WO2011111679A1 - タンパク質含有液処理用多孔質中空糸膜 - Google Patents

タンパク質含有液処理用多孔質中空糸膜 Download PDF

Info

Publication number
WO2011111679A1
WO2011111679A1 PCT/JP2011/055299 JP2011055299W WO2011111679A1 WO 2011111679 A1 WO2011111679 A1 WO 2011111679A1 JP 2011055299 W JP2011055299 W JP 2011055299W WO 2011111679 A1 WO2011111679 A1 WO 2011111679A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
membrane
protein
filtration
Prior art date
Application number
PCT/JP2011/055299
Other languages
English (en)
French (fr)
Inventor
横田英之
上西徹
小川浩文
足高暁
門田典子
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to DK11753337.2T priority Critical patent/DK2545986T3/da
Priority to EP11753337.2A priority patent/EP2545986B1/en
Priority to US13/578,416 priority patent/US9492794B2/en
Priority to CA2792357A priority patent/CA2792357C/en
Priority to AU2011225316A priority patent/AU2011225316B2/en
Priority to JP2012504460A priority patent/JP5754654B2/ja
Priority to CN201180011902.XA priority patent/CN102892486B/zh
Priority to KR1020127023273A priority patent/KR20130014512A/ko
Publication of WO2011111679A1 publication Critical patent/WO2011111679A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/081Hollow fibre membranes characterised by the fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/08Fully permeating type; Dead-end filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/026Sponge structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes

Definitions

  • the present invention relates to a porous hollow fiber membrane for protein-containing liquid treatment suitable for separating fine particles such as viruses contained in an aqueous fluid such as a protein solution.
  • a porous hollow fiber membrane for protein-containing liquid treatment suitable for separating fine particles such as viruses contained in an aqueous fluid such as a protein solution.
  • it preferably comprises a hydrophobic polymer and a hydrophilic polymer, has a pure water permeation rate of 10 to 300 L / (h ⁇ m 2 ⁇ bar), and a 0.5% immunoglobulin solution in a dead end.
  • the present invention relates to a porous hollow fiber membrane for protein-containing liquid treatment, characterized in that the filtration time and the filtrate collection integrated amount are substantially linear when filtered at a constant pressure of 1.0 bar over a minute.
  • Hollow fiber membranes for the treatment of aqueous fluids are widely used in industrial applications such as microfiltration and ultrafiltration, and medical applications such as hemodialysis, hemofiltration and hemodiafiltration.
  • industrial applications such as microfiltration and ultrafiltration
  • medical applications such as hemodialysis, hemofiltration and hemodiafiltration.
  • pathogenic substances such as viruses from protein solutions, which are useful components, and improving safety.
  • Non-Patent Document 1 regarding the virus removal / inactivation process of the plasma fraction preparation, it is desirable to work on two or more different virus inactivation and removal processes.
  • the LRV to be achieved as the target value is about 4.
  • Non-Patent Document 3 “Especially regarding the virus removal / inactivation process, in Japan,“ Guidelines on Ensuring the Safety of Plasma Fractionated Drugs against Viruses ”, Medicament No. 1047 (March 30, 1999)
  • Virus clearance index R log ((V1 ⁇ T1) / (V2 ⁇ T2)) V1 Capacity before process treatment T1 Virus titer before process treatment V2 Capacity after process treatment T2 Virus titer after process treatment
  • Virus removal and inactivation methods include heat treatment, optical treatment such as gamma rays and ultraviolet irradiation, chemical treatment such as low pH treatment, precipitation fractionation such as ethanol fractionation and ammonium sulfate fractionation, and removal by membrane filtration.
  • optical treatment such as gamma rays and ultraviolet irradiation
  • chemical treatment such as low pH treatment
  • precipitation fractionation such as ethanol fractionation and ammonium sulfate fractionation
  • removal by membrane filtration membrane removal methods that do not lead to protein denaturation have attracted attention in removing viruses from protein solutions.
  • proteins that are useful components must be efficiently permeated and recovered.
  • the target of separation and removal is a small-sized virus such as parvovirus, it has been difficult to satisfy the virus removal characteristics and the permeation characteristics of useful proteins at the same time.
  • Patent Document 1 an average permeation rate for 5 minutes from the start of filtration when 3 wt% bovine immunoglobulin having a specific maximum pore size and the proportion of monomer is 80 wt% or more is filtered at a low pressure of 0.3 MPa.
  • a hydrophilic microporous membrane in which the relationship between (globulin permeation rate A), average permeation rate for 5 minutes (globulin permeation rate B) after 55 minutes from the start of filtration, and maximum pore size is parameterized.
  • the constituent requirements of this film are as follows. (1) Maximum pore size 10-100nm (2) Globulin permeation rate A> 0.0015 ⁇ maximum pore size (nm) 2.75 (3) Globulin permeation rate B / globulin permeation rate A> 0.2
  • the requirement (1) merely describes the pore size required for removing infectious virus, as described in Patent Document 1, page 3, lines 21 to 27.
  • the requirement of (2) requires that the globulin permeation rate A is larger than a certain value calculated from the maximum pore size of the micropores.
  • the permeation of the protein solution Since it is obvious that a higher speed is preferable, only the target characteristics are described.
  • the requirement of (3) requires that the permeation rate of the protein solution does not decrease with time, and this is also merely a description of the target characteristics required for a membrane intended to remove viruses from the protein solution.
  • hydrophilic microporous membrane with a logarithmic removal rate of 3 or higher for porcine parvovirus, 3 wt% bovine immunoglobulin with a monomer content of 80 wt% or higher at low pressure filtration at 0.3 MPa, at the start of filtration
  • hydrophilic microporous membranes with a cumulative permeation rate of 50 liters / m 2 or more after 3 hours are described in the subclaims. It only describes the target characteristics of membranes that are intended to remove viruses from protein solutions, and provides useful and specific information for the problem of obtaining membranes with high protein permeability and high virus removal. Do not mean.
  • Patent Document 1 also discloses a microporous membrane having a coarse structure layer with a high porosity and a dense layer with a low porosity.
  • a polyfluoride film that can easily form a homogeneous structure by thermally induced phase separation is disclosed.
  • Hollow fiber membranes made of vinylidene chloride hereinafter abbreviated as PVDF
  • this technology can be applied to materials such as polysulfone resins that are widely used as hemodialysis membrane materials due to their high water permeability. Is difficult to apply as is.
  • Patent Document 2 discloses a microporous film having a coarse structure layer having a high porosity and a dense layer having a low porosity, but here, PVDF is also assumed as a material. PVDF is excellent in physical strength, but because it is a hydrophobic material, protein adsorption, membrane contamination and clogging are likely to occur, and the filtration rate drops rapidly. In order to improve this undesirable characteristic, it is necessary to impart hydrophilicity to the membrane. Generally, PVDF material membranes must be modified to hydrophilicity by post-treatment after film formation. As compared with a general polysulfone resin, forming a film in a blended state with a conductive polymer has a disadvantage in that it is a complicated manufacturing process.
  • Patent Document 3 discloses a virus-retaining ultrafiltration membrane having an initial LRV of at least 4.0 relative to PhiX174 and having a surface hydrophilized with hydroxyalkylcellulose.
  • the hydrophilicity is made by a special hydrophilic polymer, and lacks versatility.
  • a blend of polysulfone or the like and a hydrophilic polymer such as polyvinyl pyrrolidone is also exemplified, but hydrophilic treatment with hydroxyalkyl cellulose is essential.
  • a hollow fiber type is allowed as the membrane, a flat membrane type is assumed, and a sufficient explanation for obtaining the hollow fiber membrane type is not made.
  • Patent Document 4 discloses a method for producing an immunoglobulin preparation that effectively removes viruses in industrial production processes and does not cause filtration problems such as clogging of the removal membrane due to aggregates and contaminating proteins. ing.
  • a step of filtering an immunoglobulin solution using a porous membrane having an average pore diameter of 15 to 20 nm is included, and that the material of the porous membrane is preferably regenerated cellulose.
  • [FIG. 1], [FIG. 2], and [FIG. 3] show graphs in which the accumulated filtrate amount extends almost linearly with respect to the elapsed time.
  • the in-plane porosity initially decreases as it goes from the inner wall surface to the inside of the wall, and after passing through at least one minimum portion, the polymer porous hollow fiber having a pore structure that increases again at the outer wall portion
  • a membrane and a virus removal method using this membrane to filter an aqueous protein solution are disclosed. If the membrane structure disclosed here is simply expressed, it can be said that the pore diameter of the membrane wall is a hollow fiber membrane having sparse-dense-sparse in the film thickness direction. Having such a tilted structure and having a specific average pore size is said to be suitable for removing proteins with high efficiency and for recovering proteins with high permeability without denaturing the proteins.
  • various polymer substances are exemplified as the material, is a technology using regenerated cellulose, and it is difficult to apply the technology disclosed here to many materials for general use. Further, the disadvantages of the cellulose material are as already described.
  • An object of the present invention to efficiently remove and remove a removal substance such as a virus contained in a solution, and at the same time, a useful recovery substance such as a protein efficiently permeates, and the permeation characteristics of the protein are less reduced over time.
  • An object of the present invention is to provide a porous hollow fiber membrane for treating a liquid containing liquid.
  • the porous hollow fiber membrane for protein-containing liquid treatment of the present invention is (1) Containing hydrophobic polymer and hydrophilic polymer, pure water permeation rate is 10 ⁇ 300L / (h ⁇ m 2 ⁇ bar), and 0.5% immunoglobulin solution over 60 minutes with dead end When filtration is performed at a constant pressure of 1.0 bar, the filtration time and the filtrate collection integrated amount are substantially in a linear relationship.
  • the central region of the film thickness portion has a substantially homogeneous structure, and the film thickness portion has a structure having no macrovoids.
  • the inside diameter is 150 to 400 ⁇ m and the film thickness is 40 to 200 ⁇ m.
  • the hydrophobic polymer is a polysulfone polymer.
  • the hydrophilic polymer is polyvinylpyrrolidone.
  • the porous hollow fiber membrane for protein-containing liquid treatment of the present invention can be used for virus separation from a protein solution.
  • the virus can be efficiently removed, and at the same time, the protein can permeate efficiently, Since the permeation characteristic does not drop over time, it can be preferably used as a membrane for removing pathogenic substances such as viruses from protein solutions that are useful components in the production process of biopharmaceuticals and blood products.
  • a range indicated by a double-pointed arrow at the center of the image is “a central region of the film thickness portion”, and a range indicated by double-sided arrows on both sides is an inner surface side region and an outer surface side region of the film thickness portion.
  • a range indicated by a double-pointed arrow at the center of the image is “a central region of the film thickness portion”, and a range indicated by double-sided arrows on both sides is an inner surface side region and an outer surface side region of the film thickness portion. It is an example of a structure where the central region is inhomogeneous.
  • a range indicated by a double-pointed arrow at the center of the image is “a central region of the film thickness portion”, and a range indicated by double-sided arrows on both sides is an inner surface side region and an outer surface side region of the film thickness portion. It is an example of a structure where the central region is inhomogeneous.
  • a range indicated by a double-pointed arrow at the center of the image is “a central region of the film thickness portion”, and a range indicated by double-sided arrows on both sides is an inner surface side region and an outer surface side region of the film thickness portion. This is an example of a structure in which the central region is inhomogeneous and has macrovoids.
  • a range indicated by a double-pointed arrow at the center of the image is “a central region of the film thickness portion”, and a range indicated by double-sided arrows on both sides is an inner surface side region and an outer surface side region of the film thickness portion.
  • 3 is a graph showing the relationship between immunoglobulin filtration time measured using the hollow fiber membranes obtained in Examples 1 to 7 and throughput.
  • 3 is a graph showing the relationship between immunoglobulin filtration time measured using the hollow fiber membranes obtained in Comparative Examples 1 to 4 and throughput.
  • the porous hollow fiber membrane for protein-containing liquid treatment of the present invention comprises a hydrophobic polymer and a hydrophilic polymer.
  • the hydrophobic polymer include polyester, polycarbonate, polyurethane, polyamide, polysulfone (hereinafter abbreviated as PSf), polyethersulfone (hereinafter abbreviated as PES), polymethyl methacrylate, polypropylene, polyethylene, PVDF, and the like.
  • PSf polysulfone
  • PES polyethersulfone
  • polymethyl methacrylate polypropylene
  • polyethylene polyethylene
  • PVDF polyethylene
  • polysulfone-based polymers such as PSf and PES having repeating units represented by the following chemical formulas 1 and 2 are advantageous and preferable for obtaining a highly water-permeable membrane.
  • the polysulfone polymer referred to here may contain a substituent such as a functional group or an alkyl group, and the hydrogen atom of the hydrocarbon skeleton may be substituted with another atom such as halogen or a substituent. These may be used alone or in combination of two or more.
  • hydrophilic polymer in the present invention examples include polymeric carbohydrates such as polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone (hereinafter abbreviated as PVP), carboxymethyl cellulose, and starch.
  • PVP polyvinyl pyrrolidone
  • carboxymethyl cellulose examples include starch.
  • PVP polyvinyl pyrrolidone
  • Luvitec (trade name) K17, K30, K60, K80, K85, K90 and the like commercially available from BASF are preferable, and Luvitec (trade name) K60, K80, K85, K90 and the like are more preferable.
  • the porous hollow fiber membrane for protein-containing liquid treatment of the present invention is characterized in that the permeation rate of pure water (hereinafter abbreviated as pure water Flux) is 10 to 300 L / (h ⁇ m 2 ⁇ bar).
  • Pure water Flux is a measure of the pore size of the porous membrane. If the pure water flux is smaller than the above numerical value, the pore diameter becomes excessively small, and it becomes difficult to efficiently permeate the protein. Moreover, since the amount of water permeation is small, the efficiency of collecting the filtrate decreases. If the pure water Flux is larger than the above numerical value, the pore diameter becomes excessively large, and it becomes difficult to efficiently remove and remove a removal substance such as a virus.
  • the pure water flux is more preferably 40 to 230 L / (h ⁇ m 2 ⁇ bar), and further preferably 70 to 230 L / (h ⁇ m 2 ⁇ bar).
  • the protein which is a component to be recovered in the filtrate, exhibits high permeability through the filtration process. It is difficult to determine how much transmittance is required depending on the use, type, concentration, etc. of the protein, but it is generally preferably 95% or more. Below 95%, protein loss due to filtration increases and productivity decreases. In the membrane filtration, as the filtration time becomes longer, there is a possibility that the transmittance decreases due to clogging. Therefore, the transmittance (permeability retention rate) at the time of performing filtration for a sufficiently long time with respect to the transmittance at the initial stage of the filtration process is an index indicating the stability of protein permeation over time. Considering that the transmittance may decrease with time and that the transmittance is preferably at least 95% throughout the entire filtration process, the transmittance retention is preferably at least 95%.
  • the process of, so to set the maximum filtration load applied to the film in about 50 ⁇ 200L / m 2 is generally 1/2 i.e. at least 50L / m 2, subjected to filtration loading of about 25L / m 2 It can be said that it is appropriate to consider that time.
  • the concentration of the protein solution to be treated has been increasing in recent years. Therefore, when considering protein permeability, it is necessary to judge at a concentration of about 0.5% or more. It is reasonable.
  • the filtration time and the filtrate collection integrated amount are substantially linearly related. It is characterized by that.
  • the filtrate recovery amount tends to decrease with time due to clogging of the pore diameter.
  • the filtrate collection integrated amount is plotted on the vertical axis, both have a convex curve relationship.
  • the fact that the filtration time and the filtrate collection integrated amount are in a linear relationship means that the initial filtration characteristics are stably maintained even when filtration is continued, and no membrane defect occurs during filtration.
  • a membrane having such filtration characteristics is preferable in that the efficiency of work can be expected because the filtration time required for the filtration treatment of a predetermined amount of liquid can be easily estimated.
  • the separation characteristics at the initial stage of filtration are maintained even if filtration is continued, which is preferable in that the separation of the recovered substance and the removed substance is reliably achieved.
  • substantially linear relationship means that the regression time obtained by the least square method from each point when the filtration time is plotted on the horizontal axis and the filtrate collection integrated amount is plotted on at least 6 points on the horizontal axis.
  • R 2 is 0.95 or more. If it is lower than this, it means that the amount of filtrate recovered decreases with time due to protein clogging, which is not preferable. Since R 2 is 1 when the filtration time and the filtrate collection integrated amount are in a completely proportional relationship, the maximum value is 1 by default.
  • the number of plots is preferably as large as possible in order to clarify the relationship between the filtration time and the filtrate recovery amount, but it is not preferable to increase the number of plots from the viewpoint of simplicity of measurement.
  • the present invention is characterized in that the filtration time of the immunoglobulin solution and the filtrate collection integrated amount are substantially linearly related, but on the premise that the membrane area during filtration is unchanged, the per unit membrane area
  • the filtrate collection integrated amount (hereinafter referred to as throughput) may be used instead of the filtrate collection integrated amount. By using the throughput, it is preferable because the filtrate recovery amounts measured at different membrane areas can be compared in the same row.
  • the immunoglobulin used at this time is an immunoglobulin preparation for intravenous injection (hereinafter referred to as IVIG), specifically, a polyethylene glycol-treated human immunoglobulin, such as blood donated venoglobulin, because of its availability and stability of quality.
  • IVIG immunoglobulin preparation for intravenous injection
  • a polyethylene glycol-treated human immunoglobulin such as blood donated venoglobulin, because of its availability and stability of quality.
  • -IH Yoshitomi is preferably used.
  • IVIG has an incomplete molecular type containing an immunoglobulin fragment as an active ingredient and a complete molecular type containing immunoglobulin itself as an active ingredient.
  • the latter is preferably used.
  • the latter is preferably used.
  • IVIG is often supplied as a solution with a concentration of about 5%, or a kit that can dissolve a lyophilized component to obtain a solution with a concentration of about 5%. In the present invention, this is diluted to 0.5%. It is preferred to use.
  • the diluent used at this time is preferably phosphate buffered saline (hereinafter abbreviated as PBS).
  • PBS phosphate buffered saline
  • the phosphate buffered saline (hereinafter abbreviated as PBS) referred to in the present invention means an isotonic saline solution to which a buffering action is imparted by a phosphate, and the pH is preferably 6.5 to 7.5.
  • the filtration experiment for obtaining the relationship between the filtration time of the immunoglobulin solution and the filtrate collection integrated amount is obtained under the following measurement conditions. Adjust the liquid temperature to 25 ° C. (1) Dilute IVIG to 0.5% with PBS and adjust pH to 6.8. (2) The solution is introduced into a hollow fiber membrane in a dry state, and filtered at a constant pressure of 1.0 bar for 60 minutes. (3) Record the filtration time and the filtrate recovery amount at almost equal intervals from the start to the end of filtration (eg, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 60 minutes from the start of filtration). . (4) Divide the filtrate recovery amount by the membrane area to calculate the throughput. (5) filtration time, type a number of throughput spreadsheet software on a personal computer to calculate the R 2.
  • the porous hollow fiber membrane for protein-containing liquid treatment of the present invention preferably has a structure in which the central region of the film thickness portion has a substantially homogeneous structure and does not have macrovoids.
  • the ⁇ central area of the film thickness part '' is a position on the outer surface side by a distance corresponding to 20% of the film thickness from the inner surface and a position on the inner surface side by a distance corresponding to 20% of the film thickness from the outer surface.
  • substantially homogeneous structure means that the structure non-uniformity cannot be confirmed when a 1000 times SEM image is visually observed.
  • the structure as shown in FIGS. 1 and 2 is “a structure in which the central region of the film thickness portion is substantially homogeneous”.
  • the central region is sparse-dense from the inner surface toward the outer surface
  • the central region is dense-sparse-dense from the inner surface toward the outer surface.
  • the dense structure has changed in a complex manner. All of these are unfavorable structures in the present invention.
  • the range indicated by the double-pointed arrow in the center of the image is the “central region of the film thickness portion”, and the range indicated by the double-sided arrows on both sides is the inner surface side region and the outer surface side region of the film thickness portion. It is.
  • ⁇ having no macrovoids '' means that when a SEM image (1000 times) obtained by photographing five different areas of a film thickness portion is visually observed, a uniform film thickness portion is observed in any field of view. It means that a void region where a real part of the film is missing in a circular shape, an elliptical shape or a saddle shape as compared with the structure, that is, a macro void is not observed.
  • a homogeneous membrane is preferably used to separate viruses from coexisting solutions that are not extremely different in size, such as separation and removal of small-diameter viruses from immunoglobulin solutions. This is because by taking a homogeneous structure in the thickness direction, it is possible to expect a pseudo multistage effect in which separation is repeated many times in many layers. In addition, with such a structure, even if there is a defect in a part of the film thickness part and the substance to be removed is not trapped there, there is a high possibility that it will be stopped somewhere in the film thickness part. In addition, the risk of leakage of a substance to be removed can be reduced as a whole film. Such a merit can be obtained because the central region has a homogeneous structure, which is suitable for removing substances such as viruses from protein solutions. The presence of macro voids is not preferable because it narrows the region where such an effect can be expected.
  • the porous hollow fiber membrane for protein-containing liquid treatment according to the present invention may be provided at the time of filtration, although the filtration upstream side may be the hollow fiber membrane lumen side or the hollow fiber membrane outer wall side. From the viewpoint of durability against pressure, it is preferable to filter from the inner side to the outer side with the hollow fiber membrane lumen side as the upstream side of filtration.
  • the inner diameter of the porous hollow fiber membrane for protein-containing liquid treatment of the present invention is preferably 100 to 1000 ⁇ m, more preferably 120 to 800 ⁇ m, further preferably 150 to 400 ⁇ m, and still more preferably 180 to 300 ⁇ m.
  • the film thickness is preferably 10 to 500 ⁇ m, more preferably 20 to 400 ⁇ m, even more preferably 40 to 200 ⁇ m, and even more preferably 50 to 100 ⁇ m. If the inner diameter is smaller than this, when filtration is performed from the inside toward the outside, the pressure loss due to the liquid passage becomes large, and the filtration pressure may become non-uniform in the length direction of the hollow fiber membrane.
  • a lumen in the liquid may be blocked due to components in the liquid to be processed. If the inner diameter is larger than this, the hollow fiber membrane is liable to be crushed or distorted. When the film thickness is smaller than this, the hollow fiber membrane tends to be crushed or distorted. When the film thickness is larger than this, the resistance when the liquid to be treated passes through the film wall increases, and the permeability may decrease.
  • the bacteriophage clearance of the porous hollow fiber membrane for protein-containing liquid treatment of the present invention is preferably 4 or more and more preferably 5 or more as LRV. By having such characteristics, it can be preferably applied to virus removal from protein-containing liquids.
  • the bacteriophage mentioned here is preferably a bacteriophage having a diameter of 20 to 30 nm such as PP7, ⁇ X174, and more preferably ⁇ X174 from the viewpoint of easy handling of host bacteria.
  • the method for producing the porous protein fiber-containing porous hollow fiber membrane of the present invention is not limited in any way, but a hydrophobic polymer, a hydrophilic polymer, a solvent, and a non-solvent are mixed and dissolved, and defoamed.
  • a film-forming solution the core solution is simultaneously discharged from the annular part and the center part of the double-tube nozzle and led to the coagulation bath through the idle running part (air gap part) to form a hollow fiber membrane (dry and wet spinning) Method), a method of winding and drying after washing with water.
  • Solvents used in the film-forming solution were N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP), N, N-dimethylformamide (hereinafter abbreviated as DMF), N, N-dimethylacetamide (hereinafter abbreviated as DMAc). ), Dimethyl sulfoxide (hereinafter abbreviated as DMSO), ⁇ -caprolactam, etc., can be widely used as long as it is a good solvent for hydrophobic polymers and hydrophilic polymers.
  • NMP N-methyl-2-pyrrolidone
  • DMF N-dimethylformamide
  • DMAc N-dimethylacetamide
  • DMSO Dimethyl sulfoxide
  • ⁇ -caprolactam etc.
  • the aprotic solvent means a hydrogen bonded directly to a hetero atom other than a carbon atom in the structure. It means a solvent containing no atoms.
  • non-solvent examples include ethylene glycol (hereinafter abbreviated as EG), propylene glycol (hereinafter abbreviated as PG), diethylene glycol (hereinafter abbreviated as DEG), triethylene glycol (hereinafter abbreviated as TEG), Polyethylene glycol (hereinafter abbreviated as PEG), glycerin, water, etc.
  • EG ethylene glycol
  • PG propylene glycol
  • DEG diethylene glycol
  • TEG triethylene glycol
  • PEG Polyethylene glycol
  • glycerin glycerin, water, etc.
  • the ether polyol means a substance having at least one ether bond and two or more hydroxyl groups in the structure.
  • phase separation (coagulation) in the spinning process is controlled by using a membrane-forming solution prepared using these solvents and non-solvents, and the preferred membrane structure of the present invention is formed. It is thought that it becomes advantageous to do.
  • the composition of the core liquid described later and the composition of the liquid in the coagulation bath (external coagulation liquid) are also important.
  • the solvent / non-solvent ratio in the film forming solution is an important factor for controlling phase separation (coagulation) in the spinning process. It is preferable that the non-solvent is the same amount or slightly excess with respect to the solvent. Specifically, the solvent / non-solvent is preferably 25/75 to 50/50 by weight, and preferably 30/70 to 50/50. / 50 is more preferable, and 35/65 to 50/50 is even more preferable. If the content of the solvent is less than this, solidification tends to proceed, the membrane structure becomes too dense, and the permeability is lowered. On the other hand, if the solvent content is higher than this, the progress of the phase separation is excessively suppressed, and pores having a large pore diameter are likely to be generated, which increases the possibility of degrading the separation characteristics and strength.
  • the concentration of the hydrophobic polymer in the film-forming solution is not particularly limited as long as film formation from the solution is possible, but is preferably 10 to 40% by weight, more preferably 10 to 30% by weight, and 15 to 25% by weight. Is more preferable.
  • the concentration of the hydrophobic polymer is preferably low, but if it is too low, the strength may be reduced and the separation characteristics may be deteriorated, so 15 to 25% by weight is preferable.
  • the amount of hydrophilic polymer added is sufficient to impart hydrophilicity to the hollow fiber membrane and prevent non-specific adsorption during filtration of the liquid to be processed, without affecting the membrane formation from the membrane-forming solution.
  • the concentration of the hydrophilic polymer in the film forming solution is preferably 2 to 15% by weight, more preferably 2 to 10% by weight, and further preferably 3 to 8% by weight. If the amount of the hydrophilic polymer added is less than this, the imparting of hydrophilicity to the film will be insufficient, and the retention of film characteristics may be reduced. In addition, if it is more than this, the hydrophilicity imparting effect is saturated and the efficiency is not good, and the phase separation (coagulation) of the film forming solution is likely to proceed excessively, and the operability deteriorates, This is disadvantageous in forming the preferred membrane structure of the present invention.
  • a film-forming solution can be obtained by mixing a hydrophobic polymer, a hydrophilic polymer, a solvent, and a non-solvent and dissolving them by stirring. At this time, the solution can be efficiently dissolved by appropriately applying a temperature. However, excessive heating may cause decomposition of the polymer, so that the temperature is preferably 30 to 100 ° C., more preferably 40 to 80 ° C. is there.
  • PVP polymer
  • the PVP tends to undergo oxidative decomposition due to the influence of oxygen in the air
  • Eliminating bubbles from the membrane forming solution is effective for obtaining a hollow fiber membrane having no defects.
  • As a method for suppressing the mixing of bubbles it is effective to defoam the film forming solution.
  • static defoaming or vacuum defoaming can be used.
  • the tank is sealed and allowed to stand for 30 to 180 minutes. This operation is repeated several times to perform a defoaming process. If the degree of vacuum is too low, the treatment may take a long time because it is necessary to increase the number of defoaming times.
  • the total treatment time is preferably 5 minutes to 5 hours. If the treatment time is too long, the components of the film-forming solution may be decomposed and deteriorated due to the effect of reduced pressure. If the treatment time is too short, the defoaming effect may be insufficient. Further, a method can be adopted in which a depressurization portion is provided in a flow path for guiding the film forming solution from the tank to the nozzle, and defoaming is performed while the film forming solution is flowing. The degree of pressure reduction at this time is preferably from normal pressure to 0.005 to normal pressure to 0.030 MPa.
  • a film-forming solution from which foreign matters are excluded in order to avoid generation of defects in the membrane structure due to foreign matters mixed into the hollow fiber membrane.
  • a method of using a raw material with less foreign matter, filtering the film forming solution, and reducing foreign matter is effective.
  • the uniformly-dissolved membrane-forming solution is discharged from the dissolution tank.
  • a sintered filter having a pore diameter of 10 to 50 ⁇ m provided while being led to the nozzle is passed through. The filtration treatment may be performed at least once.
  • the pore size of the filter is more preferably 10 to 45 ⁇ m, further preferably 10 to 40 ⁇ m. If the filter pore size is too small, the back pressure may increase and productivity may decrease.
  • the composition of the core liquid used when forming the hollow fiber membrane is preferably a liquid mainly composed of a solvent and / or a non-solvent contained in the membrane forming solution.
  • a preferable surface structure cannot be obtained with only the solvent contained in the film-forming solution because coagulation on the lumen wall surface is excessively suppressed. Therefore, it is preferable to use any of a mixed solution of a solvent and a non-solvent, a non-solvent alone, a mixed solution of a solvent and water, a mixed solution of a non-solvent and water, or a mixed solution of a solvent, a non-solvent, and water.
  • the amount of the organic component contained in the core liquid is preferably 50 to 100% by weight, and more preferably 60 to 100% by weight. More specifically, when the core liquid is a mixture of a solvent and water, the amount of the organic component is 50 to 65% by weight. When the core liquid is a mixture of the non-solvent and water, the amount of the organic component is When the core solution is a mixed solution of solvent, non-solvent and water, the same solvent / non-solvent ratio as the film-forming solution is used, and this is diluted with water. It is preferable that the content be ⁇ 95% by weight. If the content of the organic component is less than this, solidification tends to proceed, the membrane structure becomes too dense, and the permeability decreases. On the other hand, if the content of the organic component is larger than this, the progress of phase separation is excessively suppressed, and pores having a large pore diameter are likely to be generated, which increases the possibility of degrading separation characteristics and strength.
  • the composition of the external coagulation liquid is preferably a mixed liquid of a solvent and a non-solvent contained in the film forming solution and water.
  • the ratio of the solvent and the non-solvent contained in the external coagulation liquid is the same as the solvent / non-solvent ratio of the film forming solution.
  • the same solvent and non-solvent that are used for the film-forming solution are mixed in the same ratio as in the film-forming solution, and diluted by adding water to this is preferably used.
  • the content of water in the external coagulation liquid is 20 to 70% by weight, preferably 30 to 60% by weight. If the water content is higher than this, solidification tends to proceed, the membrane structure becomes too dense, and the permeability decreases.
  • one of the factors controlling the film structure is the temperature of the nozzle. If the temperature of the nozzle is low, solidification tends to proceed, the membrane structure becomes too dense, and the permeability decreases. On the other hand, if it is high, the progress of the phase separation is excessively suppressed, and pores having a large pore diameter are likely to be formed, and the possibility of causing a decrease in separation characteristics and strength is increased. It is.
  • the membrane-forming solution discharged from the double tube nozzle together with the core solution is in a coagulation bath filled with an external coagulation solution through an air gap portion.
  • a dry-wet spinning method in which a hollow fiber membrane is formed by guiding to the above is exemplified, but the residence time in the air gap portion of the membrane-forming solution discharged from the nozzle is one of the factors that control the membrane structure. If the residence time is short, the outer coagulating liquid quenches the growth of aggregated particles due to phase separation in the air gap portion, so that the outer surface becomes dense and the permeability is lowered.
  • a preferable range of the residence time in the air gap is 0.01 to 2 seconds, more preferably 0.02 to 1 second, and further preferably 0.02 to 0.5 seconds.
  • the draft ratio in the air gap part and the coagulation bath that is, the ratio between the take-up speed from the coagulation bath and the film-forming solution discharge line speed from the double-tube nozzle can control the fine membrane structure and pass through the hollow fiber membrane. It is one of the factors that control the characteristics.
  • the draft ratio mentioned here may be considered exclusively as the stretch ratio in the air gap part, but the orientation of the polymer chains can be adjusted by applying appropriate stretching in the air gap where the growth of the aggregated particles due to phase separation is suppressed. It is believed that this will affect the microstructure of the film.
  • the draft ratio is preferably 2 to 20, preferably 4 to 15.
  • the draft ratio is smaller than this, the fall of the filtrate collection amount due to the filtration time tends to be large, and the removal effect of the substance to be removed such as viruses may not be sufficiently exerted. If the draft ratio is higher than this, yarn breakage is likely to occur and the operability may be lowered.
  • the hollow fiber membrane led to the coagulation bath after being moderately stretched at the air gap part with a relatively short residence time is suppressed to some extent from the outside while coagulation from the core liquid proceeds.
  • the residence time in the coagulation bath is important for the control of the film structure, and specifically, it is preferably 1 to 15 seconds, more preferably 2 to 10 seconds, and further preferably 2 to 5 seconds. If the residence time in the coagulation bath is shorter than this, coagulation is insufficient, and if it is longer than this, the film-forming speed is reduced and the coagulation bath needs to be enlarged.
  • the hollow fiber membrane pulled up from the coagulation bath is guided to a washing bath filled with warm water and washed in a heated state, whereby a hollow fiber membrane having preferable separation characteristics, permeation characteristics, and a membrane structure can be obtained.
  • a technique of intermittently immersing several times in the warm water in the washing bath by so-called Nelson roller running in which a constant speed roller provided at both ends of the washing bath is reciprocated several times, can be used.
  • Nelson roller running the hollow fiber membrane is alternately contacted with hot water and air alternately, but the hollow fiber membrane shrinks slightly while being dried by air running, and the speed is controlled by a constant speed roller. Therefore, a subtle change in tension is given.
  • the warm water contact by Nelson roller running is set to 5 to 15 times, preferably 8 to 12 times, and the total residence time in warm water is set to 15 to 60 seconds, preferably 20 to 45 seconds.
  • the temperature of the hot water is preferably 30 to 100 ° C, more preferably 40 ° C to 90 ° C.
  • the film forming speed is not particularly limited as long as a hollow fiber membrane having no defect can be obtained and productivity can be secured, but is preferably 5 to 40 m / min, more preferably 10 to 30 m / min. If the spinning speed is lower than this, productivity may be lowered. If the spinning speed is higher than this, it may be difficult to ensure the above spinning conditions, particularly the residence time in the air gap portion and the residence time in the coagulation bath.
  • the hollow fiber membrane obtained through on-line cleaning after film formation suppresses changes in membrane properties during use and washing operations, and ensures the retention and stability of membrane properties and the recovery of membrane properties.
  • Heat treatment is preferably performed. By making this heat treatment an immersion treatment in hot water, the effect of washing and removing the solvent, non-solvent, etc. remaining in the hollow fiber membrane can be expected at the same time.
  • a technique of aging by immersing the hollow fiber membrane in a solvent / non-solvent aqueous solution is used prior to the immersion treatment in hot water. Can be done. By performing this aging, it is considered that the content and existence state of the hydrophilic polymer in the film are optimized, and the permeation characteristics are optimized.
  • the immersion liquid in this step is preferably the same as the solvent / non-solvent ratio of the film-forming solution and then diluted with water to make the organic component concentration 10 to 60% by weight.
  • the immersion treatment temperature is preferably 15 to 30 ° C. and the immersion time is preferably 10 to 180 minutes. If the organic component concentration is lower than this, if the temperature is low, or if the time is short, excess hydrophilic polymer tends to remain, and the liquid to be treated due to changes in membrane characteristics over time and elution during actual use May cause problems such as contamination. If the organic component concentration is higher than this, if the temperature is high, or if the time is long, the separation characteristics and strength may be reduced due to destruction of the lumen surface structure, excessive extraction of hydrophilic polymer, etc. There is.
  • the temperature of the hot water used for the heat treatment of the hollow fiber membrane subjected to the aging is 40 to 100 ° C., more preferably 60 to 95 ° C., the treatment time is 30 to 90 minutes, more preferably 40 to 80 minutes, Preferably it is 50 to 70 minutes. If the temperature is lower than this and the processing time is shorter than this, the heat history applied to the hollow fiber membrane may be insufficient, and the retention and stability of the membrane characteristics may be lowered, and the cleaning effect is insufficient. Therefore, there is a high possibility that the amount of eluate increases. If the temperature is higher than this and the treatment time is longer than this, the water may boil or the treatment may take a long time, resulting in a decrease in productivity.
  • the bath ratio of the hollow fiber membrane to hot water is not particularly limited as long as the hollow fiber membrane is sufficiently immersed in the hot water, but using too much hot water may reduce productivity. There is. Also, during this heat treatment, if the hollow fiber membrane is bundled in an appropriate length and immersed in hot water in an upright state, the hot water can easily reach the lumen part, and the viewpoint of the heat treatment / cleaning effect To preferred.
  • the porous hollow fiber membrane for protein-containing liquid treatment of the present invention is preferably treated with high-pressure hot water immediately after the above heat treatment. Specifically, it is preferably set in a high-pressure steam sterilizer in a submerged state and processed at a processing temperature of 120 to 140 ° C. and a processing time of 20 to 120 minutes, which are normal high pressure steam sterilization conditions. At this time, it is preferable that the hollow fiber membrane which has been subjected to the heat treatment is immediately started to be subjected to the high-pressure hot water treatment in a wet state and in a high temperature state.
  • heat treatment raises the temperature of the membrane and further “high pressure” hydrothermal treatment in a “relaxed” state optimizes the presence state at the same time as removing excess hydrophilic polymer. It is considered that the transmission characteristics are optimized. If the treatment temperature is lower than the above range, or if the treatment time is short, the treatment conditions are too mild to remove excess hydrophilic polymer and to optimize the existence state, resulting in changes in membrane characteristics over time. There is a greater possibility of causing problems such as contamination of the liquid to be treated due to elution during use. When the processing temperature is higher than the above range, when the processing time is long, the processing conditions are harsh, leading to degradation of separation characteristics and strength due to destruction of the membrane structure, excessive extraction of hydrophilic polymer, etc. there is a possibility.
  • an additive may be added to the immersion liquid used for the high-pressure hot water treatment.
  • the additive is preferably a substance having an antioxidant effect and a radical trap effect, such as sulfite and polyhydric alcohol.
  • sulfite and polyhydric alcohol a radical trap effect
  • the amount of addition varies depending on the type of additive, but in the case of sulfite, it is 0.01 to 1%, preferably 0.01 to 0.1%, and in the case of polyhydric alcohol, it is 0.1 to 20%, preferably 1 to 10%.
  • the above-mentioned hot water treatment may be performed once more to remove the additive by washing.
  • the hollow fiber membrane that has been subjected to membrane formation, heat treatment, and high-pressure hydrothermal treatment is finally completed by drying.
  • drying methods such as air drying, reduced pressure drying, hot air drying, and microwave drying can be widely used.
  • microwave drying recently used for drying blood treatment membranes can be preferably used in that a large amount of hollow fiber membranes can be efficiently dried at a relatively low temperature.
  • the drying temperature is room temperature to 70 ° C, preferably 30 to 65 ° C. If the temperature is lower than this, it takes a long time to dry, and if the temperature is higher than this, the energy cost for generating hot air becomes high, which is not preferable.
  • the moisture content after the drying treatment is preferably 1 It is preferable to set it to ⁇ 8%, more preferably 2 to 6%. If the moisture content is lower than this, it is difficult to obtain preferable permeation characteristics. If the moisture content is higher than this, the moisture content increases and the handleability may deteriorate.
  • a hollow fiber membrane bundle was produced by cutting a hollow fiber membrane into a length of about 30 cm and bundling both ends with a paraffin film. Both ends of this hollow fiber membrane bundle were inserted into a pipe (sleeve) and hardened with a urethane potting agent. The ends were cut to obtain a double-end open mini-module with both ends fixed by sleeves. The number of hollow fiber membranes was appropriately set so that the surface area of the inner surface was 30 to 50 cm 2 .
  • the membrane area of the module was determined based on the inner diameter of the hollow fiber membrane.
  • the membrane area A [m 2 ] of the module can be calculated by the following equation [2].
  • A n ⁇ ⁇ ⁇ d ⁇ L [2]
  • n is the number of hollow fiber membranes
