向に沿って渦流となるように、周方向に対して斜めになった螺旋状に形成されたものであってもよい(図7(c)参照)。また、この溝加工は図7(d)ないし図7(f)に示すように、内筒管21の内周面側が窪んだ形状となる凹溝21bが形成されたものであってもよい。さらに、この溝加工と同様の効果を得る為に、噴孔30から噴出されたガスが当たる内筒管21の内周面にディンプル加工を施してもよい。ディンプルの形状としては、図7(g)に示すように、ゴルフボールに設けられているような円形状の窪みを形成した凹部21cが挙げられる。このディンプル加工は図7(h)に示すように、内筒管21の内周面側に円形状に突出した凸部21dを形成するものでもよい。
 さらに、本実施の形態において、エンジン排気ガス熱交換器1は、3つの単位排気ガス通路3a,3b,3cを設けて構成されているが、複数であれば、特に3つに限定されるものではなく、2つまたは4つ以上であってもよい。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 本発明は、空調装置やコージェネレーションシステムで使用される各種エンジンの排気ガス熱交換器として利用できる。
 1 エンジン排気ガス熱交換器
 11 エンジン
 A 第1排気ガス通路
 B 第2排気ガス通路
 2 熱交換器
 20 冷却水通路
 21 内筒管(排気ガス衝突面)
 21a 突条(溝加工)
 21b 凹溝(溝加工)
 21c 凹部(溝加工)
 21d 凸部(溝加工)
 22 外筒管
 26 排気ガス流出口
 27 コア管(冷却水通路)
 3a,3b,3c 単位排気ガス通路
 30 噴孔
 31,33,35,37,39 排気ガス噴出管
 32,34,38 接続部材
 37a,39a 排気ガス噴出内管
 37b,39b 排気ガス噴出外管
 4 エンジン排気ガス浄化触媒

Claims (11)

  1.  エンジン排気ガスと冷却水との間の熱交換器であって、排気ガス通路の周方向および排気ガス流れ方向に冷却水通路と対向した噴孔を複数設けて排気ガス全量を冷却水通路に衝突させるエンジン排気ガス熱交換器において、
     流入口との対面を閉塞し、周方向および流れ方向に複数の噴孔を有する第1排気ガス通路と、噴孔と対向する冷却水通路と兼用の隔壁および次段の第1排気ガス通路の流入口あるいはエンジン排気ガス熱交換器からの流出口を兼ねる流出口を有する第2排気ガス通路とで構成される単位排気ガス通路を複数段設けたことを特徴とするエンジン排気ガス熱交換器。
  2.  請求項1記載のエンジン排気ガス熱交換器において、単位排気ガス通路の内周側と外周側の両側に冷却水通路を設け、各冷却水通路に対向した噴孔を第1排気ガス通路に設けたことを特徴とするエンジン排気ガス熱交換器。
  3.  請求項2記載のエンジン排気ガス熱交換器において、外周側の冷却水通路に対向した噴孔を内周側の冷却水通路に対向した噴孔よりも多く設けたことを特徴とするエンジン排気ガス熱交換器。
  4.  請求項1記載のエンジン排気ガス熱交換器において、単位排気ガス通路毎に第1排気ガス通路の噴孔を有する隔壁を第2排気ガス通路の噴孔と冷却水通路との兼用隔壁によって単位排気ガス通路の軸線方向に弾性支持したことを特徴とするエンジン排気ガス熱交換器。
  5.  請求項1記載のエンジン排気ガス熱交換器において、第1段目の単位排気ガス通路の第1排気ガス通路に排気ガス浄化触媒の一部または全部を収納し、前記触媒の流出面と前記第1排気ガス通路の閉塞面との間に排気ガス用温度センサを設けたことを特徴とするエンジン排気ガス熱交換器。
  6.  請求項1記載のエンジン排気ガス熱交換器において、各単位排気ガス通路における複数の噴孔の総面積を、各複数段全て、もしくは一部異なる面積としたことを特徴とするエンジン排気ガス熱交換器
  7.  請求項1記載のエンジン排気ガス熱交換器において、各噴孔を入口から出口にかけて排気ガスの通過面積が漸減する形状としたことを特徴とするエンジン排気ガス熱交換器。
  8.  請求項7記載の触媒内蔵型エンジン排気ガス熱交換器において、各噴孔の途中部から排気ガスの通過面積を出口面積と等しくしたことを特徴とするエンジン排気ガス熱交換器。
  9.  請求項7記載のエンジン排気ガス熱交換器において、冷却水通路の排気ガス衝突面に溝加工を行ったことを特徴とするエンジン排気ガス熱交換器。
  10.  請求項8記載のエンジン排気ガス熱交換器において、冷却水通路の排気ガス衝突面に溝加工を行ったことを特徴とするエンジン排気ガス熱交換器。
  11.  エンジン駆動式ヒートポンプおよびコージェネレーションなどのエネルギー供給装置において、請求項1ないし10の何れか一記載のエンジン排気ガス熱交換器をエンジンの排気ガス経路に使用したことを特徴とするエネルギー供給装置。
PCT/JP2011/055633 2010-03-12 2011-03-10 エンジン排気ガス熱交換器およびこれを使用したエネルギー供給装置 WO2011111776A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11753434.7A EP2546491B1 (en) 2010-03-12 2011-03-10 Engine exhaust gas heat exchanger and energy supply device using same
ES11753434.7T ES2575583T3 (es) 2010-03-12 2011-03-10 Intercambiador de calor del gas de escape del motor y dispositivo de suministro de energía que lo utiliza
CA2792916A CA2792916A1 (en) 2010-03-12 2011-03-10 Engine exhaust gas heat exchanger and energy supplying device using the same
US13/583,774 US8904772B2 (en) 2010-03-12 2011-03-10 Engine exhaust gas heat exchanger and energy supplying device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010055575A JP2011190708A (ja) 2010-03-12 2010-03-12 エンジン排気ガス熱交換器およびこれを使用したエネルギー供給装置
JP2010055573A JP5551476B2 (ja) 2010-03-12 2010-03-12 エンジン排気ガス熱交換器ならびにこれを使用したエネルギー供給装置
JP2010-055573 2010-03-12
JP2010-055575 2010-03-12