  • is the circumference
  • d is the inner diameter [m] of the hollow fiber membrane
  • L is the effective length [m] of the hollow fiber membrane in the module.
  • a circuit is connected to two end sleeves of the mini module (referred to as lumen inlet and lumen outlet, respectively), and the inflow pressure of liquid to the mini module and the outflow pressure of liquid from the mini module Can be measured.
  • the circuit (downstream from the pressure measurement point) connected to the inner surface outlet was sealed with forceps to stop the flow, and the pure water entered from the lumen inlet of the module was totally filtered.
  • Circuits were connected to the two end tips (referred to as the lumen inlet and the lumen outlet, respectively) of the mini-module with an outer cylinder to enable liquid introduction into and out of the hollow fiber membrane lumen.
  • the liquid inlet pressure can be measured on the liquid inlet side.
  • the liquid outlet side was sealed with forceps to stop the flow, and the total amount of liquid entered from the lumen inlet of the module was filtered.
  • IVIG / PBS was placed in a pressurized tank and kept at 25 ° C., and the pressure was controlled with a regulator so that the filtration pressure would be 1.0 bar, and the IVIG / PBS was introduced into the lumen of the mini module with an outer cylinder.
  • the filtrate obtained from the outer surface of the hollow fiber membrane was collected from the side tube of the chip.
  • the filtrate was received by changing the container at each time point (5 minutes, 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 60 minutes from the start of filtration). .
  • the filtrate collection amount of each fraction was read from the value displayed on the electronic balance.
  • Throughput TPn [L / m 2 ] up to the time point Tn was calculated by the following equation [5].
  • TPn Wn ⁇ 1.0 ⁇ A ⁇ 1000 [5]
  • W is the total amount of filtrate collected up to the fraction at the time of starting filtration n minutes [g]
  • 1.0 is the density [g / cc] of IVIG / PBS
  • A is the membrane area [m 2 ] of the module.
  • the immunoglobulin permeability P was calculated by the following equation [6] from the filtrate of each fraction obtained in the filtration test and IVIG / PBS as the filtrate.
  • P 100 [%] x (protein concentration in the filtrate) / (protein concentration in the filtrate IVIG / PBS) [6]
  • the protein concentration of the filtrate IVIG / PBS and the protein concentration in the filtrate were determined by measuring the absorbance at 280 nm and calculating the concentration from a calibration curve prepared with an immunoglobulin solution having a known concentration.
  • E. coli solution Phage titration measurement of test phage solution and filtrate E. coli was suspended in 10 mM MgSO 4 aqueous solution so that the absorbance at 660 nm was 4.0 (hereinafter referred to as E. coli solution) .
  • E. coli solution 10 mM MgSO 4 aqueous solution so that the absorbance at 660 nm was 4.0
  • an agar medium and top agar were prepared and warmed to 50 ° C. in advance. Especially the top agar was careful to keep the fluidity. 10 ⁇ L of a solution obtained by appropriately diluting the test phage solution with a BSA solution and 50 ⁇ L of E. coli solution were mixed, and incubated at 37 ° C. for 20 minutes to infect phages in E. coli.
  • the total amount of this mixed solution was mixed with 3 mL of top agar, and the entire amount was rapidly spread on an agar medium. After the top agar was completely solidified on the agar medium, it was incubated at 37 ° C. for 2 to 4 hours. After completion of the incubation, the number of plaques on the agar medium was counted, and the titer of the test phage solution (hereinafter abbreviated as Tpre) [pfu / mL] was calculated in consideration of the dilution rate.
  • Tpre titer of the test phage solution
  • phage clearance index of hollow fiber membrane was calculated by the following formula [7].
  • Tpre [pfu / mL] is the titer of the test phage solution introduced into the evaluation hollow fiber membrane
  • Tpost [pfu / mL] is the test phage solution filtered through the evaluation hollow fiber membrane. It is a phage titer of the obtained filtrate.
  • Phage clearance index [LRV] log 10 (Tpre / Tpost) [7]
  • Example 1 PES (BASF Ultrason (trade name) E6020P) 20 parts by weight, BASF PVP (Luvitec (trade name) K90PH) 6 parts by weight, Mitsubishi Chemical NMP 33.3 parts by weight, Mitsui Chemicals TEG 40.7 parts by weight The parts were mixed and dissolved at 55 ° C. for 6 hours to obtain a uniform solution. At this time, the inside of the system was repeatedly purged with nitrogen several times by reducing pressure and introducing nitrogen, and a solution was prepared in a sealed state. After preparing the solution, the pressure was reduced to normal pressure -0.09 MPa at 55 ° C., and the system was immediately sealed and left for 30 minutes so that the solvent composition would not volatilize and change the solution composition.
  • BASF Ultrason (trade name) E6020P 20 parts by weight
  • BASF PVP Livitec (trade name) K90PH
  • Mitsubishi Chemical NMP 33.3 parts by weight Mitsubishi Chemical NMP 33.3 parts by weight
  • Mitsui Chemicals TEG 40.7 parts by weight The
  • the solution was continuously defoamed in a reduced pressure portion provided in a flow path connecting the tank to the nozzle, and then introduced into the nozzle.
  • the temperature of the flow path was 55 ° C.
  • the degree of pressure reduction in the reduced pressure portion was normal pressure ⁇ 0.015 MPa.
  • the above film-forming solution is discharged from the annular part of the double-tube nozzle, and a mixed liquid of NMP 38.25 parts by weight, TEG 46.75 parts by weight and RO water 15 parts by weight is discharged from the center part as a core liquid, through a 15 mm air gap. Then, it was led to a coagulation bath filled with an external coagulation liquid consisting of a mixed liquid of 27 parts by weight of NMP, 33 parts by weight of TEG, and 40 parts by weight of RO water. At this time, the nozzle temperature was set to 55 ° C., and the external coagulating liquid temperature was set to 60 ° C. The hollow fiber membrane pulled up from the coagulation bath was guided to a washing tank filled with 55 ° C. warm water, and was run 10 times with Nelson roller, then pulled out and wound up by a winder.
  • the spinning speed was 22.2 m / min
  • the running length of the hollow fiber membrane in the coagulation bath was 900 mm
  • the residence time in the coagulation bath was 2.43 seconds.
  • the running length was set so that the residence time in the washing tank was 30 seconds.
  • the hollow fiber membrane was controlled in terms of the amount of membrane-forming solution and core liquid discharged so that the inner diameter was about 200 ⁇ m and the film thickness was about 60 ⁇ m.
  • the air gap retention time of the hollow fiber membrane calculated from the above conditions was 0.04 seconds.
  • the draft ratio was 10.5.
  • the wound hollow fiber membranes were bundled in 2280 bundles with a length of 35 cm. After removing the core liquid, the mixture was immediately added to a mixed solution of 22.5 parts by weight of NMP, 27.5 parts by weight of TEG, and 50 parts by weight of RO water. Immersion at 60 ° C for 60 minutes. Thereafter, the immersion liquid was removed, and the hot water treatment was performed by immersing in RO water at 80 ° C. for 60 minutes in an upright state. The hollow fiber membrane that had been subjected to the heat treatment was immediately immersed in a high-pressure steam sterilizer containing hot water at 40 ° C. in a wet state, and was subjected to high-pressure hot water treatment under conditions of 132 ° C. ⁇ 20 minutes.
  • glycerin was added to the hot water to a concentration of 1% by weight.
  • the high-pressure hot water treatment was performed once again under the conditions described above.
  • hollow fiber membrane bundles of 12 are placed on two rotary tables and placed in a microwave dryer, irradiated with 1.5kW of microwaves, and the interior of the dryer is reduced to 7 kPa and dried for 36 minutes. It was. Subsequently, drying was performed for 18 minutes under a reduced pressure of 7 kPa by setting the microwave output, and the microwave output was further reduced to 0.4 kW to complete the drying for 8 minutes.
  • the highest temperature reached on the surface of the hollow fiber membrane in the drying step was 60 ° C., and the moisture content of the dried hollow fiber membrane was 3.3%.
  • the central region of the film thickness portion of the hollow fiber membrane (A) had a substantially homogeneous structure, and the film thickness portion did not have macrovoids.
  • the pure water flux of the hollow fiber membrane (A) was measured by the method described above, and an immunoglobulin permeation test was performed. From the obtained data, the relationship between immunoglobulin filtration time and throughput was analyzed by the method described above. The characteristics and properties of these hollow fiber membranes (A) are summarized in Table 1. The relationship between immunoglobulin filtration time and throughput is shown in FIG.
  • the hollow fiber membrane (hereinafter abbreviated as? X174-CL50) area 1m 2 per filtration load 50L point of reduction factor of bacteriophage? X174 and hollow fiber membrane area 1m per 2 filtration load of 200L time
  • the clearance index of bacteriophage ⁇ X174 (hereinafter abbreviated as ⁇ X174-CL200) was measured. The results are summarized in Table 1.
  • Example 2 A hollow fiber membrane (B) was obtained in the same manner as in Example 1 except that the drying method was changed.
  • the hollow fiber membrane (B) was obtained by drying by the following method. Twenty-four hollow fiber membrane bundles that had been subjected to high-pressure hot water treatment were placed on a shelf board and dried by passing hot air at 60 ° C. for 6 hours. The maximum temperature reached on the surface of the hollow fiber membrane in the drying step was 60 ° C., and the moisture content of the dry hollow fiber membrane was 2.4%.
  • the characteristics and properties of the hollow fiber membrane (B), P5 and P60, ⁇ X174-CL50 and ⁇ X174-CL200 measured in the same manner as in Example 1, are shown in Table 1. The relationship between immunoglobulin filtration time and throughput is shown in FIG.
  • Example 3 A hollow fiber membrane (C) was obtained in the same manner as in Example 1 except that the draft ratio was changed to 4.2.
  • the highest temperature reached on the surface of the hollow fiber membrane in the drying step was 60 ° C., and the moisture content of the dried hollow fiber membrane was 3.1%.
  • the characteristics and properties of the hollow fiber membrane (C), P5 and P60, ⁇ X174-CL50 and ⁇ X174-CL200 measured in the same manner as in Example 1, are shown in Table 1.
  • the relationship between immunoglobulin filtration time and throughput is shown in FIG.
  • Example 4 The composition of the film-forming solution was 19 parts by weight of PES (BASF Ultrason (trade name) E6020P), 6 parts by weight of BASF PVP (Luvitec (trade name) K90PH), Mitsubishi Chemical NMP 33.75 parts by weight, Mitsui Chemicals TEG 41.25 parts by weight, nozzle temperature 53 ° C, external coagulation liquid composition NMP 18 parts by weight, TEG 22 parts by weight, RO water 60 parts by weight, external coagulation liquid temperature 50 ° C, air
  • a hollow fiber membrane (D) was obtained in the same manner as in Example 1 except that the gap length was 30 mm and the air gap retention time of the hollow fiber membrane was set to 0.08 seconds.
  • the highest temperature reached on the hollow fiber membrane surface in the drying step was 60 ° C., and the moisture content of the dried hollow fiber membrane was 3.6%.
  • the characteristics and properties of the hollow fiber membrane (D), P5 and P60, ⁇ X174-CL50 and ⁇ X174-CL200 measured in the same manner as in Example 1 are shown in Table 1.
  • the relationship between immunoglobulin filtration time and throughput is shown in FIG.
  • Example 5 The composition of the film-forming solution is 20 parts by weight of PES (Sumitomo Chemtech Co., Ltd., Sumika Excel (trade name) 5200P), 6 parts by weight of BASF PVP (Luvitec (trade name) K90PH), NMP 33.3 parts by weight of Mitsubishi Chemical Corporation, Example 1 except that Mitsui Chemicals made TEG 40.7 parts by weight, nozzle temperature was 53 ° C, and the composition of the external coagulation liquid was NMP 18 parts by weight, TEG 22 parts by weight, RO water 60 parts by weight. Thus, a hollow fiber membrane (E) was obtained.
  • PES Suditomo Chemtech Co., Ltd., Sumika Excel (trade name) 5200P)
  • BASF PVP Livitec (trade name) K90PH
  • NMP 33.3 parts by weight of Mitsubishi Chemical Corporation Example 1 except that Mitsui Chemicals made TEG 40.7 parts by weight, nozzle temperature was 53 ° C, and the composition of the external coagulation liquid was NMP 18 parts by
  • the highest temperature reached on the surface of the hollow fiber membrane in the drying step was 60 ° C., and the moisture content of the dried hollow fiber membrane was 2.9%.
  • the characteristics and properties of the hollow fiber membrane (E), P5 and P60, ⁇ X174-CL50 and ⁇ X174-CL200 measured in the same manner as in Example 1 are shown in Table 1.
  • the relationship between immunoglobulin filtration time and throughput is shown in FIG.
  • Example 6 PSf (Amoco P-3500) 20 parts by weight, BASF PVP (Luvitec (trade name) K90PH) 6 parts by weight, Mitsubishi Chemical NMP 33.3 parts by weight, Mitsui Chemicals TEG40 A hollow fiber membrane (same as in Example 1) except that the composition was 0.7 parts by weight, the nozzle temperature was 56 ° C., and the external coagulation liquid was composed of 18 parts by weight of NMP, 22 parts by weight of TEG, and 60 parts by weight of RO water. F) was obtained. The highest temperature reached on the hollow fiber membrane surface in the drying step was 60 ° C., and the moisture content of the dried hollow fiber membrane was 3.6%.
  • Example 7 PES (BASF Ultrason (trade name) E6020P) 20 parts by weight, BASF PVP (Luvitec (trade name) K90PH) 6 parts by weight, Mitsubishi Chemical NMP 33.3 parts by weight, Mitsui Chemicals TEG 40.7 parts by weight The parts were mixed and dissolved at 55 ° C. for 6 hours to obtain a uniform solution. At this time, the inside of the system was repeatedly purged with nitrogen several times by reducing pressure and introducing nitrogen, and a solution was prepared in a sealed state. After preparing the solution, the pressure was reduced to normal pressure -0.09 MPa at 55 ° C., and the system was immediately sealed and left for 30 minutes so that the solvent composition would not volatilize and change the solution composition.
  • BASF Ultrason (trade name) E6020P) 20 parts by weight, BASF PVP (Luvitec (trade name) K90PH) 6 parts by weight, Mitsubishi Chemical NMP 33.3 parts by weight, Mitsui Chemicals TEG 40.7 parts by weight The parts were mixed and
  • the solution was continuously defoamed in a reduced pressure portion provided in a flow path connecting the tank to the nozzle, and then introduced into the nozzle.
  • the temperature of the flow path was 55 ° C.
  • the degree of pressure reduction in the reduced pressure portion was normal pressure ⁇ 0.015 MPa.
  • the above film-forming solution is discharged from the annular part of the double-tube nozzle, and a mixed liquid of NMP 38.25 parts by weight, TEG 46.75 parts by weight and RO water 15 parts by weight is discharged from the center part as a core liquid, through a 15 mm air gap. Then, it was led to a coagulation bath filled with an external coagulation liquid consisting of a mixed liquid of 27 parts by weight of NMP, 33 parts by weight of TEG, and 40 parts by weight of RO water. At this time, the nozzle temperature was set to 55 ° C., and the external coagulating liquid temperature was set to 60 ° C. The hollow fiber membrane pulled up from the coagulation bath was run once in a washing tank filled with hot water at 55 ° C. and then pulled out and wound up by a winder.
  • the spinning speed was 22.2 m / min
  • the running length of the hollow fiber membrane in the coagulation bath was 900 mm
  • the residence time in the coagulation bath was 2.43 seconds.
  • the running length was set so that the residence time in the washing tank was 11 seconds.
  • the hollow fiber membrane was controlled in terms of the amount of membrane-forming solution and core liquid discharged so that the inner diameter was about 200 ⁇ m and the film thickness was about 60 ⁇ m.
  • the air gap retention time of the hollow fiber membrane calculated from the above conditions was 0.04 seconds.
  • the draft ratio was 10.5.
  • the wound hollow fiber membranes were bundled into 2280 bundles with a length of 35 cm, and after removing the core liquid, they were immersed in 80 ° C. RO water for 60 minutes in an upright state and subjected to hot water treatment.
  • the hollow fiber membrane that had been subjected to the heat treatment was immediately immersed in a high-pressure steam sterilizer containing hot water at 40 ° C. in a wet state, and was subjected to high-pressure hot water treatment under conditions of 132 ° C. ⁇ 20 minutes.
  • the hollow fiber membrane is submerged in a high-pressure steam sterilizer containing hot water at 40 ° C in a wet state, and once again under high pressure at 134 ° C for 20 minutes. Hot water treatment was performed.
  • hollow fiber membrane bundles of 12 are placed on two rotary tables and placed in a microwave dryer, irradiated with 1.5kW of microwaves, and the interior of the dryer is reduced to 7 kPa and dried for 36 minutes. It was. Subsequently, drying was performed for 18 minutes under a reduced pressure of 7 kPa by setting the microwave output, and the microwave output was further reduced to 0.4 kW to complete the drying for 8 minutes.
  • the maximum temperature reached on the surface of the hollow fiber membrane in the drying step was 60 ° C., and the moisture content of the dry hollow fiber membrane was 3.2%.
  • the highest temperature reached on the surface of the hollow fiber membrane in the drying step was 60 ° C., and the moisture content of the dry hollow fiber membrane was 3.0%.
  • the characteristics and properties of the hollow fiber membrane (I), P5 and P60, ⁇ X174-CL50 and ⁇ X174-CL200 measured in the same manner as in Example 1 are shown in Table 2.
  • the relationship between immunoglobulin filtration time and throughput is shown in FIG.
  • a hollow fiber membrane (J) was obtained in the same manner as in Example 1 except that glycerin was not added to the first high-pressure hot water treatment immersion liquid and the drying method was changed.
  • the hollow fiber membrane (J) was obtained by drying by the following method. Twenty-four hollow fiber membrane bundles that had been subjected to high-pressure hot water treatment were placed on a shelf board and dried by passing hot air at 80 ° C. for 20 hours. The maximum temperature reached on the surface of the hollow fiber membrane in the drying step was 80 ° C., and the moisture content of the dry hollow fiber membrane was 0.2%.
  • the solution was continuously defoamed in a reduced pressure portion provided in a flow path connecting the tank to the nozzle, and then introduced into the nozzle.
  • the temperature of the flow path was 55 ° C.
  • the degree of pressure reduction in the reduced pressure portion was normal pressure ⁇ 0.015 MPa.
  • the film-forming solution is discharged from the annular part of the double-tube nozzle, and a mixed liquid of NMP 38.25 parts by weight, TEG 46.75 parts by weight, and RO water 15 parts by weight is discharged from the center part as a core liquid, through a 20 mm air gap.
  • NMP 26.1 parts by weight, TEG 31.9 parts by weight, RO water 42 parts by weight led to a coagulation bath filled with an external coagulation liquid.
  • the nozzle temperature was set to 55 ° C.
  • the external coagulation liquid temperature was set to 55 ° C.
  • the hollow fiber membrane pulled up from the coagulation bath was led to a washing tank filled with hot water at 55 ° C., and the washing tank was run once without running the Nelson roller, and then pulled out and wound up by a winder.
  • the spinning speed was 18.0 m / min
  • the running length of the hollow fiber membrane in the coagulation bath was 2000 mm
  • the residence time in the coagulation bath was 6.67 seconds.
  • the running length was set so that the residence time in the washing tank was 11 seconds.
  • the hollow fiber membrane was controlled in terms of the amount of the membrane-forming solution and core solution discharged so that the inner diameter was about 280 ⁇ m and the film thickness was about 80 ⁇ m.
  • the air gap residence time of the hollow fiber membrane calculated from the above conditions was 0.05 seconds.
  • the draft ratio was 2.0.
  • the wound hollow fiber membranes were bundled into 2280 bundles with a length of 35 cm and aged by leaving at 25 ° C. for 60 minutes without removing the core liquid. Thereafter, the immersion liquid was removed, and the hot water treatment was performed by immersing in RO water at 85 ° C. for 60 minutes in an upright state.
  • the hollow fiber membrane that had been subjected to the heat treatment was immediately immersed in a high-pressure steam sterilizer containing hot water at 40 ° C. in a wet state, and was subjected to high-pressure hot water treatment under conditions of 132 ° C. ⁇ 20 minutes.
  • the 24 hollow fiber membrane bundles that had been subjected to the high-pressure hot water treatment were placed on a shelf board, and dried by passing hot air at 60 ° C. for 16 hours.
  • the maximum temperature reached on the surface of the hollow fiber membrane in the drying step was 60 ° C., and the moisture content of the dry hollow fiber membrane was 1.8%.
  • a hollow fiber membrane (K) having an inner diameter of 198 ⁇ m and a film thickness of 59 ⁇ m was obtained.
  • the characteristics and properties of the hollow fiber membrane (K), P5 and P60, ⁇ X174-CL50 and ⁇ X174-CL200 measured in the same manner as in Example 1, are shown in Table 2.
  • the relationship between immunoglobulin filtration time and throughput is shown in FIG.
  • the porous hollow fiber membrane for protein-containing liquid treatment of the present invention has no protein. It turns out that it permeate
  • ⁇ X174 phage clearance index ( ⁇ X174-CL50) at filtration load 50L / m 2 and ⁇ X174 phage clearance index ( ⁇ X174-CL200) at filtration load 200L / m 2 not only at low filtration load Good bacteriophage removal performance is exhibited even under high filtration load.
  • the separation of virus (or bacteriophage) by a porous membrane is considered to be contributed not only by size separation but also by some kind of interaction between the membrane surface and the virus, unlike ordinary separation membranes. It is considered that the membrane that clogs with time when the protein solution is filtered does not sufficiently suppress the interaction with the protein. In such a membrane, when a virus (or bacteriophage) -containing liquid is filtered, coexisting proteins interact with the membrane surface, inhibiting the interaction between the virus (or bacteriophage) and the membrane surface, resulting in clogging. It seems that a seemingly contradictory phenomenon occurs in which a leak of a virus (or bacteriophage) occurs in a membrane that is easy to progress.
  • the porous hollow fiber membrane for protein-containing liquid treatment of the present invention can efficiently separate and remove removal substances such as small-diameter viruses contained in the solution, and at the same time, useful recovery substances such as proteins can efficiently permeate, It has the advantage that the permeation characteristic is less reduced over time, and is particularly useful for removing viruses from protein solutions, and greatly contributes to the industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