Publications (1)

Publication Number Publication Date
WO2011111776A1 true WO2011111776A1 (ja) 2011-09-15

Family

ID=44563574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055633 WO2011111776A1 (ja) 2010-03-12 2011-03-10 エンジン排気ガス熱交換器およびこれを使用したエネルギー供給装置

Country Status (5)

Country Link
US (1) US8904772B2 (ja)
EP (1) EP2546491B1 (ja)
CA (1) CA2792916A1 (ja)
ES (1) ES2575583T3 (ja)
WO (1) WO2011111776A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746549A2 (en) * 2012-12-21 2014-06-25 EC Power A/S Catalytic converter apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6251583B2 (ja) * 2014-01-30 2017-12-20 カルソニックカンセイ株式会社 排気熱回収器
KR101724909B1 (ko) * 2015-09-23 2017-04-07 현대자동차주식회사 자동차용 배기열 회수 및 egr 제어 시스템
JP7169923B2 (ja) * 2019-03-27 2022-11-11 日本碍子株式会社 熱交換器
CN111750705B (zh) * 2019-03-28 2022-04-29 日本碍子株式会社 热交换器的流路结构以及热交换器
CN113250795B (zh) * 2021-06-28 2021-11-26 宁波明讯实业有限公司 一种环保型汽车尾气处理系统及处理办法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078920U (ja) * 1983-11-05 1985-06-01 株式会社土屋製作所 廃熱回収式触媒コンバ−タ
JP2009092016A (ja) * 2007-10-10 2009-04-30 Yanmar Co Ltd エンジン排気ガス熱回収器ならびにそれを使用したエンジン駆動式ヒートポンプまたはコージェネレーション
JP2009156162A (ja) * 2007-12-26 2009-07-16 Yanmar Co Ltd エンジン排気ガス熱回収器ならびにこれを使用したエネルギー供給装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117559A (en) * 1960-09-21 1964-01-14 Fives Penhoet Heat exchanger
US3844343A (en) 1973-02-02 1974-10-29 Gen Electric Impingement-convective cooling system
GB2164438B (en) 1984-09-14 1988-07-27 Aisin Seiki Heat exchangers
US4685292A (en) * 1985-09-09 1987-08-11 Zwick Energy Research Organization, Inc. Exhaust cooling system for internal combustion engine
FR2619205B1 (fr) * 1987-08-07 1990-08-31 Bertin & Cie Echangeur de chaleur a impact de jet
JPH01145931U (ja) * 1988-03-31 1989-10-06
US5228513A (en) * 1991-05-03 1993-07-20 Indugas, Inc. Convective heat transfer by cascading jet impingement
FR2696947B1 (fr) 1992-10-20 1994-11-25 Ceramiques Tech Soc D Module de filtration, de séparation, de purification de gaz ou de liquide, ou de transformation catalytique.
US6151891A (en) * 1998-09-22 2000-11-28 Bennett; Easton Heat exchanger for a motor vehicle exhaust
EP1249584B1 (en) * 2000-01-21 2005-09-28 Honda Giken Kogyo Kabushiki Kaisha Combustion gas purifier and internal combustion engine
DE10247837A1 (de) * 2002-10-14 2004-04-22 Behr Gmbh & Co. Wärmeübertrager
JP2008035595A (ja) 2006-07-27 2008-02-14 Toyota Motor Corp 熱発電装置及びその製造方法
JP4281789B2 (ja) * 2006-12-06 2009-06-17 トヨタ自動車株式会社 排気熱回収装置
JP2008175461A (ja) * 2007-01-18 2008-07-31 Toyota Motor Corp 熱交換器
WO2009048090A1 (ja) * 2007-10-10 2009-04-16 Yanmar Co., Ltd. エンジン排気ガス熱回収器およびそれを使用したエネルギー供給装置
KR101125004B1 (ko) * 2009-12-04 2012-03-27 기아자동차주식회사 냉각수 및 오일 통합 열교환형 배기열 회수장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078920U (ja) * 1983-11-05 1985-06-01 株式会社土屋製作所 廃熱回収式触媒コンバ−タ
JP2009092016A (ja) * 2007-10-10 2009-04-30 Yanmar Co Ltd エンジン排気ガス熱回収器ならびにそれを使用したエンジン駆動式ヒートポンプまたはコージェネレーション
JP4324216B2 (ja) 2007-10-10 2009-09-02 ヤンマー株式会社 エンジン排気ガス熱回収器ならびにそれを使用したエンジン駆動式ヒートポンプまたはコージェネレーション
JP2009156162A (ja) * 2007-12-26 2009-07-16 Yanmar Co Ltd エンジン排気ガス熱回収器ならびにこれを使用したエネルギー供給装置
JP4324219B2 (ja) 2007-12-26 2009-09-02 ヤンマー株式会社 エンジン排気ガス熱回収器ならびにこれを使用したエネルギー供給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2546491A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746549A2 (en) * 2012-12-21 2014-06-25 EC Power A/S Catalytic converter apparatus
EP2746549A3 (en) * 2012-12-21 2014-11-19 EC Power A/S Catalytic converter apparatus