【課題】 溶液に含まれる小径ウィルスなどの除去物質を効率よく分離除去することができ、同時に、タンパク質などの有用回収物質が効率よく透過し、その透過特性の経時的な落ち込みが少ないタンパク質含有液処理用多孔質中空糸膜を提供することにある。 【解決手段】 本発明のタンパク質含有液処理用多孔質中空糸膜は、疎水性高分子と親水性高分子を含んでなり、純水の透過速度が10~300L/(h・m2・bar)であり、0.5%免疫グロブリン溶液をデッドエンドで60分にわたり1.0barの定圧濾過した時、濾過時間と濾液回収積算量が実質的に直線関係にあることを特徴とする。

Description

タンパク質含有液処理用多孔質中空糸膜
 本発明は、タンパク質溶液などの水性流体に含まれるウィルス等の微粒子を分離するのに適したタンパク質含有液処理用多孔質中空糸膜に関する。詳しくは、好ましくは疎水性高分子と親水性高分子を含んでなり、純水の透過速度が10~300L/(h・m2・bar)であり、0.5%免疫グロブリン溶液をデッドエンドで60分にわたり1.0barの定圧濾過した時、濾過時間と濾液回収積算量が実質的に直線関係にあることを特徴とするタンパク質含有液処理用多孔質中空糸膜に関するものである。
 水性流体の処理を目的とした中空糸膜は、精密濾過、限外濾過などの工業用途や、血液透析、血液濾過、血液透析濾過などの医療用途に広く利用されている。特に近年、バイオ医薬品や血液製剤の製造工程において、有用成分であるタンパク質の溶液からウィルスなどの病原性物質を除去し、安全性を高める技術が求められている。
 非特許文献1によると、血漿分画製剤のウィルス除去・不活化工程に関しては、二つ以上の異なるウィルス不活化および除去工程を取り組むことが望ましいとされている。非特許文献2の記載によれば目標値としての達成すべきLRVを4程度とする、とある。さらに、非特許文献3では『特にウィルス除去・不活化工程に関して、本邦では、「血漿分画製剤のウイルスに対する安全性確保に関するガイドラインについて」医薬発第1047号(平成11年8月30日)のなかで、「二つ以上の異なるウイルス不活化及び除去工程について検討することが望ましい」と明記されており、また特定のウイルスに対しては製造工程が持つウイルスクリアランス指数の合計(総ウイルスクリアランス指数)9以上が要求される。』との記載がある。なお、上記LRVとは非特許文献1で次のように示されているウィルスクリアランス指数Rを意味する。
 ウィルスクリアランス指数R = log ((V1× T1)/(V2×T2))
 V1 工程処理前の容量  T1 工程処理前のウィルス力価
 V2 工程処理後の容量  T2 工程処理後のウィルス力価
 ウィルス除去・不活化法は、加熱処理、ガンマ線や紫外線照射などの光学的処理、低pH処理などの化学処理、エタノール分画法や硫酸アンモニウム分画法などの沈殿分画、膜濾過による除去などがあるが、タンパク質溶液からのウィルス除去では、タンパク質の変性を招くことのない膜濾過法が注目されている。
 一方、バイオ医薬品や血液製剤の製造工程においては、生産性の観点から、有用成分であるタンパク質が効率よく透過して回収されなければならない。ところが、分離除去の対象がパルボウィルスなど小径のウィルスである場合には特に、ウィルスの除去特性と有用タンパク質の透過特性を同時に満足するのは困難であった。
 特許文献1では、特定の最大孔径を有し、単量体の占める割合が80wt%以上である3wt%ウシ免疫グロブリンを0.3MPaで低圧濾過した時の、濾過開始時から5分間の平均透過速度(グロブリン透過速度A)と、濾過開始後55分経過時から5分間の平均透過速度(グロブリン透過速度B)、最大孔径の関係をパラメータ化した親水性微多孔質膜が開示されている。この膜の構成要件は、次のとおりである。
(1)最大孔径10~100nm
(2)グロブリン透過速度A>0.0015×最大孔径(nm)2.75
(3)グロブリン透過速度B/グロブリン透過速度A>0.2
 ここで、(1)の要件は、特許文献1第3頁第21行~第27行に記載されているように、感染性ウィルス除去に必要とされる孔径を記載したにすぎない。(2)の要件は、微細孔の最大孔径から計算されるある値よりもグロブリン透過速度Aが大きいことを求めており、タンパク溶液からのウィルス除去を目的とする膜においては、タンパク溶液の透過速度は大きいほうが好ましいのは、自明であるから、目標特性を記載したに過ぎない。(3)の要件は、タンパク溶液の透過速度が経時的に低下しないことを求めており、これもまた、タンパク溶液からのウィルス除去を目的とする膜において求められる目標特性の記載に過ぎない。その他、ブタパルボウィルスに対する対数除去率が3以上である親水性微多孔膜、単量体の占める割合が80wt%以上である3wt%ウシ免疫グロブリンを0.3MPaで低圧濾過した時の、濾過開始時から3時間の積算透過量が50リットル/m2以上である親水性微多孔膜などが下位請求項に記載されているが、これらはウィルスが効率的に除去され、タンパク溶液の透過量が高いという、タンパク溶液からのウィルス除去を目的とする膜の目標特性を記載したのみであり、高タンパク透過かつ高ウィルス除去の膜を得るという課題に対して、有用かつ具体的な情報を与えているわけではない。
 (3)について詳細に考察すると、濾過開始55分経過後の透過速度と濾過開始直後の透過速度との比が高値となるだけでは、タンパク溶液の透過速度が経時的に低下しないことと必ずしも一致しない。例えば、濾過時間の経過とともにタンパク溶液の透過速度が徐々に低下しながら、ある時点で膜に欠陥が生じて透過速度が一転して上昇することも考えられる。この場合、結果として濾過開始55分後の透過速度が大きくなり、両者の比が0.2を超えることも考えられる。しかしながら、このような挙動を示す膜が高タンパク透過かつ高ウィルス除去の膜を得るという課題を達成しているとは到底言えない。
 特許文献1では、開孔率の大きい粗大構造層と、開孔率の小さい緻密層を有する微多孔膜についても開示されているが、そもそもここでは、熱誘起相分離によって均質構造を作りやすいポリフッ化ビニリデン(以下PVDFと略記する)製の中空糸膜について議論されており、例えば、透水性能が高いことなどから血液透析膜の素材として広く使用されているポリスルホン系樹脂などの素材に、この技術をそのまま適用するのは困難である。
 特許文献2では開孔率の大きい粗大構造層と、開孔率の小さい緻密層を有する微多孔膜について開示されているが、ここでも素材として想定されているのはPVDFである。PVDFは物理的強度に優れている反面、疎水性の素材であるためタンパク質等の吸着、膜の汚染や目詰まりが生じやすく、濾過速度が急激に低下してしまう。この好ましくない特性を改善するため、膜への親水性付与が必要となるが、一般的にPVDF素材の膜は製膜後の後処理によって親水性への改質を行わなければならず、親水性高分子とのブレンド状態で製膜することが一般的なポリスルホン系樹脂と比べて、煩雑な製造工程となってしまう短所がある。
 特許文献3では、PhiX174に対する少なくとも4.0の初期LRVを有し、表面がヒドロキシアルキルセルロースで親水化されたウィルス保持限外ろ過膜が開示されている。ここで開示された技術では、親水化が特殊な親水性ポリマーによってなされており、汎用性に欠ける。ポリスルホンなどと、ポリビニルピロリドンなどの親水性ポリマーとのブレンドも例示されているが、ヒドロキシアルキルセルロースでの親水化処理は必須である。また、膜は中空糸型も許容されてはいるが、平膜型が想定されており、中空糸膜型を得るための十分な説明はなされていない。
 特許文献4では、工業的生産過程において、ウィルスを効果的に除去し、かつ凝集体や夾雑蛋白による除去膜の目詰まり等の濾過の障害が生じないような免疫グロブリン製剤の製造方法が開示されている。ここでは、平均孔径15~20nmの多孔性膜を用いて免疫グロブリン溶液を濾過処理する工程が包含されており、多孔性膜の素材は、好ましくは再生セルロースが挙げられる、との記載がある。また、[図1]、[図2]、[図3]には、経過時間に対して積算濾液量がほぼ直線的に伸びているグラフが示されている。確かに、実施例1に記載されている再生セルロース製ウィルス除去膜プラノバ20N(旭化成ファーマ(株))を使用して濾過した場合には、このような挙動を示すことも考えられるが、これは非常に親水性の高い再生セルロース素材であることの影響が大きい。事実、疎水性高分子と親水性高分子とから成る合成膜でこのように直線的な濾過挙動を示す膜を得るのは非常に困難であった。セルロース膜は水にぬれた状態での強度が低いため、濾加圧を高く設定することが困難であり、高い透過速度を得ることができないという欠点を持っている。
 特許文献5では、内壁面より壁内部に進むに従って面内空孔率が当初減少し、少なくとも1個の極小部を経過した後、外壁部で再び増大する孔構造を有する高分子多孔質中空糸膜、およびこの膜を用いてタンパク質水溶液を濾過するウィルス除去方法が開示されている。ここで開示された膜構造を端的に表現すれば、膜壁の孔径が、膜厚方向で疎-密-疎となる中空糸膜と言える。このような傾斜構造を持ち、特定の平均孔径を有するのが、高効率でウィルスを除去し、タンパク質を変性させることなく、高透過効率でタンパク質を回収するのに好適であるとされている。素材として種々の高分子物質が例示されてはいるが、は再生セルロースを用いた技術であり、ここで開示された技術を多くの素材に汎用的に展開することは困難である。また、セルロース素材の欠点は既に述べたとおりである。
WO2004/035180号公報 WO2003/026779号公報 特開2007-136449号公報 特開2008-094722号公報 特公平04-050054号公報
医薬発第1047号(平成11年8月30日)((社)日本血液製剤協会理事長あて厚生省医薬安全局長通知) PDA Journal of GMP and Validation in Japan,Vol.7, No.1,p.44(2005) PDA Journal of GMP and Validation in Japan,Vol.9, No.1, p.6(2007)
 本発明の課題は、溶液に含まれるウィルスなどの除去物質を効率よく分離除去することができ、同時に、タンパク質などの有用回収物質が効率よく透過し、その透過特性の経時的な落ち込みが少ないタンパク質含有液処理用多孔質中空糸膜を提供することにある。
 本発明者らは、上記課題を解決するため鋭意検討した結果、特定の構成により上記課題を解決することができ、本発明に至った。
 すなわち本発明のタンパク質含有液処理用多孔質中空糸膜は、
(1) 疎水性高分子と親水性高分子を含んでなり、純水の透過速度が10~300L/(h・m2・bar)であり、0.5%免疫グロブリン溶液をデッドエンドで60分にわたり1.0barの定圧濾過した時、濾過時間と濾液回収積算量が実質的に直線関係にあることを特徴とする。
(2) 膜厚部分の中心領域が実質的に均質な構造からなり、かつ膜厚部分がマクロボイドを持たない構造からなることを特徴とする。
(3) 内径が150~400μm、膜厚が40~200μmであることを特徴とする。
(4) 疎水性高分子がポリスルホン系高分子であることを特徴とする。
(5) 親水性高分子がポリビニルピロリドンであることを特徴とする。
(6) タンパク質溶液からウィルスを分離するために使用される膜であることを特徴とする。
 本発明のタンパク質含有液処理用多孔質中空糸膜は、タンパク質溶液からのウィルス分離に利用が可能であり、特にウィルスを効率よく除去することができるのと同時に、タンパク質が効率よく透過し、その透過特性の経時的な落ち込みが少ないことから、バイオ医薬品や血液製剤の製造工程において、有用成分であるタンパク質の溶液からウィルスなどの病原性物質を除去するための膜として好ましく利用され得る。
中心領域が実質的に均質な構造の例である。像の中央にある両矢印の示す範囲が「膜厚部分の中心領域」であり、両側の両矢印の示す範囲が膜厚部分の内面側領域と外面側領域である。 中心領域が実質的に均質な構造の例である。像の中央にある両矢印の示す範囲が「膜厚部分の中心領域」であり、両側の両矢印の示す範囲が膜厚部分の内面側領域と外面側領域である。 中心領域が不均質な構造の例である。像の中央にある両矢印の示す範囲が「膜厚部分の中心領域」であり、両側の両矢印の示す範囲が膜厚部分の内面側領域と外面側領域である。 中心領域が不均質な構造の例である。像の中央にある両矢印の示す範囲が「膜厚部分の中心領域」であり、両側の両矢印の示す範囲が膜厚部分の内面側領域と外面側領域である。 中心領域が不均質であり、マクロボイドを持つ構造の例である。像の中央にある両矢印の示す範囲が「膜厚部分の中心領域」であり、両側の両矢印の示す範囲が膜厚部分の内面側領域と外面側領域である。 実施例1~7で得られた中空糸膜を用いて測定した免疫グロブリン濾過時間とスループットの関係を示すグラフである。 比較例1~4で得られた中空糸膜を用いて測定した免疫グロブリン濾過時間とスループットの関係を示すグラフである。
 以下、本発明を詳細に説明する。
 本発明のタンパク質含有液処理用多孔質中空糸膜は、疎水性高分子と親水性高分子を含んでなることが好ましい。疎水性高分子としては、例えば、ポリエステル、ポリカーボネート、ポリウレタン、ポリアミド、ポリスルホン(以下PSfと略記する)、ポリエーテルスルホン(以下PESと略記する)、ポリメチルメタクリレート、ポリプロピレン、ポリエチレン、PVDFなどが例示される。中でも、下記の化1、化2で示される繰返し単位を有するPSf、PESなどのポリスルホン系高分子は高い透水性の膜を得るのに有利であり、好ましい。ここで言うポリスルホン系高分子は、官能基やアルキル基などの置換基を含んでいてもよく、炭化水素骨格の水素原子はハロゲンなど他の原子や置換基で置換されていてもよい。また、これらは単独で使用しても、2種以上を混合して使用してもよい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 本発明における親水性高分子としては、例えば、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン(以下PVPと略記する)、カルボキシメチルセルロース、デンプンなどの高分子炭水化物などが例示される。中でも、ポリスルホン系高分子との相溶性、水性流体処理膜としての使用実績から、PVPが好ましい。これらは単独で使用しても、2種以上を混合して使用してもよい。PVPの分子量としてはK値として17~120のものが好ましく用いられ得る。具体的には、例えば、BASF社より市販されているLuvitec(商品名)K17、K30、K60、K80、K85、K90などが好ましく、Luvitec(商品名)K60、K80、K85、K90などがより好ましい。
 本発明のタンパク質含有液処理用多孔質中空糸膜は、純水の透過速度(以下純水Fluxと略記する)が10~300L/(h・m2・bar)であることを特徴とする。純水Fluxは、多孔質膜の孔径を示す目安となる。純水Fluxが上記の数値よりも小さいと、孔径が過度に小さくなってしまい、効率よくタンパク質を透過させるのが困難になってしまう。また、透水量が小さいので濾液回収の効率が低下してしまう。純水Fluxが上記の数値よりも大きいと、孔径が過度に大きくなってしまい、ウィルスなどの除去物質を効率よく分離除去するのが困難になってしまう。純水Fluxは、40~230L/(h・m2・bar)がより好ましく、70~230 L/(h・m2・bar)がさらに好ましい。
 濾液に回収されるべき成分であるタンパク質は、濾過プロセスを通じて高い透過率を示すことが好ましい。どの程度の透過率が必要であるかは、タンパク質の用途、種類、濃度などにより一概に決定することは困難であるが、一般的には95%以上であることが好ましい。95%を下回ると、濾過によるタンパク質ロスが大きくなり、生産性が低下することとなる。膜濾過では濾過時間が長くなるに従い、詰まりによって透過率が低下してくる可能性がある。そこで、濾過プロセス初期の透過率に対する、充分長時間濾過を行った時点での透過率(透過率保持率)が、タンパク質透過の経時的安定性を示す指標となる。透過率は時間とともに低下する可能性があること、透過率は濾過プロセス全体を通じて常に95%以上であることが好ましいことを考慮し、透過率保持率は95%以上であることが好ましい。
 ここで、「充分長時間濾過を行った時点」がどの程度であるかは、タンパク質の用途、種類、濃度などにより一概に決定することは困難であるが、タンパク溶液中から小径ウィルスを分離除去するプロセスでは、膜にかかる最大濾過負荷量を50~200L/m2程度に設定するのが一般的なので、少なくとも50L/m2の1/2すなわち、25L/m2程度の濾過負荷をかけられた時点と考えるのが妥当であると言える。また、生産効率を向上させる目的で、被処理タンパク溶液の濃度は高くなりつつあるのが近年の傾向であるので、タンパク質の透過性を考える場合には0.5%程度以上の濃度で判断するのが妥当である。
 本発明のタンパク質含有液処理用多孔質中空糸膜は、0.5%免疫グロブリン溶液をデッドエンドで60分にわたり1.0barの定圧濾過した時、濾過時間と濾液回収積算量が実質的に直線関係にあることを特徴とする。一般的に、タンパク質含有液を膜濾過すると、孔径の目詰まりによって経時的に濾液回収量が低下する傾向がある。このような場合、濾過時間を横軸、濾液回収積算量を縦軸にとってプロットすると、両者は上に凸の曲線関係となる。このような膜ではタンパク質含有液透過量が落ち込んでくるので、濾過効率が悪いことに加え、所定液量の濾過処理にどれくらいの濾過時間を見込んだらよいのか推定ができず、効率的な作業が困難となり好ましくない。また、濾過中に膜に欠陥が生じた場合、その時点で濾液回収量は急激に増加するので、濾過時間を横軸、濾液回収積算量を縦軸にとってプロットすると、両者は下に凸の曲線関係となる。このような事態が生じると、当然濾過によって除去すべき物質がリークしてしまうので好ましくない。濾過時間と濾液回収積算量が直線関係にあるということは、初期の濾過特性が濾過を継続しても安定して保持され、かつ濾過中に膜の欠陥が生じないことを意味する。このような濾過特性を有する膜では、所定液量の濾過処理に要する濾過時間が容易に推定できるので、作業の効率化が期待できる点で好ましい。また、濾過特性が安定しているので、濾過初期の分離特性が濾過を継続しても持続され、回収物質と除去物質の分離が確実に達成される点で好ましい。
 本発明において、「実質的に直線関係にある」とは、濾過時間を横軸に、濾液回収積算量を横軸にとって少なくとも6点以上プロットした時の各点から、最小二乗法により得られる回帰直線の決定係数R2が0.95以上であることを意味する。これより低いと、タンパクの目詰まりにより濾液回収量が経時的に低下することを意味し、好ましくない。R2は濾過時間と濾液回収積算量が完全な比例関係にある時に1となるので、最大値はおのずから1である。なお、プロット数は、濾過時間と濾液回収量の関係を明確にするため、多いほど好ましいが、測定の簡便性からはあまり多くするのは好ましくない。好ましくは4点~10点、より好ましくは5点~8点である。これよりも少ないとR2の信頼性が不十分となり、これよりも多いと測定が煩雑となってしまう。R2の計算は、パソコンを使用して表計算ソフトにより簡便に算出できるので、この方法を採るのが好ましい。
 なお、本発明は免疫グロブリン溶液の濾過時間と濾液回収積算量が実質的に直線関係にあることを特徴とするが、濾過中の膜面積が不変であることを前提とし、単位膜面積あたりの濾液回収積算量(以下、スループットと呼称する)を濾液回収積算量に代えて使用してもよい。スループットを使用することで、異なる膜面積で測定した濾液回収量が同列で比較できるので好ましい。
 本発明において、0.5%免疫グロブリン溶液をデッドエンドで60分にわたり1.0barの定圧濾過した時の濾過時間と濾液回収積算量の関係を求めるには、膜を使用した濾過実験を実施する必要がある。この時使用される免疫グロブリンは、入手の容易さ、品質の安定性から、静脈注射用免疫グロブリン製剤(以下IVIGと呼称する)、具体的には、ポリエチレングリコール処理人免疫グロブリン、例えば献血ヴェノグロブリン-IHヨシトミを使用するのが好ましい。IVIGは免疫グロブリンの断片を有効成分とする不完全分子型と、免疫グロブリンそのものを有効成分とする完全分子型とがあるが、本発明においては後者を使用するのが好ましい。また、免疫グロブリンを化学修飾したものを有効成分とするものと、非修飾の免疫グロブリンを有効成分とするものがあるが、本発明においては後者を使用するのが好ましい。通常IVIGは5%程度の濃度の溶液、あるいは、凍結乾燥成分を溶解し5%程度の濃度の溶液を得られるキットとして供給されることが多いが、本発明ではこれを希釈して0.5%として使用するのが好ましい。この際使用する希釈液は、リン酸緩衝生理食塩水(以下PBSと略記する)が好ましい。本発明で言うリン酸緩衝生理食塩水(以下PBSと略記する)とは、リン酸塩によって緩衝作用を付与された等張食塩水溶液を意味し、pHは6.5~7.5であることが好ましい。
 本発明において、免疫グロブリン溶液の濾過時間と濾液回収積算量の関係を求めるための濾過実験は、次の測定条件により求める。液温は25℃に調整する。
(1)IVIGをPBSで0.5%となるよう希釈し、pHを6.8に調整する。
(2)乾燥状態の中空糸膜にこの溶液を導入し、1.0barの濾過圧で、60分にわたって定圧濾過する。
(3)濾過開始から終了まで、ほぼ等間隔に(たとえば、濾過開始から5分、10分、20分、30分、40分、50分、60分)で濾過時間、濾液回収量を記録する。
(4)濾液回収量を膜面積で除して、スループットを算出する。
(5)濾過時間、スループットの数値をパソコン上の表計算ソフトに入力し、R2を算出する。
 本発明のタンパク質含有液処理用多孔質中空糸膜は、膜厚部分の中心領域が実質的に均質な構造からなり、かつマクロボイドを持たない構造からなることが好ましい。「膜厚部分の中心領域」とは、内表面から膜厚の20%に相当する距離だけ外表面側の位置と、外表面から膜厚の20%に相当する距離だけ内表面側の位置に挟まれた領域を意味し、「実質的に均質な構造」とは、1000倍のSEM像を目視で観察したとき、構造の不均一性が確認できないことを意味する。具体的には、図1、図2にあるような構造が「膜厚部分の中心領域が実質的に均質な構造」である。一方、図3では中心領域が内面から外面方向に向かって疎-密となっており、図4では中心領域が内面から外面方向に向かって密-疎-密となっており、図5では中心領域にマクロボイドが包含されている上に、疎密構造が複雑に変遷している。これらはいずれも本発明においては好ましくない構造である。なお、図1から図5では、像の中央にある両矢印の示す範囲が「膜厚部分の中心領域」であり、両側の両矢印の示す範囲が膜厚部分の内面側領域と外面側領域である。
 本発明において「マクロボイドを持たない」とは、膜厚部分の、異なる領域を5視野撮影したSEM像(1000倍)を目視で観察したとき、いずれの視野においても、均質な膜厚部分の構造と比較して明らかに円状または楕円状または雫型状に膜の実部分が欠落した空孔領域、すなわちマクロボイドが観察されないことを意味する。
 免疫グロブリン溶液中からの小径ウィルスの分離除去など、サイズが極端に違っていないものの共存する溶液からウィルスを分離するには、均質膜を利用するのが好ましい。なぜなら、均質な構造を厚み方向にとることで、多くの層で分離を何度も繰り返すような擬似的多段階の効果が期待できるからである。また、このような構造とすることで、万一膜厚部分の一部に欠陥があってそこでの被除去物質トラップがなされなかったとしても、膜厚部分のどこかでとめられる可能性が高く、膜全体として被除去物質リークのリスクを低減することができる。中心領域が均質構造となっていることにより、このようなメリットを得ることができタンパク質の溶液からウィルスなどの物質を除去するのに好適である。マクロボイドの存在は、このような効果を期待できる領域を狭めてしまうことになるので好ましくない。
 本発明のタンパク質含有液処理用多孔質中空糸膜は、濾過上流側面が中空糸膜内腔側であっても、中空糸膜外壁側であってもよいが、濾過を実施する際に付与する圧力に対する耐久性から、中空糸膜内腔側を濾過上流側面とし、内側から外側に向けて濾過するのが好ましい。
 本発明のタンパク質含有液処理用多孔質中空糸膜の内径は100~1000μmが好ましく、より好ましくは120~800μmであり、150~400μmがさらに好ましく、180~300μmがさらにより好ましい。また、膜厚は10~500μmが好ましく、より好ましくは20~400μmであり、40~200μmがさらに好ましく、50~100μmがさらにより好ましい。これよりも内径が小さいと、内側から外側に向けて濾過した場合、通液による圧力損失が大きくなり、中空糸膜の長さ方向で濾過圧が不均一になることがある。また、不純物や凝集成分が多く含まれる被処理液を導入した場合、被処理液中の成分により内腔の閉塞などが生じる可能性がある。これよりも内径が大きいと、中空糸膜のつぶれ、ゆがみなどを生じやすくなる。膜厚がこれよりも小さいと、中空糸膜のつぶれ、ゆがみなどを生じやすくなる。これよりも膜厚が大きいと、被処理液が膜壁を通過する際の抵抗が大きくなり、透過性が低下することがある。
 本発明のタンパク質含有液処理用多孔質中空糸膜のバクテリオファージ・クリアランスは、LRVとして4以上であることが好ましく、5以上であることがより好ましい。このような特性を有することによって、タンパク質含有液からのウィルス除去用途に好ましく適用することができる。ここで言うバクテリオファージは、PP7、φX174など20~30nmの径を有するバクテリオファージであることが好ましく、宿主細菌の取り扱いの簡便性から、φX174であることがより好ましい。
 本発明の高分子タンパク質含有液処理用多孔質中空糸膜の製造方法はなんら限定されるものではないが、疎水性高分子、親水性高分子、溶媒、非溶媒を混合溶解し、脱泡したものを製膜溶液として芯液とともに二重管ノズルの環状部、中心部から同時に吐出し、空走部(エアギャップ部)を経て凝固浴中に導いて中空糸膜を形成し(乾湿式紡糸法)、水洗後巻き取り、乾燥する方法が例示される。
 製膜溶液に使用される溶媒は、N-メチル-2-ピロリドン(以下NMPと略記する)、N,N-ジメチルホルムアミド(以下DMFと略記する)、N,N-ジメチルアセトアミド(以下DMAcと略記する)、ジメチルスルホキシド(以下DMSOと略記する)、ε-カプロラクタムなど、使用される疎水性高分子、親水性高分子の良溶媒であれば広く使用することが可能であるが、疎水性高分子としてPSf、PESなどのポリスルホン系高分子を使用する場合には、NMP、DMF、DMAcなどのアミド系アプロティック溶媒が好ましく、NMPが特に好ましい。なお、本発明においてアミド系溶媒とは、構造中にN-C(=O)のアミド結合を含有する溶媒を意味し、アプロティック溶媒とは、構造中において炭素原子以外のヘテロ原子に直接結合した水素原子を含有していない溶媒を意味する。
 また、製膜溶液には非溶媒を添加するのが好ましい。使用される非溶媒としては、例えば、エチレングリコール(以下EGと略記する)、プロピレングリコール(以下PGと略記する)、ジエチレングリコール(以下DEGと略記する)、トリエチレングリコール(以下TEGと略記する)、ポリエチレングリコール(以下PEGと略記する)、グリセリン、水などが例示されるが、疎水性高分子としてPSf、PESなどのポリスルホン系高分子、親水性高分子としてPVPを使用する場合には、DEG、TEG、PEGなどのエーテルポリオールが好ましく、TEGが特に好ましい。なお、本発明においてエーテルポリオールとは、構造中に少なくともひとつのエーテル結合と、ふたつ以上の水酸基を有する物質を意味する。
 詳細な機構は不明であるが、これらの溶媒、非溶媒を使用して調製した製膜溶液を使用することで、紡糸工程における相分離(凝固)が制御され、本発明の好ましい膜構造を形成するのに有利になると考えられる。なお、相分離の制御には、後述の芯液組成や凝固浴中の液(外部凝固液)の組成も重要になる。
 製膜溶液中における溶媒/非溶媒の比は、紡糸工程における相分離(凝固)の制御に重要な要因となる。溶媒に対して非溶媒が同量かやや過剰気味であることが好ましく、具体的には、溶媒/非溶媒が重量比で25/75~50/50であることが好ましく、30/70~50/50であることがより好ましく、35/65~50/50であることがさらに好ましい。溶媒の含有量がこれよりも少ないと凝固が進行しやすくなり、膜構造が緻密化しすぎて透過性が低下してしまう。また、溶媒含有量がこれよりも多いと相分離の進行が過度に抑制され、大孔径の空孔が生じやすくなり、分離特性や強度の低下を招く可能性が大きくなる。
 製膜溶液における疎水性高分子の濃度は、該溶液からの製膜が可能であれば特に制限されないが、10~40重量%が好ましく、10~30重量%がより好ましく、15~25重量%がさらに好ましい。高い透過性を得るには疎水性高分子の濃度は低いほうが好ましいが、過度に低いと強度の低下や、分離特性の悪化を招く可能性があるので、15~25重量%が好ましい。親水性高分子の添加量は、製膜溶液からの製膜に支障をきたすことなく、中空糸膜に親水性を付与し、被処理液濾過時の非特異吸着を抑制するのに十分な量であれば特に制限されないが、製膜溶液における親水性高分子の濃度として2~15重量%が好ましく、2~10重量%がより好ましく、3~8重量%がさらに好ましい。親水性高分子の添加量がこれよりも少ないと、膜への親水性付与が不十分となり、膜特性の保持性が低下する可能性がある。また、これよりも多いと、親水性付与効果が飽和してしまい効率がよくなく、また、製膜溶液の相分離(凝固)が過度に進行しやすくなり、操業性が悪化するのに加え、本発明の好ましい膜構造を形成するのに不利となる。
 製膜溶液は、疎水性高分子、親水性高分子、溶媒、非溶媒を混合、攪拌して溶解することで得られる。この際、適宜温度をかけることで効率的に溶解を行うことができるが、過度の加熱は高分子の分解を招く危険があるので、好ましくは30~100℃、より好ましくは40~80℃である。また、親水性高分子としてPVPを使用する場合、PVPは空気中の酸素の影響により酸化分解を起こす傾向にあることから、製膜溶液の調製は不活性気体封入下で行うのが好ましい。不活性気体としては、窒素、アルゴンなどが上げられるが、窒素を用いるのが好ましい。このとき、溶解タンク内の残存酸素濃度は3%以下であることが好ましい。
 製膜溶液からは気泡を排除するのが欠陥のない中空糸膜を得るのに有効である。気泡混入を抑える方法としては、製膜溶液の脱泡を行うのが有効である。製膜溶液の粘度にもよるが、静置脱泡や減圧脱泡を用いることができる。この場合、溶解タンク内を常圧-0.015~常圧-0.090MPaに減圧した後、タンク内を密閉し30分~180分間静置する。この操作を数回繰り返して脱泡処理を行う。減圧度が低すぎる場合には、脱泡の回数を増やす必要があるため処理に長時間を要することがある。また減圧度が高すぎると、系の密閉度を上げるためのコストが高くなることがある。トータルの処理時間は5分~5時間とするのが好ましい。処理時間が長すぎると、減圧の影響により製膜溶液の構成成分が分解、劣化することがある。処理時間が短すぎると脱泡の効果が不十分になることがある。また、製膜溶液をタンクからノズルまで導く流路に減圧部分を設け、製膜溶液を流動させながら脱泡を実施する方法を採ることもできる。このときの減圧度は、常圧-0.005~常圧-0.030MPaであることが好ましい。
 製膜を行うに際しては、中空糸膜への異物混入による膜構造の欠陥の生成を回避するために、異物を排除した製膜溶液を使用することが好ましい。具体的には、異物の少ない原料を用いる、製膜溶液を濾過し異物を低減する方法等が有効である。本発明では、中空糸膜束の膜厚よりも小さな孔径のフィルターを用いて製膜溶液を濾過してからノズルより吐出するのが好ましく、具体的には均一溶解した製膜溶液を溶解タンクからノズルまで導く間に設けられた孔径10~50μmの焼結フィルターを通過させる。濾過処理は少なくとも1回行えば良いが、濾過処理を何段階かにわけて行う場合は後段になるに従いフィルターの孔径を小さくしていくのが濾過効率およびフィルター寿命を延ばす意味で好ましい。フィルターの孔径は10~45μmがより好ましく、10~40μmがさらに好ましい。フィルター孔径が小さすぎると背圧が上昇し、生産性が落ちることがある。
 中空糸膜の製膜時に使用される芯液の組成は、製膜溶液に含まれる溶媒および/または非溶媒を主成分とした液体を使用するのが好ましい。ただし、製膜溶液に含まれる溶媒のみでは、内腔壁面での凝固が過度に抑制されるため好ましい表面構造を得ることができない。従って、溶媒と非溶媒の混合液、非溶媒のみ、溶媒と水の混合液、非溶媒と水の混合液、溶媒と非溶媒と水の混合液のいずれかを使用するのが好ましい。芯液に含まれる有機成分の量は、50~100重量%が好ましく、60~100重量%がより好ましい。より詳細には、芯液を溶媒と水の混合液とする場合は、有機成分の量が50~65重量%、芯液を非溶媒と水の混合液とする場合は、有機成分の量が60~100重量%、芯液を溶媒と非溶媒と水の混合液とする場合は、製膜溶液の溶媒/非溶媒比率と同一とした上でこれを水で希釈し、有機成分濃度を60~95重量%とするのが好ましい。有機成分の含有量がこれよりも少ないと凝固が進行しやすくなり、膜構造が緻密化しすぎて透過性が低下してしまう。また、有機成分含有量がこれよりも多いと相分離の進行が過度に抑制され、大孔径の空孔が生じやすくなり、分離特性や強度の低下を招く可能性が大きくなる。
 外部凝固液の組成は、製膜溶液に含まれる溶媒および非溶媒と、水との混合液を使用することが好ましい。この際、外部凝固液中に含まれる該溶媒と該非溶媒の比率は、製膜溶液の溶媒/非溶媒比率と同一であることが好ましい。製膜溶液に使用されるのと同一の溶媒および非溶媒を、製膜溶液中の比率と同一にして混合し、これに水を添加して希釈したものが好ましく用いられる。外部凝固液中の水の含量は、20~70重量%、好ましくは30~60重量%である。水の含有量がこれよりも多いと凝固が進行しやすくなり、膜構造が緻密化しすぎて透過性が低下してしまう。また、水含有量がこれよりも少ないと相分離の進行が過度に抑制され、大孔径の空孔が生じやすくなり、分離特性や強度の低下を招く可能性が大きくなる。また、外部凝固液の温度は、低いと凝固が進行しやすくなり、膜構造が緻密化しすぎて透過性が低下することがある。また、高いと相分離の進行が過度に抑制され、大孔径の空孔が生じやすくなり、分離特性や強度の低下を招く可能性が大きくなってしまうので、40~70℃、好ましくは45~65℃である。
 本発明において、膜構造を制御する因子のひとつには、ノズルの温度が挙げられる。ノズルの温度は、低いと凝固が進行しやすくなり、膜構造が緻密化しすぎて透過性が低下してしまう。また、高いと相分離の進行が過度に抑制され、大孔径の空孔が生じやすくなり、分離特性や強度の低下を招く可能性が大きくなるので、30~85℃、好ましくは40~75℃である。
 本発明のタンパク質含有液処理用多孔質中空糸膜を得る好ましい製造方法としては、芯液とともに二重管ノズルから吐出した製膜溶液を、エアギャップ部分を経て外部凝固液を満たした凝固浴中に導いて中空糸膜を形成する乾湿式紡糸法が例示されるが、ノズルから吐出された製膜溶液の、エアギャップ部分での滞留時間が膜構造を制御する因子のひとつである。滞留時間が短いと、エアギャップ部分での相分離による凝集粒子の成長が抑制された状態で外部凝固液によりクエンチされるので、外表面が緻密化して透過性が低下してしまう。また、外表面の緻密化により、得られた中空糸膜が固着しやすい傾向となる。滞留時間が長いと、大孔径の空孔が生じやすくなり、分離特性や強度の低下を招く可能性が大きくなってしまう。エアギャップにおける滞留時間の好ましい範囲は0.01~2秒であり、0.02~1秒がより好ましく、0.02~0.5秒がさらに好ましい。
 エアギャップ部分および凝固浴におけるドラフト比、すなわち、凝固浴からの引き取り速度と二重管ノズルからの製膜溶液吐出線速度との比が、微細な膜構造を制御し得られ中空糸膜の透過特性を制御する因子のひとつである。ここで言うドラフト比は専らエアギャップ部分での延伸比と考えてよいが、相分離による凝集粒子の成長が抑制された状態にあるエアギャップで適度な延伸を加えることにより高分子鎖の配向が最適化され、これが膜の微細構造に影響を与えるものと考えられる。本発明のタンパク質含有液処理用多孔質中空糸膜を得るには、このドラフト比を2~20、好ましくは4~15にするのが好ましい。ドラフト比がこれよりも小さいと濾過時間による濾液回収量の落ち込みが大きくなりやすく、また、ウィルスなどの被除去物質の除去効果が十分に発揮されにくくなることがある。ドラフト比がこれよりも大きいと糸切れが発生しやすく操業性が低下することがある。
 上記、比較的滞留時間の短いエアギャップ部分で適度な延伸を加えられた後、凝固浴に導かれた中空糸膜は、芯液からの凝固が進行しながら、外部からの凝固はある程度抑制された状態で外部凝固液と接触する。外部凝固液通過中に中空糸膜は完全に凝固を完了し、構造が決定されて引き上げられる。凝固浴内での滞留時間が膜構造の制御には重要であり、具体的には1~15秒が好ましく、2~10秒がより好ましく、2~5秒がさらに好ましい。凝固浴内での滞留時間がこれよりも短いと凝固が不十分となり、これよりも長いと製膜速度の低下や凝固浴の大型化が必要となる。
 凝固浴から引き上げられた中空糸膜は、温水を満たした水洗浴に導き、加熱状態で水洗を行うことで、好ましい分離特性、透過特性、膜構造を持った中空糸膜を得ることができる。この際、水洗浴の両端に設けられた等速のローラー間を数回にわたり往復させる、いわゆるネルソン・ローラー走行によって断続的に水洗浴中の温水に数回浸漬させる手法が利用され得る。ネルソン・ローラー走行によって、中空糸膜は交互に温水接触と空気接触とが繰り返されるが、空気走行で微妙に乾燥しながら中空糸膜はやや収縮し、これが等速のローラーで速度を制御されているため、微妙な張力変化が与えられることになる。詳細な機構は不明であるが、この微妙な張力変化、加熱履歴が好ましい影響を与えている可能性が考えられる。ネルソン・ローラー走行による温水接触は5~15回、好ましくは8~12回、温水中の滞留時間総計は15-60秒、好ましくは20-45秒間に設定するのが好適である。温水の温度は30~100℃が好ましく、40℃~90℃がさらに好ましい。これよりも低温では洗浄効果が不十分になってしまう可能性が高く、これよりも高温では洗浄液として水が使用できない。
 製膜速度(紡速)については、欠陥のない中空糸膜が得られ、生産性が確保できれば特に制限されないが、好ましくは、5~40m/min、より好ましくは10~30m/minである。これよりも紡速が低いと、生産性が低下することがある。これよりも紡速が高いと、上記の紡糸条件、特にエアギャップ部分での滞留時間や、凝固浴内での滞留時間を確保するのが困難となることがある。
 製膜後、オンライン洗浄を経て得られた中空糸膜は、使用中や洗浄操作による膜特性の変化を抑制し、膜特性の保持性・安定性、膜特性の回復性を確保する目的で、加熱処理を施すのが好ましい。この加熱処理を熱水への浸漬処理とすることで、同時に、中空糸膜に残存する溶媒や非溶媒などを洗浄・除去する効果も期待できる。本発明のタンパク質含有液処理用多孔質中空糸膜を得るには、この熱水中への浸漬処理に先立ち、中空糸膜を溶媒/非溶媒の水溶液に浸漬してエージングを実施する手法が利用され得る。このエージングを施すことによって、膜中の親水性高分子の含量、存在状態が最適化され、透過特性が最適化されると考えられる。
 この工程における浸漬液は、製膜溶液の溶媒/非溶媒比率と同一とした上でこれを水で希釈し、有機成分濃度を10~60重量%とするのが好ましい。浸漬処理温度は15~30℃、浸漬時間は10~180分が好ましい。これよりも有機成分濃度が低い場合、温度が低い場合、時間が短い場合には、過剰な親水性高分子が残存しやすくなり、膜特性の経時的変化、実使用時の溶出による被処理液の汚染などの不具合を招く可能性がある。これよりも有機成分濃度が高い場合、温度が高い場合、時間が長い場合には、内腔表面構造の破壊、親水性高分子の過度の抽出などにより、分離特性や強度の低下を招く可能性がある。
 上記エージングを経た中空糸膜の加熱処理に使用される熱水の温度は、40~100℃、より好ましくは60~95℃、処理時間は30~90分、より好ましくは40~80分、さらに好ましくは50~70分である。温度がこれよりも低く、処理時間がこれよりも短いと中空糸膜にかかる熱履歴が不十分となり、膜特性の保持性・安定性が低下する可能性があり、また、洗浄効果が不十分となり溶出物が増加する可能性が高くなる。温度がこれよりも高く、処理時間がこれよりも長いと、水が沸騰してしまったり、処理に長時間を要したりするため生産性が低下することがある。熱水に対する中空糸膜の浴比は、中空糸膜が十分に浸る量の熱水を使用すれば、特に制限されないが、あまり多量の熱水を使用するのは、生産性が低下する可能性がある。またこの加熱処理の際、中空糸膜を適当な長さのバンドル状にして直立させた状態で熱水に浸漬すると、内腔部分にまで熱水が到達しやすく、加熱処理・洗浄効果の観点から好ましい。
 本発明のタンパク質含有液処理用多孔質中空糸膜は、上記加熱処理の後、ただちに高圧熱水で処理するのが好ましい。具体的には、水没状態で高圧蒸気滅菌機にセットし、通常の高圧蒸気滅菌条件である処理温度120~140℃、処理時間20~120分で処理するのが好ましい。この際、上記加熱処理の完了した中空糸膜は、濡れた状態のまま、高温の状態のまま速やかに高圧熱水処理を開始するのが好ましい。詳細な機構は不明だが、加熱処理で膜の温度が上昇し「緩んだ」状態でさらに高圧熱水処理することで、過剰な親水性高分子が除去されるのと同時に存在状態が最適化され、透過特性が最適化されると考えられる。上記の範囲よりも処理温度が低い場合、処理時間が短い場合、処理条件がマイルドすぎるために過剰親水性高分子の除去、存在状態の最適化が不十分となり、膜特性の経時的変化、実使用時の溶出による被処理液の汚染などの不具合を招く可能性が大きくなる。上記の範囲よりも処理温度が高い場合、処理時間が長い場合、処理条件が過酷であるために、膜構造の破壊、親水性高分子の過度の抽出などにより、分離特性や強度の低下を招く可能性がある。
 本発明のタンパク質含有液処理用多孔質中空糸膜を得るには、上記高圧熱水処理に使用する浸漬液に添加剤を加えてもよい。添加剤は、亜硫酸塩や多価アルコールなど酸化防止効果、ラジカルトラップ効果のある物質が好ましい。詳細な機構は不明だが、高圧熱水処理による親水性高分子の熱架橋の進行が制御されると同時に、その存在状態が最適化され、透過特性が最適化されるものと考えられる。添加量は添加剤の種類によっても異なるが、亜硫酸塩の場合0.01~1%、好ましくは0.01~0.1%、多価アルコールの場合、0.1~20%、好ましくは1~10%である。これよりも少ないと透過特性最適化への寄与が小さく、これよりも多いと得られる膜からの溶出物が増加して好ましくない。添加剤を加えた状態での高圧熱水処理後、さらにもう一度上記の熱水処理を行って、添加剤を洗浄除去してもよい。
 製膜、加熱処理、高圧熱水処理を完了した中空糸膜は、乾燥することによって、最終的に完成する。乾燥方法は、風乾、減圧乾燥、熱風乾燥、マイクロ波乾燥など通常利用される乾燥方法が広く利用できる。特に、最近、血液処理膜の乾燥などで利用されているマイクロ波乾燥は、比較的低温度で効率的に大量の中空糸膜を乾燥できる点で、好ましく利用され得る。乾燥時の温度は、室温~70℃、好ましくは30~65℃である。これよりも温度が低いと乾燥までに長時間を要し、これよりも温度が高いと熱風生成のためのエネルギーコストが高くなり、いずれも好ましくない。また、中空糸膜は絶乾状態にまで乾燥してしまうと、親水性高分子の分解、マイグレーションにより好ましい透過特性を維持するのが困難になるので、乾燥処理後の水分率は、好ましくは1~8%、より好ましくは2~6%になるよう設定するのが好ましい。水分率がこれよりも低いと、好ましい透過特性を得るのが困難になり、これよりも高いと湿り気が多く取扱性が悪化することがある。
 以下、本発明の有効性を実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、本発明における評価方法は以下の通りである。
1.中空糸膜水分率の測定
 紡糸・後処理によって得られた中空糸膜バンドルを使用して、中空糸膜水分率を次式[1]により算出した。
 中空糸膜水分率[%] = 100×(W1 + W2) / W1   [1]
 ここで、W1は紡糸・後処理によって得られた中空糸膜バンドルの重量(g)、W2はこの中空糸膜バンドルを、120℃の乾熱オーブンで2時間にわたって乾燥した絶乾状態の中空糸膜バンドルの重量(g)である。
2.ミニモジュールの作製
 中空糸膜を約30cmの長さに切断し、両末端をパラフィンフィルムで束ねて中空糸膜束を作製した。この中空糸膜束の両端をパイプ(スリーブ)に挿入し、ウレタンポッティング剤で固めた。端部を切断して、両末端がスリーブで固定された両端開口ミニモジュールを得た。中空糸膜の本数は、内面の表面積が30~50cm2になるよう適宜設定した。
3.外筒つきミニモジュールの作製
 ポリ塩化ビニル製チューブ(約15cm長)の一方の端部に円筒状チップを、他方の端部に側管つき円筒状チップを装着した。この、両端にチップのついたポリ塩化ビニル製チューブに、約15cmの長さに切断した中空糸膜1本から5本を挿入し、中空糸膜内腔を塞がないように両端のチップ部分をシリコーン接着剤で固めた。この外筒つきミニモジュールは、端部のチップ部分から中空糸膜内腔へ液を導入することで中空糸膜の内腔から外壁方向への濾過(内-外濾過)ができる上、側管から液を導入することで外壁から内腔方向への濾過(外-内濾過)を行うこともできる。
4.膜面積の計算
 モジュールの膜面積は中空糸膜の内面側の径を基準として求めた。次式[2]によってモジュールの膜面積A[m2]が計算できる。
 A = n×π×d×L   [2]
ここで、nは中空糸膜の本数、πは円周率、dは中空糸膜の内径[m]、Lはモジュールにおける中空糸膜の有効長[m]である。
5.純水Fluxの測定
 ミニモジュールの末端スリーブ2箇所(それぞれ内腔流入口、内腔流出口と呼称する)に回路を接続し、ミニモジュールへの液体の流入圧とミニモジュールからの液体の流出圧を測定できるようにした。純水を加圧タンクに入れて25℃に保温し、濾過圧が1.0bar程度になるようレギュレーターで圧力を制御しながら、ミニモジュールの内腔流入口に純水を導入して中空糸膜の内腔に純水を満たした。内面流出口に接続した回路(圧力測定点よりも下流)を鉗子で封じて流れを止め、モジュールの内腔流入口から入った純水を全濾過するようにした。引き続きミニモジュールへ純水を送り、30秒にわたって濾過を行い、膜の馴化を行った。馴化処理中の濾液は廃棄した。その後、中空糸膜外面から得られる濾液量を2分間にわたって回収し、その量を測定した。また、濾過実施時の内腔流入口側圧力Pi、内腔流出口側圧力Poを測定し、次式[3]で膜間圧力差(TMP)ΔPを得た。
 ΔP = (Pi + Po) / 2   [3]
 濾過時間t[h] 、TMPΔP[bar]、ミニモジュールの膜面積A[m2]、濾液量V[L]から次式[4]により純水Flux[L/(h・m2・bar)]を得た。
 純水Flux = V ÷ t ÷ A ÷ ΔP   [4]
6.免疫グロブリンの透過試験
 日水製薬(株)社から市販されているダルベッコPBS(-)粉末「ニッスイ」9.6gを蒸留水に溶解して全量を1000mLとし、PBSを得た。この緩衝液で、田辺三菱製薬(株)社から市販されている献血ヴェノグロブリン-IHヨシトミを希釈し、1mol/Lの水酸化ナトリウム水溶液でpHが6.8になるよう調整した。希釈、pH調整後の免疫グロブリン濃度は0.5%になるように調整した(以下この溶液をIVIG/PBSと略記する)。外筒つきミニモジュールの末端チップ2箇所(それぞれ内腔流入口、内腔流出口と呼称する)に回路を接続し、中空糸膜内腔への液導入出を可能にした。液導入側には液の流入圧を測定できるようにした。液導出側は鉗子で封じて流れを止め、モジュールの内腔流入口から入った液が全量濾過されるようにした。IVIG/PBSを加圧タンクに入れて25℃に保温し、濾過圧が1.0barになるようレギュレーターで圧力を制御しながら、外筒つきミニモジュールの内腔に導入した。中空糸膜外面から得られる濾過液は、チップの側管から回収した。濾液は、濾過開始から5分、10分、20分、30分、40分、50分、60分の各時点(濾過開始からn分の時点をTnと呼称する)で容器を換えて受けた。この際、各画分の濾液回収量は、電子天秤に表示された値から読み取った。Tn時点までのスループットTPn[L/m2]は、次式[5]で算出した。
 TPn = Wn÷1.0÷A÷1000   [5]
ここで、Wは濾過開始n分時点の画分までの濾液回収量の総計[g]、1.0はIVIG/PBSの密度[g/cc]、Aはモジュールの膜面積[m2]である。
7.免疫グロブリン濾過時間-濾液回収積算量(スループット)の関係の解析
 上記の濾過試験で得た濾過時間Tn、その濾過時間の時点までのスループットTPnの数値を、パソコン上の表計算ソフト(マイクロソフト・エクセル)に入力し、R2を算出した。
8.免疫グロブリン透過率の測定
 上記濾過試験で得た各画分の濾液、および被濾過液であるIVIG/PBSから、次式[6]で免疫グロブリン透過率Pを算出した。
 P = 100[%]×(濾液中のタンパク濃度)/(被濾過液IVIG/PBSのタンパク濃度)   [6]
ここで、被濾過液IVIG/PBSのタンパク濃度および濾液中のタンパク濃度は280nmの吸光度を測定し、既知濃度の免疫グロブリン溶液で作成した検量線から濃度を算出した。
9.バクテリオファージφX174のクリアランス指数測定
(1)試験用ファージ液の調製
 既述の手法で調製したPBSで、シグマアルドリッチジャパン(株)社から市販されている Albumin from bovine serum (製品番号A2153)を、0.1重量%となるよう溶解して0.1重量% BSA溶液(以下単にBSA溶液と呼称する)を得た。凍結保存した濃厚なφX174含有液(力価1~10×109pfu/mL)を解凍し、このBSA溶液で100倍に希釈した。さらに、0.1μm孔径のメンブレンフィルターで濾過、凝集成分などを除去して試験用ファージ液とした。
(2)試験用ファージ液を使用した濾過試験
 外筒つきミニモジュールの末端チップ2箇所(それぞれ内腔流入口、内腔流出口と呼称する)に回路を接続し、中空糸膜内腔への液導入出を可能にした。液導入側には液の流入圧を測定できるようにした。液導出側は鉗子で封じて流れを止め、モジュールの内腔流入口から入った液が全量濾過されるようにした。試験用ファージ液を加圧タンクに入れて25℃に保温し、濾過圧が1.0barになるようレギュレーターで圧力を制御しながら、外筒つきミニモジュールの内腔に導入した。中空糸膜外面から得られる濾過液を、チップの側管から回収した。濾過は、中空糸膜面積1m2あたり50Lの濾液が得られるまで実施した。
(3)試験用ファージ液と濾液のファージ力価測定
 10mM濃度のMgSO4水溶液に、660nmでの吸光度が4.0となるように大腸菌を懸濁させておいた(以下E.Coli液と呼称する)。また、寒天培地、トップアガーを準備し、あらかじめ50℃に暖めておいた。特にトップアガーは、流動性を保っておくよう注意した。試験用ファージ液をBSA溶液で適当に希釈した液10μLと、E.Coli液50μLを混和し、37℃で20分インキュベートして大腸菌にファージを感染させた。インキュベート完了後、この混合液全量を、トップアガー3mLと混和し、速やかに全量を寒天培地上に展開した。寒天培地上でトップアガーが完全に固化した後、37℃で2~4時間インキュベートした。インキュベート完了後、寒天培地上のプラーク数をカウントし、希釈倍率を考慮して試験用ファージ液の力価(以下Tpreと略記する)[pfu/mL]を算出した。同様の手法で濾液のファージ力価(以下Tpostと略記する)を得た。
(4)中空糸膜のファージクリアランス指数算出
 次式[7]により中空糸膜のファージクリアランス指数を算出した。ここで、Tpre[pfu/mL]とは評価用中空糸膜に導入した試験用ファージ液の力価を、Tpost[pfu/mL]とは試験用ファージ液を評価用中空糸膜で濾過して得られた濾液のファージ力価である。
 ファージクリアランス指数 [LRV] = log10(Tpre/Tpost)   [7]
10.高負荷時のバクテリオファージφX174のクリアランス指数測定
 上記と同様の方法で、中空糸膜面積1m2あたりの濾過量が200Lを超えた時点から濾液を回収し、この回収濾液を使用して上記の方法によりファージクリアランス指数を求めた。
(実施例1)
 PES(BASF社製Ultrason(商品名) E6020P)20重量部、BASF社製PVP(Luvitec(商品名)K90PH)6重量部、三菱化学社製NMP33.3重量部、三井化学社製TEG40.7重量部を55℃で6時間にわたって混合、溶解し均一な溶液を得た。この際、系内は減圧、窒素送入を数回繰り返して窒素置換し、密閉した状態で溶液の調製を行った。溶液調製後、55℃で常圧-0.09MPaまで減圧した後、溶媒等が揮発して溶液組成が変化しないようにすぐに系内を密封して30分放置して脱泡を行った。さらに、溶液はタンクからノズルをつなぐ流路に設けられた減圧部分で連続的に脱泡された後、ノズルに導入した。この際、流路の温度は55℃、減圧部分の減圧度は常圧-0.015MPaであった。
 二重管ノズルの環状部から上記製膜溶液を、中心部から芯液としてNMP38.25重量部、TEG46.75重量部、RO水15重量部の混合液を吐出し、15mmのエアギャップを経て、NMP27重量部、TEG33重量部、RO水40重量部の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は55℃、外部凝固液温度は60℃に設定した。凝固浴から引き上げた中空糸膜は55℃の温水を満たした洗浄槽に導き、10回のネルソン・ローラー走行をさせた後引き出して巻き取り機で巻き取った。
 紡速は22.2m/min、中空糸膜の凝固浴内における走行長は900mmであり、凝固浴内の滞留時間は2.43秒であった。洗浄槽内での滞留時間は30秒になるよう走行長を設定した。中空糸膜は、内径が約200μm、膜厚が約60μmになるよう製膜溶液、芯液の吐出量を制御した。上記の条件から算出される中空糸膜のエアギャップ部滞留時間は0.04秒であった。また、ドラフト比は10.5であった。
 巻き取った中空糸膜は、本数2280本、長さ35cmのバンドルとし、芯液を除去した後、速やかにNMP22.5重量部、TEG27.5重量部、RO水50重量部の混合液に25℃で60分浸漬した。その後、浸漬液を除去し、80℃のRO水に60分、直立状態で浸漬して熱水処理を行った。加熱処理が完了した中空糸膜は、濡れた状態のまま速やかに40℃の温水を入れた高圧蒸気滅菌器に水没させ、132℃×20分の条件で高圧熱水処理を行った。この際、温水にはグリセンリンを1重量%の濃度となるよう添加しておいた。1重量%グリセリン水溶液中での高圧熱水処理が完了した中空糸膜は、液を除去した後、濡れた状態で40℃の温水を入れた高圧蒸気滅菌器に水没させ、134℃×20分の条件でもう一度高圧熱水処理を行った。
 さらに、中空糸膜束24本を12本ずつふたつの回転テーブルに載せてマイクロ波乾燥装置に入れ、1.5kWのマイクロ波を照射するとともに乾燥装置内を7kPaに減圧し、36分乾燥処理を行った。続いてマイクロ波出力に設定して7kPaの減圧下で18分乾燥処理を行い、さらにマイクロ波出力を0.4kWに低下させて8分の乾燥を完了した。乾燥工程における中空糸膜表面の最高到達温度は60℃、乾燥中空糸膜の水分率は3.3%であった。以上の工程を経て、内径198μm、膜厚59μmの中空糸膜(A)を得た。
 SEM観察を行ったところ、中空糸膜(A)の膜厚部分の中心領域は実質的に均質な構造、膜厚部分がマクロボイドを持たない構造であった。既述の方法によって中空糸膜(A)の純水Fluxを測定し、免疫グロブリンの透過試験を実施した。得られたデータから既述の方法で免疫グロブリン濾過時間-スループットの関係を解析した。これら中空糸膜(A)の特徴・特性は表1にまとめて示した。また、免疫グロブリン濾過時間-スループットの関係は図6に示した。
 既述の方法によって実施した免疫グロブリンの透過試験で得られた、濾過時間5分、60分の各時点での濾液を使用し、既述の方法によって免疫グロブリンの透過率を測定した。結果は、それぞれP5、P60として表1にまとめて示した。
 既述の方法によって、中空糸膜面積1m2あたりの濾過負荷量50L時点のバクテリオファージφX174のクリアランス指数(以下φX174-CL50と略記する)および中空糸膜面積1m2あたりの濾過負荷量200L時点のバクテリオファージφX174のクリアランス指数(以下φX174-CL200と略記する)を測定した。結果は表1にまとめて示した。
(実施例2)
 乾燥方法を変更した以外は実施例1と同様にして中空糸膜(B)を得た。中空糸膜(B)は次の方法で乾燥することによって得た。高圧熱水処理の完了した中空糸膜束24本を棚板に載せ、60℃の温風を6時間通じて乾燥した。乾燥工程における中空糸膜表面の最高到達温度は60℃、乾燥中空糸膜の水分率は2.4%であった。中空糸膜(B)の特徴・特性、実施例1と同様に測定したP5およびP60、φX174-CL50およびφX174-CL200は表1にまとめて示した。また、免疫グロブリン濾過時間-スループットの関係は図6に示した。
(実施例3)
 ドラフト比を4.2に変更した以外は実施例1と同様にして中空糸膜(C)を得た。乾燥工程における中空糸膜表面の最高到達温度は60℃、乾燥中空糸膜の水分率は3.1%であった。中空糸膜(C)の特徴・特性、実施例1と同様に測定したP5およびP60、φX174-CL50およびφX174-CL200は表1にまとめて示した。また、免疫グロブリン濾過時間-スループットの関係は図6に示した。
(実施例4)
 製膜溶液の構成をPES(BASF社製Ultrason(商品名) E6020P)19重量部、BASF社製PVP(Luvitec(商品名)K90PH)6重量部、三菱化学社製NMP33.75重量部、三井化学社製TEG41.25重量部とし、ノズル温度を53℃に、外部凝固液の構成をNMP18重量部、TEG22重量部、RO水60重量部の混合液に、外部凝固液温度を50℃に、エアギャップ長を30mmとして中空糸膜のエアギャップ部滞留時間を0.08秒に設定した以外は実施例1と同様にして中空糸膜(D)を得た。乾燥工程における中空糸膜表面の最高到達温度は60℃、乾燥中空糸膜の水分率は3.6%であった。中空糸膜(D)の特徴・特性、実施例1と同様に測定したP5およびP60、φX174-CL50およびφX174-CL200は表1にまとめて示した。また、免疫グロブリン濾過時間-スループットの関係は図6に示した。
(実施例5)
 製膜溶液の構成をPES(住友ケムテック社製スミカエクセル(商品名)5200P)20重量部、BASF社製PVP(Luvitec(商品名)K90PH)6重量部、三菱化学社製NMP33.3重量部、三井化学社製TEG40.7重量部とし、ノズル温度を53℃に、外部凝固液の構成をNMP18重量部、TEG22重量部、RO水60重量部の混合液にした以外は実施例1と同様にして中空糸膜(E)を得た。乾燥工程における中空糸膜表面の最高到達温度は60℃、乾燥中空糸膜の水分率は2.9%であった。中空糸膜(E)の特徴・特性、実施例1と同様に測定したP5およびP60、φX174-CL50およびφX174-CL200は表1にまとめて示した。また、免疫グロブリン濾過時間-スループットの関係は図6に示した。
(実施例6)
 製膜溶液の構成をPSf(アモコ社製P-3500)20重量部、BASF社製PVP(Luvitec(商品名)K90PH)6重量部、三菱化学社製NMP33.3重量部、三井化学社製TEG40.7重量部とし、ノズル温度を56℃に、外部凝固液の構成をNMP18重量部、TEG22重量部、RO水60重量部の混合液にした以外は実施例1と同様にして中空糸膜(F)を得た。乾燥工程における中空糸膜表面の最高到達温度は60℃、乾燥中空糸膜の水分率は3.6%であった。中空糸膜(F)の特徴・特性、実施例1と同様に測定したP5およびP60、φX174-CL50およびφX174-CL200は表1にまとめて
示した。また、免疫グロブリン濾過時間-スループットの関係は図6に示した。
(実施例7)
 PES(BASF社製Ultrason(商品名) E6020P)20重量部、BASF社製PVP(Luvitec(商品名)K90PH)6重量部、三菱化学社製NMP33.3重量部、三井化学社製TEG40.7重量部を55℃で6時間にわたって混合、溶解し均一な溶液を得た。この際、系内は減圧、窒素送入を数回繰り返して窒素置換し、密閉した状態で溶液の調製を行った。溶液調製後、55℃で常圧-0.09MPaまで減圧した後、溶媒等が揮発して溶液組成が変化しないようにすぐに系内を密封して30分放置して脱泡を行った。さらに、溶液はタンクからノズルをつなぐ流路に設けられた減圧部分で連続的に脱泡された後、ノズルに導入した。この際、流路の温度は55℃、減圧部分の減圧度は常圧-0.015MPaであった。
 二重管ノズルの環状部から上記製膜溶液を、中心部から芯液としてNMP38.25重量部、TEG46.75重量部、RO水15重量部の混合液を吐出し、15mmのエアギャップを経て、NMP27重量部、TEG33重量部、RO水40重量部の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は55℃、外部凝固液温度は60℃に設定した。凝固浴から引き上げた中空糸膜は55℃の温水を満たした洗浄槽を1回走行させた後引き出して巻き取り機で巻き取った。
 紡速は22.2m/min、中空糸膜の凝固浴内における走行長は900mmであり、凝固浴内の滞留時間は2.43秒であった。洗浄槽内での滞留時間は11秒になるよう走行長を設定した。中空糸膜は、内径が約200μm、膜厚が約60μmになるよう製膜溶液、芯液の吐出量を制御した。上記の条件から算出される中空糸膜のエアギャップ部滞留時間は0.04秒であった。また、ドラフト比は10.5であった。
 巻き取った中空糸膜は、本数2280本、長さ35cmのバンドルとし、芯液を除去した後、80℃のRO水に60分、直立状態で浸漬して熱水処理を行った。加熱処理が完了した中空糸膜は、濡れた状態のまま速やかに40℃の温水を入れた高圧蒸気滅菌器に水没させ、132℃×20分の条件で高圧熱水処理を行った。一度目の高圧熱水処理が完了した中空糸膜は、液を除去した後、濡れた状態で40℃の温水を入れた高圧蒸気滅菌器に水没させ、134℃×20分の条件でもう一度高圧熱水処理を行った。
 さらに、中空糸膜束24本を12本ずつふたつの回転テーブルに載せてマイクロ波乾燥装置に入れ、1.5kWのマイクロ波を照射するとともに乾燥装置内を7kPaに減圧し、36分乾燥処理を行った。続いてマイクロ波出力に設定して7kPaの減圧下で18分乾燥処理を行い、さらにマイクロ波出力を0.4kWに低下させて8分の乾燥を完了した。乾燥工程における中空糸膜表面の最高到達温度は60℃、乾燥中空糸膜の水分率は3.2%であった。以上の工程を経て、内径203μm、膜厚61μmの中空糸膜(G)を得た。中空糸膜(G)の特徴・特性、実施例1と同様に測定したP5およびP60、φX174-CL50およびφX174-CL200は表1にまとめて示した。また、免疫グロブリン濾過時間-スループットの関係は図6に示した。
(比較例1)
 製膜溶液の構成をPES(BASF社製Ultrason(商品名) E6020P)20重量部、BASF社製PVP(Luvitec(商品名)K90PH)1重量部、三菱化学社製NMP35.55重量部、三井化学社製TEG43.45重量部とし、ノズル温度を60℃に、外部凝固液をRO水に、中空糸膜の洗浄槽でのネルソン・ローラー走行を実施せず洗浄槽を1回走行させて、洗浄槽内での滞留時間を3秒に設定した以外は実施例1と同様にして中空糸膜(H)を得た。乾燥工程における中空糸膜表面の最高到達温度は60℃、乾燥中空糸膜の水分率は3.0%であった。中空糸膜(H)の特徴・特性、実施例1と同様に測定したP5およびP60、φX174-CL50およびφX174-CL200は表2にまとめて示した。また、免疫グロブリン濾過時間-スループットの関係は図7に示した。
(比較例2)
 製膜溶液の構成をPES(BASF社製Ultrason(商品名) E6020P)20重量部、BASF社製PVP(Luvitec(商品名)K90PH)3重量部、三菱化学社製NMP34.65重量部、三井化学社製TEG42.35重量部とし、芯液をNMP1重量部、TEG4重量部の混合液体とし、外部凝固液をNMP27重量部、TEG33重量部、RO水40重量部の混合液とし、外部凝固液温度を55℃に設定した以外は比較例1と同様にして中空糸膜(I)を得た。乾燥工程における中空糸膜表面の最高到達温度は60℃、乾燥中空糸膜の水分率は3.0%であった。中空糸膜(I)の特徴・特性、実施例1と同様に測定したP5およびP60、φX174-CL50およびφX174-CL200は表2にまとめて示した。また、免疫グロブリン濾過時間-スループットの関係は図7に示した。
(比較例3)
 1回目の高圧熱水処理の浸漬液にグリセリンを添加しなかったこと、乾燥方法を変更したこと以外は実施例1と同様にして中空糸膜(J)を得た。中空糸膜(J)は次の方法で乾燥することによって得た。高圧熱水処理の完了した中空糸膜束24本を棚板に載せ、80℃の温風を20時間通じて乾燥した。乾燥工程における中空糸膜表面の最高到達温度は80℃、乾燥中空糸膜の水分率は0.2%であった。中空糸膜(J)の特徴・特性、実施例1と同様に測定したP5およびP60、φX174-CL50およびφX174-CL200は表2にまとめて示した。また、免疫グロブリン濾過時間-スループットの関係は図7に示した。
(比較例4)
 PES(BASF社製Ultrason(商品名) E6020P)20重量部、BASF社製PVP(Luvitec(商品名)K90PH)6重量部、三菱化学社製NMP33.3重量部、三井化学社製TEG40.7重量部を55℃で6時間にわたって混合、溶解し均一な溶液を得た。この際、系内は減圧、窒素送入を数回繰り返して窒素置換し、密閉した状態で溶液の調製を行った。溶液調製後、55℃で常圧-0.09MPaまで減圧した後、溶媒等が揮発して溶液組成が変化しないようにすぐに系内を密封して30分放置して脱泡を行った。さらに、溶液はタンクからノズルをつなぐ流路に設けられた減圧部分で連続的に脱泡された後、ノズルに導入した。この際、流路の温度は55℃、減圧部分の減圧度は常圧-0.015MPaであった。
 二重管ノズルの環状部から上記製膜溶液を、中心部から芯液としてNMP38.25重量部、TEG46.75重量部、RO水15重量部の混合液を吐出し、20mmのエアギャップを経て、NMP26.1重量部、TEG31.9重量部、RO水42重量部の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は55℃、外部凝固液温度は55℃に設定した。凝固浴から引き上げた中空糸膜は55℃の温水を満たした洗浄槽に導き、ネルソン・ローラー走行を実施せず洗浄槽を1回走行させた後引き出して巻き取り機で巻き取った。
 紡速は18.0m/min、中空糸膜の凝固浴内における走行長は2000mmであり、凝固浴内の滞留時間は6.67秒であった。洗浄槽内での滞留時間は11秒になるよう走行長を設定した。中空糸膜は、内径が約280μm、膜厚が約80μmになるよう製膜溶液、芯液の吐出量を制御した。上記の条件から算出される中空糸膜のエアギャップ部滞留時間は0.05秒であった。また、ドラフト比は2.0であった。
 巻き取った中空糸膜は、本数2280本、長さ35cmのバンドルとし、芯液を除去せずに25℃で60分放置してエージングを行った。その後、浸漬液を除去し、85℃のRO水に60分、直立状態で浸漬して熱水処理を行った。加熱処理が完了した中空糸膜は、濡れた状態のまま速やかに40℃の温水を入れた高圧蒸気滅菌器に水没させ、132℃×20分の条件で高圧熱水処理を行った。
 高圧熱水処理の完了した中空糸膜束24本を棚板に載せ、60℃の温風を16時間通じて乾燥した。乾燥工程における中空糸膜表面の最高到達温度は60℃、乾燥中空糸膜の水分率は1.8%であった。以上の工程を経て、内径198μm、膜厚59μmの中空糸膜(K)を得た。中空糸膜(K)の特徴・特性、実施例1と同様に測定したP5およびP60、φX174-CL50およびφX174-CL200は表2にまとめて示した。また、免疫グロブリン濾過時間-スループットの関係は図7に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 濾過時間5分時点での免疫グロブリン透過率(P5)および濾過時間60分時点での免疫グロブリン透過率(P60)の結果から、本発明のタンパク質含有液処理用多孔質中空糸膜は、タンパク質が効率よく透過し、その透過率の経時的な落ち込みが少ないことがわかる。また、濾過負荷量50L/m2時点のφX174ファージクリアランス指数(φX174-CL50)および濾過負荷量200L/m2時点のφX174ファージクリアランス指数(φX174-CL200)の結果から、低濾過負荷時のみならず、高濾過負荷時においても良好なバクテリオファージ除去性能が発揮されている。本発明の特徴である特定の濾過特性、膜構造がこれらの優れた特性の発揮に寄与していると考えられる。また一方で、比較例の結果から明らかなように、特定の濾過特性、膜構造いずれかの構成要件が満たされていない場合には、タンパク質透過、バクテリオファージ除去性能のいずれかが不十分となってしまっている。
 純水Fluxが過剰に高い場合、膜の孔径は大きくなる傾向にあるので、十分なバクテリオファージ除去性能が発揮され難い。また、免疫グロブリン溶液の濾過時間とスループット(濾液回収積算量と等価)の関係が直線関係にない場合、膜は経時的な目詰まりが進行すると考えられ、結果としてP60が低値となってしまうと考えられる。比較例4の結果にあるように、このような膜では高濾過負荷時のバクテリオファージ除去性能の低下が見られた。この現象が見られる原因や機構は明らかではないが、例えば次のような仮説が考えられる。
 多孔質膜によるウィルス(あるいはバクテリオファージ)の分離は、通常の分離膜と異なりサイズ分離のみならず膜表面とウィルスとのある種の相互作用が寄与していると考えられる。タンパク溶液を濾過した時、経時的に目詰まりが生じる膜は、タンパクとの相互作用が十分に抑制されていないと考えられる。このような膜ではウィルス(あるいはバクテリオファージ)含有液濾過時、共存するタンパクが膜表面と相互作用してしまい、ウィルス(あるいはバクテリオファージ)と膜表面との相互作用が阻害され、結果として目詰まりの進行しやすい膜でウィルス(あるいはバクテリオファージ)のリークが発生するという、一見矛盾した現象が起こると考えられる。
 本発明のタンパク質含有液処理用多孔質中空糸膜は、溶液に含まれる小径ウィルスなどの除去物質を効率よく分離除去することができ、同時に、タンパク質などの有用回収物質が効率よく透過し、その透過特性の経時的な落ち込みが少ないという利点を有し、特に、タンパク質溶液からのウィルス除去に有用であり、産業界に大きく寄与する。
 

Claims (6)

  1.  疎水性高分子と親水性高分子を含んでなり、純水の透過速度が10~300L/(h・m2・bar)であり、0.5%免疫グロブリン溶液をデッドエンドで60分にわたり1.0barの定圧濾過した時、濾過時間と濾液回収積算量が実質的に直線関係にあることを特徴とするタンパク質含有液処理用多孔質中空糸膜。
  2.  膜厚部分の中心領域が実質的に均質な構造からなり、かつ膜厚部分がマクロボイドを持たない構造からなることを特徴とする請求項1に記載のタンパク質含有液処理用多孔質中空糸膜。
  3.  内径が150~400μm、膜厚が40~200μmであることを特徴とする請求項1または2に記載のタンパク質含有液処理用多孔質中空糸膜。
  4.  疎水性高分子がポリスルホン系高分子であることを特徴とする請求項1~3いずれかに記載のタンパク質含有液処理用多孔質中空糸膜。
  5.  親水性高分子がポリビニルピロリドンであることを特徴とする請求項1~4いずれかに記載のタンパク質含有液処理用多孔質中空糸膜。
  6.  タンパク質溶液からウィルスを分離するために使用される膜であることを特徴とする請求項1~5いずれかに記載のタンパク質含有液処理用多孔質中空糸膜。
     
PCT/JP2011/055299 2010-03-09 2011-03-08 タンパク質含有液処理用多孔質中空糸膜 WO2011111679A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DK11753337.2T DK2545986T3 (da) 2010-03-09 2011-03-08 Porøs hulfibermembran til behandling af en protein-holdig væske
EP11753337.2A EP2545986B1 (en) 2010-03-09 2011-03-08 Porous hollow fiber membrane for treatment of protein-containing liquid
US13/578,416 US9492794B2 (en) 2010-03-09 2011-03-08 Porous hollow fiber membrane for treatment of protein-containing liquid
CA2792357A CA2792357C (en) 2010-03-09 2011-03-08 Porous hollow fiber membrane for treatment of protein-containing liquid
AU2011225316A AU2011225316B2 (en) 2010-03-09 2011-03-08 Porous, hollow fiber membrane for liquid treatment containing protein
JP2012504460A JP5754654B2 (ja) 2010-03-09 2011-03-08 タンパク質含有液処理用多孔質中空糸膜
CN201180011902.XA CN102892486B (zh) 2010-03-09 2011-03-08 含蛋白质液处理用多孔中空纤维膜
KR1020127023273A KR20130014512A (ko) 2010-03-09 2011-03-08 단백질 함유 액처리용 다공질 중공사막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010051559 2010-03-09
JP2010-051559 2010-03-09

Publications (1)

Publication Number Publication Date
WO2011111679A1 true WO2011111679A1 (ja) 2011-09-15

Family

ID=44563480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055299 WO2011111679A1 (ja) 2010-03-09 2011-03-08 タンパク質含有液処理用多孔質中空糸膜

Country Status (9)

Country Link
US (1) US9492794B2 (ja)
EP (1) EP2545986B1 (ja)
JP (1) JP5754654B2 (ja)
KR (1) KR20130014512A (ja)
CN (1) CN102892486B (ja)
AU (1) AU2011225316B2 (ja)
CA (1) CA2792357C (ja)
DK (1) DK2545986T3 (ja)
WO (1) WO2011111679A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077095A1 (ja) * 2012-11-15 2014-05-22 東洋紡株式会社 多孔質中空糸膜
WO2016031834A1 (ja) * 2014-08-25 2016-03-03 旭化成メディカル株式会社 多孔質膜
WO2016117565A1 (ja) * 2015-01-19 2016-07-28 旭化成メディカル株式会社 多孔質中空糸濾過膜
JP2017014441A (ja) * 2015-07-04 2017-01-19 永嶋 良一 成形体の製造方法
JP6327543B1 (ja) * 2017-07-13 2018-05-23 東洋紡株式会社 抗炎症性を有する中空糸膜およびその製造方法
WO2019225730A1 (ja) 2018-05-24 2019-11-28 東レ株式会社 多孔質中空糸膜
JP2019537508A (ja) * 2016-11-17 2019-12-26 ケー. シースジ,ジェイラジ 高分子量の親水性添加剤を含有するイソポーラス自己集合ブロックコポリマーフィルム及びその製造方法
US10829514B2 (en) 2014-04-11 2020-11-10 Asahi Kasei Medical Co., Ltd. Virus removal membrane
US11466134B2 (en) 2011-05-04 2022-10-11 Cornell University Multiblock copolymer films, methods of making same, and uses thereof
US11567072B2 (en) 2017-02-22 2023-01-31 Terapore Technologies, Inc. Ligand bound MBP membranes, uses and method of manufacturing
US11571667B2 (en) 2018-03-12 2023-02-07 Terapore Technologies, Inc. Isoporous mesoporous asymmetric block copolymer materials with macrovoids and method of making the same
US11572424B2 (en) 2017-05-12 2023-02-07 Terapore Technologies, Inc. Chemically resistant fluorinated multiblock polymer structures, methods of manufacturing and use
US11628409B2 (en) 2016-04-28 2023-04-18 Terapore Technologies, Inc. Charged isoporous materials for electrostatic separations

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206089B2 (ja) * 2013-04-23 2017-10-04 Jnc株式会社 多糖類モノリス構造体及びその製造方法
BR112015030619B1 (pt) * 2013-06-12 2022-02-22 Kimberly-Clark Worldwide, Inc Artigo absorvente
US11186927B2 (en) * 2014-06-06 2021-11-30 Kimberly Clark Worldwide, Inc. Hollow porous fibers
JP6397781B2 (ja) * 2015-02-26 2018-09-26 旭化成メディカル株式会社 濃縮器
CN109070010B (zh) * 2016-03-11 2021-09-10 旭化成株式会社 多孔膜、多孔膜组件、多孔膜的制造方法、澄清的液体的制造方法及啤酒的制造方法
DE102016224627A1 (de) * 2016-12-09 2018-06-14 Fresenius Medical Care Deutschland Gmbh Hohlfasermembran mit verbesserter Trennleistung und Herstellung einer Hohlfasermembran mit verbesserter Trennleistung
JP6573650B2 (ja) 2017-09-15 2019-09-11 住友化学株式会社 ガス分離方法
JP6573942B2 (ja) * 2017-09-15 2019-09-11 住友化学株式会社 ガス分離方法
US20220168694A1 (en) * 2019-03-29 2022-06-02 Asahi Kasei Medical Co., Ltd. Porous membrane
CN117679962B (zh) * 2023-09-29 2024-05-14 杭州科百特过滤器材有限公司 一种纤维素除病毒滤膜及其制备工艺和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332980A (ja) * 1998-05-27 1999-12-07 Toray Ind Inc 中空糸膜の製膜方法
WO2004035180A1 (ja) * 2002-10-18 2004-04-29 Asahi Kasei Pharma Corporation 親水性微多孔膜
JP2008237987A (ja) * 2007-03-26 2008-10-09 Toyobo Co Ltd 中空糸膜の製造方法および中空糸膜
WO2008156124A1 (ja) * 2007-06-19 2008-12-24 Asahi Kasei Kabushiki Kaisha 免疫グロブリン1量体の分離方法
WO2009051168A1 (ja) * 2007-10-19 2009-04-23 Toyo Boseki Kabushiki Kaisha 液体処理用の中空糸膜
WO2009104705A1 (ja) * 2008-02-21 2009-08-27 東洋紡績株式会社 耐ファウリング性に優れる中空糸型限外ろ過膜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808315A (en) 1986-04-28 1989-02-28 Asahi Kasei Kogyo Kabushiki Kaisha Porous hollow fiber membrane and a method for the removal of a virus by using the same
US7144505B2 (en) 1997-09-18 2006-12-05 Baxter International Inc. Melt-spun polysulfone semipermeable membranes and methods for making the same
US7140496B2 (en) 2001-08-01 2006-11-28 Asahi Kasei Medical Co., Ltd. Multilayer microporous membrane
CA2498244C (en) * 2002-09-12 2012-03-06 Teruhiko Oishi Plasma purification membrane and plasma purification system
WO2005025649A1 (ja) 2003-08-22 2005-03-24 Toyo Boseki Kabushiki Kaisha ポリスルホン系選択透過性中空糸膜およびその製造方法
CN100515548C (zh) * 2004-08-10 2009-07-22 尼普洛株式会社 聚砜系选择渗透性中空纤维膜组件及其制造方法
US7476636B2 (en) * 2004-12-03 2009-01-13 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploration Des Procedes Georges Claude Method of making mixed matrix membranes using electrostatically stabilized suspensions
US20070084788A1 (en) 2005-10-14 2007-04-19 Millipore Corporation Ultrafiltration membranes and methods of making and use of ultrafiltration membranes
US8881915B2 (en) * 2006-04-26 2014-11-11 Toyo Boseki Kabushiki Kaisha Polymeric porous hollow fiber membrane
JP2008094722A (ja) 2006-10-05 2008-04-24 Benesis Corp 免疫グロブリン製剤の製造方法
US8741600B2 (en) 2007-06-19 2014-06-03 Asahi Kasei Kabushiki Kaisha Method for separation of immunoglobulin monomers
TW201006517A (en) * 2008-05-22 2010-02-16 Asahi Kasei Medical Co Ltd Filtration method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332980A (ja) * 1998-05-27 1999-12-07 Toray Ind Inc 中空糸膜の製膜方法
WO2004035180A1 (ja) * 2002-10-18 2004-04-29 Asahi Kasei Pharma Corporation 親水性微多孔膜
JP2008237987A (ja) * 2007-03-26 2008-10-09 Toyobo Co Ltd 中空糸膜の製造方法および中空糸膜
WO2008156124A1 (ja) * 2007-06-19 2008-12-24 Asahi Kasei Kabushiki Kaisha 免疫グロブリン1量体の分離方法
WO2009051168A1 (ja) * 2007-10-19 2009-04-23 Toyo Boseki Kabushiki Kaisha 液体処理用の中空糸膜
WO2009104705A1 (ja) * 2008-02-21 2009-08-27 東洋紡績株式会社 耐ファウリング性に優れる中空糸型限外ろ過膜

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466134B2 (en) 2011-05-04 2022-10-11 Cornell University Multiblock copolymer films, methods of making same, and uses thereof
US10577393B2 (en) 2012-11-15 2020-03-03 Toyobo Co., Ltd. Porous hollow fiber membrane
EP2896451B1 (en) * 2012-11-15 2023-07-12 Toyobo Co., Ltd. Porous hollow fiber membrane
WO2014077095A1 (ja) * 2012-11-15 2014-05-22 東洋紡株式会社 多孔質中空糸膜
US10829514B2 (en) 2014-04-11 2020-11-10 Asahi Kasei Medical Co., Ltd. Virus removal membrane
KR20160137628A (ko) 2014-08-25 2016-11-30 아사히 가세이 메디컬 가부시키가이샤 다공질막
JPWO2016031834A1 (ja) * 2014-08-25 2017-06-15 旭化成メディカル株式会社 多孔質膜
KR20190037350A (ko) 2014-08-25 2019-04-05 아사히 가세이 메디컬 가부시키가이샤 다공질막
WO2016031834A1 (ja) * 2014-08-25 2016-03-03 旭化成メディカル株式会社 多孔質膜
US11338248B2 (en) 2014-08-25 2022-05-24 Asahi Kasei Medical Co., Ltd. Porous membrane
JPWO2016117565A1 (ja) * 2015-01-19 2017-09-28 旭化成メディカル株式会社 多孔質中空糸濾過膜
WO2016117565A1 (ja) * 2015-01-19 2016-07-28 旭化成メディカル株式会社 多孔質中空糸濾過膜
JP2017014441A (ja) * 2015-07-04 2017-01-19 永嶋 良一 成形体の製造方法
US11628409B2 (en) 2016-04-28 2023-04-18 Terapore Technologies, Inc. Charged isoporous materials for electrostatic separations
US11401411B2 (en) 2016-11-17 2022-08-02 Terapore Technologies, Inc. Isoporous self-assembled block copolymer films containing high molecular weight hydrophilic additives and methods of making the same
JP7104040B2 (ja) 2016-11-17 2022-07-20 ケー. シースジ,ジェイラジ 高分子量の親水性添加剤を含有するイソポーラス自己集合ブロックコポリマーフィルム及びその製造方法
US11802200B2 (en) 2016-11-17 2023-10-31 Terapore Technologies, Inc. Isoporous self-assembled block copolymer films containing high molecular weight hydrophilic additives and methods of making the same
JP2019537508A (ja) * 2016-11-17 2019-12-26 ケー. シースジ,ジェイラジ 高分子量の親水性添加剤を含有するイソポーラス自己集合ブロックコポリマーフィルム及びその製造方法
US11567072B2 (en) 2017-02-22 2023-01-31 Terapore Technologies, Inc. Ligand bound MBP membranes, uses and method of manufacturing
US11572424B2 (en) 2017-05-12 2023-02-07 Terapore Technologies, Inc. Chemically resistant fluorinated multiblock polymer structures, methods of manufacturing and use
JP2019018193A (ja) * 2017-07-13 2019-02-07 東洋紡株式会社 抗炎症性を有する中空糸膜およびその製造方法
JP6327543B1 (ja) * 2017-07-13 2018-05-23 東洋紡株式会社 抗炎症性を有する中空糸膜およびその製造方法
US11571667B2 (en) 2018-03-12 2023-02-07 Terapore Technologies, Inc. Isoporous mesoporous asymmetric block copolymer materials with macrovoids and method of making the same
KR20210011372A (ko) 2018-05-24 2021-02-01 도레이 카부시키가이샤 다공질 중공사막
WO2019225730A1 (ja) 2018-05-24 2019-11-28 東レ株式会社 多孔質中空糸膜

Also Published As

Publication number Publication date
KR20130014512A (ko) 2013-02-07
US9492794B2 (en) 2016-11-15
EP2545986B1 (en) 2020-12-09
CA2792357C (en) 2021-10-26
CA2792357A1 (en) 2011-09-15
AU2011225316B2 (en) 2014-04-17
DK2545986T3 (da) 2021-03-08
CN102892486A (zh) 2013-01-23
CN102892486B (zh) 2014-11-26
US20120305472A1 (en) 2012-12-06
AU2011225316A1 (en) 2012-08-30
JPWO2011111679A1 (ja) 2013-06-27
EP2545986A1 (en) 2013-01-16
JP5754654B2 (ja) 2015-07-29
EP2545986A4 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
JP5754654B2 (ja) タンパク質含有液処理用多孔質中空糸膜
JP5207150B2 (ja) 多孔質中空糸膜およびタンパク質含有液処理用多孔質中空糸膜
JP5504560B2 (ja) 液体処理用の中空糸膜
JP5403444B1 (ja) 多孔質中空糸膜
JP6024660B2 (ja) 多孔質中空糸膜
EP2845641B1 (en) Permselective asymmetric membranes with high molecular weight polyvinylpyrrolidone, the preparation and use thereof
EP2113298A1 (en) Hollow fibre membrane with improved permeability and selectivity
EP3216515B1 (en) Hollow fiber filtration membrane
JP6433513B2 (ja) 多孔質中空糸濾過膜
JP5835659B2 (ja) タンパク質含有液処理用多孔質中空糸膜
WO2016113964A1 (ja) 多孔質中空糸膜
JP3934340B2 (ja) 血液浄化器
WO2016182015A1 (ja) 多孔質中空糸膜及びその製造方法
JP2008194647A (ja) 中空糸膜
JP2011020071A (ja) ポリスルホン系中空糸膜の製造方法
JP2001038172A (ja) 中空糸型選択分離膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011902.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753337

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504460

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011225316

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13578416

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011225316

Country of ref document: AU

Date of ref document: 20110308

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2792357

Country of ref document: CA

Ref document number: 20127023273

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011753337

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8456/CHENP/2012

Country of ref document: IN