Also Published As

Publication number Publication date
ES2575583T3 (es) 2016-06-29
EP2546491A4 (en) 2013-10-02
US8904772B2 (en) 2014-12-09
EP2546491A1 (en) 2013-01-16
EP2546491B1 (en) 2016-03-09
US20130000286A1 (en) 2013-01-03
CA2792916A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
WO2011111776A1 (ja) エンジン排気ガス熱交換器およびこれを使用したエネルギー供給装置
US8667682B2 (en) Method of fabricating a nearwall nozzle impingement cooled component for an internal combustion engine
EP3499170B1 (en) Heat exchanger inlet
CN101809260B (zh) 发动机排气气体热回收器以及使用它的能量供给装置
US20170122678A1 (en) Heat exchanger
WO2009074147A3 (de) Abgasrückkühler für eine verbrennungskraftmaschine
JP2009162119A (ja) タービン翼の冷却構造
JPS61114093A (ja) 熱交換器
JP2005036739A (ja) Egrクーラ
US20160061535A1 (en) Heat exchanger
JP2009197698A (ja) シリンダライナの冷却構造
JP2009091948A (ja) Egrクーラ
JP4324219B2 (ja) エンジン排気ガス熱回収器ならびにこれを使用したエネルギー供給装置
EP3492858B1 (en) Heat exchanger low pressure loss manifold
JP6490957B2 (ja) 弁装置、及び排気熱回収装置
JP4324216B2 (ja) エンジン排気ガス熱回収器ならびにそれを使用したエンジン駆動式ヒートポンプまたはコージェネレーション
JP5551476B2 (ja) エンジン排気ガス熱交換器ならびにこれを使用したエネルギー供給装置
WO2011111778A1 (ja) 触媒内蔵型エンジン排気ガス熱交換器およびこれを使用したエネルギー供給装置
JP2008008568A (ja) 熱交換器
JP5518160B2 (ja) シリンダライナの冷却構造およびディーゼルエンジン
CN211290478U (zh) 导流装置和空调器
JP2011190708A (ja) エンジン排気ガス熱交換器およびこれを使用したエネルギー供給装置
CN110762820A (zh) 导流装置和空调器
JP2007085724A (ja) 熱交換器
JP5814801B2 (ja) 熱交換ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011753434

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13583774

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2792916

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE