WO2011111424A1 - Positive photosensitive resin composition, method for forming cured film, cured film, liquid crystal display device, and organic el display device - Google Patents

Positive photosensitive resin composition, method for forming cured film, cured film, liquid crystal display device, and organic el display device Download PDF

Info

Publication number
WO2011111424A1
WO2011111424A1 PCT/JP2011/051084 JP2011051084W WO2011111424A1 WO 2011111424 A1 WO2011111424 A1 WO 2011111424A1 JP 2011051084 W JP2011051084 W JP 2011051084W WO 2011111424 A1 WO2011111424 A1 WO 2011111424A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photosensitive resin
resin composition
positive photosensitive
cured film
Prior art date
Application number
PCT/JP2011/051084
Other languages
French (fr)
Japanese (ja)
Inventor
渉 菊池
山田 悟
幸一 杉原
享平 崎田
洋平 石地
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201180013398.7A priority Critical patent/CN102792227B/en
Priority to KR1020127025614A priority patent/KR101570447B1/en
Publication of WO2011111424A1 publication Critical patent/WO2011111424A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • C08F212/24Phenols or alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements

Definitions

  • the present invention relates to a positive photosensitive resin composition, a method for forming a cured film, a cured film, a liquid crystal display device, and an organic EL display device.
  • an electronic component such as a liquid crystal display element, an integrated circuit element, a solid-state imaging element, and an organic EL
  • a flattening film for imparting flatness to the surface of the electronic component, and for preventing deterioration and damage of the electronic component
  • a photosensitive resin composition is used when forming a protective film or an interlayer insulating film for maintaining insulation.
  • a TFT type liquid crystal display element is provided with a polarizing plate on a glass substrate, a transparent conductive circuit layer such as indium tin oxide (ITO) and a thin film transistor (TFT) are formed, and covered with an interlayer insulating film,
  • a polarizing plate is provided on a glass substrate, a pattern of a black matrix layer and a color filter layer is formed as necessary, and a transparent conductive circuit layer and an interlayer insulating film are sequentially formed as an upper surface plate.
  • a top plate are opposed to each other through a spacer, and liquid crystal is sealed between the plates.
  • Patent Document 1 proposes a photosensitive resin composition containing an alkali-soluble acrylic polymer binder, a quinonediazide group-containing compound, a crosslinking agent, and a photoacid generator.
  • a crosslinking agent, an acid generator, and itself is insoluble or hardly soluble in an alkaline aqueous solution, but has a protecting group that can be cleaved by the action of an acid, and the protecting group is cleaved.
  • Has proposed a positive chemically amplified resist composition characterized by containing a resin that is soluble in an alkaline aqueous solution.
  • Patent Document 3 proposes a radiation-sensitive resin composition characterized by containing an acetal structure and / or a ketal structure, a resin containing an epoxy group, and an acid generator.
  • Patent Document 4 two layers of positive photosensitive resin layers having different exposure sensitivities are provided on a base material, and a low sensitivity positive photosensitive resin layer is positioned between the base material and a high sensitivity positive photosensitive resin layer.
  • a method for producing a transparent cured film comprising a step of developing a resin layer and a step of post-baking the two positive photosensitive resin layers, wherein the low-sensitivity positive photosensitive resin layer comprises the following (A ) Component, (B) component, (C) component, and (D) component are positive photosensitive resin layers,
  • the manufacturing method of a transparent cured film characterized by the above-mentioned is disclosed.
  • B) Component Compound having two or more vinyl ether groups in the molecule
  • C Component: Compound that crosslinks with (A) component by post-baking
  • Component Photoacid generation Agent
  • the present invention has been made in view of the above-described conventional situation, and solves the following problems. That is, the problem to be solved by the present invention is a positive photosensitive resin composition that has a high sensitivity, suppresses the generation of residues during development, and can form a cured film having a smooth surface. To provide things. Another problem to be solved by the present invention is a method of forming a cured film using the positive photosensitive resin composition of the present invention, a cured film formed by the method of forming the cured film, and the An object of the present invention is to provide a liquid crystal display device and an organic EL display device having a cured film.
  • R 1 represents a hydrogen atom or an alkyl group
  • L 1 represents a carbonyl group or a phenylene group
  • R 21 to R 27 each independently represents a hydrogen atom or an alkyl group.
  • ⁇ 2> The positive photosensitive resin composition according to ⁇ 1>, wherein R 1 is a methyl group
  • ⁇ 3> The positive photosensitive resin composition according to the above ⁇ 1> or ⁇ 2>, wherein one or more of R 21 to R 27 are hydrogen atoms
  • ⁇ 4> The positive photosensitive resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein all of R 21 to R 27 are hydrogen atoms.
  • R 11 represents an alkyl group, an aryl group or a heteroaryl group
  • a plurality of R 12 are each independently a hydrogen atom, an alkyl group, an aryl group or a halogen atom
  • a plurality of R 16 each independently represent a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group
  • X represents O or S
  • n represents 1 or 2 represents m
  • m represents an integer of 0 to 6.
  • R 4 represents an alkyl group or an aryl group
  • X represents each independently an alkyl group, an alkoxy group, or a halogen atom
  • m represents an integer of 0 to 3.
  • the component A is contained in the range of 40 to 95% by weight and the component B is contained in the range of 0.1 to 10% by weight with respect to the total solid content of the positive photosensitive resin composition.
  • the component A is contained in the range of 40 to 70% by weight
  • the component B is contained in the range of 0.1 to 10% by weight, and the total solid content of the positive photosensitive resin composition
  • ⁇ 20> a cured film formed by the method for forming a cured film according to ⁇ 18> or ⁇ 19>, ⁇ 21>
  • ⁇ 22> A liquid crystal display device comprising the cured film according to ⁇ 17> or ⁇ 20> above, ⁇ 23>
  • An organic EL display device comprising the cured film according to ⁇ 17> or ⁇ 20>.
  • a positive photosensitive resin composition that can form a cured film having high sensitivity, generation of a residue during development, and a surface having excellent smoothness. it can. Further, according to the present invention, a method of forming a cured film using the positive photosensitive resin composition of the present invention, a cured film formed by the method of forming the cured film, and a liquid crystal provided with the cured film A display device and an organic EL display device can be provided.
  • FIG. 1 shows a conceptual diagram of a configuration of an example of an organic EL display device.
  • a schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided.
  • 1 is a conceptual diagram of a configuration of an example of a liquid crystal display device.
  • the schematic sectional drawing of the active matrix substrate in a liquid crystal display device is shown, and it has the cured film 17 which is an interlayer insulation film.
  • the positive photosensitive resin composition of the present invention comprises (Component A) a resin having a structural unit represented by the following formula (1), a structural unit having an acidic group, and a structural unit having a crosslinkable group (hereinafter referred to as appropriate). And (component B) an acid generator having an oxime sulfonate group (hereinafter also referred to as “specific acid generator” as appropriate).
  • R 1 represents a hydrogen atom or an alkyl group
  • L 1 represents a carbonyl group or a phenylene group
  • R 21 to R 27 each independently represents a hydrogen atom or an alkyl group.
  • the photosensitive resin composition of this invention becomes the thing excellent in the sensitivity by containing specific resin and a specific acid generator.
  • the photosensitive resin composition of the present invention can form a cured film having a surface with suppressed generation of residues during development and excellent smoothness.
  • the “residue” means a residual film present at the periphery of the end of the patterned cured film when a patterned cured film is formed using the photosensitive resin composition.
  • the smoothness of the cured film surface uses the surface roughness (Ra) of the cured film surface as an index, and may be referred to as “surface roughness” below.
  • the surface roughness (Ra) of the cured film surface in this specification is a value measured by a stylus type surface roughness meter “P10” (manufactured by Tencor).
  • the cured film obtained from the photosensitive resin composition of the present invention can be suitably used as an interlayer insulating film, a planarizing film, etc. provided in a liquid crystal display device or an organic EL display device.
  • the insulating film provided in the liquid crystal display device or the organic EL display device is inferior in smoothness, the electrical resistance of the ITO electrode laminated on the insulating film is increased, or the liquid crystal alignment in the liquid crystal layer laminated on the insulating film is Defects such as disturbance may occur.
  • the cured film obtained from the photosensitive resin composition of the present invention has excellent surface smoothness (no surface roughness), and thus the occurrence of such adverse effects is effectively suppressed.
  • the photosensitive resin composition of the present invention is preferably a chemically amplified positive photosensitive resin composition (chemically amplified positive photosensitive resin composition).
  • the specific resin and the specific acid generator which are characteristic components constituting the photosensitive resin composition of the present invention, will be described.
  • the description which does not describe substitution and non-substitution includes what has a substituent with what does not have a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the method for introducing the structural unit contained in the copolymer used in the present invention may be a polymerization method or a polymer reaction method. In the polymerization method, monomers containing a predetermined functional group are synthesized in advance, and then these monomers are copolymerized.
  • a necessary functional group is introduced into the structural unit using a reactive group contained in the structural unit of the obtained copolymer.
  • the functional group a protecting group for protecting an acidic group such as a carboxy group or a phenolic hydroxyl group and simultaneously decomposing and releasing them in the presence of a strong acid, a crosslinkable group such as an epoxy group or an oxetanyl group, Examples thereof include alkali-soluble groups (acidic groups) such as phenolic hydroxyl groups and carboxy groups.
  • the positive photosensitive resin composition of the present invention comprises (Component A) a structural unit represented by the formula (1), a structural unit having an acidic group, and a structural unit having a crosslinkable group. Containing resin. Moreover, the same structural unit may be sufficient as the structural unit which has the said acidic group, and the structural unit which has the said crosslinkable group.
  • the specific resin is alkali-insoluble and when a tetrahydrofuranyl group (hereinafter also referred to as “specific acid-decomposable group”) in the structural unit represented by the formula (1) is decomposed or dissociated. A resin that becomes alkali-soluble is preferred.
  • alkali-soluble means a coating film (thickness) of the compound (resin) formed by applying a solution of the compound (resin) on a substrate and heating at 90 ° C. for 2 minutes. 3 ⁇ m) at a temperature of 23 ° C. in a 0.4 wt% tetramethylammonium hydroxide aqueous solution is 0.01 ⁇ m / second or more.
  • Alkali insoluble means that the solution of the compound (resin) Dissolution rate of a coating film (thickness 3 ⁇ m) of the compound (resin) formed by coating on a substrate and heating at 90 ° C.
  • the alkali dissolution rate of the specific resin in the present invention is more preferably less than 0.005 ⁇ m / second. Further, when the specific acid-decomposable group of the specific resin is decomposed, the alkali dissolution rate is preferably 0.05 ⁇ m / second or more.
  • the specific resin in the present invention is preferably an acrylic polymer.
  • the “acrylic polymer” in the present invention is an addition polymerization type resin, is a polymer containing a structural unit derived from (meth) acrylic acid and / or its ester, and (meth) acrylic acid and / or its You may have structural units other than the structural unit derived from ester, for example, the structural unit derived from styrene, the structural unit derived from a vinyl compound, etc.
  • the specific resin preferably has a structural unit derived from (meth) acrylic acid and / or an ester thereof in an amount of 50 mol% or more, more preferably 80 mol% or more, based on all the structural units in the polymer.
  • a polymer consisting only of structural units derived from (meth) acrylic acid and / or its ester.
  • the “structural unit derived from (meth) acrylic acid and / or its ester” is also referred to as “acrylic structural unit”.
  • (Meth) acrylic acid is a generic term for methacrylic acid and acrylic acid.
  • the acid value of the specific resin is preferably 5 to 110 mgKOH / g, more preferably 20 to 90 mgKOH / g, and more preferably 30 to 70 mgKOH / g from the viewpoint of transparency and heat-resistant transparency. Is more preferable.
  • R 1 represents a hydrogen atom or an alkyl group.
  • alkyl group in R 1 include linear, branched, and cyclic alkyl groups having 1 to 20 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and pentyl.
  • a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms, or a cyclic alkyl group having 5 to 10 carbon atoms is preferable, and a linear alkyl group having 1 to 12 carbon atoms is preferable.
  • R 1 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group.
  • L 1 represents a carbonyl group or a phenylene group, and is preferably a carbonyl group.
  • R 21 to R 27 each independently represents a hydrogen atom or an alkyl group.
  • the alkyl group in R 21 to R 27 has the same meaning as R 1 , and the preferred embodiment is also the same. Moreover, degradable, and, in view of synthesis, of R 21 ⁇ R 27, preferably more than one is a hydrogen atom, more preferably all of R 21 ⁇ R 27 is a hydrogen atom.
  • the structural unit represented by the formula (1) in the present invention contains a protected carboxy group and / or a protected phenolic hydroxyl group.
  • carboxylic acid monomer capable of forming the unit represented by the formula (1) by protecting the carboxy group any monomer can be used as long as it can become a structural unit by protecting the carboxy group. Examples thereof include acrylic acid and methacrylic acid.
  • the structural unit derived from the carboxylic acid by which these carboxy groups were protected can be mentioned as a preferable thing.
  • a monomer having a phenolic hydroxyl group capable of forming the structural unit represented by the formula (1) by protecting the phenolic hydroxyl group a monomer that can be a structural unit by protecting the phenolic hydroxyl group can be used.
  • preferred examples include hydroxystyrenes such as p-hydroxystyrene and ⁇ -methyl-p-hydroxystyrene. Among these, ⁇ -methyl-p-hydroxystyrene is more preferable.
  • radical polymerizable monomer used for forming the structural unit (a1) a commercially available one may be used, or one synthesized by a known method may be used. For example, it can be synthesized by reacting (meth) acrylic acid with a dihydrofuran compound in the presence of an acid catalyst.
  • the protected carboxy group or the phenolic hydroxyl group-containing monomer are polymerized with the structural units (a2) to (a4) and the precursors described later, the carboxy group or the phenolic hydroxyl group is reacted with the dihydrofuran compound. Can also be formed.
  • the specific example of the preferable structural unit formed in this way is the same as the structural unit derived from the preferable specific example of the said radical polymerizable monomer.
  • the structural unit (a1) particularly preferred are the following structural units.
  • the content of the monomer unit forming the structural unit (a1) in all monomer units constituting the specific resin is preferably 5 to 60 mol%, more preferably 10 to 50 mol%, and particularly preferably 10 to 40 mol%. .
  • a photosensitive resin composition having high sensitivity and wide exposure latitude can be obtained.
  • the specific resin has a structural unit having an acidic group (hereinafter also referred to as “structural unit (a2)” as appropriate).
  • the acidic group contained in the specific resin is preferably contained in the specific resin by a structural unit having one or more acidic groups selected from a carboxy group, a carboxylic acid anhydride residue, and a phenolic hydroxyl group.
  • the structural unit (a2) is more preferably a structural unit having a carboxy group and / or a phenolic hydroxyl group, and still more preferably a structural unit having a carboxy group.
  • radical polymerizable monomer used to form the structural unit having a carboxy group examples include monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; maleic acid, fumaric acid, citraconic acid, mesaconic acid, Preferable examples include unsaturated carboxylic acids such as dicarboxylic acids such as itaconic acid.
  • a radically polymerizable monomer used in order to form the structural unit which has a carboxylic anhydride residue maleic anhydride, itaconic anhydride, etc. can be mentioned as a preferable thing, for example.
  • Examples of the radical polymerizable monomer used to form a structural unit having a phenolic hydroxyl group include hydroxystyrenes such as p-hydroxystyrene and ⁇ -methyl-p-hydroxystyrene, and JP-A-2008-40183.
  • hydroxystyrenes such as p-hydroxystyrene and ⁇ -methyl-p-hydroxystyrene
  • JP-A-2008-40183 JP-A-2008-40183.
  • An addition reaction product of benzoic acid and glycidyl acrylate can be mentioned as a preferable example.
  • addition reaction product of 4-hydroxybenzoic acid and glycidyl methacrylate, addition reaction product of 4-hydroxybenzoic acid and glycidyl acrylate are particularly preferable. preferable.
  • These structural units can be used individually by 1 type or in combination of 2 or more types.
  • Preferable specific examples of the structural unit (a2) include the following structural units.
  • the content of the monomer unit forming the structural unit (a2) having an acidic group in all monomer units constituting the specific resin is preferably 2 to 35 mol%, more preferably 5 to 20 mol%, and 8 to 12 mol. % Is particularly preferred.
  • the specific resin contains the structural unit (a2) in the above ratio, high sensitivity is obtained and developability is improved.
  • the specific resin has a structural unit having a crosslinkable group (hereinafter also referred to as “structural unit (a3)” as appropriate).
  • the crosslinkable group may be any one that forms a covalent bond by reacting with the acid group described above, or that forms a covalent bond by the action of heat or light between the crosslinkable groups.
  • a structural unit (a3) having a crosslinkable group that reacts with an acidic group to form a covalent bond a structural unit having an epoxy group or an oxetanyl group is preferable. What is formed is preferably a carbon-carbon double bond.
  • these crosslinkable groups those that react with an acid group to form a covalent bond are preferred.
  • the crosslinkable group is particularly preferably contained in the specific resin as a structural unit having an epoxy group or an oxetanyl group.
  • the structural unit (a3) may include both an epoxy group and an oxetanyl group.
  • the structural unit having an epoxy group or oxetanyl group is preferably a structural unit having an alicyclic epoxy group or oxetanyl group, and more preferably a structural unit having an oxetanyl group.
  • the alicyclic epoxy group is a group in which an aliphatic ring and an epoxy ring form a condensed ring. Specifically, for example, a 3,4-epoxycyclohexyl group, a 2,3-epoxycyclohexyl group, 2, A 3-epoxycyclopentyl group is preferred.
  • the group having an oxetanyl group is not particularly limited as long as it has an oxetane ring, but a (3-ethyloxetane-3-yl) methyl group is preferably exemplified.
  • the structural unit having an epoxy group or oxetanyl group may have at least one epoxy group or oxetanyl group in one structural unit, and may include one or more epoxy groups and one or more oxetanyl groups. It may have two or more epoxy groups or two or more oxetanyl groups, and is not particularly limited, but preferably has a total of 1 to 3 epoxy groups and oxetanyl groups, It is more preferable to have one or two oxetanyl groups in total, and it is even more preferable to have one epoxy group and one oxetanyl group.
  • radical polymerizable monomer used for forming the structural unit having an epoxy group include, for example, glycidyl acrylate, glycidyl methacrylate, glycidyl ⁇ -ethyl acrylate, and glycidyl ⁇ -n-propyl acrylate.
  • radical polymerizable monomer used for forming the structural unit having an oxetanyl group examples include, for example, (meth) acrylic acid having an oxetanyl group described in paragraphs 0011 to 0016 of JP-A No. 2001-330953. Examples include esters.
  • radical polymerizable monomer used for forming the structural unit having an epoxy group or an oxetanyl group are preferably a monomer containing a methacrylic ester structure and a monomer containing an acrylate ester structure.
  • radically polymerizable monomers more preferred are compounds containing an alicyclic epoxy skeleton described in paragraphs 0034 to 0035 of Japanese Patent No. 4168443 and paragraphs of JP-A-2001-330953.
  • 3,4-epoxycyclohexylmethyl acrylate 3,4-epoxycyclohexylmethyl methacrylate, methyl (3-ethyloxetane-3-yl) acrylate, and methacrylic acid (3-ethyloxetane).
  • -3-yl) methyl and most preferred are (3-ethyloxetane-3-yl) methyl acrylate and (3-ethyloxetane-3-yl) methyl methacrylate.
  • These structural units can be used individually by 1 type or in combination of 2 or more types.
  • structural unit (a3) include the following structural units.
  • the content of monomer units forming the structural unit (a3) having a crosslinkable group in all monomer units constituting the specific resin is preferably 10 to 80 mol%, more preferably 15 to 70 mol%, and more preferably 20 to 65 mol%. Mole% is particularly preferred.
  • the specific resin may contain other structural unit (a4) (hereinafter also referred to as “structural unit (a4)” as appropriate) as long as the effects of the present invention are not hindered.
  • structural unit (a4) examples include compounds described in paragraphs 0021 to 0024 of JP-A No. 2004-264623 (provided that the above-described structure is included).
  • Units (a1) to (a3) are excluded.
  • Preferred examples of the structural unit (a4) include structural units derived from at least one selected from the group consisting of a hydroxyl group-containing unsaturated carboxylic acid ester, an alicyclic structure-containing unsaturated carboxylic acid ester, styrene, and an N-substituted maleimide. Can be mentioned.
  • (meth) acrylic acid esters having an alicyclic structure are more preferable.
  • styrenes such as styrene and ⁇ -methylstyrene are preferable.
  • These structural units (a4) can be used individually by 1 type or in combination of 2 or more types.
  • the content of the monomer unit forming the structural unit (a4) in the case where the structural unit (a4) is contained in all the monomer units constituting the specific resin is preferably 1 to 50 mol%, and more preferably 5 to 40 mol%. Preferably, 5 to 30 mol% is particularly preferable.
  • Preferred examples of the combination of structural units constituting the specific resin include structural units derived from radically polymerizable compounds containing an acidic group protected with a specific acid-decomposable group, structural units derived from an unsaturated carboxylic acid, And the combination containing the structural unit derived from the radically polymerizable compound containing an epoxy group or an oxetanyl group is mentioned.
  • the weight average molecular weight of the specific resin in the present invention is preferably 1,000 to 100,000, and more preferably 2,000 to 50,000.
  • the weight average molecular weight in this invention is a polystyrene conversion weight average molecular weight by gel permeation chromatography (GPC) when tetrahydrofuran (THF) is used as a solvent.
  • GPC gel permeation chromatography
  • the specific resin is used to form at least the structural unit (a1), the structural unit (a2), and the structural unit (a3). It can synthesize
  • 2,3-dihydrofuran is added to the acid anhydride group in the precursor copolymer obtained by copolymerizing unsaturated polyvalent carboxylic acid anhydrides at room temperature (in the absence of an acid catalyst).
  • a copolymer obtained by addition at a temperature of about 25 ° C. to 100 ° C. is also preferable.
  • 1,3-dihydrofuran is added to a glycidyl (meth) acrylate / maleic anhydride / N-cyclohexylmaleimide / styrene copolymer in a 1-fold molar amount relative to an acid anhydride group. And copolymers.
  • Specific resin A copolymer of MAA / MAMTHF / OXE-30 / HEMA (molar ratio: 10/40/30/20, acid value: 35.5 mgKOH / g)
  • Specific resin B copolymer of MAA / MATHF / StOTHF / OXE-30 / HEMA (molar ratio: 10/20/14/23/33, acid value: 36.3 mgKOH / g)
  • Specific resin C copolymer of MAA / AATHF / OXE-30 / HEMA (molar ratio: 10/40/35/15, acid value: 37.5 mgKOH / g)
  • Specific resin D PHS / MATHF / GMA / HEMA copolymer (molar ratio: 10/40/30/20, acid value: 38.5 mgKOH / g)
  • Specific resin E copolymer of PHS / MATHF / OXE-30 / HEMA (molar ratio: 10/40/30/20, acid value: 35.4 mg
  • the content of the specific resin in the photosensitive resin composition of the present invention is preferably 20 to 99% by weight, and preferably 40 to 95% by weight, based on the total solid content of the photosensitive resin composition. More preferred is 40 to 70% by weight. When the content is within this range, the pattern formability upon development is good.
  • the solid content amount of the photosensitive resin composition represents an amount excluding volatile components such as a solvent.
  • a resin other than the specific resin may be used in combination as long as the effects of the present invention are not hindered.
  • the content of the resin other than the specific resin is preferably smaller than the content of the specific resin from the viewpoint of developability.
  • the photosensitive resin composition of the present invention contains (Component B) an acid generator having an oxime sulfonate group (hereinafter also simply referred to as “oxime sulfonate compound”).
  • the oxime sulfonate compound is not particularly limited as long as it has an oxime sulfonate group, but the following formula (2), formula (OS-103), formula (OS-104), or formula (OS-105) described below. It is preferable that it is an oxime sulfonate compound represented by these.
  • X in Formula (2) represents an alkyl group, an alkoxy group, or a halogen atom each independently.
  • the alkyl group and alkoxy group in X may have a substituent.
  • the alkyl group for X is preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the alkoxy group for X is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
  • the halogen atom in X is preferably a chlorine atom or a fluorine atom.
  • M in the formula (2) represents an integer of 0 to 3, preferably 0 or 1. When m is 2 or 3, the plurality of X may be the same or different.
  • R 4 in the formula (2) represents an alkyl group or an aryl group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, or 1 to 5 is preferably a halogenated alkoxy group, a phenyl group optionally substituted with W, a naphthyl group optionally substituted with W, or an anthranyl group optionally substituted with W.
  • W represents a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, or a halogenated alkoxy group having 1 to 5 carbon atoms. Represents a group.
  • alkyl group having 1 to 10 carbon atoms for R 4 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t -Butyl group, n-amyl group, i-amyl group, s-amyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and the like.
  • alkoxy group having 1 to 10 carbon atoms for R 4 include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, an n-amyloxy group, an n-octyloxy group, and n-decyloxy group.
  • halogenated alkyl group having 1 to 5 carbon atoms for R 4 include trifluoromethyl group, pentafluoroethyl group, perfluoro-n-propyl group, perfluoro-n-butyl group, perfluoro-n. -An amyl group etc. are mentioned.
  • halogenated alkoxy group having 1 to 5 carbon atoms for R 4 include trifluoromethoxy group, pentafluoroethoxy group, perfluoro-n-propoxy group, perfluoro-n-butoxy group, perfluoro-n. -An amyloxy group etc. are mentioned.
  • phenyl group optionally substituted with W in R 4 include o-tolyl group, m-tolyl group, p-tolyl group, o-ethylphenyl group, m-ethylphenyl group, p-ethyl.
  • naphthyl group optionally substituted with W in R 4 include 2-methyl-1-naphthyl group, 3-methyl-1-naphthyl group, 4-methyl-1-naphthyl group, 5-methyl -1-naphthyl group, 6-methyl-1-naphthyl group, 7-methyl-1-naphthyl group, 8-methyl-1-naphthyl group, 1-methyl-2-naphthyl group, 3-methyl-2-naphthyl group 4-methyl-2-naphthyl group, 5-methyl-2-naphthyl group, 6-methyl-2-naphthyl group, 7-methyl-2-naphthyl group, 8-methyl-2-naphthyl group and the like.
  • m is 1, X is a methyl group, the substitution position of X is an ortho position, R 4 is a linear alkyl group having 1 to 10 carbon atoms, 7,7-dimethyl- A compound having a 2-oxonorbornylmethyl group or a p-toluyl group is particularly preferable.
  • Specific examples of the oxime sulfonate compound represented by the formula (2) include the following compound (i), compound (ii), compound (iii), compound (iv) and the like. May be used in combination, or two or more types may be used in combination. Compounds (i) to (iv) can be obtained as commercial products. Specific examples of the oxime sulfonate compound represented by the other formula (2) are listed below.
  • R 11 represents an alkyl group, an aryl group or a heteroaryl group
  • a plurality of R 12 are each independently a hydrogen atom, an alkyl group, an aryl group or a halogen atom
  • a plurality of R 16 each independently represent a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group
  • X represents O or S
  • n represents 1 or 2 represents m
  • m represents an integer of 0 to 6.
  • the alkyl group, aryl group or heteroaryl group represented by R 11 may have a substituent.
  • the alkyl group represented by R 11 is preferably an alkyl group having 1 to 30 carbon atoms which may have a substituent.
  • the substituent that the alkyl group represented by R 11 may have include a halogen atom, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, and an aminocarbonyl group. Is mentioned.
  • the alkyl group represented by R 11 is methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl.
  • the aryl group represented by R 11 is preferably an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • substituent that the aryl group represented by R 11 may have include a halogen atom, an alkyl group, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, Examples thereof include an aminocarbonyl group, a sulfonic acid group, an aminosulfonyl group, and an alkoxysulfonyl group.
  • aryl group represented by R 11 a phenyl group, p-methylphenyl group, p-chlorophenyl group, pentachlorophenyl group, pentafluorophenyl group, o-methoxyphenyl group, and p-phenoxyphenyl group are preferable.
  • the heteroaryl group represented by R 11 is preferably a heteroaryl group having 4 to 30 carbon atoms which may have a substituent.
  • substituent that the heteroaryl group represented by R 11 may have include a halogen atom, an alkyl group, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, and an aryloxycarbonyl group.
  • the heteroaryl group represented by R 11 may have at least one heteroaromatic ring.
  • the heteroaromatic ring and the benzene ring may be It may be condensed.
  • the heteroaryl group represented by R 11 include a thiophene ring, a pyrrole ring, a thiazole ring, an imidazole ring, a furan ring, a benzothiophene ring, a benzothiazole ring, and a benzimidazole ring, which may have a substituent.
  • R 12 is preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom or an alkyl group.
  • one or two of R 12 present in the compound is an alkyl group, an aryl group or a halogen atom, and one is an alkyl group. More preferably an aryl group or a halogen atom, and particularly preferably one is an alkyl group and the rest is a hydrogen atom.
  • the alkyl group or aryl group represented by R 12 may have a substituent. Examples of the substituent that the alkyl group or aryl group represented by R 12 may have include the same groups as the substituent that the alkyl group or aryl group in R 1 may have.
  • the alkyl group represented by R 12 is preferably an alkyl group having 1 to 12 carbon atoms which may have a substituent. It is more preferably an alkyl group having 1 to 6 carbon atoms which may have a group.
  • Examples of the alkyl group represented by R 12 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, n-hexyl group, allyl group, A chloromethyl group, a bromomethyl group, a methoxymethyl group, and a benzyl group are preferable, and a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, an s-butyl group, and an n-hexyl group.
  • a group is more preferable, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-hexyl group are more preferable, and a methyl group is particularly preferable.
  • the aryl group represented by R 12 is preferably an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • the aryl group represented by R 12 is preferably a phenyl group, a p-methylphenyl group, an o-chlorophenyl group, a p-chlorophenyl group, an o-methoxyphenyl group, or a p-phenoxyphenyl group.
  • the halogen atom represented by R 12 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a chlorine atom and a bromine atom are preferable.
  • X represents O or S, and is preferably O.
  • the ring containing X as a ring member is a 5-membered ring or a 6-membered ring.
  • n represents 1 or 2, and when X is O, n is preferably 1, and when X is S, n is 2 is preferred.
  • the alkyl group and alkyloxy group represented by R 16 may have a substituent.
  • the alkyl group represented by R 16 is preferably an alkyl group having 1 to 30 carbon atoms which may have a substituent.
  • the substituent that the alkyl group represented by R 16 may have include a halogen atom, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, and an aminocarbonyl group. Is mentioned.
  • examples of the alkyl group represented by R 16 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and an s-butyl group.
  • the alkyloxy group represented by R 16 is preferably an alkyloxy group having 1 to 30 carbon atoms which may have a substituent.
  • substituents that the alkyloxy group represented by R 16 may have include a halogen atom, alkyloxy group, aryloxy group, alkylthio group, arylthio group, alkyloxycarbonyl group, aryloxycarbonyl group, aminocarbonyl Groups.
  • the alkyloxy group represented by R 16 is a methyloxy group, an ethyloxy group, a butyloxy group, a hexyloxy group, a phenoxyethyloxy group, or a trichloromethyloxy group. Or an ethoxyethyloxy group is preferable.
  • the aminosulfonyl group for R 16 include a methylaminosulfonyl group, a dimethylaminosulfonyl group, a phenylaminosulfonyl group, a methylphenylaminosulfonyl group, and an aminosulfonyl group.
  • Examples of the alkoxysulfonyl group represented by R 16 include a methoxysulfonyl group, an ethoxysulfonyl group, a propyloxysulfonyl group, and a butyloxysulfonyl group.
  • m represents an integer of 0 to 6, preferably an integer of 0 to 2, more preferably 0 or 1, and 0. It is particularly preferred.
  • the compound represented by the formula (OS-103) is particularly preferably a compound represented by the following formula (OS-106), (OS-110) or (OS-111).
  • the compound represented by OS-104) is particularly preferably a compound represented by the following formula (OS-107), and the compound represented by the formula (OS-105) is represented by the following formula (OS-108). ) Or (OS-109) is particularly preferable.
  • R 11 represents an alkyl group, an aryl group or a heteroaryl group
  • R 17 represents a hydrogen atom or a bromine atom
  • R 18 represents a hydrogen atom
  • R 19 represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group
  • 20 represents a hydrogen atom or a methyl group.
  • R 11 in the formulas (OS-106) to (OS-111) has the same meaning as R 11 in the formulas (OS-103) to (OS-105), and preferred embodiments thereof are also the same.
  • R 17 in the formula (OS-106) represents a hydrogen atom or a bromine atom, and is preferably a hydrogen atom.
  • R 18 in the formulas (OS-106) to (OS-111) represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogen atom, a chloromethyl group, a bromomethyl group, a bromoethyl group, a methoxymethyl group, a phenyl group or Represents a chlorophenyl group, preferably an alkyl group having 1 to 8 carbon atoms, a halogen atom or a phenyl group, more preferably an alkyl group having 1 to 8 carbon atoms, and an alkyl group having 1 to 6 carbon atoms. More preferred is a methyl group.
  • R 19 in the formulas (OS-108) and (OS-109) represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group, and is preferably a hydrogen atom.
  • R 20 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
  • the oxime steric structure (E, Z) may be either one or a mixture.
  • oxime sulfonate compounds represented by the above formulas (OS-103) to (OS-105) include the following exemplified compounds, but the present invention is not limited thereto.
  • oxime sulfonate compound having at least one oxime sulfonate group is a compound represented by the following formula (OS-101).
  • R 11 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, a sulfo group, a cyano group, an aryl group, or a heteroaryl group.
  • R 12 represents an alkyl group or an aryl group.
  • X is -O -, - S -, - NH -, - NR 15 -, - CH 2 -, - CR 16 H- or -CR 16 R 17 - represents, in each of R 15 ⁇ R 17 independently represent an alkyl Represents a group or an aryl group.
  • R 21 to R 24 are each independently a hydrogen atom, halogen atom, alkyl group, alkenyl group, alkoxy group, amino group, alkoxycarbonyl group, alkylcarbonyl group, arylcarbonyl group, amide group, sulfo group, cyano group or aryl. Represents a group.
  • R 21 to R 24 may be bonded to each other to form a ring.
  • R 21 to R 24 are preferably a hydrogen atom, a halogen atom or an alkyl group, and an embodiment in which at least two of R 21 to R 24 are bonded to each other to form an aryl group is also preferred. Among these, an embodiment in which R 21 to R 24 are all hydrogen atoms is preferable from the viewpoint of sensitivity. Any of the above-described substituents may further have a substituent.
  • the compound represented by the formula (OS-101) is more preferably a compound represented by the following formula (OS-102).
  • R 11, R 12 and R 21 ⁇ R 24 has the same meaning as R 11, R 12 and R 21 ⁇ R 24 in each formula (OS-101), preferred examples also It is the same.
  • R 11 in the formula (OS-101) and the formula (OS-102) is a cyano group or an aryl group is more preferable, represented by the formula (OS-102), and R 11 is a cyano group, phenyl
  • the embodiment which is a group or a naphthyl group is most preferred.
  • the steric structure (E, Z, etc.) of the oxime or benzothiazole ring may be either one or a mixture.
  • b-9, b-16, b-31, and b-33 are preferable from the viewpoint of achieving both sensitivity and stability.
  • the photosensitive resin composition of the present invention preferably contains no 1,2-quinonediazide compound as an acid generator sensitive to actinic rays.
  • the reason is that the 1,2-quinonediazide compound generates a carboxy group by a sequential photochemical reaction, but its quantum yield is 1 or less and is less sensitive than the oxime sulfonate compound.
  • the oxime sulfonate compound acts as a catalyst for the deprotection of the acidic group protected by the acid generated in response to the actinic ray, so that a large number of acids generated by the action of one photon It contributes to the deprotection reaction, and the quantum yield exceeds 1, for example, a large value such as the power of 10, and it is presumed that high sensitivity is obtained as a result of so-called chemical amplification.
  • the oxime sulfonate compound since the oxime sulfonate compound has a broad ⁇ -conjugated system, it has absorption up to the long wavelength side, which is very not only in the deep ultraviolet (DUV) and i-line but also in the g-line. Shows high sensitivity.
  • the photosensitive resin composition of the present invention can obtain an acid decomposability equivalent to or higher than that of acetal or ketal by using a tetrahydrofuranyl group as an acid decomposable group in the specific resin. Thereby, an acid-decomposable group can be consumed reliably in a shorter post-bake. Furthermore, by using the oxime sulfonate compound, which is a radiation-sensitive acid generator, in combination, the sulfonic acid generation rate is increased, so that the generation of acid is promoted and the decomposition of the acid-decomposable group of the resin is promoted.
  • disassembling an oxime sulfonate compound produces
  • numerator Therefore The diffusibility in a cured film becomes high, and it can make it more highly sensitive.
  • the cross-linking reaction by the cross-linkable group of the specific resin proceeds without delay, and a highly adhesive cured film can be obtained.
  • Component B may be used alone or in combination of two or more. It can also be used in combination with other types of specific acid generators.
  • component B is preferably used in an amount of 0.1 to 10% by weight, preferably 0.5 to 10% by weight, based on the total solid content of the photosensitive resin composition. Is more preferable.
  • the photosensitive resin composition of the present invention can contain other components.
  • a development accelerator is preferably contained from the viewpoint of sensitivity
  • a solvent is preferably contained from the viewpoint of coatability
  • a crosslinking agent is preferably contained from the viewpoint of film properties.
  • the photosensitive resin composition of the present invention preferably contains an adhesion improver from the viewpoint of substrate adhesion, preferably contains a basic compound from the viewpoint of liquid storage stability, and from the viewpoint of coatability. It is preferable to contain a surfactant.
  • the photosensitive resin composition of the present invention includes an antioxidant, a plasticizer, a thermal radical generator, a thermal acid generator, an acid multiplier, an ultraviolet absorber, a thickener, and an organic material.
  • known additives such as inorganic suspending agents can be added.
  • the photosensitive resin composition of the present invention preferably contains a solvent.
  • the photosensitive resin composition of the present invention is preferably prepared as a solution in which optional components of the specific resin and the specific acid generator, which are essential components, and various additives are dissolved in a solvent.
  • solvents can be used, such as ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene glycol monoalkyl.
  • Ethers propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ether Examples include acetates, esters, ketones, amides, lactones and the like.
  • Examples of the solvent used in the photosensitive resin composition of the present invention include (1) ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, and ethylene glycol monobutyl ether.
  • ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, and ethylene glycol monobutyl ether.
  • ethylene glycol dialkyl ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether; (3) ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, ethylene Ethylene glycol monoalkyl ether acetate such as glycol monobutyl ether acetate (4) Propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether; (5) propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol Propylene glycol dialkyl ethers such as monomethyl ether and diethylene glycol monoethyl ether;
  • Propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate; (7) diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl Diethylene glycol dialkyl ethers such as methyl ether; (8) diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monopropyl ether acetate, diethylene glycol monobutyl ether acetate, etc.
  • Dipropylene glycol monoalkyl ethers such as dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monobutyl ether;
  • Dipropylene glycol dimethyl ether Dipropylene glycol dialkyl ethers such as dipropylene glycol diethyl ether and dipropylene glycol ethyl methyl ether;
  • Dipropylene glycol monoalkyl ether acetates such as dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monopropyl ether acetate, dipropylene glycol monobutyl ether acetate; (12) methyl lactate, lactic acid Lactic acid esters such as ethyl, n-propyl lactate, isopropyl lactate, n-butyl lactate, isobutyl lactate, n-amyl lactate, isoamyl lactate; (13) n-butyl acetate, isobutyl acetate, n-amyl acetate, isoamyl acetate, N-hexyl acetate, 2-ethylhexyl acetate, ethyl propionate, n-propyl propionate, isopropyl propionate, n-butyl prop
  • Ketones such as methyl ethyl ketone, methyl propyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, 2-heptanone, 3-heptanone, 4-heptanone, cyclohexanone;
  • N-methylformamide, N, N-dimethyl examples include amides such as formamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpyrrolidone; and (17) lactones such as ⁇ -butyrolactone.
  • Benzyl alcohol, anisole, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, ethylene carbonate, propylene carbonate and the like can also be added.
  • propylene glycol monoalkyl ether acetates and / or diethylene glycol dialkyl ethers are preferable, and diethylene glycol ethyl methyl ether and / or propylene glycol monomethyl ether acetate are particularly preferable.
  • These solvents can be used alone or in combination of two or more.
  • the solvent content in the photosensitive resin composition of the present invention is preferably 1 to 3,000 parts by weight, more preferably 5 to 2,000 parts by weight per 100 parts by weight of the specific resin. More preferably, it is ⁇ 1,500 parts by weight.
  • the photosensitive resin composition of the present invention preferably contains a development accelerator.
  • a development accelerator any compound having a development acceleration effect can be used, but a compound having at least one group selected from the group of carboxy group, phenolic hydroxyl group, and alkyleneoxy group is preferable. A compound having a carboxy group or a phenolic hydroxyl group is more preferred, and a compound having a phenolic hydroxyl group is most preferred.
  • the molecular weight of the development accelerator is preferably 100 to 2,000, more preferably 150 to 1,500, and particularly preferably 150 to 1,000.
  • development accelerators include those having an alkyleneoxy group such as polyethylene glycol, polyethylene glycol monomethyl ether, polyethylene glycol dimethyl ether, polyethylene glycol glyceryl ester, polypropylene glycol glyceryl ester, polypropylene glycol diglyceryl ester, polybutylene glycol, Examples thereof include polyethylene glycol-bisphenol A ether, polypropylene glycol-bisphenol A ether, polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, and compounds described in JP-A-9-222724. Examples of compounds having a carboxy group include compounds described in JP-A No. 2000-66406, JP-A No. 9-6001, JP-A No. 10-20501, JP-A No.
  • Examples of those having a phenolic hydroxyl group include JP-A-2005-346024, JP-A-10-133366, JP-A-9-194415, JP-A-9-222724, JP-A-11-171810, Examples thereof include compounds described in JP-A-2007-121766, JP-A-9-297396, JP-A-2003-43679, and the like.
  • a phenol compound having 2 to 10 benzene rings is preferable, and a phenol compound having 2 to 5 benzene rings is more preferable.
  • Particularly preferred is a phenolic compound disclosed as a dissolution accelerator in JP-A-10-133366.
  • a development accelerator may be used individually by 1 type, and can also use 2 or more types together.
  • the addition amount of the development accelerator in the photosensitive resin composition of the present invention is preferably 0.1 to 30 parts by weight, preferably 0.2 to 30 parts by weight, when the specific resin is 100 parts by weight, from the viewpoints of sensitivity and residual film ratio. 20 parts by weight is more preferable, and 0.5 to 10 parts by weight is most preferable.
  • the photosensitive resin composition of this invention contains a crosslinking agent as needed.
  • a crosslinking agent include a compound having two or more epoxy groups or oxetanyl groups in the molecule described below, an alkoxymethyl group-containing crosslinking agent, or a compound having at least one ethylenically unsaturated double bond. Can be added.
  • these crosslinking agents particularly preferred are compounds having two or more epoxy groups or oxetanyl groups in the molecule.
  • the addition amount of the crosslinking agent in the photosensitive resin composition of the present invention is preferably 0.05 to 50 parts by weight, and preferably 0.5 to 44 parts by weight with respect to the total solid content of the photosensitive resin composition. More preferred is 3 to 40 parts by weight. By adding in this range, a cured film having excellent mechanical strength and solvent resistance can be obtained.
  • JER827, JER828, JER834, JER1001, JER1002, JER1003, JER1055, JER1007, JER1009, JER1010 (above, manufactured by Japan Epoxy Resin Co., Ltd.), EPICLON860, EPICLON1050, EPICLON1051, EPICLON1051, EPICLON1051
  • bisphenol F type epoxy resins such as JER806, JER807, JER4004, JER4005, JER4007, JER4010 (above, Japan Epoxy Resin Co., Ltd.), EPICLON830, EPICLON835 (above, DIC Co., Ltd.), LCE-21, RE-602S (above, Nippon Kayaku Co., Ltd.)
  • phenol novolac type epoxy resins JER152, JER154, JER157S70, JER157S65 (above, manufactured by Japan Epoxy Resin Co., Ltd.
  • ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation) and the like. These can be used alone or in combination of two or more.
  • bisphenol A type epoxy resin preferred are bisphenol A type epoxy resin, bisphenol F type epoxy resin, and phenol novolac type epoxy resin.
  • a bisphenol A type epoxy resin is particularly preferable.
  • the compound having two or more oxetanyl groups in the molecule Aron oxetane OXT-121, OXT-221, OX-SQ, and PNOX (manufactured by Toagosei Co., Ltd.) can be used. Moreover, it is preferable to use the compound containing an oxetanyl group individually or in mixture with the compound containing an epoxy group.
  • the addition amount of the compound having two or more epoxy groups or oxetanyl groups in the molecule to the photosensitive resin composition of the present invention is preferably 1 to 50 parts by weight when the total amount of the specific resin is 100 parts by weight, 3 to 30 parts by weight is more preferable.
  • alkoxymethylated melamine, alkoxymethylated benzoguanamine, alkoxymethylated glycoluril, alkoxymethylated urea and the like are preferable. These can be obtained by converting the methylol group of methylolated melamine, methylolated benzoguanamine, methylolated glycoluril, or methylolated urea to an alkoxymethyl group, respectively.
  • the type of the alkoxymethyl group is not particularly limited, and examples thereof include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, and a butoxymethyl group.
  • alkoxymethylated melamine, alkoxymethylated benzoguanamine, and alkoxymethylated glycoluril are mentioned as preferred crosslinking agents, and alkoxymethylated glycoluril is particularly preferable from the viewpoint of transparency.
  • alkoxymethyl group-containing crosslinking agents are available as commercial products.
  • Cymel 300, 301, 303, 370, 325, 327, 701, 266, 267, 238, 1141, 272, 202, 1156, 1158, 1123, 1170, 1174, UFR65, 300 manufactured by Mitsui Cyanamid Co., Ltd.
  • Nicarax MX-750, -032, -706, -708, -40, -31, -270, -280, -290, Nicarac MS-11, Nicarak MW-30HM, -100LM, -390 (above, manufactured by Sanwa Chemical Co., Ltd.) and the like can be preferably used.
  • the addition amount of the alkoxymethyl group-containing crosslinking agent is 0.05 to 50 parts by weight with respect to 100 parts by weight of the specific resin.
  • the amount is 0.5 to 10 parts by weight.
  • a (meth) acrylate compound such as a monofunctional (meth) acrylate, a bifunctional (meth) acrylate, or a trifunctional or higher (meth) acrylate is preferably used.
  • monofunctional (meth) acrylates include 2-hydroxyethyl (meth) acrylate, carbitol (meth) acrylate, isobornyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, and 2- (meth) acryloyloxyethyl.
  • Examples include -2-hydroxypropyl phthalate.
  • Examples of the bifunctional (meth) acrylate include ethylene glycol (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, polypropylene glycol di (meth) acrylate, Examples include tetraethylene glycol di (meth) acrylate, bisphenoxyethanol full orange acrylate, and bisphenoxyethanol full orange acrylate.
  • Examples of the tri- or higher functional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tri ((meth) acryloyloxyethyl) phosphate, pentaerythritol tetra (meth) acrylate, Examples thereof include dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate. These compounds having at least one ethylenically unsaturated double bond are used singly or in combination of two or more.
  • the proportion of the compound having at least one ethylenically unsaturated double bond in the photosensitive resin composition of the present invention is preferably 50 parts by weight or less, based on 100 parts by weight of the specific resin, and 30 parts by weight. The following is more preferable.
  • the heat resistance and surface hardness of the cured film obtained from the photosensitive resin composition of the present invention can be improved. it can.
  • a thermal radical generator described later When adding a compound having at least one ethylenically unsaturated double bond, it is preferable to add a thermal radical generator described later.
  • the photosensitive resin composition of the present invention preferably contains an adhesion improving agent.
  • the adhesion improver that can be used in the photosensitive resin composition of the present invention is an inorganic substance serving as a substrate, for example, a silicon compound such as silicon, silicon oxide, or silicon nitride, a metal such as gold, copper, or aluminum and an insulating film. It is a compound that improves adhesion. Specific examples include silane coupling agents and thiol compounds.
  • the silane coupling agent as an adhesion improving agent used in the present invention is for the purpose of modifying the interface, and any known silane coupling agent can be used without any particular limitation.
  • Preferred examples of the silane coupling agent include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltriacoxysilane, ⁇ -glycidoxypropylalkyldialkoxysilane, ⁇ - Methacryloxypropyltrialkoxysilane, ⁇ -methacryloxypropylalkyldialkoxysilane, ⁇ -chloropropyltrialkoxysilane, ⁇ -mercaptopropyltrialkoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrialkoxysilane, vinyltri An alkoxysilane is mentioned.
  • ⁇ -glycidoxypropyltrialkoxysilane and ⁇ -methacryloxypropyltrialkoxysilane are more preferable, and ⁇ -glycidoxypropyltrialkoxysilane is more preferable.
  • These can be used alone or in combination of two or more. These are effective in improving the adhesion to the substrate and are also effective in adjusting the taper angle with the substrate.
  • the content of the adhesion improving agent in the photosensitive resin composition of the present invention is preferably 0.1 to 20 parts by weight, and more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the specific resin.
  • the photosensitive resin composition of the present invention preferably contains a basic compound.
  • the basic compound can be arbitrarily selected from those used in chemically amplified resists. Examples thereof include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, and quaternary ammonium salts of carboxylic acids.
  • aliphatic amines examples include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, triethanolamine, and dicyclohexylamine. , Dicyclohexylmethylamine and the like.
  • aromatic amine examples include aniline, benzylamine, N, N-dimethylaniline, diphenylamine and the like.
  • heterocyclic amine examples include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, piperazine, morpholine, 4-methylmorpholine, 1,5-diazabicyclo [4.3.0] -5-nonene, 1,8-diazabicyclo [5.3.0] -7 -Undecene.
  • Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, tetra-n-hexylammonium hydroxide, and the like.
  • Examples of the quaternary ammonium salt of carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, and tetra-n-butylammonium benzoate.
  • the basic compounds that can be used in the present invention may be used singly or in combination of two or more. However, it is preferable to use two or more in combination, and it is more preferable to use two in combination. Preferably, two kinds of heterocyclic amines are used in combination.
  • the content of the basic compound in the photosensitive resin composition of the present invention is preferably 0.001 to 1 part by weight, and 0.002 to 0.2 part by weight with respect to 100 parts by weight of the specific resin. It is more preferable.
  • the photosensitive resin composition of the present invention preferably contains a surfactant.
  • a surfactant any of anionic, cationic, nonionic, or amphoteric surfactants can be used, but a preferred surfactant is a nonionic surfactant.
  • nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, fluorine-based and silicone surfactants. .
  • the photosensitive resin composition of the present invention more preferably contains a fluorine-based surfactant and / or a silicone-based surfactant as the surfactant.
  • fluorosurfactants and silicone surfactants for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950, Surfactants described in JP-A-63-34540, JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, and JP-A-2001-330953 are listed. Commercially available surfactants can also be used.
  • Examples of commercially available surfactants that can be used include F-top EF301, EF303 (above, Shin-Akita Kasei Co., Ltd.), Florard FC430, 431 (above, made by Sumitomo 3M Ltd.), MegaFuck F171, F173, F176, F189, R08 (above, manufactured by DIC Corporation), Surflon S-382, SC101, 102, 103, 104, 105, 106 (above, manufactured by Asahi Glass Co., Ltd.), PolyFox series (produced by OMNOVA), etc. Fluorine surfactants or silicone surfactants can be mentioned. Polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be used as a silicone surfactant.
  • the structural unit A and the structural unit B represented by the following formula (1) are included, and the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent.
  • THF tetrahydrofuran
  • a preferred example is a copolymer having (Mw) of 1,000 or more and 10,000 or less.
  • R 1 and R 3 each independently represent a hydrogen atom or a methyl group
  • R 2 represents a linear alkylene group having 1 to 4 carbon atoms
  • R 4 represents a hydrogen atom or carbon number
  • 1 represents an alkyl group having 4 or less
  • L represents an alkylene group having 3 to 6 carbon atoms
  • p and q are weight percentages representing a polymerization ratio
  • p is a numerical value of 10% to 80% by weight.
  • Q represents a numerical value of 20 wt% or more and 90 wt% or less
  • r represents an integer of 1 or more and 18 or less
  • n represents an integer of 1 or more and 10 or less.
  • the L is preferably a branched alkylene group represented by the following formula (2).
  • R 5 in formula (2) represents an alkyl group having 1 to 4 carbon atoms, and is preferably an alkyl group having 1 to 3 carbon atoms in terms of compatibility and wettability with respect to the coated surface. More preferred is an alkyl group of 3.
  • the weight average molecular weight (Mw) of the copolymer is more preferably from 1,500 to 5,000.
  • These surfactants can be used individually by 1 type or in mixture of 2 or more types.
  • the addition amount of the surfactant in the photosensitive resin composition of the present invention is preferably 10 parts by weight or less, more preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the specific resin. More preferably, the content is 0.01 to 1 part by weight.
  • the photosensitive resin composition of the present invention may contain an antioxidant.
  • an antioxidant a well-known antioxidant can be contained. By adding an antioxidant, there is an advantage that coloring of the cured film can be prevented, or a decrease in film thickness due to decomposition can be reduced, and heat resistant transparency is excellent.
  • antioxidants include phosphorus antioxidants, hydrazides, hindered amine antioxidants, sulfur antioxidants, phenolic antioxidants, ascorbic acids, zinc sulfate, sugars, nitrites, sulfites. Examples thereof include salts, thiosulfates, and hydroxylamine derivatives.
  • a phenolic antioxidant is particularly preferable from the viewpoint of coloring the cured film and reducing the film thickness.
  • antioxidants examples include ADK STAB AO-60, ADK STAB AO-80 (manufactured by ADEKA Corporation), and Irganox 1098 (manufactured by Ciba Japan Co., Ltd.).
  • the content of the antioxidant is preferably 0.1 to 6% by weight, more preferably 0.2 to 5% by weight, based on the total solid content of the photosensitive resin composition. It is particularly preferably 5 to 4% by weight. By setting it within this range, sufficient transparency of the formed film can be obtained, and the sensitivity at the time of pattern formation becomes good.
  • antioxidants As additives other than antioxidants, various ultraviolet absorbers described in “New Development of Polymer Additives (Nikkan Kogyo Shimbun Co., Ltd.)”, metal deactivators, and the like are used in the present invention. You may add to a resin composition.
  • the photosensitive resin composition of the present invention may contain a plasticizer.
  • the plasticizer include dibutyl phthalate, dioctyl phthalate, didodecyl phthalate, polyethylene glycol, glycerin, dimethyl glycerin phthalate, dibutyl tartrate, dioctyl adipate, and triacetyl glycerin.
  • the plasticizer content in the photosensitive resin composition of the present invention is preferably 0.1 to 30 parts by weight, and more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the specific resin.
  • the photosensitive resin composition of the present invention may contain a thermal radical generator, and when it contains an ethylenically unsaturated compound such as the aforementioned compound having at least one ethylenically unsaturated double bond, It is preferable to contain a thermal radical generator.
  • a thermal radical generator in the present invention, a known thermal radical generator can be used.
  • the thermal radical generator is a compound that generates radicals by heat energy and initiates or accelerates the polymerization reaction of the polymerizable compound. By adding a thermal radical generator, the obtained cured film becomes tougher and heat resistance and solvent resistance may be improved.
  • Preferred thermal radical generators include aromatic ketones, onium salt compounds, organic peroxides, thio compounds, hexaarylbiimidazole compounds, ketoxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds, carbon Examples thereof include compounds having a halogen bond, azo compounds, and bibenzyl compounds.
  • a thermal radical generator may be used individually by 1 type, and it is also possible to use 2 or more types together.
  • the content of the thermal radical generator in the photosensitive resin composition of the present invention is preferably 0.01 to 50 parts by weight, preferably 0.1 to 20 parts by weight, when the specific resin is 100 parts by weight, from the viewpoint of improving film physical properties. More preferred are parts by weight, and most preferred is 0.5 to 10 parts by weight.
  • a thermal acid generator may be used in order to improve film physical properties and the like at low temperature curing.
  • the thermal acid generator that can be used in the present invention is a compound that generates an acid by heat, and is usually a compound having a thermal decomposition point of 130 ° C. to 250 ° C., preferably 150 ° C. to 220 ° C., For example, it is a compound that generates a low nucleophilic acid such as sulfonic acid, carboxylic acid, disulfonylimide and the like by heating.
  • the acid generated by the thermal acid generator sulfonic acid, an alkyl or aryl carboxylic acid substituted with an electron withdrawing group, disulfonylimide substituted with an electron withdrawing group, and the like having a strong pKa of 2 or less are preferable.
  • the electron withdrawing group include a halogen atom such as a fluorine atom, a haloalkyl group such as a trifluoromethyl group, a nitro group, and a cyano group.
  • a sulfonic acid ester that does not substantially generate an acid by irradiation with exposure light and generates an acid by heat.
  • the fact that acid is not substantially generated by exposure light exposure can be determined by no change in the spectrum by IR spectrum or NMR spectrum measurement before and after the exposure of the compound.
  • the molecular weight of the sulfonic acid ester is preferably 230 to 1,000, and more preferably 230 to 800.
  • a commercially available one may be used, or one synthesized by a known method may be used.
  • the sulfonic acid ester can be synthesized, for example, by reacting a sulfonyl chloride or sulfonic acid anhydride with a corresponding polyhydric alcohol under basic conditions.
  • the content of the thermal acid generator in the photosensitive resin composition is preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight, when the specific resin is 100 parts by weight.
  • an acid proliferating agent in the photosensitive resin composition of the present invention, can be used for the purpose of improving sensitivity.
  • the acid proliferating agent that can be used in the present invention is a compound that can further generate an acid by an acid-catalyzed reaction to increase the acid concentration in the reaction system, and is a compound that exists stably in the absence of an acid. is there.
  • the acid strength is preferably 3 or less as an acid dissociation constant, pKa, and particularly preferably 2 or less.
  • the acid proliferating agent include paragraphs 0203 to 0223 of JP-A-10-1508, paragraphs 0016 to 0055 of JP-A-10-282642, and page 39, line 12 of JP-A-9-512498. Examples of the compounds described on page 47, line 2 are listed.
  • the acid proliferating agent that can be used in the present invention include pKa such as dichloroacetic acid, trichloroacetic acid, methanesulfonic acid, benzenesulfonic acid, trifluoromethanesulfonic acid, and phenylphosphonic acid, which are decomposed by an acid generated from the acid generator. Examples include compounds that generate 3 or less acids.
  • the content of the acid multiplication agent in the photosensitive resin composition is 10 to 1,000 parts by weight with respect to 100 parts by weight of the specific acid generator. From the viewpoint of the dissolution contrast between the exposed and unexposed parts. And preferably 20 to 500 parts by weight.
  • the method for forming a cured film of the present invention is not particularly limited except that the photosensitive resin composition of the present invention is used, but preferably includes the following steps (1) to (5).
  • (1) Application process for applying the photosensitive resin composition of the present invention onto a substrate (2) Solvent removal process for removing the solvent from the applied photosensitive resin composition (3) Photosensitive resin composition from which the solvent has been removed (4) Development step of developing the exposed photosensitive resin composition with an aqueous developer (5)
  • Post-baking step of thermosetting the developed photosensitive resin composition In the method for forming a cured film, after the exposure in the exposure step, the developing step (4) may be performed without performing a heat treatment. Moreover, before the said post-baking process, you may include the process of further exposing (6) the developed photosensitive resin composition to the whole surface. Each step will be described below in order.
  • the photosensitive resin composition of the present invention is preferably applied onto a substrate to form a wet film containing a solvent.
  • the solvent removal step (2) it is preferable to remove the solvent from the applied film by vacuum (vacuum) and / or heating to form a dry coating film on the substrate.
  • the exposure step (3) it is preferable to irradiate the obtained coating film with an actinic ray having a wavelength of 300 nm to 450 nm.
  • the specific acid generator is decomposed to generate an acid. Due to the catalytic action of the generated acid, the acid-decomposable group in the structural unit (a1) contained in the specific resin is decomposed to generate a carboxy group and / or a phenolic hydroxyl group.
  • post exposure bake hereinafter also referred to as “PEB” may be performed as necessary in order to accelerate the decomposition reaction.
  • the acid-decomposable group in the structural unit (a1) in the specific resin has low activation energy for acid decomposition, and is easily decomposed by an acid derived from the specific acid generator by exposure to generate a carboxy group and / or a phenolic hydroxyl group. Therefore, it is not always necessary to perform PEB. Therefore, it is preferable to perform the developing step after the exposure step without performing heat treatment. More specifically, it is preferable to form a positive image by performing development in the development step (4) without performing PEB after the exposure step (3).
  • the temperature for performing PEB is preferably 30 ° C. or higher and 130 ° C. or lower, more preferably 40 ° C. or higher and 110 ° C. or lower, and particularly preferably 50 ° C. or higher and 90 ° C. or lower.
  • a positive image can be formed by removing an exposed area containing a photosensitive resin composition having a carboxy group and / or a phenolic hydroxyl group that is easily dissolved in an alkaline developer.
  • a cured film can be formed by crosslinking the carboxy group and / or phenolic hydroxyl group generated by thermal decomposition of the group with the epoxy group and / or oxetanyl group in the structural unit (a3).
  • This heating is preferably performed at a high temperature of 150 ° C. or more, more preferably 180 to 250 ° C., and particularly preferably 200 to 250 ° C.
  • the heating time can be appropriately set depending on the heating temperature or the like, but is preferably in the range of 10 to 90 minutes.
  • a step of (6) exposing the entire surface of the developed photosensitive resin composition before the post-baking step it is preferable to include a step of (6) exposing the entire surface of the developed photosensitive resin composition before the post-baking step.
  • the crosslinking reaction can be promoted by an acid generated by irradiation with actinic rays.
  • a solvent is mixed with an essential component of the specific resin and the acid generator at a predetermined ratio if necessary, and is stirred and dissolved to prepare a photosensitive resin composition.
  • a photosensitive resin composition can be prepared by preparing a solution in which a specific resin or an acid generator is previously dissolved in a solvent and then mixing them in a predetermined ratio.
  • the solution of the photosensitive resin composition prepared as described above can be used after being filtered using a filter having a pore size of 0.1 ⁇ m or the like.
  • An example of a preferred embodiment of the photosensitive resin composition of the present invention is that the specific resin is contained in the range of 40 to 95% by weight with respect to the total solid content of the photosensitive resin composition, and the specific acid generator is 0.1%. It is an embodiment containing in the range of 1 to 10% by weight.
  • another example of a preferred embodiment of the photosensitive resin composition of the present invention includes a specific resin in a range of 40 to 70% by weight with respect to the total solid content of the photosensitive resin composition, and a specific acid generator. This is an embodiment containing 0.1 to 10% by weight and a crosslinking agent in the range of 3 to 40% by weight.
  • a desired dry coating film can be formed by applying the photosensitive resin composition to a predetermined substrate and removing the solvent by reducing pressure and / or heating (pre-baking).
  • the substrate include a polarizing plate, a glass plate provided with a black matrix layer and a color filter layer as necessary, and a transparent conductive circuit layer in manufacturing a liquid crystal display device.
  • substrate is not specifically limited, For example, methods, such as a slit coat method, a spray method, a roll coat method, a spin coat method, can be used. Among them, the slit coating method is preferable from the viewpoint of being suitable for a large substrate.
  • the large substrate means a substrate having a side of 1 m or more on each side.
  • the heating conditions for the solvent removal step are such that the acid-decomposable group is decomposed in the structural unit (a1) in the specific resin in the unexposed area and the specific resin is not soluble in the alkaline developer.
  • the acid-decomposable group is decomposed in the structural unit (a1) in the specific resin in the unexposed area and the specific resin is not soluble in the alkaline developer.
  • it is preferably about 70 to 120 ° C. for about 30 to 300 seconds.
  • the substrate provided with the dry coating film of the photosensitive resin composition is irradiated with an actinic ray having a predetermined pattern. Exposure may be performed through a mask, or a predetermined pattern may be drawn directly. Actinic rays having a wavelength of 300 nm to 450 nm can be preferably used. You may perform PEB as needed after an exposure process.
  • a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, a laser generator, an LED light source, or the like can be used.
  • actinic rays having wavelengths such as g-line (436 nm), i-line (365 nm), and h-line (405 nm) can be preferably used.
  • Mercury lamps are preferred in that they are suitable for large area exposure compared to lasers.
  • 343 nm and 355 nm are suitably used for a solid (YAG) laser
  • 351 nm (XeF) is suitably used for an excimer laser
  • 375 nm and 405 nm are suitably used for a semiconductor laser.
  • 355 nm and 405 nm are more preferable from the viewpoints of stability and cost.
  • the coating can be irradiated with the laser once or a plurality of times.
  • the energy density per pulse of the laser is preferably 0.1 mJ / cm 2 or more and 10,000 mJ / cm 2 or less.
  • 0.3 mJ / cm 2 or more is more preferable, and 0.5 mJ / cm 2 or more is most preferable.
  • 1,000 mJ / cm 2 is preferable.
  • cm 2 or less is more preferable, and 100 mJ / cm 2 or less is most preferable.
  • the pulse width is preferably 0.1 nsec or more and 30,000 nsec or less.
  • the frequency of the laser is preferably 1 Hz or more and 50,000 Hz or less, and more preferably 10 Hz or more and 1,000 Hz or less. Furthermore, the frequency of the laser is more preferably 10 Hz or more, most preferably 100 Hz or more for shortening the exposure processing time, and more preferably 10,000 Hz or less for improving the alignment accuracy during the scan exposure. 000 Hz or less is most preferable.
  • a laser is preferable in that the focus can be easily reduced and a mask for forming a pattern in the exposure process is not necessary and the cost can be reduced.
  • the exposure apparatus that can be used in the present invention is not particularly limited, but commercially available exposure apparatuses include Callisto (buoy technology), AEGIS (buoy technology) and DF2200G (Dainippon). Screen Manufacturing Co., Ltd.) can be used. Further, devices other than those described above are also preferably used. Moreover, irradiation light can also be adjusted through spectral filters, such as a long wavelength cut filter, a short wavelength cut filter, and a band pass filter, as needed.
  • the exposed area is removed using a basic developer to form an image pattern.
  • the basic compound used in the developer include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium bicarbonate and bicarbonate Alkali metal bicarbonates such as potassium; ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline hydroxide; aqueous solutions such as sodium silicate and sodium metasilicate can be used.
  • An aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant to the alkaline aqueous solution can also be used as a developer.
  • the pH of the developer is preferably 10.0 to 14.0.
  • the development time is preferably 30 to 180 seconds, and the development method may be any of a liquid piling method, a dip method, a shower method, and the like. After the development, washing with running water is performed for 10 to 90 seconds to form a desired pattern.
  • ⁇ Post-bake process crosslinking process
  • a heating device such as a hot plate or an oven
  • a predetermined time at a predetermined temperature, for example, 180 to 250 ° C., for example, 5 to 60 minutes on the hot plate
  • the acid-decomposable group in the specific resin is decomposed by heat treatment for 30 to 90 minutes to generate a carboxy group and / or a phenolic hydroxyl group, and an epoxy group and / or oxetanyl in the specific resin.
  • a protective film and an interlayer insulating film excellent in heat resistance, hardness and the like can be formed.
  • the transparency can be improved by performing the heat treatment in a nitrogen atmosphere.
  • the substrate on which the pattern is formed is re-exposed with actinic rays and then post-baked (re-exposure / post-bake) to generate an acid from the acid generator (B) present in the unexposed portion. It is preferable to function as a catalyst for promoting crosslinking.
  • the formation method of the cured film in this invention includes the said (6) process reexposed with actinic light between a image development process and a post-baking process.
  • the exposure in the re-exposure step may be performed by the same means as in the exposure step.
  • the entire surface of the substrate on which the film is formed by the photosensitive resin composition of the present invention is exposed. It is preferable.
  • a preferable exposure amount in the re-exposure step is 100 to 1,000 mJ / cm 2 .
  • the cured film of the present invention is a cured film obtained by curing the photosensitive resin composition of the present invention, and can be suitably used as an interlayer insulating film. Moreover, it is preferable that the cured film of this invention is a cured film obtained by the formation method of the cured film of this invention.
  • the photosensitive resin composition of the present invention a cured film having a high sensitivity, generation of residues during development, and a surface having excellent smoothness is obtained, and the cured film is used as an interlayer insulating film.
  • the interlayer insulating film using the photosensitive resin composition of the present invention has high transparency, can form a good pattern shape, and has excellent surface smoothness. It is useful for applications of display devices and liquid crystal display devices.
  • a cured film formed using the photosensitive resin composition of the present invention is formed as a planarizing film, a protective film, or an interlayer insulating film.
  • a photosensitive resin composition of this invention and the cured film of this invention are not limited to the said use, It can be used for various uses.
  • a spacer for keeping the thickness of a liquid crystal layer in a liquid crystal display device constant, a microlens provided on a color filter in a solid-state imaging device, or the like. be able to.
  • FIG. 1 is a conceptual diagram showing an example of an organic EL display device using the photosensitive resin composition of the present invention.
  • a schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided.
  • a bottom gate type TFT 1 is formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 is formed so as to cover the TFT 1.
  • a contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height: 1.0 ⁇ m) connected to the TFT 1 through the contact hole is formed on the insulating film 3.
  • the wiring 2 is used to connect the TFT 1 with an organic EL element formed between the TFTs 1 or in a later process.
  • a planarizing film 4 is formed on the insulating film 3 in a state where the unevenness due to the wiring 2 is embedded.
  • a bottom emission type organic EL element is formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7.
  • the first electrode 5 corresponds to the anode of the organic EL element.
  • An insulating film 8 having a shape covering the periphery of the first electrode 5 is formed.
  • a hole transport layer, an organic light-emitting layer, and an electron transport layer are sequentially deposited through a desired pattern mask, and then a first layer made of Al is formed on the entire surface above the substrate.
  • An active matrix organic material in which two electrodes are formed and sealed by bonding using a sealing glass plate and an ultraviolet curable epoxy resin, and each organic EL element is connected to a TFT 1 for driving it.
  • An EL display device is obtained.
  • FIG. 2 is a conceptual cross-sectional view showing an example of the active matrix type liquid crystal display device 10.
  • the color liquid crystal display device 10 is a liquid crystal panel having a backlight unit 12 on the back surface, and the liquid crystal panel includes all pixels disposed between two glass substrates 14 and 15 having a polarizing film attached thereto.
  • the elements of the TFT 16 corresponding to are arranged.
  • Each element formed on the glass substrate is wired with an ITO transparent electrode 19 that forms a pixel electrode through a contact hole 18 formed in the cured film 17.
  • an RGB color filter 22 in which a liquid crystal 20 layer and a black matrix are arranged is provided.
  • MATHF 2-tetrahydrofuranyl methacrylate (synthetic product)
  • AATHF 2-tetrahydrofuranyl acrylate (synthetic product)
  • MAMTHF 5-methyl-2-tetrahydrofuranyl methacrylate (synthetic product)
  • MAA Methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
  • ITA Itaconic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
  • MAEVE 1-ethoxyethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • MACHVE 1-cyclohexylethyl methacrylate (synthetic product)
  • MABVE 1-tert-butylethyl methacrylate (synthetic product)
  • OXE-30 3-ethy
  • HS-EDM 38.52 g
  • MATHF 13.42 g
  • OXE-30 16.21 g
  • HEMA 3.38 g
  • V-65 3.34 g, 7 mol% based on monomer
  • n2 The weight average molecular weight was 7,600.
  • the acid value was 33.9 mgKOH / g.
  • HS-EDM 34.10 g
  • MATHF (12.49 g)
  • GMA 13.36 g
  • HEMA 3.38 g
  • V-65 3.34 g, 7 mol% based on monomer
  • m2 The weight average molecular weight was 7,900.
  • the acid value was 35.4 mgKOH / g.
  • HS-EDM Synthesis of Comparative Resin R2> HS-EDM (34.57 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. In the solution, MAA (1.72 g), MATHF (12.49 g), HMA (10.22 g), HEMA (5.21 g), V-65 (3.34 g, 7 mol% with respect to the monomer) were added to HS-EDM. (34.57 g) was added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, a comparative resin R2 was obtained. The acid value was 37.9 mgKOH / g, and the weight average molecular weight was 7,300.
  • the organic layer part was taken out.
  • the organic layer was taken out and distilled under reduced pressure to obtain a PGMEA solution.
  • the resulting liquid is a resin solution in which the phenolic hydroxyl group of poly (p-hydroxystyrene) is partially etherified with 1-ethoxyethyl, and this resin is analyzed by 1 H-NMR. 50% of the hydroxyl groups were converted to 1-ethoxyethyl ether.
  • This resin is referred to as a comparative resin R9.
  • the acid value of this resin was 213.99 mg KOH / g.
  • Comparative Synthesis Example 10 Synthesis of Comparative Resin R10> HS-EDM (50.0 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. MACHVE (20.0 g), St (2.5 g), GMA (27.5 g), HEMA (5.0 g), V-65 (3.5 g, 7 mol% based on monomer) were added to the solution to HS-EDM. (50.0 g) was added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, a comparative resin R10 was obtained. The acid value was 0 mgKOH / g, and the weight average molecular weight was 9,700.
  • reaction solution was warmed to room temperature and stirred for 1 hour.
  • p-toluenesulfonyl chloride (1.9 g) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred for 1 hour while maintaining 10 ° C. or lower.
  • 80 mL of water was added and stirred at 0 ° C. for 1 hour.
  • 60 mL of isopropyl alcohol (IPA) was added, heated to 50 ° C., stirred for 1 hour, filtered while hot, and dried to obtain 1.8 g of B8.
  • IPA isopropyl alcohol
  • the reaction solution was poured into 1N HCl aqueous solution (500 mL), and the precipitated crystals were filtered and washed with water to obtain a crude carboxylic acid, and then 30 g of polyphosphoric acid was added and reacted at 170 ° C. for 30 minutes.
  • the reaction solution was poured into water (300 mL), and ethyl acetate (300 mL) was added for liquid separation, and the organic layer was concentrated and purified by silica gel column chromatography to obtain a ketone compound (10 g).
  • Sodium acetate (30.6 g), hydroxylamine hydrochloride (25.9 g), and magnesium sulfate (4.5 g) were added to a suspension of the resulting ketone compound (10.0 g) and methanol (100 mL) for 24 hours. Heated to reflux. After standing to cool, water (150 mL) and ethyl acetate (150 mL) were added for liquid separation, and the organic layer was separated four times with 80 mL of water, concentrated and purified by silica gel column chromatography to obtain an oxime compound (5.8 g). Got. The obtained oxime (3.1 g) was sulfonated in the same manner as B8 to obtain B10 (3.2 g).
  • Examples 1 to 50 and Comparative Examples 1 to 14 (1) Preparation of photosensitive resin composition After mixing each component shown in Table 1 and Table 2 into a uniform solution, it was filtered using a polytetrafluoroethylene filter having a pore size of 0.2 ⁇ m, Photosensitive resin compositions of Examples 1 to 50 and Comparative Examples 1 to 14 were prepared.
  • B1 CGI1397 (the following structure, manufactured by Ciba Japan)
  • B2 CGI1325 (the following structure, manufactured by Ciba Japan Co., Ltd.)
  • B3 CGI725 (the following structure, manufactured by Ciba Japan Co., Ltd.)
  • B4 OS-2 (Synthetic product)
  • B5 OS-16 (composite product)
  • B6 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate
  • B7 commercial product of a composition of m / p-cresol novolak and 1,2-naphthoquinonediazide-5-sulfonate (Manufactured by Tokyo Ohka Kogyo Co., Ltd.)
  • B8 The following compound (synthetic product)
  • B9 The following compound (synthetic product)
  • B10 The following compound (synthetic product)
  • B11 The following compound (synthetic
  • sensitivity the optimum exposure amount when resolving a 10 ⁇ m line and space at 1: 1 was defined as sensitivity.
  • the sensitivity was evaluated according to the following evaluation criteria. A: 15mJ / cm 2 less than B: 15 ⁇ 30mJ / cm 2 C: 30-50 mJ / cm 2 D: Over 50 mJ / cm 2
  • the light transmittance was in the range of 400 to 800 nm using a spectrophotometer “150-20 type double beam (manufactured by Hitachi, Ltd.)”. Measured at a wavelength of.
  • the evaluation of the transmittance at 400 nm at that time is the transparency evaluation. If this value is 90% or more, it can be said that the heat resistant transparency is good.
  • the relative dielectric constant was measured at a measurement frequency of 1 MHz using CVmap92A (made by Four Dimensions Inc.). The results are shown in Tables 3 and 4. This value is preferably as low as possible. When the value is 3.9 or less, it can be said that the relative dielectric constant of the cured film is good.
  • each photosensitive resin composition was slit-coated and then pre-baked on a hot plate at 95 ° C. for 90 seconds to form a coating film having a thickness of 3 ⁇ m.
  • the obtained coating film was exposed to an optimal exposure amount pattern in a circular shape through a mask for forming a 10 ⁇ m contact hole, and rinsed after development in the same manner as the sensitivity evaluation.
  • About the residue of the edge part of the obtained circular pattern (cured film) the distance from the place where the cured film was completely formed to the place where the film disappeared was observed using an optical microscope.
  • the evaluation criteria are as follows. A: Less than 1.0 ⁇ m B: 1.0 to 2.0 ⁇ m C: Remaining film from the edge of the cured film to the outside of 2.0 ⁇ m
  • Tables 3 and 4 collectively show the evaluation results of the respective evaluations in the photosensitive resin compositions of Examples 1 to 50 and Comparative Examples 1 to 14.
  • Example 51 The photosensitive resin composition solution used in Example 2 was slit coated on a silicon wafer having a silicon oxide film, and then pre-baked on a hot plate at 95 ° C. for 90 seconds to form a coating film having a thickness of 3 ⁇ m. Next, a predetermined photomask was set through the coating film at an interval of 150 ⁇ m, and a laser having a wavelength of 355 nm was irradiated with an exposure amount of 15 mJ / cm 2 .
  • the laser device used was “AEGIS” manufactured by Buoy Technology Co., Ltd. (wavelength 355 nm, pulse width 6 nsec), and the exposure amount was measured using “PE10B-V2” manufactured by OPHIR.
  • the resist film was developed with a 0.4% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 80 seconds and rinsed with ultrapure water for 1 minute. By these operations, a 10 ⁇ m line and space could be resolved 1: 1. Further, except that the exposure was changed from an i-line stepper to a UV-LED light source exposure machine, the same evaluation as in the above (2) sensitivity evaluation (without PEB) was carried out. It was.
  • Example 52 An organic EL display device using a thin film transistor (TFT) was produced by the following method (see FIG. 1).
  • a bottom gate type TFT 1 was formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 was formed so as to cover the TFT 1.
  • a contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height 1.0 ⁇ m) connected to the TFT 1 through the contact hole is formed on the insulating film 3. .
  • the wiring 2 is used to connect the TFT 1 to the organic EL element formed between the TFTs 1 or in a later process.
  • the flattening layer 4 was formed on the insulating film 3 in a state where the unevenness due to the wiring 2 was embedded.
  • the planarizing film 4 is formed on the insulating film 3 by spin-coating the photosensitive resin composition of Example 9 on a substrate, pre-baking on a hot plate (90 ° C. ⁇ 2 minutes), and then applying high pressure from above the mask. After irradiating 15 mJ / cm 2 (illuminance 20 mW / cm 2 ) with i-line (365 nm) using a mercury lamp, a pattern was formed by developing with an alkaline aqueous solution, and heat treatment was performed at 230 ° C. for 60 minutes.
  • the applicability when applying the photosensitive resin composition was good, and no wrinkles or cracks were observed in the cured film obtained after exposure, development and baking. Furthermore, the average step of the wiring 2 was 500 nm, and the thickness of the prepared planarizing film 4 was 2,000 nm.
  • a bottom emission type organic EL element was formed on the obtained planarization film 4.
  • a first electrode 5 made of ITO was formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7.
  • a resist was applied, prebaked, exposed through a mask having a desired pattern, and developed.
  • pattern processing was performed by wet etching using an ITO etchant.
  • the resist pattern was stripped using a resist stripping solution (mixed solution of monoethanolamine and dimethyl sulfoxide (DMSO)).
  • the first electrode 5 thus obtained corresponds to the anode of the organic EL element.
  • an insulating film 8 having a shape covering the periphery of the first electrode 5 was formed.
  • the insulating film 8 was formed by the same method as described above using the photosensitive resin composition of Example 7. By providing this insulating film 8, it is possible to prevent a short circuit between the first electrode 5 and the second electrode formed in the subsequent process. Furthermore, a hole transport layer, an organic light emitting layer, and an electron transport layer were sequentially deposited through a desired pattern mask in a vacuum deposition apparatus. Next, a second electrode made of Al was formed on the entire surface above the substrate. The obtained board
  • substrate was taken out from the vapor deposition machine, and it sealed by bonding together using the glass plate for sealing, and an ultraviolet curable epoxy resin.
  • Example 53 An organic EL display device was produced in the same manner as in Example 52 except that the photosensitive resin composition of Example 9 and the photosensitive resin group of Example 7 were both changed to the photosensitive resin composition of Example 22. .
  • the obtained organic EL display device showed good display characteristics and was found to be a highly reliable organic EL display device.
  • Example 54 An organic EL display device was produced in the same manner as in Example 52 except that the photosensitive resin composition of Example 9 and the photosensitive resin group of Example 7 were both changed to the photosensitive resin composition of Example 35. .
  • the obtained organic EL display device showed good display characteristics and was found to be a highly reliable organic EL display device.
  • Example 55 An organic EL display device was produced in the same manner as in Example 52 except that the photosensitive resin composition of Example 9 and the photosensitive resin group of Example 7 were both changed to the photosensitive resin composition of Example 41. .
  • the obtained organic EL display device showed good display characteristics and was found to be a highly reliable organic EL display device.
  • Example 56 In the active matrix type liquid crystal display device shown in FIGS. 1 and 2 of Japanese Patent No. 332003, a cured film 17 was formed as an interlayer insulating film as follows, and a liquid crystal display device of Example 17 was obtained. That is, using the photosensitive resin composition of Example 9, the cured film 17 was formed as an interlayer insulating film by the same method as the method for forming the planarizing film 4 of the organic EL display device in Example 52. When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed good display characteristics and high reliability.
  • TFT thin film transistor
  • 2 wiring
  • 3 insulating film
  • 4 planarization film
  • 5 first electrode
  • 6 glass substrate
  • 7 contact hole
  • 8 insulating film
  • 10 liquid crystal display device
  • 12 Backlight unit
  • 15 Glass substrate
  • 16 TFT
  • 17 Cured film
  • 18 Contact hole
  • 19 Transparent ITO electrode
  • 20 Liquid crystal
  • 22 Color filter

Abstract

Disclosed is a positive photosensitive resin composition which has high sensitivity and is suppressed in generation of residue during the development. The positive photosensitive resin composition is capable of forming a cured film that has a surface with excellent smoothness. Specifically disclosed is a positive photosensitive resin composition which is characterized by containing (component A) a resin that has a constituent unit represented by formula (1), a constituent unit having an acidic group and a constituent unit having a crosslinkable group, and (component B) an acid generator that has an oxime sulfonate group. In formula (1), R1 represents a hydrogen atom or an alkyl group; L1 represents a carbonyl group or a phenylene group; and R21-R27 each independently represents a hydrogen atom or an alkyl group.

Description

ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、液晶表示装置、及び、有機EL表示装置Positive photosensitive resin composition, method for forming cured film, cured film, liquid crystal display device, and organic EL display device
 本発明は、ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、液晶表示装置、及び、有機EL表示装置に関する。 The present invention relates to a positive photosensitive resin composition, a method for forming a cured film, a cured film, a liquid crystal display device, and an organic EL display device.
 従来、液晶表示素子、集積回路素子、固体撮像素子、有機ELなどの電子部品においては、一般に、電子部品表面の平坦性を付与するための平坦化膜、電子部品の劣化や損傷を防ぐための保護膜や絶縁性を保つための層間絶縁膜を形成する際に感光性樹脂組成物が使用される。例えば、TFT型液晶表示素子は、ガラス基板上に偏光板を設け、酸化インジウムスズ(ITO)等の透明導電回路層及び薄膜トランジスター(TFT)を形成し、層間絶縁膜で被覆して背面板とする一方、ガラス基板上に偏光板を設け、必要に応じてブラックマトリックス層及びカラーフィルタ層のパターンを形成し、更に透明導電回路層、層間絶縁膜を順次形成して上面板とし、この背面板と上面板とをスペーサーを介して対向させて両板間に液晶を封入して製造される。 Conventionally, in an electronic component such as a liquid crystal display element, an integrated circuit element, a solid-state imaging element, and an organic EL, generally, a flattening film for imparting flatness to the surface of the electronic component, and for preventing deterioration and damage of the electronic component A photosensitive resin composition is used when forming a protective film or an interlayer insulating film for maintaining insulation. For example, a TFT type liquid crystal display element is provided with a polarizing plate on a glass substrate, a transparent conductive circuit layer such as indium tin oxide (ITO) and a thin film transistor (TFT) are formed, and covered with an interlayer insulating film, On the other hand, a polarizing plate is provided on a glass substrate, a pattern of a black matrix layer and a color filter layer is formed as necessary, and a transparent conductive circuit layer and an interlayer insulating film are sequentially formed as an upper surface plate. And a top plate are opposed to each other through a spacer, and liquid crystal is sealed between the plates.
 感光性樹脂組成物として、例えば、特許文献1には、アルカリ可溶性アクリル系高分子バインダー、キノンジアジド基含有化合物、架橋剤、および光酸発生剤を含有して成る感光性樹脂組成物が提案されている。
 特許文献2には、架橋剤、酸発生剤、およびそれ自体はアルカリ水溶液に不溶又は難溶であるが、酸の作用により解裂しうる保護基を有し、該保護基が解裂した後はアルカリ水溶液に可溶性となる樹脂を含有することを特徴とするポジ型化学増幅レジスト組成物が提案されている。
 特許文献3には、アセタール構造および/またはケタール構造並びにエポキシ基を含有する樹脂、酸発生剤を含有することを特徴とする感放射線性樹脂組成物が提案されている。
 特許文献4には、基材上に露光感度の異なる2層のポジ型感光性樹脂層を、低感度のポジ型感光性樹脂層が前記基材及び高感度のポジ型感光性樹脂層間に位置するように積層する工程、この積層された2層のポジ型感光性樹脂層を露光する工程、該2層のポジ型感光性樹脂層を露光後加熱する工程、該2層のポジ型感光性樹脂層を現像する工程、該2層のポジ型感光性樹脂層をポストベークする工程を含む透明性硬化膜の製造方法であって、該低感度のポジ型感光性樹脂層が下記の(A)成分、(B)成分、(C)成分及び(D)成分を含有するポジ型感光性樹脂層であることを特徴とする、透明性硬化膜の製造方法が開示されている。
(A)成分:アルカリ可溶性樹脂
(B)成分:1分子中二個以上のビニルエーテル基を有する化合物
(C)成分:ポストベークにより(A)成分と架橋反応する化合物
(D)成分:光酸発生剤
As a photosensitive resin composition, for example, Patent Document 1 proposes a photosensitive resin composition containing an alkali-soluble acrylic polymer binder, a quinonediazide group-containing compound, a crosslinking agent, and a photoacid generator. Yes.
In Patent Document 2, a crosslinking agent, an acid generator, and itself is insoluble or hardly soluble in an alkaline aqueous solution, but has a protecting group that can be cleaved by the action of an acid, and the protecting group is cleaved. Has proposed a positive chemically amplified resist composition characterized by containing a resin that is soluble in an alkaline aqueous solution.
Patent Document 3 proposes a radiation-sensitive resin composition characterized by containing an acetal structure and / or a ketal structure, a resin containing an epoxy group, and an acid generator.
In Patent Document 4, two layers of positive photosensitive resin layers having different exposure sensitivities are provided on a base material, and a low sensitivity positive photosensitive resin layer is positioned between the base material and a high sensitivity positive photosensitive resin layer. A step of exposing the two layers of the positive photosensitive resin layer, a step of heating the two layers of the positive photosensitive resin layer after exposure, and a step of exposing the two layers of the positive photosensitive resin layer. A method for producing a transparent cured film comprising a step of developing a resin layer and a step of post-baking the two positive photosensitive resin layers, wherein the low-sensitivity positive photosensitive resin layer comprises the following (A ) Component, (B) component, (C) component, and (D) component are positive photosensitive resin layers, The manufacturing method of a transparent cured film characterized by the above-mentioned is disclosed.
(A) Component: Alkali-soluble resin (B) Component: Compound having two or more vinyl ether groups in the molecule (C) Component: Compound that crosslinks with (A) component by post-baking (D) Component: Photoacid generation Agent
特開平10-153854号公報Japanese Patent Laid-Open No. 10-153854 特開2004-4669号公報JP 2004-4669 A 特開2004-264623号公報JP 2004-264623 A 国際公開第2008/035672号パンフレットInternational Publication No. 2008/035672 Pamphlet
 ポジ型感光性樹脂組成物により、層間絶縁膜等に適用される硬化膜を形成するに際しては、高感度が望まれる。現像時における残渣の発生が抑制されること、及び形成された硬化膜表面が平滑であることが要求される。このうち、従来より、更に酸発生剤に対して高感度化することは、残渣残存の懸念が完全に払拭される、高精細なパターニングが形成できる、計算値と同等の物性が得られるため望みの硬化膜表面の平滑性が得られる、という観点から非常に望ましい。
 しかしながら、従前の感光性樹脂組成物は、感度、残渣の抑制、硬化膜表面の平滑性について、その総てを満足するものではなく、更なる改良が望まれているのが現状である。
When forming a cured film to be applied to an interlayer insulating film or the like with a positive photosensitive resin composition, high sensitivity is desired. It is required that the generation of residues during development is suppressed and that the formed cured film surface is smooth. Of these, higher sensitivity to the acid generator than before is desired because high-definition patterning can be formed that completely eliminates the concern of residual residues, and physical properties equivalent to the calculated values can be obtained. From the viewpoint that the smoothness of the cured film surface can be obtained.
However, the conventional photosensitive resin compositions do not satisfy all of the sensitivity, the suppression of residues, and the smoothness of the cured film surface, and the current situation is that further improvements are desired.
 本発明は、上記従来における状況に鑑みなされたものであり、以下の課題を解決するものである。
 すなわち、本発明が解決しようとする課題は、高い感度を有し、現像時における残渣の発生が抑制され、かつ、平滑性に優れた表面を有する硬化膜を形成し得るポジ型感光性樹脂組成物を提供することにある。
 また、本発明が解決しようとする別の課題は、本発明のポジ型感光性樹脂組成物を用いて硬化膜を形成する方法、該硬化膜の形成方法により形成された硬化膜、並びに、該硬化膜を具備した液晶表示装置及び有機EL表示装置を提供することにある。
The present invention has been made in view of the above-described conventional situation, and solves the following problems.
That is, the problem to be solved by the present invention is a positive photosensitive resin composition that has a high sensitivity, suppresses the generation of residues during development, and can form a cured film having a smooth surface. To provide things.
Another problem to be solved by the present invention is a method of forming a cured film using the positive photosensitive resin composition of the present invention, a cured film formed by the method of forming the cured film, and the An object of the present invention is to provide a liquid crystal display device and an organic EL display device having a cured film.
 本発明の上記課題は、以下の<1>、<17>、<18>、<20>、<22>又は<23>に記載の手段により解決された。好ましい実施態様である<2>~<16>、<19>及び<21>とともに以下に記載する。
 <1>(成分A)下記式(1)で表される構成単位と酸性基を有する構成単位と架橋性基を有する構成単位とを有する樹脂、及び、(成分B)オキシムスルホネート基を有する酸発生剤を含有することを特徴とするポジ型感光性樹脂組成物、
The above-described problems of the present invention have been solved by means described in the following <1>, <17>, <18>, <20>, <22> or <23>. It is described below together with <2> to <16>, <19> and <21> which are preferred embodiments.
<1> (Component A) Resin having a structural unit represented by the following formula (1), a structural unit having an acidic group, and a structural unit having a crosslinkable group, and (Component B) an acid having an oxime sulfonate group A positive photosensitive resin composition comprising a generator;
Figure JPOXMLDOC01-appb-C000004
(式(1)中、R1は水素原子又はアルキル基を表し、L1はカルボニル基又はフェニレン基を表し、R21~R27はそれぞれ独立に、水素原子又はアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000004
(In formula (1), R 1 represents a hydrogen atom or an alkyl group, L 1 represents a carbonyl group or a phenylene group, and R 21 to R 27 each independently represents a hydrogen atom or an alkyl group.)
 <2>前記R1が、メチル基である、上記<1>に記載のポジ型感光性樹脂組成物、
 <3>前記R21~R27のうち1つ以上が、水素原子である、上記<1>又は<2>に記載のポジ型感光性樹脂組成物、
 <4>前記R21~R27の全てが、水素原子である、上記<1>~<3>のいずれか1つに記載のポジ型感光性樹脂組成物、
 <5>前記L1が、カルボニル基である、上記<1>~<4>のいずれか1つに記載のポジ型感光性樹脂組成物、
 <6>前記酸性基が、カルボキシ基又はフェノール性水酸基である、上記<1>~<5>のいずれか1つに記載のポジ型感光性樹脂組成物、
 <7>前記酸性基が、カルボキシ基である、上記<6>に記載のポジ型感光性樹脂組成物、
 <8>前記架橋性基が、エポキシ基又はオキセタニル基である、上記<1>~<7>のいずれか1つに記載のポジ型感光性樹脂組成物、
 <9>前記架橋性基が、オキセタニル基である、上記<8>に記載のポジ型感光性樹脂組成物、
 <10>前記酸性基がカルボキシ基であり、かつ、前記架橋性基がオキセタニル基である、上記<7>又は<9>に記載のポジ型感光性樹脂組成物、
 <11>前記成分(B)が、下記式(OS-103)、式(OS-104)、及び、式(OS-105)で表される化合物よりなる群から選ばれた少なくとも1種の化合物である、上記<1>~<10>のいずれか1つに記載のポジ型感光性樹脂組成物、
<2> The positive photosensitive resin composition according to <1>, wherein R 1 is a methyl group,
<3> The positive photosensitive resin composition according to the above <1> or <2>, wherein one or more of R 21 to R 27 are hydrogen atoms,
<4> The positive photosensitive resin composition according to any one of <1> to <3>, wherein all of R 21 to R 27 are hydrogen atoms.
<5> The positive photosensitive resin composition according to any one of the above <1> to <4>, wherein L 1 is a carbonyl group,
<6> The positive photosensitive resin composition according to any one of the above <1> to <5>, wherein the acidic group is a carboxy group or a phenolic hydroxyl group,
<7> The positive photosensitive resin composition according to <6>, wherein the acidic group is a carboxy group,
<8> The positive photosensitive resin composition according to any one of the above <1> to <7>, wherein the crosslinkable group is an epoxy group or an oxetanyl group,
<9> The positive photosensitive resin composition according to <8>, wherein the crosslinkable group is an oxetanyl group,
<10> The positive photosensitive resin composition according to the above <7> or <9>, wherein the acidic group is a carboxy group, and the crosslinkable group is an oxetanyl group,
<11> The component (B) is at least one compound selected from the group consisting of compounds represented by the following formula (OS-103), formula (OS-104), and formula (OS-105) The positive photosensitive resin composition according to any one of the above <1> to <10>,
Figure JPOXMLDOC01-appb-C000005
(式(OS-103)~(OS-105)中、R11はアルキル基、アリール基又はヘテロアリール基を表し、複数存在するR12はそれぞれ独立に、水素原子、アルキル基、アリール基又はハロゲン原子を表し、複数存在するR16はそれぞれ独立に、ハロゲン原子、アルキル基、アルキルオキシ基、スルホン酸基、アミノスルホニル基又はアルコキシスルホニル基を表し、XはO又はSを表し、nは1又は2を表し、mは0~6の整数を表す。)
Figure JPOXMLDOC01-appb-C000005
(In the formulas (OS-103) to (OS-105), R 11 represents an alkyl group, an aryl group or a heteroaryl group, and a plurality of R 12 are each independently a hydrogen atom, an alkyl group, an aryl group or a halogen atom. A plurality of R 16 each independently represent a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group, X represents O or S, and n represents 1 or 2 represents m, and m represents an integer of 0 to 6.)
 <12>前記成分Bが、下記式(2)で表されるオキシムスルホネート化合物である、上記<1>~<10>のいずれか1つに記載のポジ型感光性樹脂組成物、 <12> The positive photosensitive resin composition according to any one of the above <1> to <10>, wherein the component B is an oxime sulfonate compound represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000006
(式(2)中、R4はアルキル基又はアリール基を表し、Xはそれぞれ独立に、アルキル基、アルコキシ基、又は、ハロゲン原子を表し、mは0~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000006
(In the formula (2), R 4 represents an alkyl group or an aryl group, X represents each independently an alkyl group, an alkoxy group, or a halogen atom, and m represents an integer of 0 to 3.)
 <13>ポジ型感光性樹脂組成物の全固形分に対し、前記成分Aを40~95重量%の範囲で含み、かつ、前記成分Bを0.1~10重量%の範囲で含む、上記<1>~<12>のいずれか1つに記載のポジ型感光性樹脂組成物、
 <14>架橋剤を更に含む、上記<1>~<13>のいずれか1つに記載のポジ型感光性樹脂組成物、
 <15>ポジ型感光性樹脂組成物の全固形分に対し、前記成分Aを40~70重量%の範囲で含み、前記成分Bを0.1~10重量%の範囲で含み、かつ、前記架橋剤を3~40重量%の範囲で含む、上記<14>に記載のポジ型感光性樹脂組成物、
 <16>溶剤を更に含む、上記<1>~<15>のいずれか1つに記載のポジ型感光性樹脂組成物、
 <17>上記<1>~<16>のいずれか1つに記載のポジ型感光性樹脂組成物に対して、光及び熱の少なくとも一方を付与して硬化させた硬化膜、
 <18>(1)上記<16>に記載のポジ型感光性樹脂組成物を基板上に塗布する塗布工程、(2)塗布されたポジ型感光性樹脂組成物から溶剤を除去する溶剤除去工程、(3)溶剤を除去されたポジ型感光性樹脂組成物を活性放射線で露光する露光工程、(4)露光されたポジ型感光性樹脂組成物を水性現像液で現像する現像工程、及び、(5)現像されたポジ型感光性樹脂組成物を熱硬化するポストベーク工程、を含む硬化膜の形成方法、
 <19>前記露光工程における露光後に、加熱処理を行わずに前記現像工程を行う、上記<18>に記載の硬化膜の形成方法、
 <20>上記<18>又は<19>に記載の硬化膜の形成方法により形成された硬化膜、
 <21>層間絶縁膜である上記<17>又は<20>に記載の硬化膜、
 <22>上記<17>又は<20>に記載の硬化膜を具備する液晶表示装置、
 <23>上記<17>又は<20>に記載の硬化膜を具備する有機EL表示装置。
<13> The component A is contained in the range of 40 to 95% by weight and the component B is contained in the range of 0.1 to 10% by weight with respect to the total solid content of the positive photosensitive resin composition. <1> to the positive photosensitive resin composition according to any one of <12>,
<14> The positive photosensitive resin composition according to any one of the above <1> to <13>, further comprising a crosslinking agent,
<15> The component A is contained in the range of 40 to 70% by weight, the component B is contained in the range of 0.1 to 10% by weight, and the total solid content of the positive photosensitive resin composition, and The positive photosensitive resin composition according to the above <14>, comprising a crosslinking agent in the range of 3 to 40% by weight;
<16> The positive photosensitive resin composition according to any one of <1> to <15>, further including a solvent,
<17> A cured film obtained by applying and curing at least one of light and heat to the positive photosensitive resin composition according to any one of <1> to <16> above,
<18> (1) Application step of applying the positive photosensitive resin composition according to <16> above on a substrate, (2) Solvent removal step of removing the solvent from the applied positive photosensitive resin composition (3) an exposure step of exposing the positive photosensitive resin composition from which the solvent has been removed with actinic radiation, (4) a development step of developing the exposed positive photosensitive resin composition with an aqueous developer, and (5) a post-baking step of thermosetting the developed positive photosensitive resin composition, a method for forming a cured film,
<19> The method for forming a cured film according to <18>, wherein the development step is performed without performing a heat treatment after the exposure in the exposure step.
<20> a cured film formed by the method for forming a cured film according to <18> or <19>,
<21> The cured film according to <17> or <20>, which is an interlayer insulating film,
<22> A liquid crystal display device comprising the cured film according to <17> or <20> above,
<23> An organic EL display device comprising the cured film according to <17> or <20>.
 本発明によれば、高い感度を有し、現像時における残渣の発生が抑制され、かつ、平滑性に優れた表面を有する硬化膜を形成し得るポジ型感光性樹脂組成物を提供することができる。
 また、本発明によれば、本発明のポジ型感光性樹脂組成物を用いて硬化膜を形成する方法、該硬化膜の形成方法により形成された硬化膜、並びに、該硬化膜を具備した液晶表示装置及び有機EL表示装置を提供することができる。
According to the present invention, it is possible to provide a positive photosensitive resin composition that can form a cured film having high sensitivity, generation of a residue during development, and a surface having excellent smoothness. it can.
Further, according to the present invention, a method of forming a cured film using the positive photosensitive resin composition of the present invention, a cured film formed by the method of forming the cured film, and a liquid crystal provided with the cured film A display device and an organic EL display device can be provided.
有機EL表示装置の一例の構成概念図を示す。ボトムエミッション型の有機EL表示装置における基板の模式的断面図を示し、平坦化膜4を有している。1 shows a conceptual diagram of a configuration of an example of an organic EL display device. A schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided. 液晶表示装置の一例の構成概念図を示す。液晶表示装置におけるアクティブマトリックス基板の模式的断面図を示し、層間絶縁膜である硬化膜17を有している。1 is a conceptual diagram of a configuration of an example of a liquid crystal display device. The schematic sectional drawing of the active matrix substrate in a liquid crystal display device is shown, and it has the cured film 17 which is an interlayer insulation film.
(ポジ型感光性樹脂組成物)
 以下、本発明のポジ型感光性樹脂組成物(以下、単に「感光性樹脂組成物」ともいう。。)について詳細に説明する。
 本発明のポジ型感光性樹脂組成物は、(成分A)下記式(1)で表される構成単位と酸性基を有する構成単位と架橋性基を有する構成単位とを有する樹脂(以下、適宜「特定樹脂」ともいう。)、及び、(成分B)オキシムスルホネート基を有する酸発生剤(以下、適宜「特定酸発生剤」ともいう。)を含有することを特徴とする。
(Positive photosensitive resin composition)
Hereinafter, the positive photosensitive resin composition of the present invention (hereinafter also simply referred to as “photosensitive resin composition”) will be described in detail.
The positive photosensitive resin composition of the present invention comprises (Component A) a resin having a structural unit represented by the following formula (1), a structural unit having an acidic group, and a structural unit having a crosslinkable group (hereinafter referred to as appropriate). And (component B) an acid generator having an oxime sulfonate group (hereinafter also referred to as “specific acid generator” as appropriate).
Figure JPOXMLDOC01-appb-C000007
(式(1)中、R1は水素原子又はアルキル基を表し、L1はカルボニル基又はフェニレン基を表し、R21~R27はそれぞれ独立に、水素原子又はアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000007
(In formula (1), R 1 represents a hydrogen atom or an alkyl group, L 1 represents a carbonyl group or a phenylene group, and R 21 to R 27 each independently represents a hydrogen atom or an alkyl group.)
 本発明の感光性樹脂組成物は、特定樹脂及び特定酸発生剤を含有することにより、感度に優れたものとなる。また、本発明の感光樹脂組成物は、現像時における残渣の発生が抑制され、かつ、平滑性に優れた表面を有する硬化膜を形成し得る。
 ここで、本発明において「残渣」とは、感光性樹脂組成物を用いてパターン状の硬化膜を形成した際において、該パターン状の硬化膜端部の周縁に存在する残膜を意味する。
 また、硬化膜表面の平滑性は、硬化膜表面の表面粗さ(Ra)をその指標とするものであり、以下では「表面あれ」ともいう場合がある。なお、本明細書における硬化膜表面の表面粗さ(Ra)は、触針式表面粗さ計「P10」(Tencor社製)により測定した値である。
The photosensitive resin composition of this invention becomes the thing excellent in the sensitivity by containing specific resin and a specific acid generator. In addition, the photosensitive resin composition of the present invention can form a cured film having a surface with suppressed generation of residues during development and excellent smoothness.
Here, in the present invention, the “residue” means a residual film present at the periphery of the end of the patterned cured film when a patterned cured film is formed using the photosensitive resin composition.
Further, the smoothness of the cured film surface uses the surface roughness (Ra) of the cured film surface as an index, and may be referred to as “surface roughness” below. The surface roughness (Ra) of the cured film surface in this specification is a value measured by a stylus type surface roughness meter “P10” (manufactured by Tencor).
 本発明の感光性樹脂組成物により得られる硬化膜は、液晶表示装置や有機EL表示装置が備える層間絶縁膜、平坦化膜などとして好適に用いることができる。
 液晶表示装置や有機EL表示装置が備える絶縁膜が平滑性に劣る場合、該絶縁膜上に積層するITO電極の電気抵抗が上昇したり、該絶縁膜上に積層した液晶層中の液晶配向が乱れるといった弊害が発生することがある。この点、本発明の感光性樹脂組成物により得られる硬化膜は、表面の平滑性に優れる(表面あれが無い)ことから、かかる弊害の発生が効果的に抑制される。
 また、本発明の感光性樹脂組成物は、現像時の残渣の発生についても抑制されることから、良好な形状のパターン状の硬化膜形成が可能となる。このことは、例えば、コンタクトホール等を形成する場合において特に有用である。
 本発明の感光性樹脂組成物は、化学増幅型のポジ型感光性樹脂組成物(化学増幅ポジ型感光性樹脂組成物)であることが好ましい。
 以下、本発明の感光性樹脂組成物を構成する特徴的な成分である特定樹脂及び特定酸発生剤について説明する。
The cured film obtained from the photosensitive resin composition of the present invention can be suitably used as an interlayer insulating film, a planarizing film, etc. provided in a liquid crystal display device or an organic EL display device.
When the insulating film provided in the liquid crystal display device or the organic EL display device is inferior in smoothness, the electrical resistance of the ITO electrode laminated on the insulating film is increased, or the liquid crystal alignment in the liquid crystal layer laminated on the insulating film is Defects such as disturbance may occur. In this respect, the cured film obtained from the photosensitive resin composition of the present invention has excellent surface smoothness (no surface roughness), and thus the occurrence of such adverse effects is effectively suppressed.
In addition, since the photosensitive resin composition of the present invention also suppresses the generation of residues during development, it is possible to form a cured film having a good shape. This is particularly useful when, for example, a contact hole is formed.
The photosensitive resin composition of the present invention is preferably a chemically amplified positive photosensitive resin composition (chemically amplified positive photosensitive resin composition).
Hereinafter, the specific resin and the specific acid generator, which are characteristic components constituting the photosensitive resin composition of the present invention, will be described.
 なお、本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 また、本発明に使用する共重合体が含有する構成単位を導入する方法は、重合法でもよく、高分子反応法でもよい。重合法では、所定の官能基を含有するモノマーを予め合成した後に、これらのモノマーを共重合する。高分子反応法では、重合反応を行った後に、得られた共重合体の構成単位に含まれる反応性基を利用して必要な官能基を構成単位中に導入する。ここで、官能基としては、カルボキシ基又はフェノール性水酸基等の酸性基を保護すると同時に強酸の存在下で分解しこれらを遊離するための保護基、エポキシ基又はオキセタニル基などの架橋性基、また、フェノール性水酸基やカルボキシ基のようなアルカリ可溶性基(酸性基)等が例示できる。
In addition, in the description of the group (atomic group) in this specification, the description which does not describe substitution and non-substitution includes what has a substituent with what does not have a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
Further, the method for introducing the structural unit contained in the copolymer used in the present invention may be a polymerization method or a polymer reaction method. In the polymerization method, monomers containing a predetermined functional group are synthesized in advance, and then these monomers are copolymerized. In the polymer reaction method, after a polymerization reaction is performed, a necessary functional group is introduced into the structural unit using a reactive group contained in the structural unit of the obtained copolymer. Here, as the functional group, a protecting group for protecting an acidic group such as a carboxy group or a phenolic hydroxyl group and simultaneously decomposing and releasing them in the presence of a strong acid, a crosslinkable group such as an epoxy group or an oxetanyl group, Examples thereof include alkali-soluble groups (acidic groups) such as phenolic hydroxyl groups and carboxy groups.
(成分A)特定樹脂
 本発明のポジ型感光性樹脂組成物は、(成分A)前記式(1)で表される構成単位と酸性基を有する構成単位と架橋性基を有する構成単位とを有する樹脂を含有する。
 また、前記酸性基を有する構成単位と前記架橋性基を有する構成単位とは、同一の構成単位であってもよい。
 本発明において、特定樹脂は、アルカリ不溶性であり、かつ、式(1)で表される構成単位におけるテトラヒドロフラニル基(以下、「特定酸分解性基」ともいう。)が分解又は解離したときにアルカリ可溶性となる樹脂であることが好ましい。
 ここで、本発明において「アルカリ可溶性」とは、当該化合物(樹脂)の溶液を基板上に塗布し、90℃で2分間加熱することによって形成される当該化合物(樹脂)の塗膜(厚さ3μm)の、23℃における0.4重量%テトラメチルアンモニウムヒドロキシド水溶液に対する溶解速度が、0.01μm/秒以上であることをいい、「アルカリ不溶性」とは、当該化合物(樹脂)の溶液を基板上に塗布し、90℃で2分間加熱することによって形成される当該化合物(樹脂)の塗膜(厚さ3μm)の、23℃における0.4重量%テトラメチルアンモニウムヒドロキシド水溶液に対する溶解速度が、0.01μm/秒未満であることをいう。
 本発明における特定樹脂のアルカリ溶解速度は、0.005μm/秒未満であることがより好ましい。また、特定樹脂の特定酸分解性基が分解したときには、アルカリ溶解速度は0.05μm/秒以上であることが好ましい。
(Component A) Specific Resin The positive photosensitive resin composition of the present invention comprises (Component A) a structural unit represented by the formula (1), a structural unit having an acidic group, and a structural unit having a crosslinkable group. Containing resin.
Moreover, the same structural unit may be sufficient as the structural unit which has the said acidic group, and the structural unit which has the said crosslinkable group.
In the present invention, the specific resin is alkali-insoluble and when a tetrahydrofuranyl group (hereinafter also referred to as “specific acid-decomposable group”) in the structural unit represented by the formula (1) is decomposed or dissociated. A resin that becomes alkali-soluble is preferred.
Here, in the present invention, “alkali-soluble” means a coating film (thickness) of the compound (resin) formed by applying a solution of the compound (resin) on a substrate and heating at 90 ° C. for 2 minutes. 3 μm) at a temperature of 23 ° C. in a 0.4 wt% tetramethylammonium hydroxide aqueous solution is 0.01 μm / second or more. “Alkali insoluble” means that the solution of the compound (resin) Dissolution rate of a coating film (thickness 3 μm) of the compound (resin) formed by coating on a substrate and heating at 90 ° C. for 2 minutes in a 0.4 wt% tetramethylammonium hydroxide aqueous solution at 23 ° C. Is less than 0.01 μm / second.
The alkali dissolution rate of the specific resin in the present invention is more preferably less than 0.005 μm / second. Further, when the specific acid-decomposable group of the specific resin is decomposed, the alkali dissolution rate is preferably 0.05 μm / second or more.
 本発明における特定樹脂は、アクリル系重合体であることが好ましい。
 本発明における「アクリル系重合体」は、付加重合型の樹脂であり、(メタ)アクリル酸及び/又はそのエステルに由来する構成単位を含む重合体であり、(メタ)アクリル酸及び/又はそのエステルに由来する構成単位以外の構成単位、例えば、スチレン類に由来する構成単位やビニル化合物に由来する構成単位等を有していてもよい。
 特定樹脂は、(メタ)アクリル酸及び/又はそのエステルに由来する構成単位を、重合体における全構成単位に対し、50モル%以上有することが好ましく、80モル%以上有することがより好ましく、(メタ)アクリル酸及び/又はそのエステルに由来する構成単位のみからなる重合体であることが特に好ましい。
 なお、「(メタ)アクリル酸及び/又はそのエステルに由来する構成単位」を「アクリル系構成単位」ともいう。また、(メタ)アクリル酸は、メタクリル酸及びアクリル酸を総称するものである。
 また、特定樹脂の酸価は、透明性及び耐熱透明性の観点から、5~110mgKOH/gであることが好ましく、20~90mgKOH/gであることがより好ましく、30~70mgKOH/gであることが更に好ましい。
The specific resin in the present invention is preferably an acrylic polymer.
The “acrylic polymer” in the present invention is an addition polymerization type resin, is a polymer containing a structural unit derived from (meth) acrylic acid and / or its ester, and (meth) acrylic acid and / or its You may have structural units other than the structural unit derived from ester, for example, the structural unit derived from styrene, the structural unit derived from a vinyl compound, etc.
The specific resin preferably has a structural unit derived from (meth) acrylic acid and / or an ester thereof in an amount of 50 mol% or more, more preferably 80 mol% or more, based on all the structural units in the polymer. Particularly preferred is a polymer consisting only of structural units derived from (meth) acrylic acid and / or its ester.
The “structural unit derived from (meth) acrylic acid and / or its ester” is also referred to as “acrylic structural unit”. (Meth) acrylic acid is a generic term for methacrylic acid and acrylic acid.
The acid value of the specific resin is preferably 5 to 110 mgKOH / g, more preferably 20 to 90 mgKOH / g, and more preferably 30 to 70 mgKOH / g from the viewpoint of transparency and heat-resistant transparency. Is more preferable.
〔式(1)で表される構成単位(a1)〕
 特定樹脂は、式(1)で表される構成単位(以下、適宜「構成単位(a1)」ともいう。)を有する。
[Structural Unit (a1) Represented by Formula (1)]
The specific resin has a structural unit represented by the formula (1) (hereinafter also referred to as “structural unit (a1)” as appropriate).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 R1は、水素原子、又は、アルキル基を表す。
 R1におけるアルキル基としては炭素数が1~20の直鎖状、分岐状、環状のアルキル基を挙げることができ、その具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-エチルヘキシル基、2-メチルヘキシル基、シクロヘキシル基、シクロペンチル基、2-ノルボルニル基を挙げることができる。これらアルキル基の中では、炭素数1~12の直鎖状、炭素数3~12の分岐状、又は、炭素数5~10の環状のアルキル基が好ましく、炭素数1~12の直鎖状のアルキル基がより好ましく、メチル基又はエチル基が更に好ましい。
 中でも、R1は、水素原子又はメチル基であることが好ましく、メチル基であることがより好ましい。
 L1は、カルボニル基又はフェニレン基を表し、カルボニル基であることが好ましい。
 R21~R27はそれぞれ独立に、水素原子又はアルキル基を表す。R21~R27におけるアルキル基は、R1と同義であり、好ましい態様も同様である。
 また、分解性、及び、合成上の観点から、R21~R27のうち、1つ以上が水素原子であることが好ましく、R21~R27の全てが水素原子であることがより好ましい。
R 1 represents a hydrogen atom or an alkyl group.
Examples of the alkyl group in R 1 include linear, branched, and cyclic alkyl groups having 1 to 20 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and pentyl. Group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, hexadecyl group, octadecyl group, eicosyl group, isopropyl group, isobutyl group, s-butyl group, t-butyl group And isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclohexyl group, cyclopentyl group and 2-norbornyl group. Among these alkyl groups, a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms, or a cyclic alkyl group having 5 to 10 carbon atoms is preferable, and a linear alkyl group having 1 to 12 carbon atoms is preferable. Are more preferable, and a methyl group or an ethyl group is still more preferable.
Among these, R 1 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group.
L 1 represents a carbonyl group or a phenylene group, and is preferably a carbonyl group.
R 21 to R 27 each independently represents a hydrogen atom or an alkyl group. The alkyl group in R 21 to R 27 has the same meaning as R 1 , and the preferred embodiment is also the same.
Moreover, degradable, and, in view of synthesis, of R 21 ~ R 27, preferably more than one is a hydrogen atom, more preferably all of R 21 ~ R 27 is a hydrogen atom.
 本発明における前記式(1)で表される構成単位では、保護されたカルボキシ基、及び/又は、保護されたフェノール性水酸基を含有する。
 カルボキシ基が保護されることにより、前記式(1)で表される単位を形成することができるカルボン酸モノマーとしては、カルボキシ基が保護されることにより構成単位となり得るものであれば用いることができ、例えば、アクリル酸、メタクリル酸を挙げることができる。また、構成単位としては、これらカルボキシ基が保護されたカルボン酸由来の構成単位を好ましいものとして挙げることができる。
The structural unit represented by the formula (1) in the present invention contains a protected carboxy group and / or a protected phenolic hydroxyl group.
As the carboxylic acid monomer capable of forming the unit represented by the formula (1) by protecting the carboxy group, any monomer can be used as long as it can become a structural unit by protecting the carboxy group. Examples thereof include acrylic acid and methacrylic acid. Moreover, as a structural unit, the structural unit derived from the carboxylic acid by which these carboxy groups were protected can be mentioned as a preferable thing.
 フェノール性水酸基が保護されることにより、前記式(1)で表される構成単位を形成することができるフェノール性水酸基を有するモノマーとしては、フェノール性水酸基が保護されることにより構成単位となり得るものであれば用いることができる。例えば、p-ヒドロキシスチレン、α-メチル-p-ヒドロキシスチレン等のヒドロキシスチレン類等を好ましいものとして挙げることができる。
 これらの中でも、α-メチル-p-ヒドロキシスチレンがより好ましい。
As the monomer having a phenolic hydroxyl group capable of forming the structural unit represented by the formula (1) by protecting the phenolic hydroxyl group, a monomer that can be a structural unit by protecting the phenolic hydroxyl group Can be used. For example, preferred examples include hydroxystyrenes such as p-hydroxystyrene and α-methyl-p-hydroxystyrene.
Among these, α-methyl-p-hydroxystyrene is more preferable.
 構成単位(a1)を形成するために用いられるラジカル重合性単量体は、市販のものを用いてもよいし、公知の方法で合成したものを用いることもできる。例えば、(メタ)アクリル酸を酸触媒の存在下でジヒドロフラン化合物と反応させることにより合成することができる。 As the radical polymerizable monomer used for forming the structural unit (a1), a commercially available one may be used, or one synthesized by a known method may be used. For example, it can be synthesized by reacting (meth) acrylic acid with a dihydrofuran compound in the presence of an acid catalyst.
 また、構成単位、保護されるカルボキシ基又はフェノール性水酸基含有モノマーを後述する構成単位(a2)~(a4)やその前駆体と重合した後に、カルボキシ基又はフェノール性水酸基をジヒドロフラン化合物と反応させることによっても形成することができる。なお、このようにして形成される好ましい構成単位の具体例は、上記ラジカル重合性単量体の好ましい具体例由来の構成単位と同様である。
 構成単位(a1)として特に好ましいものとしては、下記の構成単位が例示できる。
In addition, after the structural unit, the protected carboxy group or the phenolic hydroxyl group-containing monomer are polymerized with the structural units (a2) to (a4) and the precursors described later, the carboxy group or the phenolic hydroxyl group is reacted with the dihydrofuran compound. Can also be formed. In addition, the specific example of the preferable structural unit formed in this way is the same as the structural unit derived from the preferable specific example of the said radical polymerizable monomer.
As the structural unit (a1), particularly preferred are the following structural units.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 特定樹脂を構成する全モノマー単位中、構成単位(a1)を形成するモノマー単位の含有量は、5~60モル%が好ましく、10~50モル%が更に好ましく、10~40モル%が特に好ましい。構成単位(a1)を上記の割合で含有させることにより、高感度でかつ露光ラチチュードが広い感光性樹脂組成物が得られる。 The content of the monomer unit forming the structural unit (a1) in all monomer units constituting the specific resin is preferably 5 to 60 mol%, more preferably 10 to 50 mol%, and particularly preferably 10 to 40 mol%. . By containing the structural unit (a1) at the above ratio, a photosensitive resin composition having high sensitivity and wide exposure latitude can be obtained.
〔酸性基を有する構成単位(a2)〕
 特定樹脂は、酸性基を有する構成単位(以下、適宜「構成単位(a2)」ともいう。)を有する。
 特定樹脂が含む酸性基は、カルボキシ基、カルボン酸無水物残基及びフェノール性水酸基から選ばれる1種以上の酸性基を有する構成単位により、特定樹脂中に含まれることが好ましい。構成単位(a2)としては、カルボキシ基及び/又はフェノール性水酸基を有する構成単位であることがより好ましく、カルボキシ基を有する構成単位であることが更に好ましい。
[Structural unit (a2) having acidic group]
The specific resin has a structural unit having an acidic group (hereinafter also referred to as “structural unit (a2)” as appropriate).
The acidic group contained in the specific resin is preferably contained in the specific resin by a structural unit having one or more acidic groups selected from a carboxy group, a carboxylic acid anhydride residue, and a phenolic hydroxyl group. The structural unit (a2) is more preferably a structural unit having a carboxy group and / or a phenolic hydroxyl group, and still more preferably a structural unit having a carboxy group.
 カルボキシ基を有する構成単位を形成するために用いられるラジカル重合性単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸等のモノカルボン酸;マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸等のジカルボン酸等の不飽和カルボン酸を好ましいものとして挙げることができる。
 また、カルボン酸無水物残基を有する構成単位を形成するために用いられるラジカル重合性単量体としては、例えば、無水マレイン酸、無水イタコン酸等を好ましいものとして挙げることができる。
Examples of the radical polymerizable monomer used to form the structural unit having a carboxy group include monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; maleic acid, fumaric acid, citraconic acid, mesaconic acid, Preferable examples include unsaturated carboxylic acids such as dicarboxylic acids such as itaconic acid.
Moreover, as a radically polymerizable monomer used in order to form the structural unit which has a carboxylic anhydride residue, maleic anhydride, itaconic anhydride, etc. can be mentioned as a preferable thing, for example.
 フェノール性水酸基を有する構成単位を形成するために用いられるラジカル重合性単量体としては、例えば、p-ヒドロキシスチレン、α-メチル-p-ヒドロキシスチレン等のヒドロキシスチレン類、特開2008-40183号公報の段落0011~0016に記載の化合物、特許第2888454号公報の段落0007~0010に記載の4-ヒドロキシ安息香酸誘導体類、4-ヒドロキシ安息香酸とメタクリル酸グリシジルとの付加反応物、4-ヒドロキシ安息香酸とアクリル酸グリシジルとの付加反応物等を好ましいものとして挙げることができる。 Examples of the radical polymerizable monomer used to form a structural unit having a phenolic hydroxyl group include hydroxystyrenes such as p-hydroxystyrene and α-methyl-p-hydroxystyrene, and JP-A-2008-40183. Compounds described in paragraphs 0011 to 0016 of the publication, 4-hydroxybenzoic acid derivatives described in paragraphs 0007 to 0010 of the patent No. 2888454, an addition reaction product of 4-hydroxybenzoic acid and glycidyl methacrylate, 4-hydroxy An addition reaction product of benzoic acid and glycidyl acrylate can be mentioned as a preferable example.
 これらの中でも、メタクリル酸、アクリル酸、特開2008-40183号公報の段落0011~0016に記載の化合物、特許第2888454号公報の段落0007~0010に記載の4-ヒドロキシ安息香酸誘導体類、4-ヒドロキシ安息香酸とメタクリル酸グリシジルとの付加反応物、4-ヒドロキシ安息香酸とアクリル酸グリシジルとの付加反応物が更に好ましく、特開2008-40183号公報の段落0011~0016に記載の化合物、特許第2888454号公報の段落0007~0010に記載の4-ヒドロキシ安息香酸誘導体類、4-ヒドロキシ安息香酸とメタクリル酸グリシジルとの付加反応物、4-ヒドロキシ安息香酸とアクリル酸グリシジルとの付加反応物が特に好ましい。これらの構成単位は、1種単独又は2種類以上を組み合わせて使用することができる。
 構成単位(a2)の好ましい具体例としては、下記の構成単位が例示できる。
Among these, methacrylic acid, acrylic acid, compounds described in paragraphs 0011 to 0016 of JP-A-2008-40183, 4-hydroxybenzoic acid derivatives described in paragraphs 0007 to 0010 of Japanese Patent No. 2888454, An addition reaction product of hydroxybenzoic acid and glycidyl methacrylate, and an addition reaction product of 4-hydroxybenzoic acid and glycidyl acrylate are more preferable. Compounds described in paragraphs 0011 to 0016 of JP-A-2008-40183, In particular, 4-hydroxybenzoic acid derivatives described in paragraphs 0007 to 0010 of No. 2888454, addition reaction product of 4-hydroxybenzoic acid and glycidyl methacrylate, addition reaction product of 4-hydroxybenzoic acid and glycidyl acrylate are particularly preferable. preferable. These structural units can be used individually by 1 type or in combination of 2 or more types.
Preferable specific examples of the structural unit (a2) include the following structural units.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 特定樹脂を構成する全モノマー単位中、酸性基を有する構成単位(a2)を形成するモノマー単位の含有率は、2~35モル%が好ましく、5~20モル%が更に好ましく、8~12モル%が特に好ましい。特定樹脂が構成単位(a2)を上記の割合で含有することにより、高感度が得られ、現像性が良好となる。 The content of the monomer unit forming the structural unit (a2) having an acidic group in all monomer units constituting the specific resin is preferably 2 to 35 mol%, more preferably 5 to 20 mol%, and 8 to 12 mol. % Is particularly preferred. When the specific resin contains the structural unit (a2) in the above ratio, high sensitivity is obtained and developability is improved.
〔架橋性基を有する構成単位(a3)〕
 特定樹脂は、架橋性基を有する構成単位(以下、適宜「構成単位(a3)」ともいう。)を有する。
 架橋性基としては、前述した酸性基と反応して共有結合を形成するもの、架橋性基同士で熱や光の作用により共有結合を形成するものであればいずれでもよい。
 酸性基と反応して共有結合を形成する架橋性基を有する構成単位(a3)としては、エポキシ基又はオキセタニル基を有する構成単位が好ましく、架橋性基同士で熱や光の作用により共有結合を形成するものとしては炭素-炭素二重結合が好ましい。これらの架橋性基の中でも、酸基と反応して共有結合を形成するものが好ましい。
 架橋性基は、特に、エポキシ基又はオキセタニル基を有する構成単位として、特定樹脂に含まれることが好ましい。構成単位(a3)としては、エポキシ基とオキセタニル基との両方の基を含んでもよい。
 前記エポキシ基又はオキセタニル基を有する構成単位としては、脂環式エポキシ基又はオキセタニル基を有する構成単位であることが好ましく、オキセタニル基を有する構成単位であることがより好ましい。
[Structural Unit (a3) Having Crosslinkable Group]
The specific resin has a structural unit having a crosslinkable group (hereinafter also referred to as “structural unit (a3)” as appropriate).
The crosslinkable group may be any one that forms a covalent bond by reacting with the acid group described above, or that forms a covalent bond by the action of heat or light between the crosslinkable groups.
As the structural unit (a3) having a crosslinkable group that reacts with an acidic group to form a covalent bond, a structural unit having an epoxy group or an oxetanyl group is preferable. What is formed is preferably a carbon-carbon double bond. Among these crosslinkable groups, those that react with an acid group to form a covalent bond are preferred.
The crosslinkable group is particularly preferably contained in the specific resin as a structural unit having an epoxy group or an oxetanyl group. The structural unit (a3) may include both an epoxy group and an oxetanyl group.
The structural unit having an epoxy group or oxetanyl group is preferably a structural unit having an alicyclic epoxy group or oxetanyl group, and more preferably a structural unit having an oxetanyl group.
 脂環式エポキシ基は、脂肪族環とエポキシ環とが縮合環を形成している基であり、具体的には例えば、3,4-エポキシシクロヘキシル基、2,3-エポキシシクロヘキシル基、2,3-エポキシシクロペンチル基等が好ましく挙げられる。
 オキセタニル基を有する基としては、オキセタン環を有していれば、特に制限はないが、(3-エチルオキセタン-3-イル)メチル基が好ましく例示できる。
 エポキシ基又はオキセタニル基を有する構成単位は、1つの構成単位中にエポキシ基又はオキセタニル基を少なくとも1つ有していればよく、1つ以上のエポキシ基と1つ以上のオキセタニル基とを含んでもよく、2つ以上のエポキシ基、又は、2つ以上のオキセタニル基を有していてもよく、特に限定されないが、エポキシ基とオキセタニル基とを合計1~3つ有することが好ましく、エポキシ基とオキセタニル基とを合計1又は2つ有することがより好ましく、エポキシ基とオキセタニル基とを1つ有することが更に好ましい。
The alicyclic epoxy group is a group in which an aliphatic ring and an epoxy ring form a condensed ring. Specifically, for example, a 3,4-epoxycyclohexyl group, a 2,3-epoxycyclohexyl group, 2, A 3-epoxycyclopentyl group is preferred.
The group having an oxetanyl group is not particularly limited as long as it has an oxetane ring, but a (3-ethyloxetane-3-yl) methyl group is preferably exemplified.
The structural unit having an epoxy group or oxetanyl group may have at least one epoxy group or oxetanyl group in one structural unit, and may include one or more epoxy groups and one or more oxetanyl groups. It may have two or more epoxy groups or two or more oxetanyl groups, and is not particularly limited, but preferably has a total of 1 to 3 epoxy groups and oxetanyl groups, It is more preferable to have one or two oxetanyl groups in total, and it is even more preferable to have one epoxy group and one oxetanyl group.
 エポキシ基を有する構成単位を形成するために用いられるラジカル重合性単量体の具体例としては、例えば、アクリル酸グリシジル、メタクリル酸グリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、α-n-ブチルアクリル酸グリシジル、アクリル酸-3,4-エポキシブチル、メタクリル酸-3,4-エポキシブチル、アクリル酸-6,7-エポキシヘプチル、メタクリル酸-6,7-エポキシヘプチル、α-エチルアクリル酸-6,7-エポキシヘプチル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、特許第4168443号公報の段落0031~0035に記載の脂環式エポキシ骨格を含有する化合物などが挙げられる。 Specific examples of the radical polymerizable monomer used for forming the structural unit having an epoxy group include, for example, glycidyl acrylate, glycidyl methacrylate, glycidyl α-ethyl acrylate, and glycidyl α-n-propyl acrylate. Glycidyl α-n-butyl acrylate, 3,4-epoxybutyl acrylate, 3,4-epoxybutyl methacrylate, acrylate-6,7-epoxyheptyl, methacrylic acid-6,7-epoxyheptyl, α-ethylacrylic acid-6,7-epoxyheptyl, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, cycloaliphatic according to paragraphs 0031 to 0035 of Japanese Patent No. 4168443 Examples include compounds containing an epoxy skeleton It is.
 オキセタニル基を有する構成単位を形成するために用いられるラジカル重合性単量体の例としては、例えば、特開2001-330953号公報の段落0011~0016に記載のオキセタニル基を有する(メタ)アクリル酸エステルなどを挙げることができる。 Examples of the radical polymerizable monomer used for forming the structural unit having an oxetanyl group include, for example, (meth) acrylic acid having an oxetanyl group described in paragraphs 0011 to 0016 of JP-A No. 2001-330953. Examples include esters.
 エポキシ基又はオキセタニル基を有する構成単位を形成するために用いられるラジカル重合性単量体の例としては、メタクリル酸エステル構造を含有するモノマー、アクリル酸エステル構造を含有するモノマーであることが好ましい。 Examples of the radical polymerizable monomer used for forming the structural unit having an epoxy group or an oxetanyl group are preferably a monomer containing a methacrylic ester structure and a monomer containing an acrylate ester structure.
 これらのラジカル重合性単量体の中で、更に好ましいものとしては、特許第4168443号公報の段落0034~0035に記載の脂環式エポキシ骨格を含有する化合物及び特開2001-330953号公報の段落0011~0016に記載のオキセタニル基を有する(メタ)アクリル酸エステルであり、特に好ましいものとしては特開2001-330953号公報の段落0011~0016に記載のオキセタニル基を有する(メタ)アクリル酸エステルである。これらの中でも好ましいものは、アクリル酸3,4-エポキシシクロヘキシルメチル、メタクリル酸3,4-エポキシシクロヘキシルメチル、アクリル酸(3-エチルオキセタン-3-イル)メチル、及び、メタクリル酸(3-エチルオキセタン-3-イル)メチルであり、最も好ましいものはアクリル酸(3-エチルオキセタン-3-イル)メチル、及び、メタクリル酸(3-エチルオキセタン-3-イル)メチルである。これらの構成単位は、1種単独又は2種類以上を組み合わせて使用することができる。 Among these radically polymerizable monomers, more preferred are compounds containing an alicyclic epoxy skeleton described in paragraphs 0034 to 0035 of Japanese Patent No. 4168443 and paragraphs of JP-A-2001-330953. (Meth) acrylic acid esters having an oxetanyl group described in 0011 to 0016, and particularly preferred are (meth) acrylic acid esters having an oxetanyl group described in paragraphs 0011 to 0016 of JP-A No. 2001-330953. is there. Among these, preferred are 3,4-epoxycyclohexylmethyl acrylate, 3,4-epoxycyclohexylmethyl methacrylate, methyl (3-ethyloxetane-3-yl) acrylate, and methacrylic acid (3-ethyloxetane). -3-yl) methyl, and most preferred are (3-ethyloxetane-3-yl) methyl acrylate and (3-ethyloxetane-3-yl) methyl methacrylate. These structural units can be used individually by 1 type or in combination of 2 or more types.
 構成単位(a3)の好ましい具体例としては、下記の構成単位が例示できる。 Specific examples of the structural unit (a3) include the following structural units.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 特定樹脂を構成する全モノマー単位中、架橋性基を有する構成単位(a3)を形成するモノマー単位の含有率は、10~80モル%が好ましく、15~70モル%が更に好ましく、20~65モル%が特に好ましい。エポキシ基又はオキセタニル基を有する構成単位を上記の割合で含有させることにより、感光性樹脂組成物により形成された硬化膜の物性が良好となる。 The content of monomer units forming the structural unit (a3) having a crosslinkable group in all monomer units constituting the specific resin is preferably 10 to 80 mol%, more preferably 15 to 70 mol%, and more preferably 20 to 65 mol%. Mole% is particularly preferred. By containing the structural unit having an epoxy group or oxetanyl group in the above ratio, the physical properties of the cured film formed from the photosensitive resin composition are improved.
〔その他の構成単位(a4)〕
 特定樹脂は、本発明の効果を妨げない範囲で、その他の構成単位(a4)(以下、適宜「構成単位(a4)」ともいう。)を含有してもよい。
 構成単位(a4)を形成するために用いられるラジカル重合性単量体としては、例えば、特開2004-264623号公報の段落0021~0024に記載の化合物を挙げることができる(ただし、前記した構成単位(a1)~(a3)を除く。)。
 構成単位(a4)の好ましい例としては、水酸基含有不飽和カルボン酸エステル、脂環構造含有不飽和カルボン酸エステル、スチレン、及び、N置換マレイミドの群から選ばれる少なくとも1種に由来する構成単位が挙げられる。
[Other structural units (a4)]
The specific resin may contain other structural unit (a4) (hereinafter also referred to as “structural unit (a4)” as appropriate) as long as the effects of the present invention are not hindered.
Examples of the radical polymerizable monomer used to form the structural unit (a4) include compounds described in paragraphs 0021 to 0024 of JP-A No. 2004-264623 (provided that the above-described structure is included). Units (a1) to (a3) are excluded.)
Preferred examples of the structural unit (a4) include structural units derived from at least one selected from the group consisting of a hydroxyl group-containing unsaturated carboxylic acid ester, an alicyclic structure-containing unsaturated carboxylic acid ester, styrene, and an N-substituted maleimide. Can be mentioned.
 これらの中でも、電気特性向上の観点で、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカン-8-イルオキシエチル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-メチルシクロヘキシルのような脂環構造含有の(メタ)アクリル酸エステル類、又は、スチレンのような疎水性のモノマーが好ましい。感度の観点で、(メタ)アクリル酸2-ヒドロキシエチル、N置換マレイミドが好ましい。これらの中でも、脂環構造を有する(メタ)アクリル酸エステル類がより好ましい。また、エッチング耐性の観点からは、スチレンやα-メチルスチレンなどのスチレン類が好ましい。
 これらの構成単位(a4)は、1種単独又は2種類以上を組み合わせて使用することができる。
Among these, from the viewpoint of improving electrical properties, tricyclo [5.2.1.0 2,6 ] decan-8-yl (meth) acrylate and tricyclo [5.2.1.0 2 (meth) acrylate]. , 6 ] decan-8-yloxyethyl, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylic acid esters containing an alicyclic structure such as 2-methylcyclohexyl (meth) acrylate, Alternatively, a hydrophobic monomer such as styrene is preferable. From the viewpoint of sensitivity, 2-hydroxyethyl (meth) acrylate and N-substituted maleimide are preferable. Among these, (meth) acrylic acid esters having an alicyclic structure are more preferable. From the viewpoint of etching resistance, styrenes such as styrene and α-methylstyrene are preferable.
These structural units (a4) can be used individually by 1 type or in combination of 2 or more types.
 特定樹脂を構成する全モノマー単位中、構成単位(a4)を含有させる場合における構成単位(a4)を形成するモノマー単位の含有率は、1~50モル%が好ましく、5~40モル%が更に好ましく、5~30モル%が特に好ましい。 The content of the monomer unit forming the structural unit (a4) in the case where the structural unit (a4) is contained in all the monomer units constituting the specific resin is preferably 1 to 50 mol%, and more preferably 5 to 40 mol%. Preferably, 5 to 30 mol% is particularly preferable.
 特定樹脂を構成する構成単位の組み合わせの好適な例としては、特定酸分解性基で保護された酸性基を含有するラジカル重合性化合物に由来する構成単位、不飽和カルボン酸に由来する構成単位、及び、エポキシ基又はオキセタニル基を含有するラジカル重合性化合物に由来する構成単位を含む組み合わせが挙げられる。
 本発明における特定樹脂の重量平均分子量は、1,000~100,000であることが好ましく、2,000~50,000であることがより好ましい。なお、本発明における重量平均分子量は、テトラヒドロフラン(THF)を溶媒とした場合のゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量であることが好ましい。
Preferred examples of the combination of structural units constituting the specific resin include structural units derived from radically polymerizable compounds containing an acidic group protected with a specific acid-decomposable group, structural units derived from an unsaturated carboxylic acid, And the combination containing the structural unit derived from the radically polymerizable compound containing an epoxy group or an oxetanyl group is mentioned.
The weight average molecular weight of the specific resin in the present invention is preferably 1,000 to 100,000, and more preferably 2,000 to 50,000. In addition, it is preferable that the weight average molecular weight in this invention is a polystyrene conversion weight average molecular weight by gel permeation chromatography (GPC) when tetrahydrofuran (THF) is used as a solvent.
 また、特定樹脂の合成法については様々な方法が知られているが、一例を挙げると、少なくとも構成単位(a1)、構成単位(a2)、及び、構成単位(a3)を形成するために用いられるラジカル重合性単量体を含むラジカル重合性単量体混合物を有機溶剤中、ラジカル重合開始剤を用いて重合することにより合成することができる。
 また、特定樹脂としては、不飽和多価カルボン酸無水物類を共重合させた前駆共重合体中の酸無水物基に、2,3-ジヒドロフランを、酸触媒の不存在下、室温(25℃)~100℃程度の温度で付加させることにより得られる共重合体も好ましい。
 このような特定樹脂としては、例えば、(メタ)アクリル酸グリシジル/無水マレイン酸/N-シクロヘキシルマレイミド/スチレン共重合体に2,3-ジヒドロフランを酸無水物基に対して1倍モル付加させた共重合体が挙げられる。
Various methods for synthesizing the specific resin are known. For example, the specific resin is used to form at least the structural unit (a1), the structural unit (a2), and the structural unit (a3). It can synthesize | combine by superposing | polymerizing the radically polymerizable monomer mixture containing the radically polymerizable monomer obtained using a radical polymerization initiator in an organic solvent.
As the specific resin, 2,3-dihydrofuran is added to the acid anhydride group in the precursor copolymer obtained by copolymerizing unsaturated polyvalent carboxylic acid anhydrides at room temperature (in the absence of an acid catalyst). A copolymer obtained by addition at a temperature of about 25 ° C. to 100 ° C. is also preferable.
As such a specific resin, for example, 1,3-dihydrofuran is added to a glycidyl (meth) acrylate / maleic anhydride / N-cyclohexylmaleimide / styrene copolymer in a 1-fold molar amount relative to an acid anhydride group. And copolymers.
 以下、本発明で用いられる特定樹脂として好ましいものを、特定樹脂A~Pとして例示するが、本発明はこれに限定されるものではない。なお、下記に例示した各特定樹脂の重量平均分子量は、2,000~50,000の範囲である。
 特定樹脂A:MAA/MAMTHF/OXE-30/HEMAの共重合体(モル比:10/40/30/20、酸価:35.5mgKOH/g)
 特定樹脂B:MAA/MATHF/StOTHF/OXE-30/HEMAの共重合体(モル比:10/20/14/23/33、酸価:36.3mgKOH/g)
 特定樹脂C:MAA/AATHF/OXE-30/HEMAの共重合体(モル比:10/40/35/15、酸価:37.5mgKOH/g)
 特定樹脂D:PHS/MATHF/GMA/HEMAの共重合体(モル比:10/40/30/20、酸価:38.5mgKOH/g)
 特定樹脂E:PHS/MATHF/OXE-30/HEMAの共重合体(モル比:10/40/30/20、酸価:35.4mgKOH/g)
 特定樹脂F:MAA/MATHF/GMA/HEMAの共重合体(モル比:12/25/30/33、酸価:40.2mgKOH/g)
 特定樹脂G:MAA/StOTHF/OXE-30/HEMAの共重合体(モル比:25/12/30/33、酸価:43.1mgKOH/g)
 特定樹脂H:ITA/MATHF/OXE-30/HEMAの共重合体(モル比:5/40/30/25、酸価:35.8mgKOH/g)
 特定樹脂I:MAA/MATHF/OXE-30/HEMAの共重合体(モル比:10/40/30/20、酸価:36.8mgKOH/g)
 特定樹脂J:MAA/MATHF/OXE-30/MMA/DCPMの共重合体(モル比:17/40/15/23/5、酸価:69.1mgKOH/g)
 特定樹脂K:MAA/MATHF/OXE-30/MMA/HMAの共重合体(モル比:16.5/40/10/23.5/10、酸価:68.3mgKOH/g)
 特定樹脂L:MAA/MATHF/HEMAの共重合体(モル比:18/50/32)とMATHF/HEMA/OXE-30の共重合体(モル比:43/13/44)との混合物(酸価:33.6mgKOH/g)
 特定樹脂M:MAA/MATHF/HEMAの共重合体(モル比:18/65/17)とMATHF/HEMA/GMAの共重合体(モル比:40/13/47)との混合物(酸価:35.4mgKOH/g)
 特定樹脂N:StCO2H/MATHF/OXE-30/HEMAの共重合体(モル比:10/40/30/20、酸価:35.4mgKOH/g)
 特定樹脂O:MAA/MATHF/OXE-30/HEMA/Stの共重合体(モル比:10/35/20/25/10、酸価:41.5mgKOH/g)
 特定樹脂P:MAA/MATHF/GMA/HEMA/Stの共重合体(モル比:13/32/20/22/13、酸価:61.6mgKOH/g)
Hereinafter, specific resins that are preferable as the specific resin used in the present invention will be exemplified as specific resins A to P, but the present invention is not limited thereto. The weight average molecular weight of each specific resin exemplified below is in the range of 2,000 to 50,000.
Specific resin A: copolymer of MAA / MAMTHF / OXE-30 / HEMA (molar ratio: 10/40/30/20, acid value: 35.5 mgKOH / g)
Specific resin B: copolymer of MAA / MATHF / StOTHF / OXE-30 / HEMA (molar ratio: 10/20/14/23/33, acid value: 36.3 mgKOH / g)
Specific resin C: copolymer of MAA / AATHF / OXE-30 / HEMA (molar ratio: 10/40/35/15, acid value: 37.5 mgKOH / g)
Specific resin D: PHS / MATHF / GMA / HEMA copolymer (molar ratio: 10/40/30/20, acid value: 38.5 mgKOH / g)
Specific resin E: copolymer of PHS / MATHF / OXE-30 / HEMA (molar ratio: 10/40/30/20, acid value: 35.4 mgKOH / g)
Specific resin F: copolymer of MAA / MATHF / GMA / HEMA (molar ratio: 12/25/30/33, acid value: 40.2 mgKOH / g)
Specific resin G: MAA / StOTHF / OXE-30 / HEMA copolymer (molar ratio: 25/12/30/33, acid value: 43.1 mgKOH / g)
Specific resin H: copolymer of ITA / MATHF / OXE-30 / HEMA (molar ratio: 5/40/30/25, acid value: 35.8 mgKOH / g)
Specific resin I: copolymer of MAA / MATHF / OXE-30 / HEMA (molar ratio: 10/40/30/20, acid value: 36.8 mgKOH / g)
Specific resin J: copolymer of MAA / MATHF / OXE-30 / MMA / DCPM (molar ratio: 17/40/15/23/5, acid value: 69.1 mgKOH / g)
Specific resin K: copolymer of MAA / MATHF / OXE-30 / MMA / HMA (molar ratio: 16.5 / 40/10 / 23.5 / 10, acid value: 68.3 mgKOH / g)
Specific resin L: MAA / MATHF / HEMA copolymer (molar ratio: 18/50/32) and MATH / HEMA / OXE-30 copolymer (molar ratio: 43/13/44) mixture (acid) Value: 33.6 mg KOH / g)
Specific resin M: A mixture of MAA / MATHF / HEMA copolymer (molar ratio: 18/65/17) and MATH / HEMA / GMA copolymer (molar ratio: 40/13/47) (acid value: 35.4 mg KOH / g)
Specific resin N: Copolymer of StCO 2 H / MATHF / OXE-30 / HEMA (molar ratio: 10/40/30/20, acid value: 35.4 mgKOH / g)
Specific resin O: copolymer of MAA / MATHF / OXE-30 / HEMA / St (molar ratio: 10/35/20/25/10, acid value: 41.5 mgKOH / g)
Specific resin P: copolymer of MAA / MATHF / GMA / HEMA / St (molar ratio: 13/32/20/22/13, acid value: 61.6 mgKOH / g)
 なお、上記した各特定樹脂の合成例については後述する。また、各特定樹脂を構成する単量体の略号の詳細は以下の通りである。
 MATHF:2-テトラヒドロフラニルメタクリレート
 AATHF:2-テトラヒドロフラニルアクリレート
 MAMTHF:5-メチル-2-テトラヒドロフラニルメタクリレート
 MAA:メタクリル酸
 ITA:イタコン酸
 MAEVE:1-エトキシエチルメタクリレート
 MACHVE:1-シクロヘキシルエチルメタクリレート
 MABVE:1-tert-ブチルエチルメタクリレート
 OXE-30:3-エチル-3-オキセタニルメチルメタクリレート
 HEMA:ヒドロキシエチルメタクリレート
 EtMA:エチルメタクリレート
 HMA:ヘキシルメタクリレート
 BzMA:ベンジルメタクリレート
 CHMI:N-シクロヘキシルマレイミド
 GMA:グリシジルメタクリレート
 St:スチレン
 StCO2H:スチレンカルボン酸
 StOTHF:4-(2-テトラヒドロフラニル)スチレン
 PHS:4-ヒドロキシスチレン
 DCPM:ジシクロペンタニルメタクリレート
 MMA:メチルメタクリレート
In addition, the synthesis example of each above-mentioned specific resin is mentioned later. Details of the abbreviations of the monomers constituting each specific resin are as follows.
MATHF: 2-tetrahydrofuranyl methacrylate AATHF: 2-tetrahydrofuranyl acrylate MAMTHF: 5-methyl-2-tetrahydrofuranyl methacrylate MAA: methacrylic acid ITA: itaconic acid MAEVE: 1-ethoxyethyl methacrylate MACHVE: 1-cyclohexylethyl methacrylate MABVE: 1 Tert-butylethyl methacrylate OXE-30: 3-ethyl-3-oxetanylmethyl methacrylate HEMA: hydroxyethyl methacrylate EtMA: ethyl methacrylate HMA: hexyl methacrylate BzMA: benzyl methacrylate CHMI: N-cyclohexylmaleimide GMA: glycidyl methacrylate St: styrene StCO 2 H: Styrene carvone Acid StOTHF: 4- (2-tetrahydrofuranyl) styrene PHS: 4-hydroxystyrene DCPM: Dicyclopentanyl methacrylate MMA: Methyl methacrylate
 本発明の感光性樹脂組成物中の特定樹脂の含有量は、感光性樹脂組成物の全固形分に対して、20~99重量%であることが好ましく、40~95重量%であることがより好ましく、40~70重量%であることが更に好ましい。含有量がこの範囲であると、現像した際のパターン形成性が良好となる。なお、感光性樹脂組成物の固形分量とは、溶剤などの揮発性成分を除いた量を表す。 The content of the specific resin in the photosensitive resin composition of the present invention is preferably 20 to 99% by weight, and preferably 40 to 95% by weight, based on the total solid content of the photosensitive resin composition. More preferred is 40 to 70% by weight. When the content is within this range, the pattern formability upon development is good. In addition, the solid content amount of the photosensitive resin composition represents an amount excluding volatile components such as a solvent.
 なお、本発明の感光性樹脂組成物中では、本発明の効果を妨げない範囲で特定樹脂以外の樹脂を併用してもよい。ただし、特定樹脂以外の樹脂の含有量は、現像性の観点から特定樹脂の含有量より少ない方が好ましい。 In the photosensitive resin composition of the present invention, a resin other than the specific resin may be used in combination as long as the effects of the present invention are not hindered. However, the content of the resin other than the specific resin is preferably smaller than the content of the specific resin from the viewpoint of developability.
(成分B)オキシムスルホネート基を有する酸発生剤
 本発明の感光性樹脂組成物は、(成分B)オキシムスルホネート基を有する酸発生剤(以下、単に「オキシムスルホネート化合物」ともいう。)を含有する。
 オキシムスルホネート化合物は、オキシムスルホネート基を有していれば特に制限はないが、下記式(2)、後述する式(OS-103)、式(OS-104)、又は、式(OS-105)で表されるオキシムスルホネート化合物であることが好ましい。
(Component B) Acid generator having an oxime sulfonate group The photosensitive resin composition of the present invention contains (Component B) an acid generator having an oxime sulfonate group (hereinafter also simply referred to as “oxime sulfonate compound”). .
The oxime sulfonate compound is not particularly limited as long as it has an oxime sulfonate group, but the following formula (2), formula (OS-103), formula (OS-104), or formula (OS-105) described below. It is preferable that it is an oxime sulfonate compound represented by these.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(2)におけるXはそれぞれ独立に、アルキル基、アルコキシ基、又は、ハロゲン原子を表す。前記Xにおけるアルキル基及びアルコキシ基は、置換基を有していてもよい。
 前記Xにおけるアルキル基としては、炭素数1~4の、直鎖状又は分岐状アルキル基が好ましい。
 前記Xにおけるアルコキシ基としては、炭素数1~4の直鎖状又は分岐状アルコキシ基が好ましい。
 前記Xにおけるハロゲン原子としては、塩素原子又はフッ素原子が好ましい。
 式(2)におけるmは、0~3の整数を表し、0又は1が好ましい。mが2又は3であるとき、複数のXは同一でも異なっていてもよい。
X in Formula (2) represents an alkyl group, an alkoxy group, or a halogen atom each independently. The alkyl group and alkoxy group in X may have a substituent.
The alkyl group for X is preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
The alkoxy group for X is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
The halogen atom in X is preferably a chlorine atom or a fluorine atom.
M in the formula (2) represents an integer of 0 to 3, preferably 0 or 1. When m is 2 or 3, the plurality of X may be the same or different.
 式(2)におけるR4は、アルキル基又はアリール基を表し、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~5のハロゲン化アルキル基、炭素数1~5のハロゲン化アルコキシ基、Wで置換されていてもよいフェニル基、Wで置換されていてもよいナフチル基又はWで置換されていてもよいアントラニル基であることが好ましい。Wは、ハロゲン原子、シアノ基、ニトロ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~5のハロゲン化アルキル基又は炭素数1~5のハロゲン化アルコキシ基を表す。
 前記R4における炭素数1~10のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-アミル基、i-アミル基、s-アミル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。
 前記R4における炭素数1~10のアルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、n-アミルオキシ基、n-オクチルオキシ基、n-デシルオキシ基等が挙げられる。
 前記R4における炭素数1~5のハロゲン化アルキル基の具体例としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロ-n-プロピル基、パーフルオロ-n-ブチル基、パーフルオロ-n-アミル基等が挙げられる。
 前記R4における炭素数1~5のハロゲン化アルコキシ基の具体例としては、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロ-n-プロポキシ基、パーフルオロ-n-ブトキシ基、パーフルオロ-n-アミルオキシ基等が挙げられる。
R 4 in the formula (2) represents an alkyl group or an aryl group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, or 1 to 5 is preferably a halogenated alkoxy group, a phenyl group optionally substituted with W, a naphthyl group optionally substituted with W, or an anthranyl group optionally substituted with W. W represents a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, or a halogenated alkoxy group having 1 to 5 carbon atoms. Represents a group.
Specific examples of the alkyl group having 1 to 10 carbon atoms for R 4 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t -Butyl group, n-amyl group, i-amyl group, s-amyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and the like.
Specific examples of the alkoxy group having 1 to 10 carbon atoms for R 4 include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, an n-amyloxy group, an n-octyloxy group, and n-decyloxy group.
Specific examples of the halogenated alkyl group having 1 to 5 carbon atoms for R 4 include trifluoromethyl group, pentafluoroethyl group, perfluoro-n-propyl group, perfluoro-n-butyl group, perfluoro-n. -An amyl group etc. are mentioned.
Specific examples of the halogenated alkoxy group having 1 to 5 carbon atoms for R 4 include trifluoromethoxy group, pentafluoroethoxy group, perfluoro-n-propoxy group, perfluoro-n-butoxy group, perfluoro-n. -An amyloxy group etc. are mentioned.
 前記R4におけるWで置換されていてもよいフェニル基の具体例としては、o-トリル基、m-トリル基、p-トリル基、o-エチルフェニル基、m-エチルフェニル基、p-エチルフェニル基、p-(n-プロピル)フェニル基、p-(i-プロピル)フェニル基、p-(n-ブチル)フェニル基、p-(i-ブチル)フェニル基、p-(s-ブチル)フェニル基、p-(t-ブチル)フェニル基、p-(n-アミル)フェニル基、p-(i-アミル)フェニル基、p-(t-アミル)フェニル基、o-メトキシフェニル基、m-メトキシフェニル基、p-メトキシフェニル基、o-エトキシフェニル基、m-エトキシフェニル基、p-エトキシフェニル基、p-(n-プロポキシ)フェニル基、p-(i-プロポキシ)フェニル基、p-(n-ブトキシ)フェニル基、p-(i-ブトキシ)フェニル基、p-(s-ブトキシ)フェニル基、p-(t-ブトキシ)フェニル基、p-(n-アミルオキシ)フェニル基、p-(i-アミルオキシ)フェニル基、p-(t-アミルオキシ)フェニル基、p-クロルフェニル基、p-ブロモフェニル基、p-フルオロフェニル基、2,4-ジクロルフェニル基、2,4-ジブロモフェニル基、2,4-ジフルオロフェニル基、2,4,6-ジクロルフェニル基、2,4,6-トリブロモフェニル基、2,4,6-トリフルオロフェニル基、ペンタクロロフェニル基、ペンタブロモフェニル基、ペンタフルオロフェニル基、p-ビフェニリル基等が挙げられる。 Specific examples of the phenyl group optionally substituted with W in R 4 include o-tolyl group, m-tolyl group, p-tolyl group, o-ethylphenyl group, m-ethylphenyl group, p-ethyl. Phenyl group, p- (n-propyl) phenyl group, p- (i-propyl) phenyl group, p- (n-butyl) phenyl group, p- (i-butyl) phenyl group, p- (s-butyl) Phenyl group, p- (t-butyl) phenyl group, p- (n-amyl) phenyl group, p- (i-amyl) phenyl group, p- (t-amyl) phenyl group, o-methoxyphenyl group, m -Methoxyphenyl group, p-methoxyphenyl group, o-ethoxyphenyl group, m-ethoxyphenyl group, p-ethoxyphenyl group, p- (n-propoxy) phenyl group, p- (i-propoxy) phenyl group, p - n-butoxy) phenyl group, p- (i-butoxy) phenyl group, p- (s-butoxy) phenyl group, p- (t-butoxy) phenyl group, p- (n-amyloxy) phenyl group, p- ( i-amyloxy) phenyl group, p- (t-amyloxy) phenyl group, p-chlorophenyl group, p-bromophenyl group, p-fluorophenyl group, 2,4-dichlorophenyl group, 2,4-dibromophenyl Group, 2,4-difluorophenyl group, 2,4,6-dichlorophenyl group, 2,4,6-tribromophenyl group, 2,4,6-trifluorophenyl group, pentachlorophenyl group, pentabromophenyl Group, pentafluorophenyl group, p-biphenylyl group and the like.
 前記R4におけるWで置換されていてもよいナフチル基の具体例としては、2-メチル-1-ナフチル基、3-メチル-1-ナフチル基、4-メチル-1-ナフチル基、5-メチル-1-ナフチル基、6-メチル-1-ナフチル基、7-メチル-1-ナフチル基、8-メチル-1-ナフチル基、1-メチル-2-ナフチル基、3-メチル-2-ナフチル基、4-メチル-2-ナフチル基、5-メチル-2-ナフチル基、6-メチル-2-ナフチル基、7-メチル-2-ナフチル基、8-メチル-2-ナフチル基等が挙げられる。 Specific examples of the naphthyl group optionally substituted with W in R 4 include 2-methyl-1-naphthyl group, 3-methyl-1-naphthyl group, 4-methyl-1-naphthyl group, 5-methyl -1-naphthyl group, 6-methyl-1-naphthyl group, 7-methyl-1-naphthyl group, 8-methyl-1-naphthyl group, 1-methyl-2-naphthyl group, 3-methyl-2-naphthyl group 4-methyl-2-naphthyl group, 5-methyl-2-naphthyl group, 6-methyl-2-naphthyl group, 7-methyl-2-naphthyl group, 8-methyl-2-naphthyl group and the like.
 前記R4におけるWで置換されていてもよいアントラニル基の具体例としては、2-メチル-1-アントラニル基、3-メチル-1-アントラニル基、4-メチル-1-アントラニル基、5-メチル-1-アントラニル基、6-メチル-1-アントラニル基、7-メチル-1-アントラニル基、8-メチル-1-アントラニル基、9-メチル-1-アントラニル基、10-メチル-1-アントラニル基、1-メチル-2-アントラニル基、3-メチル-2-アントラニル基、4-メチル-2-アントラニル基、5-メチル-2-アントラニル基、6-メチル-2-アントラニル基、7-メチル-2-アントラニル基、8-メチル-2-アントラニル基、9-メチル-2-アントラニル基、10-メチル-2-アントラニル基等が挙げられる。 Specific examples of the anthranyl group which may be substituted with W in R 4 include 2-methyl-1-anthranyl group, 3-methyl-1-anthranyl group, 4-methyl-1-anthranyl group, 5-methyl -1-anthranyl group, 6-methyl-1-anthranyl group, 7-methyl-1-anthranyl group, 8-methyl-1-anthranyl group, 9-methyl-1-anthranyl group, 10-methyl-1-anthranyl group 1-methyl-2-anthranyl group, 3-methyl-2-anthranyl group, 4-methyl-2-anthranyl group, 5-methyl-2-anthranyl group, 6-methyl-2-anthranyl group, 7-methyl- Examples include 2-anthranyl group, 8-methyl-2-anthranyl group, 9-methyl-2-anthranyl group, and 10-methyl-2-anthranyl group.
 式(2)中、mが1であり、Xがメチル基であり、Xの置換位置がオルト位であり、R4が炭素数1~10の直鎖状アルキル基、7,7-ジメチル-2-オキソノルボルニルメチル基、又は、p-トルイル基である化合物が特に好ましい。
 式(2)で表されるオキシムスルホネート化合物の具体例としては、下記化合物(i)、化合物(ii)、化合物(iii)、化合物(iv)等が挙げられ、これらの化合物は、1種単独で使用してもよいし、2種類以上を併用することもできる。化合物(i)~(iv)は、市販品として、入手することができる。また、その他の式(2)で表されるオキシムスルホネート化合物の具体例を以下に挙げる。
In the formula (2), m is 1, X is a methyl group, the substitution position of X is an ortho position, R 4 is a linear alkyl group having 1 to 10 carbon atoms, 7,7-dimethyl- A compound having a 2-oxonorbornylmethyl group or a p-toluyl group is particularly preferable.
Specific examples of the oxime sulfonate compound represented by the formula (2) include the following compound (i), compound (ii), compound (iii), compound (iv) and the like. May be used in combination, or two or more types may be used in combination. Compounds (i) to (iv) can be obtained as commercial products. Specific examples of the oxime sulfonate compound represented by the other formula (2) are listed below.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
(式(OS-103)~(OS-105)中、R11はアルキル基、アリール基又はヘテロアリール基を表し、複数存在するR12はそれぞれ独立に、水素原子、アルキル基、アリール基又はハロゲン原子を表し、複数存在するR16はそれぞれ独立に、ハロゲン原子、アルキル基、アルキルオキシ基、スルホン酸基、アミノスルホニル基又はアルコキシスルホニル基を表し、XはO又はSを表し、nは1又は2を表し、mは0~6の整数を表す。)
Figure JPOXMLDOC01-appb-C000017
(In the formulas (OS-103) to (OS-105), R 11 represents an alkyl group, an aryl group or a heteroaryl group, and a plurality of R 12 are each independently a hydrogen atom, an alkyl group, an aryl group or a halogen atom. A plurality of R 16 each independently represent a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group, X represents O or S, and n represents 1 or 2 represents m, and m represents an integer of 0 to 6.)
 前記式(OS-103)~(OS-105)中、R11で表されるアルキル基、アリール基又はヘテロアリール基は、置換基を有していてもよい。
 前記式(OS-103)~(OS-105)中、R11で表されるアルキル基としては、置換基を有していてもよい総炭素数1~30のアルキル基であることが好ましい。
 R11で表されるアルキル基が有していてもよい置換基としては、ハロゲン原子、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アミノカルボニル基が挙げられる。
In the above formulas (OS-103) to (OS-105), the alkyl group, aryl group or heteroaryl group represented by R 11 may have a substituent.
In the formulas (OS-103) to (OS-105), the alkyl group represented by R 11 is preferably an alkyl group having 1 to 30 carbon atoms which may have a substituent.
Examples of the substituent that the alkyl group represented by R 11 may have include a halogen atom, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, and an aminocarbonyl group. Is mentioned.
 前記式(OS-103)~(OS-105)中、R11で表されるアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、トリフルオロメチル基、パーフルオロプロピル基、パーフルオロヘキシル基、ベンジル基などが挙げられる。 In the above formulas (OS-103) to (OS-105), the alkyl group represented by R 11 is methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl. Group, t-butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, trifluoromethyl group, perfluoropropyl group, perfluorohexyl group, benzyl group, etc. Is mentioned.
 また、前記式(OS-103)~(OS-105)中、R11で表されるアリール基としては、置換基を有してもよい総炭素数6~30のアリール基が好ましい。
 R11で表されるアリール基が有していてもよい置換基としては、ハロゲン原子、アルキル基、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アミノカルボニル基、スルホン酸基、アミノスルホニル基、アルコキシスルホニル基が挙げられる。
In the formulas (OS-103) to (OS-105), the aryl group represented by R 11 is preferably an aryl group having 6 to 30 carbon atoms which may have a substituent.
Examples of the substituent that the aryl group represented by R 11 may have include a halogen atom, an alkyl group, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, Examples thereof include an aminocarbonyl group, a sulfonic acid group, an aminosulfonyl group, and an alkoxysulfonyl group.
 R11で表されるアリール基としては、フェニル基、p-メチルフェニル基、p-クロロフェニル基、ペンタクロロフェニル基、ペンタフルオロフェニル基、o-メトキシフェニル基、p-フェノキシフェニル基が好ましい。 As the aryl group represented by R 11 , a phenyl group, p-methylphenyl group, p-chlorophenyl group, pentachlorophenyl group, pentafluorophenyl group, o-methoxyphenyl group, and p-phenoxyphenyl group are preferable.
 また、前記式(OS-103)~(OS-105)中、R11で表されるヘテロアリール基としては、置換基を有してもよい総炭素数4~30のヘテロアリール基が好ましい。
 R11で表されるヘテロアリール基が有していてもよい置換基としては、ハロゲン原子、アルキル基、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アミノカルボニル基、スルホン酸基、アミノスルホニル基、アルコキシスルホニル基が挙げられる。
In the formulas (OS-103) to (OS-105), the heteroaryl group represented by R 11 is preferably a heteroaryl group having 4 to 30 carbon atoms which may have a substituent.
Examples of the substituent that the heteroaryl group represented by R 11 may have include a halogen atom, an alkyl group, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, and an aryloxycarbonyl group. , Aminocarbonyl group, sulfonic acid group, aminosulfonyl group, alkoxysulfonyl group.
 前記式(OS-103)~(OS-105)中、R11で表されるヘテロアリール基は、少なくとも1つの複素芳香環を有していればよく、例えば、複素芳香環とベンゼン環とが縮環していてもよい。
 R11で表されるヘテロアリール基としては、置換基を有していてもよい、チオフェン環、ピロール環、チアゾール環、イミダゾール環、フラン環、ベンゾチオフェン環、ベンゾチアゾール環、及び、ベンゾイミダゾール環よりなる群から選ばれた環から1つの水素原子を除いた基が挙げられる。
In the formulas (OS-103) to (OS-105), the heteroaryl group represented by R 11 may have at least one heteroaromatic ring. For example, the heteroaromatic ring and the benzene ring may be It may be condensed.
Examples of the heteroaryl group represented by R 11 include a thiophene ring, a pyrrole ring, a thiazole ring, an imidazole ring, a furan ring, a benzothiophene ring, a benzothiazole ring, and a benzimidazole ring, which may have a substituent. And a group obtained by removing one hydrogen atom from a ring selected from the group consisting of.
 前記式(OS-103)~(OS-105)中、R12は、水素原子、アルキル基又はアリール基であることが好ましく、水素原子又はアルキル基であることがより好ましい。
 前記式(OS-103)~(OS-105)中、化合物中に2以上存在するR12のうち、1つ又は2つがアルキル基、アリール基又はハロゲン原子であることが好ましく、1つがアルキル基、アリール基又はハロゲン原子であることがより好ましく、1つがアルキル基であり、かつ残りが水素原子であることが特に好ましい。
 前記式(OS-103)~(OS-105)中、R12で表されるアルキル基又はアリール基は、置換基を有していてもよい。
 R12で表されるアルキル基又はアリール基が有していてもよい置換基としては、前記R1におけるアルキル基又はアリール基が有していてもよい置換基と同様の基が例示できる。
In the formulas (OS-103) to (OS-105), R 12 is preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom or an alkyl group.
In the above formulas (OS-103) to (OS-105), it is preferable that one or two of R 12 present in the compound is an alkyl group, an aryl group or a halogen atom, and one is an alkyl group. More preferably an aryl group or a halogen atom, and particularly preferably one is an alkyl group and the rest is a hydrogen atom.
In the formulas (OS-103) to (OS-105), the alkyl group or aryl group represented by R 12 may have a substituent.
Examples of the substituent that the alkyl group or aryl group represented by R 12 may have include the same groups as the substituent that the alkyl group or aryl group in R 1 may have.
 前記式(OS-103)~(OS-105)中、R12で表されるアルキル基としては、置換基を有してもよい総炭素数1~12のアルキル基であることが好ましく、置換基を有してもよい総炭素数1~6のアルキル基であることがより好ましい。
 R12で表されるアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、n-ヘキシル基、アリル基、クロロメチル基、ブロモメチル基、メトキシメチル基、ベンジル基が好ましく、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、n-ヘキシル基がより好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ヘキシル基が更に好ましく、メチル基が特に好ましい。
In the formulas (OS-103) to (OS-105), the alkyl group represented by R 12 is preferably an alkyl group having 1 to 12 carbon atoms which may have a substituent. It is more preferably an alkyl group having 1 to 6 carbon atoms which may have a group.
Examples of the alkyl group represented by R 12 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, n-hexyl group, allyl group, A chloromethyl group, a bromomethyl group, a methoxymethyl group, and a benzyl group are preferable, and a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, an s-butyl group, and an n-hexyl group. A group is more preferable, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-hexyl group are more preferable, and a methyl group is particularly preferable.
 前記式(OS-103)~(OS-105)中、R12で表されるアリール基としては、置換基を有してもよい総炭素数6~30のアリール基であることが好ましい。
 R12で表されるアリール基としてフェニル基、p-メチルフェニル基、o-クロロフェニル基、p-クロロフェニル基、o-メトキシフェニル基、p-フェノキシフェニル基が好ましい。
 R12で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらの中でも、塩素原子、臭素原子が好ましい。
In the formulas (OS-103) to (OS-105), the aryl group represented by R 12 is preferably an aryl group having 6 to 30 carbon atoms which may have a substituent.
The aryl group represented by R 12 is preferably a phenyl group, a p-methylphenyl group, an o-chlorophenyl group, a p-chlorophenyl group, an o-methoxyphenyl group, or a p-phenoxyphenyl group.
Examples of the halogen atom represented by R 12 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a chlorine atom and a bromine atom are preferable.
 前記式(OS-103)~(OS-105)中、XはO又はSを表し、Oであることが好ましい。
 前記式(OS-103)~(OS-105)において、Xを環員として含む環は、5員環又は6員環である。
 前記式(OS-103)~(OS-105)中、nは1又は2を表し、XがOである場合、nは1であることが好ましく、また、XがSである場合、nは2であることが好ましい。
In the formulas (OS-103) to (OS-105), X represents O or S, and is preferably O.
In the formulas (OS-103) to (OS-105), the ring containing X as a ring member is a 5-membered ring or a 6-membered ring.
In the formulas (OS-103) to (OS-105), n represents 1 or 2, and when X is O, n is preferably 1, and when X is S, n is 2 is preferred.
 前記式(OS-103)~(OS-105)中、R16で表されるアルキル基及びアルキルオキシ基は、置換基を有していてもよい。
 前記式(OS-103)~(OS-105)中、R16で表されるアルキル基としては、置換基を有していてもよい総炭素数1~30のアルキル基であることが好ましい。
 R16で表されるアルキル基が有していてもよい置換基としては、ハロゲン原子、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アミノカルボニル基が挙げられる。
In formulas (OS-103) to (OS-105), the alkyl group and alkyloxy group represented by R 16 may have a substituent.
In the formulas (OS-103) to (OS-105), the alkyl group represented by R 16 is preferably an alkyl group having 1 to 30 carbon atoms which may have a substituent.
Examples of the substituent that the alkyl group represented by R 16 may have include a halogen atom, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, and an aminocarbonyl group. Is mentioned.
 前記式(OS-103)~(OS-105)中、R16で表されるアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、トリフルオロメチル基、パーフルオロプロピル基、パーフルオロヘキシル基、ベンジル基が好ましい。 In the formulas (OS-103) to (OS-105), examples of the alkyl group represented by R 16 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and an s-butyl group. Group, t-butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, trifluoromethyl group, perfluoropropyl group, perfluorohexyl group, benzyl group preferable.
 前記式(OS-103)~(OS-105)中、R16で表されるアルキルオキシ基としては、置換基を有してもよい総炭素数1~30のアルキルオキシ基であることが好ましい。
 R16で表されるアルキルオキシ基が有していてもよい置換基としては、ハロゲン原子、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アミノカルボニル基が挙げられる。
In the formulas (OS-103) to (OS-105), the alkyloxy group represented by R 16 is preferably an alkyloxy group having 1 to 30 carbon atoms which may have a substituent. .
Examples of the substituent that the alkyloxy group represented by R 16 may have include a halogen atom, alkyloxy group, aryloxy group, alkylthio group, arylthio group, alkyloxycarbonyl group, aryloxycarbonyl group, aminocarbonyl Groups.
 前記式(OS-103)~(OS-105)中、R16で表されるアルキルオキシ基としては、メチルオキシ基、エチルオキシ基、ブチルオキシ基、ヘキシルオキシ基、フェノキシエチルオキシ基、トリクロロメチルオキシ基、又は、エトキシエチルオキシ基が好ましい。
 R16におけるアミノスルホニル基としては、メチルアミノスルホニル基、ジメチルアミノスルホニル基、フェニルアミノスルホニル基、メチルフェニルアミノスルホニル基、アミノスルホニル基が挙げられる。
 R16で表されるアルコキシスルホニル基としては、メトキシスルホニル基、エトキシスルホニル基、プロピルオキシスルホニル基、ブチルオキシスルホニル基が挙げられる。
In the formulas (OS-103) to (OS-105), the alkyloxy group represented by R 16 is a methyloxy group, an ethyloxy group, a butyloxy group, a hexyloxy group, a phenoxyethyloxy group, or a trichloromethyloxy group. Or an ethoxyethyloxy group is preferable.
Examples of the aminosulfonyl group for R 16 include a methylaminosulfonyl group, a dimethylaminosulfonyl group, a phenylaminosulfonyl group, a methylphenylaminosulfonyl group, and an aminosulfonyl group.
Examples of the alkoxysulfonyl group represented by R 16 include a methoxysulfonyl group, an ethoxysulfonyl group, a propyloxysulfonyl group, and a butyloxysulfonyl group.
 また、前記式(OS-103)~(OS-105)中、mは0~6の整数を表し、0~2の整数であることが好ましく、0又は1であることがより好ましく、0であることが特に好ましい。 In the formulas (OS-103) to (OS-105), m represents an integer of 0 to 6, preferably an integer of 0 to 2, more preferably 0 or 1, and 0. It is particularly preferred.
 また、前記式(OS-103)で表される化合物は、下記式(OS-106)、(OS-110)又は(OS-111)で表される化合物であることが特に好ましく、前記式(OS-104)で表される化合物は、下記式(OS-107)で表される化合物であることが特に好ましく、前記式(OS-105)で表される化合物は、下記式(OS-108)又は(OS-109)で表される化合物であることが特に好ましい。 The compound represented by the formula (OS-103) is particularly preferably a compound represented by the following formula (OS-106), (OS-110) or (OS-111). The compound represented by OS-104) is particularly preferably a compound represented by the following formula (OS-107), and the compound represented by the formula (OS-105) is represented by the following formula (OS-108). ) Or (OS-109) is particularly preferable.
Figure JPOXMLDOC01-appb-C000018
(式(OS-106)~(OS-111)中、R11はアルキル基、アリール基又はヘテロアリール基を表し、R17は、水素原子又は臭素原子を表し、R18は水素原子、炭素数1~8のアルキル基、ハロゲン原子、クロロメチル基、ブロモメチル基、ブロモエチル基、メトキシメチル基、フェニル基又はクロロフェニル基を表し、R19は水素原子、ハロゲン原子、メチル基又はメトキシ基を表し、R20は水素原子又はメチル基を表す。)
Figure JPOXMLDOC01-appb-C000018
(In the formulas (OS-106) to (OS-111), R 11 represents an alkyl group, an aryl group or a heteroaryl group, R 17 represents a hydrogen atom or a bromine atom, R 18 represents a hydrogen atom, Represents an alkyl group of 1 to 8, a halogen atom, a chloromethyl group, a bromomethyl group, a bromoethyl group, a methoxymethyl group, a phenyl group or a chlorophenyl group; R 19 represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group; 20 represents a hydrogen atom or a methyl group.)
 前記式(OS-106)~(OS-111)におけるR11は、前記式(OS-103)~(OS-105)におけるR11と同義であり、好ましい態様も同様である。
 前記式(OS-106)におけるR17は、水素原子又は臭素原子を表し、水素原子であることが好ましい。
 前記式(OS-106)~(OS-111)におけるR18は、水素原子、炭素数1~8のアルキル基、ハロゲン原子、クロロメチル基、ブロモメチル基、ブロモエチル基、メトキシメチル基、フェニル基又はクロロフェニル基を表し、炭素数1~8のアルキル基、ハロゲン原子又はフェニル基であることが好ましく、炭素数1~8のアルキル基であることがより好ましく、炭素数1~6のアルキル基であることが更に好ましく、メチル基であることが特に好ましい。
 前記式(OS-108)及び(OS-109)におけるR19は、水素原子、ハロゲン原子、メチル基又はメトキシ基を表し、水素原子であることが好ましい。
 前記式(OS-108)~(OS-111)におけるR20は、水素原子又はメチル基を表し、水素原子であることが好ましい。
 また、前記オキシムスルホネート化合物において、オキシムの立体構造(E,Z)については、どちらか一方であっても、混合物であってもよい。
R 11 in the formulas (OS-106) to (OS-111) has the same meaning as R 11 in the formulas (OS-103) to (OS-105), and preferred embodiments thereof are also the same.
R 17 in the formula (OS-106) represents a hydrogen atom or a bromine atom, and is preferably a hydrogen atom.
R 18 in the formulas (OS-106) to (OS-111) represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogen atom, a chloromethyl group, a bromomethyl group, a bromoethyl group, a methoxymethyl group, a phenyl group or Represents a chlorophenyl group, preferably an alkyl group having 1 to 8 carbon atoms, a halogen atom or a phenyl group, more preferably an alkyl group having 1 to 8 carbon atoms, and an alkyl group having 1 to 6 carbon atoms. More preferred is a methyl group.
R 19 in the formulas (OS-108) and (OS-109) represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group, and is preferably a hydrogen atom.
In the formulas (OS-108) to (OS-111), R 20 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
In the oxime sulfonate compound, the oxime steric structure (E, Z) may be either one or a mixture.
 前記式(OS-103)~(OS-105)で表されるオキシムスルホネート化合物の具体例としては、下記例示化合物が挙げられるが、本発明は、これらに限定されるものではない。 Specific examples of the oxime sulfonate compounds represented by the above formulas (OS-103) to (OS-105) include the following exemplified compounds, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 オキシムスルホネート基を少なくとも1つを有するオキシムスルホネート化合物の好適な他の態様としては、下記式(OS-101)で表される化合物が挙げられる。 Another preferred embodiment of the oxime sulfonate compound having at least one oxime sulfonate group is a compound represented by the following formula (OS-101).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 前記式(OS-101)中、R11は、水素原子、アルキル基、アルケニル基、アルコキシ基、アルコキシカルボニル基、アシル基、カルバモイル基、スルファモイル基、スルホ基、シアノ基、アリール基又はヘテロアリール基を表す。R12は、アルキル基又はアリール基を表す。
 Xは-O-、-S-、-NH-、-NR15-、-CH2-、-CR16H-又は-CR1617-を表し、R15~R17はそれぞれ独立に、アルキル基又はアリール基を表す。
 R21~R24はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルケニル基、アルコキシ基、アミノ基、アルコキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アミド基、スルホ基、シアノ基又はアリール基を表す。R21~R24のうち2つは、それぞれ互いに結合して環を形成してもよい。
 R21~R24としては、水素原子、ハロゲン原子又はアルキル基が好ましく、また、R21~R24のうち少なくとも2つが互いに結合してアリール基を形成する態様もまた、好ましく挙げられる。中でも、R21~R24がいずれも水素原子である態様が、感度の観点から好ましい。
 前記した置換基は、いずれも、更に置換基を有していてもよい。
In the formula (OS-101), R 11 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, a sulfo group, a cyano group, an aryl group, or a heteroaryl group. Represents. R 12 represents an alkyl group or an aryl group.
X is -O -, - S -, - NH -, - NR 15 -, - CH 2 -, - CR 16 H- or -CR 16 R 17 - represents, in each of R 15 ~ R 17 independently represent an alkyl Represents a group or an aryl group.
R 21 to R 24 are each independently a hydrogen atom, halogen atom, alkyl group, alkenyl group, alkoxy group, amino group, alkoxycarbonyl group, alkylcarbonyl group, arylcarbonyl group, amide group, sulfo group, cyano group or aryl. Represents a group. Two of R 21 to R 24 may be bonded to each other to form a ring.
R 21 to R 24 are preferably a hydrogen atom, a halogen atom or an alkyl group, and an embodiment in which at least two of R 21 to R 24 are bonded to each other to form an aryl group is also preferred. Among these, an embodiment in which R 21 to R 24 are all hydrogen atoms is preferable from the viewpoint of sensitivity.
Any of the above-described substituents may further have a substituent.
 前記式(OS-101)で表される化合物は、下記式(OS-102)で表される化合物であることがより好ましい。 The compound represented by the formula (OS-101) is more preferably a compound represented by the following formula (OS-102).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 前記式(OS-102)中、R11、R12及びR21~R24は、それぞれ式(OS-101)におけるR11、R12及びR21~R24と同義であり、好ましい例もまた同様である。
 これらの中でも、式(OS-101)及び式(OS-102)におけるR11がシアノ基又はアリール基である態様がより好ましく、式(OS-102)で表され、R11がシアノ基、フェニル基又はナフチル基である態様が最も好ましい。
In the formula (OS-102), R 11, R 12 and R 21 ~ R 24 has the same meaning as R 11, R 12 and R 21 ~ R 24 in each formula (OS-101), preferred examples also It is the same.
Among these, an embodiment in which R 11 in the formula (OS-101) and the formula (OS-102) is a cyano group or an aryl group is more preferable, represented by the formula (OS-102), and R 11 is a cyano group, phenyl The embodiment which is a group or a naphthyl group is most preferred.
 また、前記オキシムスルホネート化合物において、オキシムやベンゾチアゾール環の立体構造(E,Z等)についてはそれぞれ、どちらか一方であっても、混合物であってもよい。 In the oxime sulfonate compound, the steric structure (E, Z, etc.) of the oxime or benzothiazole ring may be either one or a mixture.
 以下に、本発明に好適に用いることができる式(OS-101)で表される化合物の具体例(例示化合物b-1~b-34)を示すが、本発明はこれに限定されない。なお、具体例中、Meはメチル基を表し、Etはエチル基を表し、Bnはベンジル基を表し、Phはフェニル基を表す。 Specific examples (exemplary compounds b-1 to b-34) of the compound represented by the formula (OS-101) that can be suitably used in the present invention are shown below, but the present invention is not limited thereto. In specific examples, Me represents a methyl group, Et represents an ethyl group, Bn represents a benzyl group, and Ph represents a phenyl group.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記化合物の中でも、感度と安定性との両立の観点から、b-9、b-16、b-31、b-33が好ましい。 Among the above compounds, b-9, b-16, b-31, and b-33 are preferable from the viewpoint of achieving both sensitivity and stability.
 本発明の感光性樹脂組成物は、活性光線に感応する酸発生剤として1,2-キノンジアジド化合物を含まないことが好ましい。その理由は、1,2-キノンジアジド化合物は、逐次型光化学反応によりカルボキシ基を生成するが、その量子収率は1以下であり、オキシムスルホネート化合物に比べて感度が低いためである。
 これに対して、オキシムスルホネート化合物は、活性光線に感応して生成する酸が保護された酸性基の脱保護に対して触媒として作用するので、1個の光量子の作用で生成した酸が、多数の脱保護反応に寄与し、量子収率は1を超え、例えば、10の数乗のような大きい値となり、いわゆる化学増幅の結果として、高感度が得られるものと推測される。
 また、オキシムスルホネート化合物は、広がりのあるπ共役系を有しているため、長波長側にまで吸収を有しており、遠紫外線(DUV)、i線のみならず、g線においても非常に高い感度を示す。
The photosensitive resin composition of the present invention preferably contains no 1,2-quinonediazide compound as an acid generator sensitive to actinic rays. The reason is that the 1,2-quinonediazide compound generates a carboxy group by a sequential photochemical reaction, but its quantum yield is 1 or less and is less sensitive than the oxime sulfonate compound.
On the other hand, the oxime sulfonate compound acts as a catalyst for the deprotection of the acidic group protected by the acid generated in response to the actinic ray, so that a large number of acids generated by the action of one photon It contributes to the deprotection reaction, and the quantum yield exceeds 1, for example, a large value such as the power of 10, and it is presumed that high sensitivity is obtained as a result of so-called chemical amplification.
In addition, since the oxime sulfonate compound has a broad π-conjugated system, it has absorption up to the long wavelength side, which is very not only in the deep ultraviolet (DUV) and i-line but also in the g-line. Shows high sensitivity.
 本発明の感光性樹脂組成物は、前記特定樹脂における酸分解性基としてテトラヒドロフラニル基を用いることにより、アセタール又はケタールに比べ同等又はそれ以上の酸分解性を得ることができる。これにより、より短時間のポストベークで確実に酸分解性基が消費できる。更に、感放射性酸発生剤であるオキシムスルホネート化合物を組み合わせて用いることで、スルホン酸発生速度が上がるため、酸の生成が促進され、樹脂の酸分解性基の分解を促進する。また、オキシムスルホネート化合物が分解することで得られる酸は、分子の小さいスルホン酸が生成することから、硬化膜中での拡散性も高くなりより高感度化することができる。また、特定樹脂の架橋性基による架橋反応も滞りなく進行し、高密着性の硬化膜を得ることができる。 The photosensitive resin composition of the present invention can obtain an acid decomposability equivalent to or higher than that of acetal or ketal by using a tetrahydrofuranyl group as an acid decomposable group in the specific resin. Thereby, an acid-decomposable group can be consumed reliably in a shorter post-bake. Furthermore, by using the oxime sulfonate compound, which is a radiation-sensitive acid generator, in combination, the sulfonic acid generation rate is increased, so that the generation of acid is promoted and the decomposition of the acid-decomposable group of the resin is promoted. Moreover, the acid obtained by decomposing | disassembling an oxime sulfonate compound produces | generates a sulfonic acid with a small molecule | numerator, Therefore The diffusibility in a cured film becomes high, and it can make it more highly sensitive. Moreover, the cross-linking reaction by the cross-linkable group of the specific resin proceeds without delay, and a highly adhesive cured film can be obtained.
 成分Bは、1種単独で使用しても、2種以上を併用してもよい。また、他の種類の特定の酸発生剤と組み合わせて使用することもできる。
 本発明の感光性樹脂組成物において、成分Bは、感光性樹脂組成物の全固形分に対して、0.1~10重量%使用することが好ましく、0.5~10重量%使用することがより好ましい。
Component B may be used alone or in combination of two or more. It can also be used in combination with other types of specific acid generators.
In the photosensitive resin composition of the present invention, component B is preferably used in an amount of 0.1 to 10% by weight, preferably 0.5 to 10% by weight, based on the total solid content of the photosensitive resin composition. Is more preferable.
<その他の成分>
 本発明の感光性樹脂組成物には、その他の成分を含有することができる。
 その他の成分としては、感度の観点から現像促進剤を含有することが好ましく、また、塗布性の観点から溶剤を含有することが好ましく、膜物性の観点から架橋剤を含有することが好ましい。
 更に、本発明の感光性樹脂組成物は、基板密着性の観点から密着改良剤を含有することが好ましく、液保存安定性の観点から塩基性化合物を含有することが好ましく、塗布性の観点から界面活性剤を含有することが好ましい。
 更に、必要に応じて、本発明の感光性樹脂組成物には、酸化防止剤、可塑剤、熱ラジカル発生剤、熱酸発生剤、酸増殖剤、紫外線吸収剤、増粘剤、及び、有機又は無機の沈殿防止剤などの、公知の添加剤を加えることができる。
 また、増感剤は、低分子量成分の導入量が増えることにより、熱ダレが生じてしまうため、含まないほうが好ましい。
 以下、本発明の感光性樹脂組成物に含有することができるその他の成分を説明する。
<Other ingredients>
The photosensitive resin composition of the present invention can contain other components.
As other components, a development accelerator is preferably contained from the viewpoint of sensitivity, a solvent is preferably contained from the viewpoint of coatability, and a crosslinking agent is preferably contained from the viewpoint of film properties.
Furthermore, the photosensitive resin composition of the present invention preferably contains an adhesion improver from the viewpoint of substrate adhesion, preferably contains a basic compound from the viewpoint of liquid storage stability, and from the viewpoint of coatability. It is preferable to contain a surfactant.
Furthermore, if necessary, the photosensitive resin composition of the present invention includes an antioxidant, a plasticizer, a thermal radical generator, a thermal acid generator, an acid multiplier, an ultraviolet absorber, a thickener, and an organic material. Alternatively, known additives such as inorganic suspending agents can be added.
In addition, it is preferable not to include the sensitizer because heat sag occurs due to an increase in the introduction amount of the low molecular weight component.
Hereinafter, other components that can be contained in the photosensitive resin composition of the present invention will be described.
〔溶剤〕
 本発明の感光性樹脂組成物は、溶剤を含有することが好ましい。
 本発明の感光性樹脂組成物は、必須成分である特定樹脂及び特定酸発生剤、並びに、各種添加剤の任意成分を、溶剤に溶解した溶液として調製されることが好ましい。
〔solvent〕
The photosensitive resin composition of the present invention preferably contains a solvent.
The photosensitive resin composition of the present invention is preferably prepared as a solution in which optional components of the specific resin and the specific acid generator, which are essential components, and various additives are dissolved in a solvent.
 本発明の感光性樹脂組成物に使用される溶剤としては、公知の溶剤を用いることができ、エチレングリコールモノアルキルエーテル類、エチレングリコールジアルキルエーテル類、エチレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールジアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールジアルキルエーテル類、ジエチレングリコールモノアルキルエーテルアセテート類、ジプロピレングリコールモノアルキルエーテル類、ジプロピレングリコールジアルキルエーテル類、ジプロピレングリコールモノアルキルエーテルアセテート類、エステル類、ケトン類、アミド類、ラクトン類等が例示できる。 As the solvent used in the photosensitive resin composition of the present invention, known solvents can be used, such as ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene glycol monoalkyl. Ethers, propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ether Examples include acetates, esters, ketones, amides, lactones and the like.
 本発明の感光性樹脂組成物に使用される溶剤としては、例えば、(1)エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル類;(2)エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル等のエチレングリコールジアルキルエーテル類;(3)エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;(4)プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル類;(5)プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のプロピレングリコールジアルキルエーテル類; Examples of the solvent used in the photosensitive resin composition of the present invention include (1) ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, and ethylene glycol monobutyl ether. (2) ethylene glycol dialkyl ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether; (3) ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, ethylene Ethylene glycol monoalkyl ether acetate such as glycol monobutyl ether acetate (4) Propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether; (5) propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol Propylene glycol dialkyl ethers such as monomethyl ether and diethylene glycol monoethyl ether;
(6)プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;(7)ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル等のジエチレングリコールジアルキルエーテル類;(8)ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノプロピルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のジエチレングリコールモノアルキルエーテルアセテート類;(9)ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル等のジプロピレングリコールモノアルキルエーテル類;(10)ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールエチルメチルエーテル等のジプロピレングリコールジアルキルエーテル類; (6) Propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate; (7) diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl Diethylene glycol dialkyl ethers such as methyl ether; (8) diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monopropyl ether acetate, diethylene glycol monobutyl ether acetate, etc. (9) Dipropylene glycol monoalkyl ethers such as dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monobutyl ether; (10) Dipropylene glycol dimethyl ether Dipropylene glycol dialkyl ethers such as dipropylene glycol diethyl ether and dipropylene glycol ethyl methyl ether;
(11)ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノプロピルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート等のジプロピレングリコールモノアルキルエーテルアセテート類;(12)乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸イソプロピル、乳酸n-ブチル、乳酸イソブチル、乳酸n-アミル、乳酸イソアミル等の乳酸エステル類;(13)酢酸n-ブチル、酢酸イソブチル、酢酸n-アミル、酢酸イソアミル、酢酸n-ヘキシル、酢酸2-エチルヘキシル、プロピオン酸エチル、プロピオン酸n-プロピル、プロピオン酸イソプロピル、プロピオン酸n-ブチル、プロピオン酸イソブチル、酪酸メチル、酪酸エチル、酪酸エチル、酪酸n-プロピル、酪酸イソプロピル、酪酸n-ブチル、酪酸イソブチル等の脂肪族カルボン酸エステル類;(14)ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、2-ヒドロキシ-3-メチル酪酸エチル、メトキシ酢酸エチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メトキシブチルブチレート、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類; (11) Dipropylene glycol monoalkyl ether acetates such as dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monopropyl ether acetate, dipropylene glycol monobutyl ether acetate; (12) methyl lactate, lactic acid Lactic acid esters such as ethyl, n-propyl lactate, isopropyl lactate, n-butyl lactate, isobutyl lactate, n-amyl lactate, isoamyl lactate; (13) n-butyl acetate, isobutyl acetate, n-amyl acetate, isoamyl acetate, N-hexyl acetate, 2-ethylhexyl acetate, ethyl propionate, n-propyl propionate, isopropyl propionate, n-butyl propionate, isobutyl propionate, methyl butyrate , Ethyl butyrate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, n-butyl butyrate, isobutyl butyrate, and the like; (14) ethyl hydroxyacetate, ethyl 2-hydroxy-2-methylpropionate, Ethyl 2-hydroxy-3-methylbutyrate, ethyl methoxyacetate, ethyl ethoxyacetate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, 3-methoxybutyl Acetate, 3-methyl-3-methoxybutyl acetate, 3-methyl-3-methoxybutyl propionate, 3-methyl-3-methoxybutyl butyrate, methyl acetoacetate, ethyl acetoacetate, methyl pyruvate, ethyl pyruvate Other esters such as;
(15)メチルエチルケトン、メチルプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン等のケトン類;(16)N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;(17)γ-ブチロラクトン等のラクトン類等を挙げることができる。
 また、これらの溶剤に更に必要に応じて、ベンジルエチルエーテル、ジヘキシルエーテル、エチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、イソホロン、カプロン酸、カプリル酸、1-オクタノール、1-ノナール、ベンジルアルコール、アニソール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、炭酸エチレン、炭酸プロピレン等の溶剤を添加することもできる。
 上記した溶剤のうち、プロピレングリコールモノアルキルエーテルアセテート類、及び/又は、ジエチレングリコールジアルキルエーテル類が好ましく、ジエチレングリコールエチルメチルエーテル、及び/又は、プロピレングリコールモノメチルエーテルアセテートが特に好ましい。
 これら溶剤は、1種単独で又は2種以上を混合して使用することができる。
(15) Ketones such as methyl ethyl ketone, methyl propyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, 2-heptanone, 3-heptanone, 4-heptanone, cyclohexanone; (16) N-methylformamide, N, N-dimethyl Examples include amides such as formamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpyrrolidone; and (17) lactones such as γ-butyrolactone.
In addition, benzyl ethyl ether, dihexyl ether, ethylene glycol monophenyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, isophorone, caproic acid, caprylic acid, 1-octanol, 1-nonal as necessary for these solvents. , Benzyl alcohol, anisole, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, ethylene carbonate, propylene carbonate and the like can also be added.
Among the solvents described above, propylene glycol monoalkyl ether acetates and / or diethylene glycol dialkyl ethers are preferable, and diethylene glycol ethyl methyl ether and / or propylene glycol monomethyl ether acetate are particularly preferable.
These solvents can be used alone or in combination of two or more.
 本発明の感光性樹脂組成物における溶剤の含有量は、特定樹脂100重量部当たり、1~3,000重量部であることが好ましく、5~2,000重量部であることがより好ましく、10~1,500重量部であることが更に好ましい。 The solvent content in the photosensitive resin composition of the present invention is preferably 1 to 3,000 parts by weight, more preferably 5 to 2,000 parts by weight per 100 parts by weight of the specific resin. More preferably, it is ˜1,500 parts by weight.
〔現像促進剤〕
 本発明の感光性樹脂組成物は、現像促進剤を含有することが好ましい。
 現像促進剤としては、現像促進効果のある任意の化合物を使用できるが、カルボキシ基、フェノール性水酸基、及び、アルキレンオキシ基の群から選ばれる少なくとも1種の基を有する化合物であることが好ましく、カルボキシ基又はフェノール性水酸基を有する化合物がより好ましく、フェノール性水酸基を有する化合物が最も好ましい。
 また、現像促進剤の分子量としては、100~2,000が好ましく、150~1,500が更に好ましく、150~1,000が特に好ましい。
[Development accelerator]
The photosensitive resin composition of the present invention preferably contains a development accelerator.
As the development accelerator, any compound having a development acceleration effect can be used, but a compound having at least one group selected from the group of carboxy group, phenolic hydroxyl group, and alkyleneoxy group is preferable. A compound having a carboxy group or a phenolic hydroxyl group is more preferred, and a compound having a phenolic hydroxyl group is most preferred.
The molecular weight of the development accelerator is preferably 100 to 2,000, more preferably 150 to 1,500, and particularly preferably 150 to 1,000.
 現像促進剤の例として、アルキレンオキシ基を有するものとしては、ポリエチレングリコール、ポリエチレングリコールのモノメチルエーテル、ポリエチレングリコールのジメチルエーテル、ポリエチレングリコールグリセリルエステル、ポリプロピレングリコールグリセリルエステル、ポリプロピレングリコールジグリセリルエステル、ポリブチレングリコール、ポリエチレングリコール-ビスフェノールAエーテル、ポリプロピレングリコール-ビスフェノールAエーテル、ポリオキシエチレンのアルキルエーテル、ポリオキシエチレンのアルキルエステル、及び特開平9-222724号公報に記載の化合物等を挙げることができる。
 カルボキシ基を有するものとしては、特開2000-66406号公報、特開平9-6001号公報、特開平10-20501号公報、特開平11-338150号公報等に記載の化合物を挙げることができる。
 フェノール性水酸基を有するものとしては、特開2005-346024号公報、特開平10-133366号公報、特開平9-194415号公報、特開平9-222724号公報、特開平11-171810号公報、特開2007-121766号公報、特開平9-297396号公報、特開2003-43679号公報等に記載の化合物を挙げることができる。これらの中でも、ベンゼン環数が2~10個のフェノール化合物が好適であり、ベンゼン環数が2~5個のフェノール化合物が更に好適である。特に好ましいものとしては、特開平10-133366号公報に溶解促進剤として開示されているフェノール性化合物を挙げることができる。
Examples of development accelerators include those having an alkyleneoxy group such as polyethylene glycol, polyethylene glycol monomethyl ether, polyethylene glycol dimethyl ether, polyethylene glycol glyceryl ester, polypropylene glycol glyceryl ester, polypropylene glycol diglyceryl ester, polybutylene glycol, Examples thereof include polyethylene glycol-bisphenol A ether, polypropylene glycol-bisphenol A ether, polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, and compounds described in JP-A-9-222724.
Examples of compounds having a carboxy group include compounds described in JP-A No. 2000-66406, JP-A No. 9-6001, JP-A No. 10-20501, JP-A No. 11-338150, and the like.
Examples of those having a phenolic hydroxyl group include JP-A-2005-346024, JP-A-10-133366, JP-A-9-194415, JP-A-9-222724, JP-A-11-171810, Examples thereof include compounds described in JP-A-2007-121766, JP-A-9-297396, JP-A-2003-43679, and the like. Among these, a phenol compound having 2 to 10 benzene rings is preferable, and a phenol compound having 2 to 5 benzene rings is more preferable. Particularly preferred is a phenolic compound disclosed as a dissolution accelerator in JP-A-10-133366.
 現像促進剤は、1種を単独で用いてもよいし、2種以上を併用することも可能である。
 本発明の感光性樹脂組成物における現像促進剤の添加量は、感度と残膜率の観点から、特定樹脂を100重量部としたとき、0.1~30重量部が好ましく、0.2~20重量部がより好ましく、0.5~10重量部であることが最も好ましい。
A development accelerator may be used individually by 1 type, and can also use 2 or more types together.
The addition amount of the development accelerator in the photosensitive resin composition of the present invention is preferably 0.1 to 30 parts by weight, preferably 0.2 to 30 parts by weight, when the specific resin is 100 parts by weight, from the viewpoints of sensitivity and residual film ratio. 20 parts by weight is more preferable, and 0.5 to 10 parts by weight is most preferable.
〔架橋剤〕
 本発明の感光性樹脂組成物は、必要に応じ、架橋剤を含有することが好ましい。架橋剤を添加することにより、本発明の感光性樹脂組成物により得られる硬化膜をより強固な膜とすることができる。
 架橋剤としては、例えば、以下に述べる分子内に2個以上のエポキシ基又はオキセタニル基を有する化合物、アルコキシメチル基含有架橋剤、又は、少なくとも1個のエチレン性不飽和二重結合を有する化合物を添加することができる。
 これらの架橋剤の中で、特に好ましいものは、分子内に2個以上のエポキシ基又はオキセタニル基を有する化合物である。
 本発明の感光性樹脂組成物中における架橋剤の添加量は、感光性樹脂組成物の全固形分に対し、0.05~50重量部であることが好ましく、0.5~44重量部であることがより好ましく、3~40重量部であることが更に好ましい。この範囲で添加することにより、機械的強度及び耐溶剤性に優れた硬化膜が得られる。
[Crosslinking agent]
It is preferable that the photosensitive resin composition of this invention contains a crosslinking agent as needed. By adding a crosslinking agent, the cured film obtained by the photosensitive resin composition of the present invention can be made a stronger film.
Examples of the crosslinking agent include a compound having two or more epoxy groups or oxetanyl groups in the molecule described below, an alkoxymethyl group-containing crosslinking agent, or a compound having at least one ethylenically unsaturated double bond. Can be added.
Among these crosslinking agents, particularly preferred are compounds having two or more epoxy groups or oxetanyl groups in the molecule.
The addition amount of the crosslinking agent in the photosensitive resin composition of the present invention is preferably 0.05 to 50 parts by weight, and preferably 0.5 to 44 parts by weight with respect to the total solid content of the photosensitive resin composition. More preferred is 3 to 40 parts by weight. By adding in this range, a cured film having excellent mechanical strength and solvent resistance can be obtained.
-分子内に2個以上のエポキシ基又はオキセタニル基を有する化合物-
 分子内に2個以上のエポキシ基を有する化合物の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂肪族エポキシ樹脂等を挙げることができる。
-Compounds having two or more epoxy groups or oxetanyl groups in the molecule-
Specific examples of compounds having two or more epoxy groups in the molecule include bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, aliphatic epoxy resins, and the like. Can do.
 これらは市販品として入手できる。例えば、ビスフェノールA型エポキシ樹脂としては、JER827、JER828、JER834、JER1001、JER1002、JER1003、JER1055、JER1007、JER1009、JER1010(以上、ジャパンエポキシレジン(株)製)、EPICLON860、EPICLON1050、EPICLON1051、EPICLON1055(以上、DIC(株)製)等であり、ビスフェノールF型エポキシ樹脂としては、JER806、JER807、JER4004、JER4005、JER4007、JER4010(以上、ジャパンエポキシレジン(株)製)、EPICLON830、EPICLON835(以上、DIC(株)製)、LCE-21、RE-602S(以上、日本化薬(株)製)等であり、フェノールノボラック型エポキシ樹脂としては、JER152、JER154、JER157S70、JER157S65(以上、ジャパンエポキシレジン(株)製)、EPICLON N-740、EPICLON N-740、EPICLON N-770、EPICLON N-775(以上、DIC(株)製)等であり、クレゾールノボラック型エポキシ樹脂としては、EPICLON N-660、EPICLON N-665、EPICLON N-670、EPICLON N-673、EPICLON N-680、EPICLON N-690、EPICLON N-695(以上、DIC(株)製)、EOCN-1020(以上、日本化薬(株)製)等であり、脂肪族エポキシ樹脂としては、ADEKA RESIN EP-4080S、同EP-4085S、同EP-4088S(以上、(株)ADEKA製)、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、EHPE3150、EPOLEAD PB 3600、同PB 4700(以上、ダイセル化学工業(株)製)等である。その他にも、ADEKA RESIN EP-4000S、同EP-4003S、同EP-4010S、同EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)等が挙げられる。
 これらは1種単独又は2種以上を組み合わせて使用することができる。
These are available as commercial products. For example, as bisphenol A type epoxy resin, JER827, JER828, JER834, JER1001, JER1002, JER1003, JER1055, JER1007, JER1009, JER1010 (above, manufactured by Japan Epoxy Resin Co., Ltd.), EPICLON860, EPICLON1050, EPICLON1051, EPICLON1051, EPICLON1051 And bisphenol F type epoxy resins such as JER806, JER807, JER4004, JER4005, JER4007, JER4010 (above, Japan Epoxy Resin Co., Ltd.), EPICLON830, EPICLON835 (above, DIC Co., Ltd.), LCE-21, RE-602S (above, Nippon Kayaku Co., Ltd.) As phenol novolac type epoxy resins, JER152, JER154, JER157S70, JER157S65 (above, manufactured by Japan Epoxy Resin Co., Ltd.), EPICLON N-740, EPICLON N-740, EPICLON N-770, EPICLON N-775 (above As cresol novolac type epoxy resins, EPICLON N-660, EPICLON N-665, EPICLON N-670, EPICLON N-673, EPICLON N-680, EPICLON N-690, EPICLON N-695 (above, manufactured by DIC Corporation), EOCN-1020 (above, manufactured by Nippon Kayaku Co., Ltd.), etc., and ADEKA RESIN EP-408 as an aliphatic epoxy resin S, EP-4085S, EP-4088S (above, manufactured by ADEKA Corporation), Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, EHPE3150, EPOLEAD PB 3600, PB 4700 (above, Daicel Chemical Industries, Ltd.) ))). In addition, ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation) and the like.
These can be used alone or in combination of two or more.
 これらの中で好ましいものとしては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及びフェノールノボラック型エポキシ樹脂が挙げられる。特にビスフェノールA型エポキシ樹脂が好ましい。 Among these, preferred are bisphenol A type epoxy resin, bisphenol F type epoxy resin, and phenol novolac type epoxy resin. A bisphenol A type epoxy resin is particularly preferable.
 分子内に2個以上のオキセタニル基を有する化合物の具体例としては、アロンオキセタンOXT-121、OXT-221、OX-SQ、PNOX(以上、東亞合成(株)製)を用いることができる。
 また、オキセタニル基を含む化合物は、単独で又はエポキシ基を含む化合物と混合して使用することが好ましい。
 分子内に2個以上のエポキシ基又はオキセタニル基を有する化合物の本発明の感光性樹脂組成物への添加量は、特定樹脂の総量を100重量部としたとき、1~50重量部が好ましく、3~30重量部がより好ましい。
As specific examples of the compound having two or more oxetanyl groups in the molecule, Aron oxetane OXT-121, OXT-221, OX-SQ, and PNOX (manufactured by Toagosei Co., Ltd.) can be used.
Moreover, it is preferable to use the compound containing an oxetanyl group individually or in mixture with the compound containing an epoxy group.
The addition amount of the compound having two or more epoxy groups or oxetanyl groups in the molecule to the photosensitive resin composition of the present invention is preferably 1 to 50 parts by weight when the total amount of the specific resin is 100 parts by weight, 3 to 30 parts by weight is more preferable.
-アルコキシメチル基含有架橋剤-
 アルコキシメチル基含有架橋剤としては、アルコキシメチル化メラミン、アルコキシメチル化ベンゾグアナミン、アルコキシメチル化グリコールウリル及びアルコキシメチル化尿素等が好ましい。これらは、それぞれメチロール化メラミン、メチロール化ベンゾグアナミン、メチロール化グリコールウリル、又は、メチロール化尿素のメチロール基をアルコキシメチル基に変換することにより得られる。このアルコキシメチル基の種類については特に限定されるものではなく、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基等を挙げることができるが、アウトガスの発生量の観点から、特にメトキシメチル基が好ましい。
 これらのアルコキシメチル基含有架橋剤のうち、アルコキシメチル化メラミン、アルコキシメチル化ベンゾグアナミン、アルコキシメチル化グリコールウリルが好ましい架橋剤として挙げられ、透明性の観点から、アルコキシメチル化グリコールウリルが特に好ましい。
-Alkoxymethyl group-containing crosslinking agent-
As the alkoxymethyl group-containing crosslinking agent, alkoxymethylated melamine, alkoxymethylated benzoguanamine, alkoxymethylated glycoluril, alkoxymethylated urea and the like are preferable. These can be obtained by converting the methylol group of methylolated melamine, methylolated benzoguanamine, methylolated glycoluril, or methylolated urea to an alkoxymethyl group, respectively. The type of the alkoxymethyl group is not particularly limited, and examples thereof include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, and a butoxymethyl group. From the viewpoint of the amount of outgas generated, A methoxymethyl group is preferred.
Among these alkoxymethyl group-containing crosslinking agents, alkoxymethylated melamine, alkoxymethylated benzoguanamine, and alkoxymethylated glycoluril are mentioned as preferred crosslinking agents, and alkoxymethylated glycoluril is particularly preferable from the viewpoint of transparency.
 これらアルコキシメチル基含有架橋剤は、市販品として入手可能であり、例えば、サイメル300、301、303、370、325、327、701、266、267、238、1141、272、202、1156、1158、1123、1170、1174、UFR65、300(以上、三井サイアナミッド(株)製)、ニカラックMX-750、-032、-706、-708、-40、-31、-270、-280、-290、ニカラックMS-11、ニカラックMW-30HM、-100LM、-390、(以上、(株)三和ケミカル製)などを好ましく使用することができる。 These alkoxymethyl group-containing crosslinking agents are available as commercial products. For example, Cymel 300, 301, 303, 370, 325, 327, 701, 266, 267, 238, 1141, 272, 202, 1156, 1158, 1123, 1170, 1174, UFR65, 300 (manufactured by Mitsui Cyanamid Co., Ltd.), Nicarax MX-750, -032, -706, -708, -40, -31, -270, -280, -290, Nicarac MS-11, Nicarak MW-30HM, -100LM, -390 (above, manufactured by Sanwa Chemical Co., Ltd.) and the like can be preferably used.
 本発明の感光性樹脂組成物にアルコキシメチル基含有架橋剤を用いる場合のアルコキシメチル基含有架橋剤の添加量は、特定樹脂100重量部に対して、0.05~50重量部であることが好ましく、0.5~10重量部であることがより好ましい。この範囲で添加することにより、現像時の好ましいアルカリ溶解性と、硬化後の膜の優れた耐溶剤性が得られる。 When the alkoxymethyl group-containing crosslinking agent is used in the photosensitive resin composition of the present invention, the addition amount of the alkoxymethyl group-containing crosslinking agent is 0.05 to 50 parts by weight with respect to 100 parts by weight of the specific resin. Preferably, the amount is 0.5 to 10 parts by weight. By adding within this range, preferable alkali solubility during development and excellent solvent resistance of the cured film can be obtained.
-少なくとも1個のエチレン性不飽和二重結合を有する化合物-
 少なくとも1個のエチレン性不飽和二重結合を有する化合物としては、単官能(メタ)アクリレート、2官能(メタ)アクリレート、3官能以上の(メタ)アクリレートなどの(メタ)アクリレート化合物を好適に用いることができる。
 単官能(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、カルビトール(メタ)アクリレート、イソボルニル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレートなどが挙げられる。
 2官能(メタ)アクリレートとしては、例えば、エチレングリコール(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ビスフェノキシエタノールフルオレンジアクリレート、ビスフェノキシエタノールフルオレンジアクリレートなどが挙げられる。
 3官能以上の(メタ)アクリレートとしては、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリ((メタ)アクリロイロキシエチル)フォスフェート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。
 これらの少なくとも1個のエチレン性不飽和二重結合を有する化合物は、1種単独又は2種以上を組み合わせて用いられる。
-Compounds having at least one ethylenically unsaturated double bond-
As the compound having at least one ethylenically unsaturated double bond, a (meth) acrylate compound such as a monofunctional (meth) acrylate, a bifunctional (meth) acrylate, or a trifunctional or higher (meth) acrylate is preferably used. be able to.
Examples of monofunctional (meth) acrylates include 2-hydroxyethyl (meth) acrylate, carbitol (meth) acrylate, isobornyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, and 2- (meth) acryloyloxyethyl. Examples include -2-hydroxypropyl phthalate.
Examples of the bifunctional (meth) acrylate include ethylene glycol (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, polypropylene glycol di (meth) acrylate, Examples include tetraethylene glycol di (meth) acrylate, bisphenoxyethanol full orange acrylate, and bisphenoxyethanol full orange acrylate.
Examples of the tri- or higher functional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tri ((meth) acryloyloxyethyl) phosphate, pentaerythritol tetra (meth) acrylate, Examples thereof include dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate.
These compounds having at least one ethylenically unsaturated double bond are used singly or in combination of two or more.
 本発明の感光性樹脂組成物における少なくとも1個のエチレン性不飽和二重結合を有する化合物の使用割合は、特定樹脂100重量部に対して、50重量部以下であることが好ましく、30重量部以下であることがより好ましい。このような割合で少なくとも1個のエチレン性不飽和二重結合を有する化合物を含有させることにより、本発明の感光性樹脂組成物から得られる硬化膜の耐熱性及び表面硬度等を向上させることができる。少なくとも1個のエチレン性不飽和二重結合を有する化合物を加える場合には、後述の熱ラジカル発生剤を添加することが好ましい。 The proportion of the compound having at least one ethylenically unsaturated double bond in the photosensitive resin composition of the present invention is preferably 50 parts by weight or less, based on 100 parts by weight of the specific resin, and 30 parts by weight. The following is more preferable. By containing at least one compound having an ethylenically unsaturated double bond in such a ratio, the heat resistance and surface hardness of the cured film obtained from the photosensitive resin composition of the present invention can be improved. it can. When adding a compound having at least one ethylenically unsaturated double bond, it is preferable to add a thermal radical generator described later.
〔密着改良剤〕
 本発明の感光性樹脂組成物は、密着改良剤を含有することが好ましい。
 本発明の感光性樹脂組成物に用いることができる密着改良剤は、基板となる無機物、例えば、シリコン、酸化シリコン、窒化シリコン等のシリコン化合物、金、銅、アルミニウム等の金属と絶縁膜との密着性を向上させる化合物である。具体的には、シランカップリング剤、チオール系化合物等が挙げられる。本発明で使用される密着改良剤としてのシランカップリング剤は、界面の改質を目的とするものであり、特に限定することなく、公知のものを使用することができる。
 好ましいシランカップリング剤としては、例えば、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリアコキシシラン、γ-グリシドキシプロピルアルキルジアルコキシシラン、γ-メタクリロキシプロピルトリアルコキシシラン、γ-メタクリロキシプロピルアルキルジアルコキシシラン、γ-クロロプロピルトリアルコキシシラン、γ-メルカプトプロピルトリアルコキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリアルコキシシラン、ビニルトリアルコキシシランが挙げられる。
 これらのうち、γ-グリシドキシプロピルトリアルコキシシラン、及びγ-メタクリロキシプロピルトリアルコキシシランがより好ましく、γ-グリシドキシプロピルトリアルコキシシランが更に好ましい。
 これらは1種単独又は2種以上を組み合わせて使用することができる。これらは基板との密着性の向上に有効であるとともに、基板とのテーパ角の調整にも有効である。
 本発明の感光性樹脂組成物における密着改良剤の含有量は、特定樹脂100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましい。
[Adhesion improver]
The photosensitive resin composition of the present invention preferably contains an adhesion improving agent.
The adhesion improver that can be used in the photosensitive resin composition of the present invention is an inorganic substance serving as a substrate, for example, a silicon compound such as silicon, silicon oxide, or silicon nitride, a metal such as gold, copper, or aluminum and an insulating film. It is a compound that improves adhesion. Specific examples include silane coupling agents and thiol compounds. The silane coupling agent as an adhesion improving agent used in the present invention is for the purpose of modifying the interface, and any known silane coupling agent can be used without any particular limitation.
Preferred examples of the silane coupling agent include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltriacoxysilane, γ-glycidoxypropylalkyldialkoxysilane, γ- Methacryloxypropyltrialkoxysilane, γ-methacryloxypropylalkyldialkoxysilane, γ-chloropropyltrialkoxysilane, γ-mercaptopropyltrialkoxysilane, β- (3,4-epoxycyclohexyl) ethyltrialkoxysilane, vinyltri An alkoxysilane is mentioned.
Of these, γ-glycidoxypropyltrialkoxysilane and γ-methacryloxypropyltrialkoxysilane are more preferable, and γ-glycidoxypropyltrialkoxysilane is more preferable.
These can be used alone or in combination of two or more. These are effective in improving the adhesion to the substrate and are also effective in adjusting the taper angle with the substrate.
The content of the adhesion improving agent in the photosensitive resin composition of the present invention is preferably 0.1 to 20 parts by weight, and more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the specific resin.
〔塩基性化合物〕
 本発明の感光性樹脂組成物は、塩基性化合物を含有することが好ましい。
 塩基性化合物としては、化学増幅レジストで用いられるものの中から任意に選択して使用することができる。例えば、脂肪族アミン、芳香族アミン、複素環式アミン、第四級アンモニウムヒドロキシド、及び、カルボン酸の第四級アンモニウム塩等が挙げられる。
[Basic compounds]
The photosensitive resin composition of the present invention preferably contains a basic compound.
The basic compound can be arbitrarily selected from those used in chemically amplified resists. Examples thereof include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, and quaternary ammonium salts of carboxylic acids.
 脂肪族アミンとしては、例えば、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジ-n-プロピルアミン、トリ-n-プロピルアミン、ジ-n-ペンチルアミン、トリ-n-ペンチルアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、ジシクロヘキシルメチルアミンなどが挙げられる。
 芳香族アミンとしては、例えば、アニリン、ベンジルアミン、N,N-ジメチルアニリン、ジフェニルアミンなどが挙げられる。
 複素環式アミンとしては、例えば、ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、N-メチル-4-フェニルピリジン、4-ジメチルアミノピリジン、イミダゾール、ベンズイミダゾール、4-メチルイミダゾール、2-フェニルベンズイミダゾール、2,4,5-トリフェニルイミダゾール、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、8-オキシキノリン、ピラジン、ピラゾール、ピリダジン、プリン、ピロリジン、ピペリジン、ピペラジン、モルホリン、4-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,8-ジアザビシクロ[5.3.0]-7-ウンデセンなどが挙げられる。
 第四級アンモニウムヒドロキシドとしては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムヒドロキシド、テトラ-n-ヘキシルアンモニウムヒドロキシドなどが挙げられる。
 カルボン酸の第四級アンモニウム塩としては、例えば、テトラメチルアンモニウムアセテート、テトラメチルアンモニウムベンゾエート、テトラ-n-ブチルアンモニウムアセテート、テトラ-n-ブチルアンモニウムベンゾエートなどが挙げられる。
Examples of aliphatic amines include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, triethanolamine, and dicyclohexylamine. , Dicyclohexylmethylamine and the like.
Examples of the aromatic amine include aniline, benzylamine, N, N-dimethylaniline, diphenylamine and the like.
Examples of the heterocyclic amine include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, piperazine, morpholine, 4-methylmorpholine, 1,5-diazabicyclo [4.3.0] -5-nonene, 1,8-diazabicyclo [5.3.0] -7 -Undecene.
Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, tetra-n-hexylammonium hydroxide, and the like.
Examples of the quaternary ammonium salt of carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, and tetra-n-butylammonium benzoate.
 本発明に用いることができる塩基性化合物は、1種単独で使用しても、2種以上を併用してもよいが、2種以上を併用することが好ましく、2種を併用することがより好ましく、複素環式アミンを2種併用することが更に好ましい。
 本発明の感光性樹脂組成物における塩基性化合物の含有量は、特定樹脂100重量部に対して、0.001~1重量部であることが好ましく、0.002~0.2重量部であることがより好ましい。
The basic compounds that can be used in the present invention may be used singly or in combination of two or more. However, it is preferable to use two or more in combination, and it is more preferable to use two in combination. Preferably, two kinds of heterocyclic amines are used in combination.
The content of the basic compound in the photosensitive resin composition of the present invention is preferably 0.001 to 1 part by weight, and 0.002 to 0.2 part by weight with respect to 100 parts by weight of the specific resin. It is more preferable.
〔界面活性剤〕
 本発明の感光性樹脂組成物は、界面活性剤を含有することが好ましい。
 界面活性剤としては、アニオン系、カチオン系、ノニオン系、又は、両性のいずれでも使用することができるが、好ましい界面活性剤はノニオン系界面活性剤である。
 ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリオキシエチレングリコールの高級脂肪酸ジエステル類、フッ素系、シリコーン系界面活性剤を挙げることができる。
[Surfactant]
The photosensitive resin composition of the present invention preferably contains a surfactant.
As the surfactant, any of anionic, cationic, nonionic, or amphoteric surfactants can be used, but a preferred surfactant is a nonionic surfactant.
Examples of nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, fluorine-based and silicone surfactants. .
 本発明の感光性樹脂組成物は、界面活性剤として、フッ素系界面活性剤、及び/又は、シリコーン系界面活性剤を含有することがより好ましい。
 これらのフッ素系界面活性剤、シリコーン系界面活性剤として、例えば、特開昭62-36663号、特開昭61-226746号、特開昭61-226745号、特開昭62-170950号、特開昭63-34540号、特開平7-230165号、特開平8-62834号、特開平9-54432号、特開平9-5988号、特開2001-330953号各公報記載の界面活性剤を挙げることができ、市販の界面活性剤を用いることもできる。
 使用できる市販の界面活性剤として、例えば、エフトップEF301、EF303、(以上、新秋田化成(株)製)、フロラードFC430、431(以上、住友スリーエム(株)製)、メガファックF171、F173、F176、F189、R08(以上、DIC(株)製)、サーフロンS-382、SC101、102、103、104、105、106(以上、旭硝子(株)製)、PolyFoxシリーズ(OMNOVA社製)等のフッ素系界面活性剤又はシリコーン系界面活性剤を挙げることができる。また、ポリシロキサンポリマーKP-341(信越化学工業(株)製)も、シリコーン系界面活性剤として用いることができる。
The photosensitive resin composition of the present invention more preferably contains a fluorine-based surfactant and / or a silicone-based surfactant as the surfactant.
As these fluorosurfactants and silicone surfactants, for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950, Surfactants described in JP-A-63-34540, JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, and JP-A-2001-330953 are listed. Commercially available surfactants can also be used.
Examples of commercially available surfactants that can be used include F-top EF301, EF303 (above, Shin-Akita Kasei Co., Ltd.), Florard FC430, 431 (above, made by Sumitomo 3M Ltd.), MegaFuck F171, F173, F176, F189, R08 (above, manufactured by DIC Corporation), Surflon S-382, SC101, 102, 103, 104, 105, 106 (above, manufactured by Asahi Glass Co., Ltd.), PolyFox series (produced by OMNOVA), etc. Fluorine surfactants or silicone surfactants can be mentioned. Polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be used as a silicone surfactant.
 また、界面活性剤として、下記式(1)で表される構成単位A及び構成単位Bを含み、テトラヒドロフラン(THF)を溶媒とした場合のゲルパーミエーションクロマトグラフィで測定されるポリスチレン換算の重量平均分子量(Mw)が1,000以上10,000以下である共重合体を好ましい例として挙げることができる。 In addition, as a surfactant, the structural unit A and the structural unit B represented by the following formula (1) are included, and the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent. A preferred example is a copolymer having (Mw) of 1,000 or more and 10,000 or less.
Figure JPOXMLDOC01-appb-C000032
(式(1)中、R1及びR3はそれぞれ独立に、水素原子又はメチル基を表し、R2は炭素数1以上4以下の直鎖アルキレン基を表し、R4は水素原子又は炭素数1以上4以下のアルキル基を表し、Lは炭素数3以上6以下のアルキレン基を表し、p及びqは重合比を表す重量百分率であり、pは10重量%以上80重量%以下の数値を表し、qは20重量%以上90重量%以下の数値を表し、rは1以上18以下の整数を表し、nは1以上10以下の整数を表す。)
Figure JPOXMLDOC01-appb-C000032
(In the formula (1), R 1 and R 3 each independently represent a hydrogen atom or a methyl group, R 2 represents a linear alkylene group having 1 to 4 carbon atoms, and R 4 represents a hydrogen atom or carbon number. 1 represents an alkyl group having 4 or less, L represents an alkylene group having 3 to 6 carbon atoms, p and q are weight percentages representing a polymerization ratio, and p is a numerical value of 10% to 80% by weight. Q represents a numerical value of 20 wt% or more and 90 wt% or less, r represents an integer of 1 or more and 18 or less, and n represents an integer of 1 or more and 10 or less.
 前記Lは、下記式(2)で表される分岐アルキレン基であることが好ましい。式(2)におけるR5は、炭素数1以上4以下のアルキル基を表し、相溶性と被塗布面に対する濡れ性の点で、炭素数1以上3以下のアルキル基が好ましく、炭素数2又は3のアルキル基がより好ましい。 The L is preferably a branched alkylene group represented by the following formula (2). R 5 in formula (2) represents an alkyl group having 1 to 4 carbon atoms, and is preferably an alkyl group having 1 to 3 carbon atoms in terms of compatibility and wettability with respect to the coated surface. More preferred is an alkyl group of 3.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 前記共重合体の重量平均分子量(Mw)は、1,500以上5,000以下がより好ましい。
 これら界面活性剤は、1種単独で又は2種以上を混合して使用することができる。
 本発明の感光性樹脂組成物における界面活性剤の添加量は、特定樹脂100重量部に対して、10重量部以下であることが好ましく、0.01~10重量部であることがより好ましく、0.01~1重量部であることが更に好ましい。
The weight average molecular weight (Mw) of the copolymer is more preferably from 1,500 to 5,000.
These surfactants can be used individually by 1 type or in mixture of 2 or more types.
The addition amount of the surfactant in the photosensitive resin composition of the present invention is preferably 10 parts by weight or less, more preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the specific resin. More preferably, the content is 0.01 to 1 part by weight.
〔酸化防止剤〕
 本発明の感光性樹脂組成物は、酸化防止剤を含有してもよい。
 酸化防止剤としては、公知の酸化防止剤を含有することができる。酸化防止剤を添加することにより、硬化膜の着色を防止できる、又は、分解による膜厚減少を低減でき、また、耐熱透明性に優れるという利点がある。
 このような酸化防止剤としては、例えば、リン系酸化防止剤、ヒドラジド類、ヒンダードアミン系酸化防止剤、イオウ系酸化防止剤、フェノール系酸化防止剤、アスコルビン酸類、硫酸亜鉛、糖類、亜硝酸塩、亜硫酸塩、チオ硫酸塩、ヒドロキシルアミン誘導体などを挙げることができる。これらの中では、硬化膜の着色、膜厚減少の観点から特にフェノール系酸化防止剤が好ましい。これらは1種単独で用いてもよいし、2種以上を混合して用いてもよい。
 フェノール系酸化防止剤の市販品としては、例えば、アデカスタブAO-60、アデカスタブAO-80(以上、(株)ADEKA製)、イルガノックス1098(チバジャパン(株)製)が挙げられる。
 酸化防止剤の含有量は、感光性樹脂組成物の全固形分に対して、0.1~6重量%であることが好ましく、0.2~5重量%であることがより好ましく、0.5~4重量%であることが特に好ましい。この範囲にすることで、形成された膜の十分な透明性が得られ、且つ、パターン形成時の感度も良好となる。
 また、酸化防止剤以外の添加剤として、“高分子添加剤の新展開((株)日刊工業新聞社)”に記載の各種紫外線吸収剤や、金属不活性化剤等を本発明の感光性樹脂組成物に添加してもよい。
〔Antioxidant〕
The photosensitive resin composition of the present invention may contain an antioxidant.
As an antioxidant, a well-known antioxidant can be contained. By adding an antioxidant, there is an advantage that coloring of the cured film can be prevented, or a decrease in film thickness due to decomposition can be reduced, and heat resistant transparency is excellent.
Examples of such antioxidants include phosphorus antioxidants, hydrazides, hindered amine antioxidants, sulfur antioxidants, phenolic antioxidants, ascorbic acids, zinc sulfate, sugars, nitrites, sulfites. Examples thereof include salts, thiosulfates, and hydroxylamine derivatives. Among these, a phenolic antioxidant is particularly preferable from the viewpoint of coloring the cured film and reducing the film thickness. These may be used alone or in combination of two or more.
Examples of commercially available phenolic antioxidants include ADK STAB AO-60, ADK STAB AO-80 (manufactured by ADEKA Corporation), and Irganox 1098 (manufactured by Ciba Japan Co., Ltd.).
The content of the antioxidant is preferably 0.1 to 6% by weight, more preferably 0.2 to 5% by weight, based on the total solid content of the photosensitive resin composition. It is particularly preferably 5 to 4% by weight. By setting it within this range, sufficient transparency of the formed film can be obtained, and the sensitivity at the time of pattern formation becomes good.
As additives other than antioxidants, various ultraviolet absorbers described in “New Development of Polymer Additives (Nikkan Kogyo Shimbun Co., Ltd.)”, metal deactivators, and the like are used in the present invention. You may add to a resin composition.
〔可塑剤〕
 本発明の感光性樹脂組成物は、可塑剤を含有してもよい。
 可塑剤としては、例えば、ジブチルフタレート、ジオクチルフタレート、ジドデシルフタレート、ポリエチレングリコール、グリセリン、ジメチルグリセリンフタレート、酒石酸ジブチル、アジピン酸ジオクチル、トリアセチルグリセリンなどが挙げられる。
 本発明の感光性樹脂組成物における可塑剤の含有量は、特定樹脂100重量部に対して、0.1~30重量部であることが好ましく、1~10重量部であることがより好ましい。
[Plasticizer]
The photosensitive resin composition of the present invention may contain a plasticizer.
Examples of the plasticizer include dibutyl phthalate, dioctyl phthalate, didodecyl phthalate, polyethylene glycol, glycerin, dimethyl glycerin phthalate, dibutyl tartrate, dioctyl adipate, and triacetyl glycerin.
The plasticizer content in the photosensitive resin composition of the present invention is preferably 0.1 to 30 parts by weight, and more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the specific resin.
〔熱ラジカル発生剤〕
 本発明の感光性樹脂組成物は、熱ラジカル発生剤を含んでいてもよく、前述の少なくとも1個のエチレン性不飽和二重結合を有する化合物のようなエチレン性不飽和化合物を含有する場合、熱ラジカル発生剤を含有することが好ましい。
 本発明における熱ラジカル発生剤としては、公知の熱ラジカル発生剤を用いることができる。
 熱ラジカル発生剤は、熱のエネルギーによってラジカルを発生し、重合性化合物の重合反応を開始又は促進させる化合物である。熱ラジカル発生剤を添加することによって、得られた硬化膜がより強靭になり、耐熱性、耐溶剤性が向上する場合がある。
 好ましい熱ラジカル発生剤としては、芳香族ケトン類、オニウム塩化合物、有機過酸化物、チオ化合物、ヘキサアリールビイミダゾール化合物、ケトオキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、アゾ系化合物、ビベンジル化合物等が挙げられる。
 熱ラジカル発生剤は、1種を単独で用いてもよいし、2種以上を併用することも可能である。
 本発明の感光性樹脂組成物における熱ラジカル発生剤の含有量は、膜物性向上の観点から、特定樹脂を100重量部としたとき、0.01~50重量部が好ましく、0.1~20重量部がより好ましく、0.5~10重量部であることが最も好ましい。
[Thermal radical generator]
The photosensitive resin composition of the present invention may contain a thermal radical generator, and when it contains an ethylenically unsaturated compound such as the aforementioned compound having at least one ethylenically unsaturated double bond, It is preferable to contain a thermal radical generator.
As the thermal radical generator in the present invention, a known thermal radical generator can be used.
The thermal radical generator is a compound that generates radicals by heat energy and initiates or accelerates the polymerization reaction of the polymerizable compound. By adding a thermal radical generator, the obtained cured film becomes tougher and heat resistance and solvent resistance may be improved.
Preferred thermal radical generators include aromatic ketones, onium salt compounds, organic peroxides, thio compounds, hexaarylbiimidazole compounds, ketoxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds, carbon Examples thereof include compounds having a halogen bond, azo compounds, and bibenzyl compounds.
A thermal radical generator may be used individually by 1 type, and it is also possible to use 2 or more types together.
The content of the thermal radical generator in the photosensitive resin composition of the present invention is preferably 0.01 to 50 parts by weight, preferably 0.1 to 20 parts by weight, when the specific resin is 100 parts by weight, from the viewpoint of improving film physical properties. More preferred are parts by weight, and most preferred is 0.5 to 10 parts by weight.
〔熱酸発生剤〕
 本発明では、低温硬化での膜物性等を改良するために、熱酸発生剤を使用してもよい。
 本発明に用いることができる熱酸発生剤とは、熱により酸が発生する化合物であり、通常、熱分解点が130℃~250℃、好ましくは150℃~220℃の範囲の化合物であり、例えば、加熱によりスルホン酸、カルボン酸、ジスルホニルイミドなどの低求核性の酸を発生する化合物である。
 熱酸発生剤により発生する酸としては、pKaが2以下と強い、スルホン酸や、電子求引基の置換したアルキル又はアリールカルボン酸、同じく電子求引基の置換したジスルホニルイミドなどが好ましい。電子求引基としては、フッ素原子などのハロゲン原子、トリフルオロメチル基等のハロアルキル基、ニトロ基、シアノ基を挙げることができる。
[Thermal acid generator]
In the present invention, a thermal acid generator may be used in order to improve film physical properties and the like at low temperature curing.
The thermal acid generator that can be used in the present invention is a compound that generates an acid by heat, and is usually a compound having a thermal decomposition point of 130 ° C. to 250 ° C., preferably 150 ° C. to 220 ° C., For example, it is a compound that generates a low nucleophilic acid such as sulfonic acid, carboxylic acid, disulfonylimide and the like by heating.
As the acid generated by the thermal acid generator, sulfonic acid, an alkyl or aryl carboxylic acid substituted with an electron withdrawing group, disulfonylimide substituted with an electron withdrawing group, and the like having a strong pKa of 2 or less are preferable. Examples of the electron withdrawing group include a halogen atom such as a fluorine atom, a haloalkyl group such as a trifluoromethyl group, a nitro group, and a cyano group.
 また、本発明においては、露光光の照射によって実質的に酸を発生せず、熱によって酸を発生するスルホン酸エステルを使用することも好ましい。
 露光光の照射によって実質的に酸を発生していないことは、化合物の露光前後でのIRスペクトルやNMRスペクトル測定により、スペクトルに変化がないことで判定することができる。
 スルホン酸エステルの分子量は、230~1,000であることが好ましく、230~800であることがより好ましい。
 本発明に用いることができるスルホン酸エステルは、市販のものを用いてもよいし、公知の方法で合成したものを用いてもよい。スルホン酸エステルは、例えば、塩基性条件下、スルホニルクロリド乃至はスルホン酸無水物を対応する多価アルコールと反応させることにより合成することができる。
 熱酸発生剤の感光性樹脂組成物への含有量は、特定樹脂を100重量部としたとき、0.5~20重量部が好ましく、1~15重量部がより好ましい。
In the present invention, it is also preferable to use a sulfonic acid ester that does not substantially generate an acid by irradiation with exposure light and generates an acid by heat.
The fact that acid is not substantially generated by exposure light exposure can be determined by no change in the spectrum by IR spectrum or NMR spectrum measurement before and after the exposure of the compound.
The molecular weight of the sulfonic acid ester is preferably 230 to 1,000, and more preferably 230 to 800.
As the sulfonic acid ester that can be used in the present invention, a commercially available one may be used, or one synthesized by a known method may be used. The sulfonic acid ester can be synthesized, for example, by reacting a sulfonyl chloride or sulfonic acid anhydride with a corresponding polyhydric alcohol under basic conditions.
The content of the thermal acid generator in the photosensitive resin composition is preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight, when the specific resin is 100 parts by weight.
〔酸増殖剤〕
 本発明の感光性樹脂組成物は、感度向上を目的に、酸増殖剤を用いることができる。
 本発明に用いることができる酸増殖剤は、酸触媒反応によって更に酸を発生して反応系内の酸濃度を上昇させることができる化合物であり、酸が存在しない状態では安定に存在する化合物である。このような化合物は、1回の反応で1つ以上の酸が増えるため、反応の進行に伴って加速的に反応が進むが、発生した酸自体が自己分解を誘起するため、ここで発生する酸の強度は、酸解離定数、pKaとして3以下であるのが好ましく、特に2以下であるのが好ましい。
 酸増殖剤の具体例としては、特開平10-1508号公報の段落0203~0223、特開平10-282642号公報の段落0016~0055、及び、特表平9-512498号公報第39頁12行目~第47頁2行目に記載の化合物を挙げることができる。
 本発明で用いることができる酸増殖剤としては、酸発生剤から発生した酸によって分解し、ジクロロ酢酸、トリクロロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、トリフルオロメタンスルホン酸、フェニルホスホン酸などのpKaが3以下の酸を発生させる化合物を挙げることができる。
 酸増殖剤の感光性樹脂組成物への含有量は、特定酸発生剤100重量部に対して、10~1,000重量部とするのが、露光部と未露光部との溶解コントラストの観点から好ましく、20~500重量部とするのが更に好ましい。
[Acid multiplication agent]
In the photosensitive resin composition of the present invention, an acid proliferating agent can be used for the purpose of improving sensitivity.
The acid proliferating agent that can be used in the present invention is a compound that can further generate an acid by an acid-catalyzed reaction to increase the acid concentration in the reaction system, and is a compound that exists stably in the absence of an acid. is there. In such a compound, since one or more acids increase in one reaction, the reaction proceeds at an accelerated rate as the reaction proceeds. However, the generated acid itself induces self-decomposition, and is generated here. The acid strength is preferably 3 or less as an acid dissociation constant, pKa, and particularly preferably 2 or less.
Specific examples of the acid proliferating agent include paragraphs 0203 to 0223 of JP-A-10-1508, paragraphs 0016 to 0055 of JP-A-10-282642, and page 39, line 12 of JP-A-9-512498. Examples of the compounds described on page 47, line 2 are listed.
Examples of the acid proliferating agent that can be used in the present invention include pKa such as dichloroacetic acid, trichloroacetic acid, methanesulfonic acid, benzenesulfonic acid, trifluoromethanesulfonic acid, and phenylphosphonic acid, which are decomposed by an acid generated from the acid generator. Examples include compounds that generate 3 or less acids.
The content of the acid multiplication agent in the photosensitive resin composition is 10 to 1,000 parts by weight with respect to 100 parts by weight of the specific acid generator. From the viewpoint of the dissolution contrast between the exposed and unexposed parts. And preferably 20 to 500 parts by weight.
(硬化膜の形成方法)
 次に、本発明の硬化膜の形成方法を説明する。
 本発明の硬化膜の形成方法は、本発明の感光性樹脂組成物を用いること以外に特に制限はないが、以下の(1)~(5)の工程を含むことが好ましい。
 (1)本発明の感光性樹脂組成物を基板上に塗布する塗布工程
 (2)塗布された感光性樹脂組成物から溶剤を除去する溶剤除去工程
 (3)溶剤を除去された感光性樹脂組成物を活性光線により露光する露光工程
 (4)露光された感光性樹脂組成物を水性現像液により現像する現像工程
 (5)現像された感光性樹脂組成物を熱硬化するポストベーク工程
 本発明の硬化膜の形成方法においては、前記露光工程における露光後に、加熱処理を行わずに、前記(4)の現像工程を行ってもよい。
 また、前記ポストベーク工程前に、更に(6)現像された感光性樹脂組成物を全面露光する工程を含んでいてもよい。
 以下に各工程を順に説明する。
(Method for forming cured film)
Next, the formation method of the cured film of this invention is demonstrated.
The method for forming a cured film of the present invention is not particularly limited except that the photosensitive resin composition of the present invention is used, but preferably includes the following steps (1) to (5).
(1) Application process for applying the photosensitive resin composition of the present invention onto a substrate (2) Solvent removal process for removing the solvent from the applied photosensitive resin composition (3) Photosensitive resin composition from which the solvent has been removed (4) Development step of developing the exposed photosensitive resin composition with an aqueous developer (5) Post-baking step of thermosetting the developed photosensitive resin composition In the method for forming a cured film, after the exposure in the exposure step, the developing step (4) may be performed without performing a heat treatment.
Moreover, before the said post-baking process, you may include the process of further exposing (6) the developed photosensitive resin composition to the whole surface.
Each step will be described below in order.
 (1)の塗布工程では、本発明の感光性樹脂組成物を基板上に塗布して溶剤を含む湿潤膜とすることが好ましい。
 (2)の溶剤除去工程では、塗布された上記の膜から、減圧(バキューム)及び/又は加熱により、溶剤を除去して基板上に乾燥塗膜を形成させることが好ましい。
In the application step (1), the photosensitive resin composition of the present invention is preferably applied onto a substrate to form a wet film containing a solvent.
In the solvent removal step (2), it is preferable to remove the solvent from the applied film by vacuum (vacuum) and / or heating to form a dry coating film on the substrate.
 (3)の露光工程では、得られた塗膜に波長300nm以上450nm以下の活性光線を照射することが好ましい。この工程では、特定酸発生剤が分解し酸が発生する。発生した酸の触媒作用により、特定樹脂中に含まれる構成単位(a1)中の酸分解性基が分解されて、カルボキシ基及び/又はフェノール性水酸基が生成する。
 酸触媒の生成した領域において、上記の分解反応を加速させるために、必要に応じて、露光後加熱処理:Post Exposure Bake(以下、「PEB」ともいう。)を行ってもよい。PEBにより、酸分解性基からのカルボキシ基及び/又はフェノール性水酸基の生成を促進させることができる。
 特定樹脂における構成単位(a1)中の酸分解性基は、酸分解の活性化エネルギーが低く、露光による特定酸発生剤由来の酸により容易に分解し、カルボキシ基及び/又はフェノール性水酸基を生じるため、必ずしもPEBを行う必要はない。したがって、露光工程の後、加熱処理を行わずに前記現像工程を行うことが好ましい。より詳細には、(3)の露光工程の後、PEBを行うことなく、(4)の現像工程にて現像を行うことにより、ポジ画像を形成することが好ましい。
 なお、比較的低温でPEBを行うことにより、架橋反応を起こすことなく、酸分解性基の分解を促進することもできる。PEBを行う場合の温度は、30℃以上130℃以下であることが好ましく、40℃以上110℃以下がより好ましく、50℃以上90℃以下が特に好ましい。
In the exposure step (3), it is preferable to irradiate the obtained coating film with an actinic ray having a wavelength of 300 nm to 450 nm. In this step, the specific acid generator is decomposed to generate an acid. Due to the catalytic action of the generated acid, the acid-decomposable group in the structural unit (a1) contained in the specific resin is decomposed to generate a carboxy group and / or a phenolic hydroxyl group.
In the region where the acid catalyst is generated, post exposure bake (hereinafter also referred to as “PEB”) may be performed as necessary in order to accelerate the decomposition reaction. By PEB, the production | generation of the carboxy group and / or phenolic hydroxyl group from an acid-decomposable group can be accelerated | stimulated.
The acid-decomposable group in the structural unit (a1) in the specific resin has low activation energy for acid decomposition, and is easily decomposed by an acid derived from the specific acid generator by exposure to generate a carboxy group and / or a phenolic hydroxyl group. Therefore, it is not always necessary to perform PEB. Therefore, it is preferable to perform the developing step after the exposure step without performing heat treatment. More specifically, it is preferable to form a positive image by performing development in the development step (4) without performing PEB after the exposure step (3).
In addition, by performing PEB at a relatively low temperature, decomposition of the acid-decomposable group can be promoted without causing a crosslinking reaction. The temperature for performing PEB is preferably 30 ° C. or higher and 130 ° C. or lower, more preferably 40 ° C. or higher and 110 ° C. or lower, and particularly preferably 50 ° C. or higher and 90 ° C. or lower.
 (4)の現像工程では、遊離したカルボキシ基を有する特定樹脂を、アルカリ性現像液を用いて現像することが好ましい。アルカリ性現像液に溶解しやすいカルボキシ基及び/又はフェノール性水酸基を有する感光性樹脂組成物を含む露光部領域を除去することにより、ポジ画像が形成することができる。
 (5)のポストベーク工程において、得られたポジ画像を加熱することにより、例えば、構成単位(a2)中のカルボキシ基及び/又はフェノール性水酸基、及び、構成単位(a1)中の酸分解性基を熱分解し生成したカルボキシ基及び/又はフェノール性水酸基と、構成単位(a3)中のエポキシ基及び/又はオキセタニル基と架橋させ、硬化膜を形成することができる。この加熱は、150℃以上の高温に加熱することが好ましく、180~250℃に加熱することがより好ましく、200~250℃に加熱することが特に好ましい。加熱時間は、加熱温度などにより適宜設定できるが、10~90分の範囲内とすることが好ましい。
In the developing step (4), it is preferable to develop a specific resin having a liberated carboxy group using an alkaline developer. A positive image can be formed by removing an exposed area containing a photosensitive resin composition having a carboxy group and / or a phenolic hydroxyl group that is easily dissolved in an alkaline developer.
In the post-baking step of (5), by heating the obtained positive image, for example, the carboxy group and / or the phenolic hydroxyl group in the structural unit (a2) and the acid decomposability in the structural unit (a1) A cured film can be formed by crosslinking the carboxy group and / or phenolic hydroxyl group generated by thermal decomposition of the group with the epoxy group and / or oxetanyl group in the structural unit (a3). This heating is preferably performed at a high temperature of 150 ° C. or more, more preferably 180 to 250 ° C., and particularly preferably 200 to 250 ° C. The heating time can be appropriately set depending on the heating temperature or the like, but is preferably in the range of 10 to 90 minutes.
 更に、ポストベーク工程の前に(6)現像された感光性樹脂組成物を全面露光する工程を含むことが好ましく、現像された感光性樹脂組成物のパターンに活性光線、好ましくは紫外線を、全面照射する工程を加えると、活性光線の照射により発生する酸により架橋反応を促進することができる。
 次に、本発明の感光性樹脂組成物を用いた硬化膜の形成方法を具体的に説明する。
Furthermore, it is preferable to include a step of (6) exposing the entire surface of the developed photosensitive resin composition before the post-baking step. When an irradiation step is added, the crosslinking reaction can be promoted by an acid generated by irradiation with actinic rays.
Next, the formation method of the cured film using the photosensitive resin composition of this invention is demonstrated concretely.
〔感光性樹脂組成物の調製方法〕
 特定樹脂及び酸発生剤の必須成分に、必要によって溶剤を所定の割合でかつ任意の方法で混合し、撹拌溶解して感光性樹脂組成物を調製する。例えば、特定樹脂又は酸発生剤を、それぞれ予め溶剤に溶解させた溶液とした後、これらを所定の割合で混合して感光性樹脂組成物を調製することもできる。以上のように調製した感光性樹脂組成物の溶液は、孔径0.1μmのフィルタ等を用いてろ過した後に、使用に供することもできる。
[Method for preparing photosensitive resin composition]
A solvent is mixed with an essential component of the specific resin and the acid generator at a predetermined ratio if necessary, and is stirred and dissolved to prepare a photosensitive resin composition. For example, a photosensitive resin composition can be prepared by preparing a solution in which a specific resin or an acid generator is previously dissolved in a solvent and then mixing them in a predetermined ratio. The solution of the photosensitive resin composition prepared as described above can be used after being filtered using a filter having a pore size of 0.1 μm or the like.
 本発明の感光性樹脂組成物の好適な態様の一例は、感光性樹脂組成物の全固形分に対し、特定樹脂を40~95重量%の範囲で含み、かつ、特定酸発生剤を0.1~10重量%の範囲で含む態様である。
 また、本発明の感光性樹脂組成物の好適な態様の他の例は、感光性樹脂組成物の全固形分に対し、特定樹脂を40~70重量%の範囲で含み、特定酸発生剤を0.1~10重量%の範囲で含み、かつ、架橋剤を3~40重量%の範囲で含む態様である。
An example of a preferred embodiment of the photosensitive resin composition of the present invention is that the specific resin is contained in the range of 40 to 95% by weight with respect to the total solid content of the photosensitive resin composition, and the specific acid generator is 0.1%. It is an embodiment containing in the range of 1 to 10% by weight.
Further, another example of a preferred embodiment of the photosensitive resin composition of the present invention includes a specific resin in a range of 40 to 70% by weight with respect to the total solid content of the photosensitive resin composition, and a specific acid generator. This is an embodiment containing 0.1 to 10% by weight and a crosslinking agent in the range of 3 to 40% by weight.
<塗布工程及び溶剤除去工程>
 感光性樹脂組成物を、所定の基板に塗布し、減圧及び/又は加熱(プリベーク)により溶剤を除去することにより、所望の乾燥塗膜を形成することができる。前記の基板としては、例えば液晶表示装置の製造においては、偏光板、更に必要に応じてブラックマトリックス層、カラーフィルタ層を設け、更に透明導電回路層を設けたガラス板などが例示できる。基板への塗布方法は特に限定されず、例えば、スリットコート法、スプレー法、ロールコート法、回転塗布法等の方法を用いることができる。中でもスリットコート法が大型基板に適するという観点で好ましい。ここで大型基板とは、各辺が1m以上の大きさの基板をいう。
 また、(2)溶剤除去工程の加熱条件は、未露光部における特定樹脂中の構成単位(a1)において酸分解性基が分解して、かつ、特定樹脂をアルカリ現像液に可溶性としない範囲であり、各成分の種類や配合比によっても異なるが、好ましくは70~120℃で30~300秒間程度である。
<Coating process and solvent removal process>
A desired dry coating film can be formed by applying the photosensitive resin composition to a predetermined substrate and removing the solvent by reducing pressure and / or heating (pre-baking). Examples of the substrate include a polarizing plate, a glass plate provided with a black matrix layer and a color filter layer as necessary, and a transparent conductive circuit layer in manufacturing a liquid crystal display device. The coating method to a board | substrate is not specifically limited, For example, methods, such as a slit coat method, a spray method, a roll coat method, a spin coat method, can be used. Among them, the slit coating method is preferable from the viewpoint of being suitable for a large substrate. Here, the large substrate means a substrate having a side of 1 m or more on each side.
In addition, (2) the heating conditions for the solvent removal step are such that the acid-decomposable group is decomposed in the structural unit (a1) in the specific resin in the unexposed area and the specific resin is not soluble in the alkaline developer. Although it varies depending on the type and mixing ratio of each component, it is preferably about 70 to 120 ° C. for about 30 to 300 seconds.
<露光工程>
 (3)露光工程では、感光性樹脂組成物の乾燥塗膜を設けた基板に所定のパターンの活性光線を照射する。露光はマスクを介して行ってもよいし、所定のパターンを直接描画してもよい。波長300nm以上450nm以下の波長を有する活性光線が好ましく使用できる。露光工程の後、必要に応じてPEBを行ってもよい。
 活性光線による露光には、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、レーザ発生装置、LED光源などを用いることができる。
 水銀灯を用いる場合にはg線(436nm)、i線(365nm)、h線(405nm)などの波長を有する活性光線が好ましく使用できる。水銀灯はレーザに比べると、大面積の露光に適するという点で好ましい。
<Exposure process>
(3) In the exposure step, the substrate provided with the dry coating film of the photosensitive resin composition is irradiated with an actinic ray having a predetermined pattern. Exposure may be performed through a mask, or a predetermined pattern may be drawn directly. Actinic rays having a wavelength of 300 nm to 450 nm can be preferably used. You may perform PEB as needed after an exposure process.
For exposure with actinic light, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, a laser generator, an LED light source, or the like can be used.
When a mercury lamp is used, actinic rays having wavelengths such as g-line (436 nm), i-line (365 nm), and h-line (405 nm) can be preferably used. Mercury lamps are preferred in that they are suitable for large area exposure compared to lasers.
 レーザを用いる場合には固体(YAG)レーザでは343nm、355nmが好適に用いられ、エキシマレーザでは351nm(XeF)が好適に用いられ、更に半導体レーザでは375nm、405nmが好適に用いられる。この中でも、安定性、コスト等の点から355nm、405nmがより好ましい。レーザは1回あるいは複数回に分けて、塗膜に照射することができる。 In the case of using a laser, 343 nm and 355 nm are suitably used for a solid (YAG) laser, 351 nm (XeF) is suitably used for an excimer laser, and 375 nm and 405 nm are suitably used for a semiconductor laser. Among these, 355 nm and 405 nm are more preferable from the viewpoints of stability and cost. The coating can be irradiated with the laser once or a plurality of times.
 レーザの1パルス当たりのエネルギー密度は0.1mJ/cm2以上10,000mJ/cm2以下であることが好ましい。塗膜を十分に硬化させるには、0.3mJ/cm2以上がより好ましく、0.5mJ/cm2以上が最も好ましく、アブレーション現象により塗膜を分解させないようにするには、1,000mJ/cm2以下がより好ましく、100mJ/cm2以下が最も好ましい。
 また、パルス幅は、0.1nsec以上30,000nsec以下であることが好ましい。アブレーション現象により色塗膜を分解させないようにするには、0.5nsec以上がより好ましく、1nsec以上が最も好ましく、スキャン露光の際に合わせ精度を向上させるには、1,000nsec以下がより好ましく、50nsec以下が最も好ましい。
 更に、レーザの周波数は、1Hz以上50,000Hz以下が好ましく、10Hz以上1,000Hz以下がより好ましい。
 更に、レーザの周波数は、露光処理時間を短くするには、10Hz以上がより好ましく、100Hz以上が最も好ましく、スキャン露光の際に合わせ精度を向上させるには、10,000Hz以下がより好ましく、1,000Hz以下が最も好ましい。
The energy density per pulse of the laser is preferably 0.1 mJ / cm 2 or more and 10,000 mJ / cm 2 or less. To sufficiently cure the coating film, 0.3 mJ / cm 2 or more is more preferable, and 0.5 mJ / cm 2 or more is most preferable. To prevent the coating film from being decomposed by an ablation phenomenon, 1,000 mJ / cm 2 is preferable. cm 2 or less is more preferable, and 100 mJ / cm 2 or less is most preferable.
The pulse width is preferably 0.1 nsec or more and 30,000 nsec or less. In order not to decompose the color coating film due to the ablation phenomenon, 0.5 nsec or more is more preferable, 1 nsec or more is most preferable, and in order to improve the alignment accuracy during the scan exposure, 1,000 nsec or less is more preferable, Most preferred is 50 nsec or less.
Furthermore, the frequency of the laser is preferably 1 Hz or more and 50,000 Hz or less, and more preferably 10 Hz or more and 1,000 Hz or less.
Furthermore, the frequency of the laser is more preferably 10 Hz or more, most preferably 100 Hz or more for shortening the exposure processing time, and more preferably 10,000 Hz or less for improving the alignment accuracy during the scan exposure. 000 Hz or less is most preferable.
 レーザは水銀灯と比べると、焦点を絞ることが容易であり、露光工程でのパターン形成のマスクが不要でコストダウンできるという点で好ましい。
 本発明に使用可能な露光装置としては、特に制限はないが市販されているものとしては、Callisto((株)ブイ・テクノロジー製)やAEGIS((株)ブイ・テクノロジー製)やDF2200G(大日本スクリーン製造(株)製)などが使用可能である。また上記以外の装置も好適に用いられる。
 また、必要に応じて長波長カットフィルタ、短波長カットフィルタ、バンドパスフィルタのような分光フィルタを通して照射光を調整することもできる。
Compared with a mercury lamp, a laser is preferable in that the focus can be easily reduced and a mask for forming a pattern in the exposure process is not necessary and the cost can be reduced.
The exposure apparatus that can be used in the present invention is not particularly limited, but commercially available exposure apparatuses include Callisto (buoy technology), AEGIS (buoy technology) and DF2200G (Dainippon). Screen Manufacturing Co., Ltd.) can be used. Further, devices other than those described above are also preferably used.
Moreover, irradiation light can also be adjusted through spectral filters, such as a long wavelength cut filter, a short wavelength cut filter, and a band pass filter, as needed.
<現像工程>
 (4)現像工程では、塩基性現像液を用いて露光部領域を除去して画像パターンを形成する。現像液に用いる塩基性化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物類;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩類;重炭酸ナトリウム、重炭酸カリウムなどのアルカリ金属重炭酸塩類;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリンヒドロキシド等のアンモニウムヒドロキシド類;ケイ酸ナトリウム、メタケイ酸ナトリウムなどの水溶液を使用することができる。また、上記アルカリ類の水溶液にメタノールやエタノールなどの水溶性有機溶剤や界面活性剤を適当量添加した水溶液を現像液として使用することもできる。
<Development process>
(4) In the developing step, the exposed area is removed using a basic developer to form an image pattern. Examples of the basic compound used in the developer include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium bicarbonate and bicarbonate Alkali metal bicarbonates such as potassium; ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline hydroxide; aqueous solutions such as sodium silicate and sodium metasilicate can be used. An aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant to the alkaline aqueous solution can also be used as a developer.
 現像液のpHは、10.0~14.0であることが好ましい。
 現像時間は、好ましくは30~180秒間であり、また、現像の手法は液盛り法、ディップ法、シャワー法等のいずれでもよい。現像後は、流水洗浄を10~90秒間行い、所望のパターンを形成させることができる。
The pH of the developer is preferably 10.0 to 14.0.
The development time is preferably 30 to 180 seconds, and the development method may be any of a liquid piling method, a dip method, a shower method, and the like. After the development, washing with running water is performed for 10 to 90 seconds to form a desired pattern.
<ポストベーク工程(架橋工程)>
 現像により得られた未露光領域に対応するパターンについて、ホットプレートやオーブン等の加熱装置を用いて、所定の温度、例えば180~250℃で所定の時間、例えばホットプレート上なら5~60分間、オーブンならば30~90分間、加熱処理をすることにより、特定樹脂中の酸分解性基を分解して、カルボキシ基及び/又はフェノール性水酸基を発生させ、特定樹脂中のエポキシ基及び/又はオキセタニル基である架橋性基と反応して、架橋させることにより、耐熱性、硬度等に優れた保護膜や層間絶縁膜を形成することができる。また、加熱処理を行う際は窒素雰囲気下で行うことにより透明性を向上させることもできる。
 なお、加熱処理に先立ち、パターンを形成した基板に活性光線により再露光した後、ポストベークすること(再露光/ポストベーク)により未露光部分に存在する酸発生剤(B)から酸を発生させ、架橋を促進する触媒として機能させることが好ましい。
 すなわち、本発明における硬化膜の形成方法は、現像工程とポストベーク工程の間に、活性光線により再露光する前記(6)工程を含むことが好ましい。
 再露光工程における露光は、前記露光工程と同様の手段により行えばよいが、前記再露光工程では、基板の本発明の感光性樹脂組成物により膜が形成された側に対し、全面露光を行うことが好ましい。再露光工程の好ましい露光量としては、100~1,000mJ/cm2である。
<Post-bake process (crosslinking process)>
For a pattern corresponding to an unexposed area obtained by development, using a heating device such as a hot plate or an oven, for a predetermined time at a predetermined temperature, for example, 180 to 250 ° C., for example, 5 to 60 minutes on the hot plate, In the case of an oven, the acid-decomposable group in the specific resin is decomposed by heat treatment for 30 to 90 minutes to generate a carboxy group and / or a phenolic hydroxyl group, and an epoxy group and / or oxetanyl in the specific resin. By reacting with a crosslinkable group which is a group and crosslinking, a protective film and an interlayer insulating film excellent in heat resistance, hardness and the like can be formed. In addition, when heat treatment is performed, the transparency can be improved by performing the heat treatment in a nitrogen atmosphere.
Prior to the heat treatment, the substrate on which the pattern is formed is re-exposed with actinic rays and then post-baked (re-exposure / post-bake) to generate an acid from the acid generator (B) present in the unexposed portion. It is preferable to function as a catalyst for promoting crosslinking.
That is, it is preferable that the formation method of the cured film in this invention includes the said (6) process reexposed with actinic light between a image development process and a post-baking process.
The exposure in the re-exposure step may be performed by the same means as in the exposure step. In the re-exposure step, the entire surface of the substrate on which the film is formed by the photosensitive resin composition of the present invention is exposed. It is preferable. A preferable exposure amount in the re-exposure step is 100 to 1,000 mJ / cm 2 .
 本発明の硬化膜は、本発明の感光性樹脂組成物を硬化して得られた硬化膜であり、層間絶縁膜として好適に用いることができる。また、本発明の硬化膜は、本発明の硬化膜の形成方法により得られた硬化膜であることが好ましい。
 本発明の感光性樹脂組成物により、高い感度を有し、現像時における残渣の発生が抑制され、かつ、平滑性に優れた表面を有する硬化膜が得られ、該硬化膜は層間絶縁膜として有用である。また、本発明の感光性樹脂組成物を用いてなる層間絶縁膜は、高い透明性を有し、良好な形状のパターン形状を形成でき、また、その表面の平滑性にも優れるので、有機EL表示装置や液晶表示装置の用途に有用である。
 本発明の感光性樹脂組成物を適用し得る有機EL表示装置や液晶表示装置としては、本発明の感光性樹脂組成物を用いて形成される硬化膜を平坦化膜や保護膜、層間絶縁膜として用いること以外は、特に制限されず、様々な構造をとる公知の各種有機EL表示装置や液晶表示装置を挙げることができる。
 また、本発明の感光性樹脂組成物及び本発明の硬化膜は、前記用途に限定されず種々の用途に使用することができる。例えば、平坦化膜や保護膜、層間絶縁膜以外にも、液晶表示装置における液晶層の厚みを一定に保持するためのスペーサーや固体撮像素子においてカラーフィルタ上に設けられるマイクロレンズ等に好適に用いることができる。
The cured film of the present invention is a cured film obtained by curing the photosensitive resin composition of the present invention, and can be suitably used as an interlayer insulating film. Moreover, it is preferable that the cured film of this invention is a cured film obtained by the formation method of the cured film of this invention.
By the photosensitive resin composition of the present invention, a cured film having a high sensitivity, generation of residues during development, and a surface having excellent smoothness is obtained, and the cured film is used as an interlayer insulating film. Useful. In addition, the interlayer insulating film using the photosensitive resin composition of the present invention has high transparency, can form a good pattern shape, and has excellent surface smoothness. It is useful for applications of display devices and liquid crystal display devices.
As an organic EL display device or a liquid crystal display device to which the photosensitive resin composition of the present invention can be applied, a cured film formed using the photosensitive resin composition of the present invention is formed as a planarizing film, a protective film, or an interlayer insulating film. There is no particular limitation except for the use as a known organic EL display device and a liquid crystal display device having various structures.
Moreover, the photosensitive resin composition of this invention and the cured film of this invention are not limited to the said use, It can be used for various uses. For example, in addition to a flattening film, a protective film, and an interlayer insulating film, it is suitably used for a spacer for keeping the thickness of a liquid crystal layer in a liquid crystal display device constant, a microlens provided on a color filter in a solid-state imaging device, or the like. be able to.
 図1は、本発明の感光性樹脂組成物を用いた有機EL表示装置の一例の構成概念図を示す。ボトムエミッション型の有機EL表示装置における基板の模式的断面図を示し、平坦化膜4を有している。
 ガラス基板6上にボトムゲート型のTFT1を形成し、このTFT1を覆う状態でSi34から成る絶縁膜3が形成されている。絶縁膜3に、ここでは図示を省略したコンタクトホールを形成した後、このコンタクトホールを介してTFT1に接続される配線2(高さ1.0μm)が絶縁膜3上に形成されている。配線2は、TFT1間又は、後の工程で形成される有機EL素子とTFT1とを接続するためのものである。
 更に、配線2の形成による凹凸を平坦化するために、配線2による凹凸を埋め込む状態で絶縁膜3上に平坦化膜4が形成されている。
 平坦化膜4上には、ボトムエミッション型の有機EL素子が形成されている。すなわち、平坦化膜4上に、ITOからなる第一電極5が、コンタクトホール7を介して配線2に接続させて形成されている。第一電極5は、有機EL素子の陽極に相当する。
 第一電極5の周縁を覆う形状の絶縁膜8が形成されており、この絶縁膜8を設けることによって、第一電極5とこの後の工程で形成する第二電極との間のショートを防止することができる。
 更に、図1には図示していないが、所望のパターンマスクを介して、正孔輸送層、有機発光層、電子輸送層を順次蒸着して設け、次いで、基板上方の全面にAlから成る第二電極を形成し、封止用ガラス板と紫外線硬化型エポキシ樹脂を用いて貼り合わせることで封止し、各有機EL素子にこれを駆動するためのTFT1が接続されてなるアクティブマトリックス型の有機EL表示装置が得られる。
FIG. 1 is a conceptual diagram showing an example of an organic EL display device using the photosensitive resin composition of the present invention. A schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided.
A bottom gate type TFT 1 is formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 is formed so as to cover the TFT 1. A contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height: 1.0 μm) connected to the TFT 1 through the contact hole is formed on the insulating film 3. The wiring 2 is used to connect the TFT 1 with an organic EL element formed between the TFTs 1 or in a later process.
Further, in order to flatten the unevenness due to the formation of the wiring 2, a planarizing film 4 is formed on the insulating film 3 in a state where the unevenness due to the wiring 2 is embedded.
On the planarizing film 4, a bottom emission type organic EL element is formed. That is, the first electrode 5 made of ITO is formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7. The first electrode 5 corresponds to the anode of the organic EL element.
An insulating film 8 having a shape covering the periphery of the first electrode 5 is formed. By providing the insulating film 8, a short circuit between the first electrode 5 and the second electrode formed in the subsequent process is prevented. can do.
Further, although not shown in FIG. 1, a hole transport layer, an organic light-emitting layer, and an electron transport layer are sequentially deposited through a desired pattern mask, and then a first layer made of Al is formed on the entire surface above the substrate. An active matrix organic material in which two electrodes are formed and sealed by bonding using a sealing glass plate and an ultraviolet curable epoxy resin, and each organic EL element is connected to a TFT 1 for driving it. An EL display device is obtained.
 図2は、アクティブマトリックス方式の液晶表示装置10の一例を示す概念的断面図である。このカラー液晶表示装置10は、背面にバックライトユニット12を有する液晶パネルであって、液晶パネルは、偏光フィルムが貼り付けられた2枚のガラス基板14,15の間に配置されたすべての画素に対応するTFT16の素子が配置されている。ガラス基板上に形成された各素子には、硬化膜17中に形成されたコンタクトホール18を通して、画素電極を形成するITO透明電極19が配線されている。ITO透明電極19の上には、液晶20の層とブラックマトリックスを配置したRGBカラーフィルタ22が設けられている。 FIG. 2 is a conceptual cross-sectional view showing an example of the active matrix type liquid crystal display device 10. The color liquid crystal display device 10 is a liquid crystal panel having a backlight unit 12 on the back surface, and the liquid crystal panel includes all pixels disposed between two glass substrates 14 and 15 having a polarizing film attached thereto. The elements of the TFT 16 corresponding to are arranged. Each element formed on the glass substrate is wired with an ITO transparent electrode 19 that forms a pixel electrode through a contact hole 18 formed in the cured film 17. On the ITO transparent electrode 19, an RGB color filter 22 in which a liquid crystal 20 layer and a black matrix are arranged is provided.
 次に、実施例により本発明を更に具体的に説明する。ただし、本発明は、これらの実施例によって限定されるものではない。なお、特に断りのない限り、「部」、「%」は重量基準である。 Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. Unless otherwise specified, “part” and “%” are based on weight.
 以下の特定樹脂A~P、及び、比較用樹脂R1~R12の合成例において用いている各化合物の略号は、それぞれ以下の化合物を表す。
 MATHF:2-テトラヒドロフラニルメタクリレート(合成品)
 AATHF:2-テトラヒドロフラニルアクリレート(合成品)
 MAMTHF:5-メチル-2-テトラヒドロフラニルメタクリレート(合成品)
 MAA:メタクリル酸(和光純薬工業(株)製)
 ITA:イタコン酸(和光純薬工業(株)製)
 MAEVE:1-エトキシエチルメタクリレート(和光純薬工業(株)製)
 MACHVE:1-シクロヘキシルエチルメタクリレート(合成品)
 MABVE:1-tert-ブチルエチルメタクリレート(合成品)
 OXE-30:3-エチル-3-オキセタニルメチルメタクリレート(大阪有機化学工業(株)製)
 HEMA:ヒドロキシエチルメタクリレート(和光純薬工業(株)製)
 V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業(株)製)
 V-601:2,2-アゾビス(2-メチルプロピオン酸)ジメチル(和光純薬工業(株)製)
 EtMA:エチルメタクリレート(和光純薬工業(株)製)
 HMA:ヘキシルメタクリレート(和光純薬工業(株)製)
 BzMA:ベンジルメタクリレート(和光純薬工業(株)製)
 CHMI:N-シクロヘキシルマレイミド(和光純薬工業(株)製)
 GMA:グリシジルメタクリレート(和光純薬工業(株)製)
 St:スチレン(和光純薬工業(株)製)
 StCO2H:スチレンカルボン酸
 StOTHF:4-(2-テトラヒドロフラニル)スチレン(合成品)
 PHS:4-ヒドロキシスチレン
 DCPM:ジシクロペンタニルメタクリレート(FA-513M、日立化成工業(株)製)
 MMA:メチルメタクリレート(和光純薬工業(株)製)
 PGMEA:メトキシプロピルアセテート(昭和電工(株)製)
 HS-EDM:ハイソルブEDM(ジエチレングリコールエチルメチルエーテル、東邦化学工業(株)製)
The abbreviations of the compounds used in the following synthesis examples of specific resins A to P and comparative resins R1 to R12 represent the following compounds, respectively.
MATHF: 2-tetrahydrofuranyl methacrylate (synthetic product)
AATHF: 2-tetrahydrofuranyl acrylate (synthetic product)
MAMTHF: 5-methyl-2-tetrahydrofuranyl methacrylate (synthetic product)
MAA: Methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
ITA: Itaconic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
MAEVE: 1-ethoxyethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
MACHVE: 1-cyclohexylethyl methacrylate (synthetic product)
MABVE: 1-tert-butylethyl methacrylate (synthetic product)
OXE-30: 3-ethyl-3-oxetanylmethyl methacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
HEMA: Hydroxyethyl methacrylate (Wako Pure Chemical Industries, Ltd.)
V-65: 2,2′-azobis (2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.)
V-601: 2,2-azobis (2-methylpropionic acid) dimethyl (manufactured by Wako Pure Chemical Industries, Ltd.)
EtMA: Ethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
HMA: Hexyl methacrylate (Wako Pure Chemical Industries, Ltd.)
BzMA: benzyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
CHMI: N-cyclohexylmaleimide (Wako Pure Chemical Industries, Ltd.)
GMA: Glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
St: Styrene (Wako Pure Chemical Industries, Ltd.)
StCO 2 H: Styrene carboxylic acid StOTHF: 4- (2-tetrahydrofuranyl) styrene (synthetic product)
PHS: 4-hydroxystyrene DCPM: Dicyclopentanyl methacrylate (FA-513M, manufactured by Hitachi Chemical Co., Ltd.)
MMA: Methyl methacrylate (Wako Pure Chemical Industries, Ltd.)
PGMEA: Methoxypropyl acetate (manufactured by Showa Denko KK)
HS-EDM: High Solve EDM (diethylene glycol ethyl methyl ether, manufactured by Toho Chemical Industry Co., Ltd.)
<合成例1:MATHFの合成>
 3つ口フラスコにメタクリル酸50.33g(0.585mol)、カンファースルホン酸0.27g(0.2mol%)を混合して15℃に冷却した。その溶液に2,3-ジヒドロフラン41.00g(0.585mol)滴下した。反応液を飽和炭酸水素ナトリウム水溶液(500mL)を加え、酢酸エチル(500mL)で抽出し、硫酸マグネシウムで乾燥後した。不溶物をろ過後40℃以下で減圧濃縮し、残渣の無色油状物を減圧蒸留することで沸点(bp.)54~56℃/3.5mmHg留分の73.02gのMATHFを得た。
<Synthesis Example 1: Synthesis of MATHF>
In a three-necked flask, 50.33 g (0.585 mol) of methacrylic acid and 0.27 g (0.2 mol%) of camphorsulfonic acid were mixed and cooled to 15 ° C. To the solution, 41.00 g (0.585 mol) of 2,3-dihydrofuran was added dropwise. Saturated aqueous sodium hydrogen carbonate solution (500 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (500 mL) and dried over magnesium sulfate. The insoluble material was filtered and concentrated under reduced pressure at 40 ° C. or lower, and the colorless oily residue was distilled under reduced pressure to obtain 73.02 g of MATHF in a boiling point (bp.) 54-56 ° C./3.5 mmHg fraction.
<合成例2:AATHFの合成>
 3つ口フラスコにアクリル酸42.16g(0.585mol)、カンファースルホン酸0.27g(0.2mol%)を混合して15℃に冷却した。その溶液に2,3-ジヒドロフラン41.00g(0.585mol)滴下した。反応液を飽和炭酸水素ナトリウム水溶液(500mL)を加え、酢酸エチル(500mL)で抽出し、硫酸マグネシウムで乾燥後した。不溶物をろ過後40℃以下で減圧濃縮し、残渣の無色油状物を減圧蒸留することで62.18gのAATHFを得た。
<Synthesis Example 2: Synthesis of AATHF>
A three-necked flask was mixed with 42.16 g (0.585 mol) of acrylic acid and 0.27 g (0.2 mol%) of camphorsulfonic acid and cooled to 15 ° C. To the solution, 41.00 g (0.585 mol) of 2,3-dihydrofuran was added dropwise. Saturated aqueous sodium hydrogen carbonate solution (500 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (500 mL) and dried over magnesium sulfate. Insoluble matter was filtered and concentrated under reduced pressure at 40 ° C. or lower, and the colorless oily residue was distilled under reduced pressure to obtain 62.18 g of AATHF.
<合成例3:MAMTHFの合成>
 3つ口フラスコにメタクリル酸50.33g(0.585mol)、カンファースルホン酸0.27g(0.2mol%)を混合して15℃に冷却した。その溶液に5-メチル-2,3-ジヒドロフラン49.21g(0.585mol)滴下した。反応液を飽和炭酸水素ナトリウム水溶液(500mL)を加え、酢酸エチル(500mL)で抽出し、硫酸マグネシウムで乾燥後した。不溶物をろ過後40℃以下で減圧濃縮し、残渣の無色油状物を減圧蒸留することで66.70gのMAMTHFを得た。
<Synthesis Example 3: Synthesis of MAMTHF>
In a three-necked flask, 50.33 g (0.585 mol) of methacrylic acid and 0.27 g (0.2 mol%) of camphorsulfonic acid were mixed and cooled to 15 ° C. To the solution, 49.21 g (0.585 mol) of 5-methyl-2,3-dihydrofuran was added dropwise. Saturated aqueous sodium hydrogen carbonate solution (500 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (500 mL) and dried over magnesium sulfate. Insoluble matter was filtered and concentrated under reduced pressure at 40 ° C. or lower, and the colorless oily residue was distilled under reduced pressure to obtain 66.70 g of MAMTHF.
<合成例4:特定樹脂Aの合成>
 3つ口フラスコにHS-EDM(36.86g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(1.72g)、MAMTHF(13.62g)、HEMA(5.21g)、OXE-30(11.05g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(36.86g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Aを得た。酸価は35.5mgKOH/g、重量平均分子量は8,200であった。
<Synthesis Example 4: Synthesis of Specific Resin A>
HS-EDM (36.86 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. To the solution, MAA (1.72 g), MAMTHF (13.62 g), HEMA (5.21 g), OXE-30 (11.05 g), V-65 (3.34 g, 7 mol% based on the monomer) were added to HS. -It was dissolved in EDM (36.86 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, specific resin A was obtained. The acid value was 35.5 mgKOH / g, and the weight average molecular weight was 8,200.
<合成例5:特定樹脂Bの合成>
 3つ口フラスコにHS-EDM(36.07g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(1.72g)、MAMTHF(6.81g)、StOTHF(5.33g)、HEMA(8.59g)、OXE-30(8.47g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(36.07g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Bを得た。酸価は36.3mgKOH/g、重量平均分子量は7,900であった。
<Synthesis Example 5: Synthesis of specific resin B>
HS-EDM (36.07 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. MAA (1.72 g), MAMTHF (6.81 g), StOTHF (5.33 g), HEMA (8.59 g), OXE-30 (8.47 g), V-65 (3.34 g, monomer) 7 mol%) was dissolved in HS-EDM (36.07 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, specific resin B was obtained. The acid value was 36.3 mgKOH / g, and the weight average molecular weight was 7,900.
<合成例6:特定樹脂Cの合成>
 3つ口フラスコにHS-EDM(34.88g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(1.72g)、AATHF(11.37g)、HEMA(3.90g)、OXE-30(12.90g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(34.88g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Cを得た。酸価は37.5mgKOH/g、重量平均分子量は8,600であった。
<Synthesis Example 6: Synthesis of specific resin C>
HS-EDM (34.88 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. To the solution, MAA (1.72 g), AATHF (11.37 g), HEMA (3.90 g), OXE-30 (12.90 g), V-65 (3.34 g, 7 mol% based on the monomer) were added to HS. -It was dissolved in EDM (34.88 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, specific resin C was obtained. The acid value was 37.5 mgKOH / g, and the weight average molecular weight was 8,600.
<合成例7:特定樹脂Dの合成>
 3つ口フラスコにHS-EDM(34.05g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にPHS(2.96g)、MATHF(12.49g)、HEMA(5.21g)、GMA(8.53g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(34.05g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Dを得た。酸価は38.5mgKOH/g、重量平均分子量は7,800であった。
<Synthesis Example 7: Synthesis of specific resin D>
HS-EDM (34.05 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. To this solution, PHS (2.96 g), MATHF (12.49 g), HEMA (5.21 g), GMA (8.53 g), V-65 (3.34 g, 7 mol% based on monomers) were added to HS-EDM. (34.05 g) was added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, specific resin D was obtained. The acid value was 38.5 mgKOH / g, and the weight average molecular weight was 7,800.
<合成例8:特定樹脂Eの合成>
 3つ口フラスコにHS-EDM(37.00g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にPHS(2.96g)、MATHF(12.49g)、OXE-30(11.05g)、HEMA(5.21g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(37.00g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Eを得た。酸価は35.4mgKOH/g、重量平均分子量は8,300であった。
<Synthesis Example 8: Synthesis of specific resin E>
HS-EDM (37.00 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. To the solution, PHS (2.96 g), MATHF (12.49 g), OXE-30 (11.05 g), HEMA (5.21 g), V-65 (3.34 g, 7 mol% based on monomer) were added to HS. -It was dissolved in EDM (37.00 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, specific resin E was obtained. The acid value was 35.4 mgKOH / g and the weight average molecular weight was 8,300.
<合成例9:特定樹脂Fの合成>
 3つ口フラスコにHS-EDM(32.60g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(1.72g)、MATHF(12.49g)、GMA(8.53g)、HEMA(5.21g)、V-601(3.22g、モノマーに対して7mol%)をHS-EDM(32.60g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Fを得た。酸価は40.2mgKOH/g、重量平均分子量は7,700であった。
<Synthesis Example 9: Synthesis of specific resin F>
HS-EDM (32.60 g) was placed in a three-necked flask, and the temperature was raised to 70 ° C. in a nitrogen atmosphere. In the solution, MAA (1.72 g), MATHF (12.49 g), GMA (8.53 g), HEMA (5.21 g), V-601 (3.22 g, 7 mol% based on monomers) were added to HS-EDM. (32.60 g) was dissolved and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, specific resin F was obtained. The acid value was 40.2 mgKOH / g, and the weight average molecular weight was 7,700.
<合成例10:特定樹脂Gの合成>
 3つ口フラスコにHS-EDM(36.42g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(2.07g)、StOTHF(9.51g)、OXE-30(11.05g)、HEMA(8.59g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(33.5g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Gを得た。酸価は43.1mgKOH/g、重量平均分子量は9,300であった。
<Synthesis Example 10: Synthesis of specific resin G>
HS-EDM (36.42 g) was placed in a three-necked flask, and the temperature was raised to 70 ° C. in a nitrogen atmosphere. To the solution, MAA (2.07 g), StOTHF (9.51 g), OXE-30 (11.05 g), HEMA (8.59 g), V-65 (3.34 g, 7 mol% based on monomer) were added to HS. Dissolved in -EDM (33.5 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, the specific resin G was obtained. The acid value was 43.1 mgKOH / g, and the weight average molecular weight was 9,300.
<合成例11:特定樹脂Hの合成>
 3つ口フラスコにHS-EDM(36.57g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にITA(1.30g)、MATHF(12.49g)、OXE-30(11.05g)、HEMA(6.51g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(36.57g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Hを得た。酸価は35.8mgKOH/g、重量平均分子量は8,100であった。
<Synthesis Example 11: Synthesis of specific resin H>
HS-EDM (36.57 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. ITA (1.30 g), MATHF (12.49 g), OXE-30 (11.05 g), HEMA (6.51 g), V-65 (3.34 g, 7 mol% based on monomer) were added to the solution. -Dissolved in EDM (36.57 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, specific resin H was obtained. The acid value was 35.8 mgKOH / g, and the weight average molecular weight was 8,100.
<合成例12:特定樹脂Iの合成)>
 3つ口フラスコにPGMEA(35.55g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(1.72g)、MATHF(12.49g)、OXE-30(11.05g)、HEMA(5.21g)、V-65(3.34g、モノマーに対して7mol%)をPGMEA(35.55g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Iを得た。酸価は36.8mgKOH/g、重量平均分子量は7,900であった。
<Synthesis Example 12: Synthesis of specific resin I>
PGMEA (35.55 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. MAA (1.72 g), MATHF (12.49 g), OXE-30 (11.05 g), HEMA (5.21 g), V-65 (3.34 g, 7 mol% based on monomers) were added to the solution to PGMEA. (35.55 g) was added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, specific resin I was obtained. The acid value was 36.8 mgKOH / g, and the weight average molecular weight was 7,900.
<合成例13:特定樹脂Jの合成>
 3つ口フラスコにHS-EDM(32.19g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(2.93g)、MATHF(12.49g)、OXE-30(5.53g)、MMA(4.61g)、DCPM(2.04g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(32.19g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Jを得た。酸価は69.1mgKOH/g、重量平均分子量は7,900であった。
<Synthesis Example 13: Synthesis of specific resin J>
HS-EDM (32.19 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. To the solution, MAA (2.93 g), MATHF (12.49 g), OXE-30 (5.53 g), MMA (4.61 g), DCPM (2.04 g), V-65 (3.34 g, monomer) 7 mol%) was dissolved in HS-EDM (32.19 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, specific resin J was obtained. The acid value was 69.1 mgKOH / g and the weight average molecular weight was 7,900.
<合成例14:特定樹脂Kの合成>
 3つ口フラスコにHS-EDM(31.64g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(2.84g)、MATHF(12.49g)、OXE-30(3.68g)、MMA(4.71g)、HMA(3.41g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(31.64g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Kを得た。酸価は68.3mgKOH/g、重量平均分子量は9,900であった。
<Synthesis Example 14: Synthesis of specific resin K>
HS-EDM (31.64 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. MAA (2.84 g), MATHF (12.49 g), OXE-30 (3.68 g), MMA (4.71 g), HMA (3.41 g), V-65 (3.34 g, 7 mol%) was dissolved in HS-EDM (31.64 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, specific resin K was obtained. The acid value was 68.3 mgKOH / g, and the weight average molecular weight was 9,900.
<合成例15:特定樹脂Lの合成>
 3つ口フラスコにHS-EDM(31.54g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(3.10g)、MATHF(15.61g)、HEMA(8.33g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(31.54g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それによりn1を得た。重量平均分子量は7,200であった。また、3つ口フラスコにHS-EDM(38.52g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液に、MATHF(13.42g)、OXE-30(16.21g)、HEMA(3.38g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(38.52g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それによりn2を得た。重量平均分子量は7,600であった。n1/n2=4/6で混合することにより、特定樹脂Lを得た。酸価は33.9mgKOH/gであった。
<Synthesis Example 15: Synthesis of specific resin L>
HS-EDM (31.54 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. In that solution, MAA (3.10 g), MATHF (15.61 g), HEMA (8.33 g), V-65 (3.34 g, 7 mol% based on monomer) were dissolved in HS-EDM (31.54 g). And added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, n1 was obtained. The weight average molecular weight was 7,200. In addition, HS-EDM (38.52 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. To the solution, MATHF (13.42 g), OXE-30 (16.21 g), HEMA (3.38 g), V-65 (3.34 g, 7 mol% based on monomer) were added to HS-EDM (38.52 g). And was added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. This gave n2. The weight average molecular weight was 7,600. Specific resin L was obtained by mixing at n1 / n2 = 4/6. The acid value was 33.9 mgKOH / g.
<合成例16:特定樹脂Mの合成>
 3つ口フラスコにHS-EDM(32.45g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(3.10g)、MATHF(20.29g)、HEMA(4.42g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(32.45g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それによりm1を得た。重量平均分子量は8,100であった。また、3つ口フラスコにHS-EDM(34.10g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液に、MATHF(12.49g)、GMA(13.36g)、HEMA(3.38g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(34.10g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それによりm2を得た。重量平均分子量は7,900であった。m1/m2=4/6で混合することにより、特定樹脂Mを得た。酸価は35.4mgKOH/gであった。
<Synthesis Example 16: Synthesis of specific resin M>
HS-EDM (32.45 g) was placed in a three-necked flask, and the temperature was raised to 70 ° C. in a nitrogen atmosphere. In the solution, MAA (3.10 g), MATHF (20.29 g), HEMA (4.42 g), V-65 (3.34 g, 7 mol% with respect to the monomer) were dissolved in HS-EDM (32.45 g). And added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, m1 was obtained. The weight average molecular weight was 8,100. In addition, HS-EDM (34.10 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. To the solution, MATHF (12.49 g), GMA (13.36 g), HEMA (3.38 g), V-65 (3.34 g, 7 mol% based on monomer) were added to HS-EDM (34.10 g). It was dissolved and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. This gave m2. The weight average molecular weight was 7,900. The specific resin M was obtained by mixing at m1 / m2 = 4/6. The acid value was 35.4 mgKOH / g.
<合成例17:特定樹脂Nの合成>
 3つ口フラスコにHS-EDM(37.00g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にStCO2H(2.96g)、MATHF(12.49g)、OXE-30(11.05g)、MMA(5.21g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(37.00g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Nを得た。酸価は68.3mgKOH/g、重量平均分子量は9,700であった。
<Synthesis Example 17: Synthesis of specific resin N>
HS-EDM (37.00 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. StCO 2 H (2.96 g), MATHF (12.49 g), OXE-30 (11.05 g), MMA (5.21 g), V-65 (3.34 g, 7 mol% based on monomer) were added to the solution. Was dissolved in HS-EDM (37.00 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, specific resin N was obtained. The acid value was 68.3 mgKOH / g and the weight average molecular weight was 9,700.
<合成例18:特定樹脂Oの合成>
 3つ口フラスコにHS-EDM(34.00g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(1.72g)、MATHF(10.93g)、HEMA(5.21)、OXE-30(9.21g)、St(2.08g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(34.00g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Oを得た。酸価は41.5mgKOH/g、重量平均分子量は10,200であった。
<Synthesis Example 18: Synthesis of specific resin O>
HS-EDM (34.00 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. MAA (1.72 g), MATHF (10.93 g), HEMA (5.21), OXE-30 (9.21 g), St (2.08 g), V-65 (3.34 g, monomer) 7 mol%) was dissolved in HS-EDM (34.00 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, specific resin O was obtained. The acid value was 41.5 mgKOH / g, and the weight average molecular weight was 10,200.
<合成例19:特定樹脂Pの合成>
3つ口フラスコにHS-EDM(30.77g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(2.24g)、MATHF(9.99g)、HEMA(5.21)、GMA(6.25g)、St(2.71g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(30.77g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより特定樹脂Pを得た。酸価は61.6mgKOH/g、重量平均分子量は9,200であった。
<Synthesis Example 19: Synthesis of specific resin P>
HS-EDM (30.77 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. MAA (2.24 g), MATHF (9.99 g), HEMA (5.21), GMA (6.25 g), St (2.71 g), V-65 (3.34 g, based on monomer) 7 mol%) was dissolved in HS-EDM (30.77 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, specific resin P was obtained. The acid value was 61.6 mgKOH / g, and the weight average molecular weight was 9,200.
<比較合成例1:比較用樹脂R1の合成>
 3つ口フラスコにHS-EDM(31.63g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(1.72g)、EtMA(9.13g)、OXE-30(11.05g)、HEMA(5.21g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(31.63g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより比較用樹脂R1を得た。酸価は41.4mgKOH/g、重量平均分子量は7,500であった。
<Comparative Synthesis Example 1: Synthesis of Comparative Resin R1>
HS-EDM (31.63 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. To the solution, MAA (1.72 g), EtMA (9.13 g), OXE-30 (11.05 g), HEMA (5.21 g), V-65 (3.34 g, 7 mol% based on the monomer) were added to HS. -Dissolved in EDM (31.63 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, a comparative resin R1 was obtained. The acid value was 41.4 mgKOH / g, and the weight average molecular weight was 7,500.
<比較合成例2:比較用樹脂R2の合成>
 3つ口フラスコにHS-EDM(34.57g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(1.72g)、MATHF(12.49g)、HMA(10.22g)、HEMA(5.21g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(34.57g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより比較用樹脂R2を得た。酸価は37.9mgKOH/g、重量平均分子量は7,300であった。
<Comparative Synthesis Example 2: Synthesis of Comparative Resin R2>
HS-EDM (34.57 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. In the solution, MAA (1.72 g), MATHF (12.49 g), HMA (10.22 g), HEMA (5.21 g), V-65 (3.34 g, 7 mol% with respect to the monomer) were added to HS-EDM. (34.57 g) was added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, a comparative resin R2 was obtained. The acid value was 37.9 mgKOH / g, and the weight average molecular weight was 7,300.
<比較合成例3:比較用樹脂R3の合成>
 3つ口フラスコにHS-EDM(33.64g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(5.17g)、MATHF(9.99g)、OXE-30(12.90g)、HEMA(0.78g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(33.64g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより比較用樹脂R3を得た。酸価は116.8mgKOH/g、重量平均分子量は8,200であった。
<Comparative Synthesis Example 3: Synthesis of Comparative Resin R3>
HS-EDM (33.64 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. To this solution, MAA (5.17 g), MATHF (9.99 g), OXE-30 (12.90 g), HEMA (0.78 g), V-65 (3.34 g, 7 mol% based on monomer) were added to HS. -It was dissolved in EDM (33.64 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, a comparative resin R3 was obtained. The acid value was 116.8 mgKOH / g and the weight average molecular weight was 8,200.
<比較合成例4:比較用樹脂R4の合成>
3つ口フラスコにHS-EDM(34.34g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(1.72g)、MATHF(6.24g)、OXE-30(11.05g)、HEMA(10.41g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(34.34g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより比較用樹脂R4を得た。酸価は38.1mgKOH/g、重量平均分子量は7,600であった。
<Comparative Synthesis Example 4: Synthesis of Comparative Resin R4>
HS-EDM (34.34 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. To the solution, MAA (1.72 g), MATHF (6.24 g), OXE-30 (11.05 g), HEMA (10.41 g), V-65 (3.34 g, 7 mol% with respect to the monomer) were added to HS. -It was dissolved in EDM (34.34 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, a comparative resin R4 was obtained. The acid value was 38.1 mgKOH / g, and the weight average molecular weight was 7,600.
<比較合成例5:比較用樹脂R5の合成>
 3つ口フラスコにHS-EDM(35.74g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(1.72g)、MAEVE(12.65g)、OXE-30(11.05g)、HEMA(5.20g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(35.74g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより比較用樹脂R5を得た。酸価は36.6mgKOH/g、重量平均分子量は6,600であった。
<Comparative Synthesis Example 5: Synthesis of Comparative Resin R5>
HS-EDM (35.74 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. In the solution, MAA (1.72 g), MAEVE (12.65 g), OXE-30 (11.05 g), HEMA (5.20 g), V-65 (3.34 g, 7 mol% based on the monomer) were added to HS. -It was dissolved in EDM (35.74 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, a comparative resin R5 was obtained. The acid value was 36.6 mgKOH / g, and the weight average molecular weight was 6,600.
<比較合成例6:比較用樹脂R6の合成>
 3つ口フラスコにHS-EDM(34.89g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(1.72g)、MACHVE(16.97g)、OXE-30(11.05g)、HEMA(5.21g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(34.89g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより比較用樹脂R6を得た。酸価は32.1mgKOH/g、重量平均分子量は7,200であった。
<Comparative Synthesis Example 6: Synthesis of Comparative Resin R6>
HS-EDM (34.89 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. To the solution, MAA (1.72 g), MACHVE (16.97 g), OXE-30 (11.05 g), HEMA (5.21 g), V-65 (3.34 g, 7 mol% based on monomer) were added to HS. -It was dissolved in EDM (34.89 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, a comparative resin R6 was obtained. The acid value was 32.1 mgKOH / g and the weight average molecular weight was 7,200.
<比較合成例7:比較用樹脂R7の合成>
 3つ口フラスコにHS-EDM(32.46g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(1.72g)、MABVE(14.89g)、OXE-30(11.05g)、HEMA(5.21g)、V-65(3.34g、モノマーに対して7mol%)をHS-EDM(32.46g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより比較用樹脂R7を得た。酸価は34.1mgKOH/g、重量平均分子量は6,800であった。
<Comparative Synthesis Example 7: Synthesis of Comparative Resin R7>
HS-EDM (32.46 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. In the solution, MAA (1.72 g), MABVE (14.89 g), OXE-30 (11.05 g), HEMA (5.21 g), V-65 (3.34 g, 7 mol% based on the monomer) were added to HS. -It was dissolved in EDM (32.46 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, a comparative resin R7 was obtained. The acid value was 34.1 mgKOH / g, and the weight average molecular weight was 6,800.
<比較合成例8:比較用樹脂R8の合成>
 3つ口フラスコにPGMEA(70.0g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(30.0g)、MMA(12.0g)、HEMA(12.0g)、BzMA(6g)、V-65(3.34g、モノマーに対して7mol%)をPGMEA(70.0g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより比較用樹脂R8を得た。酸価は325.9mgKOH/g、重量平均分子量は7,500であった。
<Comparative Synthesis Example 8: Synthesis of Comparative Resin R8>
PGMEA (70.0 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. To the solution, MAA (30.0 g), MMA (12.0 g), HEMA (12.0 g), BzMA (6 g), V-65 (3.34 g, 7 mol% based on monomer) and PGMEA (70.0 g) were added. And was added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, a comparative resin R8 was obtained. The acid value was 325.9 mgKOH / g, and the weight average molecular weight was 7,500.
<比較合成例9:比較用樹脂R9の合成>
 ナス型フラスコに、ポリ(p-ヒドロキシスチレン)40g(p-ヒドロキシスチレン単位として333mmol)、p-トルエンスルホン酸一水和物47mg(0.25mmol)を入れ、PGMEA98.3gと混合した。そこにエチルビニルエーテル16.6g(230mmol)を滴下した後、25℃で5時間反応させた。この反応溶液に、メチルイソブチルケトン100gを加え、更にイオン交換水100mLを加えた。撹拌した後、有機層部分を取り出した。有機層を取り出して減圧蒸留することにより、PGMEA溶液とした。得られた液体は、ポリ(p-ヒドロキシスチレン)のフェノール性水酸基が部分的に1-エトキシエチルでエーテル化された樹脂の溶液であり、この樹脂を1H-NMRで分析したところ、フェノール性水酸基の50%が1-エトキシエチルエーテル化されていた。この樹脂を比較用樹脂R9とする。なお、この樹脂の酸価は213.99mgKOH/gであった。
<Comparative Synthesis Example 9: Synthesis of Comparative Resin R9>
An eggplant-shaped flask was charged with 40 g of poly (p-hydroxystyrene) (333 mmol as a p-hydroxystyrene unit) and 47 mg (0.25 mmol) of p-toluenesulfonic acid monohydrate and mixed with 98.3 g of PGMEA. 16.6 g (230 mmol) of ethyl vinyl ether was added dropwise thereto, and then reacted at 25 ° C. for 5 hours. To this reaction solution, 100 g of methyl isobutyl ketone was added, and 100 mL of ion-exchanged water was further added. After stirring, the organic layer part was taken out. The organic layer was taken out and distilled under reduced pressure to obtain a PGMEA solution. The resulting liquid is a resin solution in which the phenolic hydroxyl group of poly (p-hydroxystyrene) is partially etherified with 1-ethoxyethyl, and this resin is analyzed by 1 H-NMR. 50% of the hydroxyl groups were converted to 1-ethoxyethyl ether. This resin is referred to as a comparative resin R9. The acid value of this resin was 213.99 mg KOH / g.
<比較合成例10:比較用樹脂R10の合成>
 3つ口フラスコにHS-EDM(50.0g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMACHVE(20.0g)、St(2.5g)、GMA(27.5g)、HEMA(5.0g)、V-65(3.5g、モノマーに対して7mol%)をHS-EDM(50.0g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより比較用樹脂R10を得た。酸価は0mgKOH/g、重量平均分子量は9,700であった。
<Comparative Synthesis Example 10: Synthesis of Comparative Resin R10>
HS-EDM (50.0 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. MACHVE (20.0 g), St (2.5 g), GMA (27.5 g), HEMA (5.0 g), V-65 (3.5 g, 7 mol% based on monomer) were added to the solution to HS-EDM. (50.0 g) was added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, a comparative resin R10 was obtained. The acid value was 0 mgKOH / g, and the weight average molecular weight was 9,700.
<比較合成例11:比較用樹脂R11の合成>
 3つ口フラスコにPGMEA(35.4g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(6.47g)、CHMI(11.77g)、HEMA(8.50g)、MMA(6.60g)、V-65(5.56g、モノマーに対して7mol%)をPGMEA(35.4g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより比較用樹脂R11を得た。酸価は126.4mgKOH/g、重量平均分子量は8,200であった。
<Comparative Synthesis Example 11: Synthesis of Comparative Resin R11>
PGMEA (35.4 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. To the solution, MAA (6.47 g), CHMI (11.77 g), HEMA (8.50 g), MMA (6.60 g), V-65 (5.56 g, 7 mol% with respect to the monomer) and PGMEA (35 4 g) and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, a comparative resin R11 was obtained. The acid value was 126.4 mgKOH / g, and the weight average molecular weight was 8,200.
<比較合成例12:比較用樹脂R12の合成>
 3つ口フラスコにPGMEA(43.2g)を入れ、窒素雰囲気下において70℃に昇温した。その溶液にMAA(1.72g)、MATHP(19.07g)、OXE-30(11.05g)、HEMA(5.21g)、V-65(3.34g、モノマーに対して7mol%)をPGMEA(43.2g)に溶解させ、2時間かけて滴下した。滴下終了後4時間撹拌し、反応を終了させた。それにより比較用樹脂R12を得た。酸価は30.3mgKOH/g、重量平均分子量は7,700であった。
<Comparative Synthesis Example 12: Synthesis of Comparative Resin R12>
PGMEA (43.2 g) was placed in a three-necked flask and heated to 70 ° C. in a nitrogen atmosphere. MAA (1.72 g), MATHP (19.07 g), OXE-30 (11.05 g), HEMA (5.21 g), V-65 (3.34 g, 7 mol% based on monomers) were added to the solution to PGMEA. (43.2 g) was added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 4 hours. Thereby, a comparative resin R12 was obtained. The acid value was 30.3 mgKOH / g, and the weight average molecular weight was 7,700.
<合成例20:オキシムスルホネートOS-2(B4)の合成>
 300mL3つ口フラスコにNaOH8.4g(200mmol)とメタノール42gを仕込み、加温して溶解させた。続いて5℃でベンジルアセトニトリル5.41g(50mmol)を添加した後、続いて2-ニトロチオフェン7.75g(60mmol)を滴下した。更に5℃で1時間撹拌した。反応容器に水200mLと酢酸エチル50mLとを加えて撹拌した。酢酸エチル200mLで抽出した後、硫酸マグネシウムで乾燥した。ろ過し濃縮して得た残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)にて精製し、酢酸エチルから再結晶させることにより5.14gを得た。この結晶は1H-NMRより、OS-2中間体であることを確認した。また、2種類の異性体混合物(1対1)であることを確認した。
 100mL3つ口フラスコにOS-2中間体2.28g(10mmol)とTHF20mLを仕込み、5℃でプロパンスルホニルクロリド1.57g(11mmol)を添加した。そのまま撹拌下に、トリエチルアミン(Et3N)1.21g(12mmol)を滴下した。5℃のまま2時間撹拌した後、水200加えた。酢酸エチルで抽出下の地、硫酸マグネシウムで乾燥した。ろ過し、乾燥したら粗結晶が得られたため、ヘキサン50mLでスラリーを行い乾燥することで、OS-2を2.01g得た。液体カラムクロマトグラフィーでの分析により、純度は98.8%であり、1H-NMRから2種類の異性体混合物(1対1)であることを確認した。
 1H-NMR(DMSO-d6,δppm):7.47~7.38(m,5H),6.22(d,J=6.6Hz,1H),3.78~3.73(m,2H),1.87~1.79(q,J=7.5Hz,2H),1.03(t,3H).
<Synthesis Example 20: Synthesis of oxime sulfonate OS-2 (B4)>
8.4 g (200 mmol) of NaOH and 42 g of methanol were charged into a 300 mL three-necked flask, and dissolved by heating. Subsequently, 5.41 g (50 mmol) of benzylacetonitrile was added at 5 ° C., and then 7.75 g (60 mmol) of 2-nitrothiophene was added dropwise. Furthermore, it stirred at 5 degreeC for 1 hour. To the reaction vessel, 200 mL of water and 50 mL of ethyl acetate were added and stirred. After extraction with 200 mL of ethyl acetate, it was dried over magnesium sulfate. The residue obtained by filtration and concentration was purified by column chromatography (hexane / ethyl acetate = 4/1) and recrystallized from ethyl acetate to obtain 5.14 g. This crystal was confirmed to be an OS-2 intermediate by 1 H-NMR. Moreover, it confirmed that it was a 2 types of isomer mixture (1 to 1).
To a 100 mL three-necked flask, 2.28 g (10 mmol) of the OS-2 intermediate and 20 mL of THF were charged, and 1.57 g (11 mmol) of propanesulfonyl chloride was added at 5 ° C. While stirring, 1.21 g (12 mmol) of triethylamine (Et 3 N) was added dropwise. After stirring at 5 ° C. for 2 hours, 200 water was added. The ground was extracted with ethyl acetate and dried over magnesium sulfate. When filtered and dried, crude crystals were obtained. Slurry with 50 mL of hexane and drying yielded 2.01 g of OS-2. According to analysis by liquid column chromatography, the purity was 98.8%, and it was confirmed from 1 H-NMR that the mixture was two kinds of isomers (one to one).
1 H-NMR (DMSO-d6, δ ppm): 7.47 to 7.38 (m, 5H), 6.22 (d, J = 6.6 Hz, 1H), 3.78 to 3.73 (m, 2H), 1.87 to 1.79 (q, J = 7.5 Hz, 2H), 1.03 (t, 3H).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
<合成例21:オキシムスルホネートOS-16(B5)の合成>
 300mL3つ口フラスコにNaOH8.4g(200mmol)とメタノール42gとを仕込み、加温して溶解させた。続いて5℃で2-メチルフェニルアセトニトリル6.56gを添加した後、続いて2-ニトロチオフェン7.50gを滴下した。更に5℃で1時間撹拌した。反応容器に水200mLと酢酸エチル50mLを加えて撹拌した。酢酸エチル200mLで抽出した後、硫酸マグネシウムで乾燥した。ろ過し濃縮して得た残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)にて精製し、酢酸エチルから再結晶させることにより5.45gを得た。この結晶は1H-NMRより、OS-16中間体であることを確認した。また、2種類の異性体混合物(1対1)であることを確認した。
 100mL3つ口フラスコにOS-16中間体2.42gとTHF20mLを仕込み、5℃でメタンスルホニルクロリド1.26gを添加した。そのまま撹拌下に、トリエチルアミン1.21gを滴下した。5℃のまま2時間撹拌した後、水200加えた。酢酸エチルで抽出下の地、硫酸マグネシウムで乾燥した。ろ過し、乾燥したら粗結晶が得られたため、ヘキサン50mLでスラリーを行い乾燥することで、OS-16を2.31g得た。液体カラムクロマトグラフィーでの分析により、純度は98.8%であり、1H-NMRから生成物であることを確認した。
 1H-NMR(DMSO-d6,δppm):7.45~7.33(m,5H),6.22(J=6.6Hz,1H),3.58(s,3H),2.32(s,3H).
<Synthesis Example 21: Synthesis of oxime sulfonate OS-16 (B5)>
In a 300 mL three-necked flask, 8.4 g (200 mmol) of NaOH and 42 g of methanol were charged, and dissolved by heating. Subsequently, 6.56 g of 2-methylphenylacetonitrile was added at 5 ° C., and then 7.50 g of 2-nitrothiophene was added dropwise. Furthermore, it stirred at 5 degreeC for 1 hour. To the reaction vessel, 200 mL of water and 50 mL of ethyl acetate were added and stirred. After extraction with 200 mL of ethyl acetate, it was dried over magnesium sulfate. The residue obtained by filtration and concentration was purified by column chromatography (hexane / ethyl acetate = 4/1) and recrystallized from ethyl acetate to obtain 5.45 g. This crystal was confirmed to be an OS-16 intermediate by 1 H-NMR. Moreover, it confirmed that it was two types of isomer mixtures (1 to 1).
A 100 mL three-necked flask was charged with 2.42 g of OS-16 intermediate and 20 mL of THF, and 1.26 g of methanesulfonyl chloride was added at 5 ° C. While stirring, 1.21 g of triethylamine was added dropwise. After stirring at 5 ° C. for 2 hours, 200 water was added. The ground was extracted with ethyl acetate and dried over magnesium sulfate. When filtered and dried, crude crystals were obtained. Thus, by slurrying with 50 mL of hexane and drying, 2.31 g of OS-16 was obtained. According to the analysis by liquid column chromatography, the purity was 98.8%, and it was confirmed to be the product from 1 H-NMR.
1 H-NMR (DMSO-d6, δ ppm): 7.45 to 7.33 (m, 5H), 6.22 (J = 6.6 Hz, 1H), 3.58 (s, 3H), 2.32 (S, 3H).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
<合成例22:B8の合成>
1-1.合成中間体B8Aの合成
 2-アミノベンゼンチオール:31.3g(東京化成工業(株)製)をトルエン:100mL(和光純薬工業(株)製)に室温(25℃)下溶解させた。次に、フェニルアセチルクロリド:40.6g(東京化成工業(株)製)を滴下し、室温下1時間、次いで100℃で2時間撹拌し反応させた。得られた反応液に水500mLを入れ析出した塩を溶解させ、トルエン油分を抽出、抽出液をロータリエバポレーターで濃縮させ、合成中間体B8Aを得た。
<Synthesis Example 22: Synthesis of B8>
1-1. Synthesis of Synthesis Intermediate B8A 2-Aminobenzenethiol: 31.3 g (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in toluene: 100 mL (manufactured by Wako Pure Chemical Industries, Ltd.) at room temperature (25 ° C.). Next, phenylacetyl chloride: 40.6 g (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise, and the mixture was stirred at room temperature for 1 hour and then stirred at 100 ° C. for 2 hours for reaction. 500 mL of water was added to the resulting reaction solution to dissolve the precipitated salt, toluene oil was extracted, and the extract was concentrated with a rotary evaporator to obtain a synthetic intermediate B8A.
1-2.B8の合成
 前記のようにして得られた合成中間体B8A 2.25gをテトラヒドロフラン:10mL(和光純薬工業(株)製)に混合させた後、氷浴につけ反応液を5℃以下に冷却した。次に、テトラメチルアンモニウムヒドロキシド:4.37g(25重量%メタノール溶液、Alfa Acer社製)を滴下し、氷浴下0.5時間撹拌し反応させた。更に、亜硝酸イソペンチル:7.03gを内温20℃以下に保ちながら滴下し、滴下終了後に反応液を室温まで昇温後、1時間撹拌した。
 次いで、反応液を5℃以下に冷却し後、p-トルエンスルホニルクロリド(1.9g)(東京化成工業(株)製)を投入し、10℃以下を保ちながら1時間撹拌した。その後水80mLを投入し、0℃で1時間撹拌した。得られた析出物をろ過した後、イソプロピルアルコール(IPA)60mLを投入し、50℃に加熱して1時間撹拌し、熱時ろ過、乾燥させることで、B8を1.8g得た。
 得られたB8の1H-NMRスペクトル(300MHz、重DMSO((D3C)2S=O))は、δ=8.2~8.17(m,1H),8.03~8.00(m,1H),7.95~7.9(m,2H),7.6~7.45(m,9H),2.45(s,3H)であった。
 上記の1H-NMR測定結果より、得られたB8は、1種単独のシス又はトランス異性体であることが推定される。
1-2. Synthesis of B8 After 2.25 g of the synthetic intermediate B8A obtained as described above was mixed with tetrahydrofuran: 10 mL (manufactured by Wako Pure Chemical Industries, Ltd.), the reaction solution was cooled to 5 ° C. or less by placing in an ice bath. . Next, tetramethylammonium hydroxide: 4.37 g (25% by weight methanol solution, manufactured by Alfa Acer) was added dropwise, and the mixture was stirred for 0.5 hour in an ice bath to be reacted. Furthermore, 7.03 g of isopentyl nitrite: was dropped while maintaining the internal temperature at 20 ° C. or lower, and after completion of the dropping, the reaction solution was warmed to room temperature and stirred for 1 hour.
Next, after cooling the reaction solution to 5 ° C. or lower, p-toluenesulfonyl chloride (1.9 g) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred for 1 hour while maintaining 10 ° C. or lower. Thereafter, 80 mL of water was added and stirred at 0 ° C. for 1 hour. After filtering the obtained precipitate, 60 mL of isopropyl alcohol (IPA) was added, heated to 50 ° C., stirred for 1 hour, filtered while hot, and dried to obtain 1.8 g of B8.
The 1 H-NMR spectrum (300 MHz, deuterated DMSO ((D 3 C) 2 S═O)) of the obtained B8 is δ = 8.2 to 8.17 (m, 1H), 8.03 to 8. 00 (m, 1H), 7.95 to 7.9 (m, 2H), 7.6 to 7.45 (m, 9H), 2.45 (s, 3H).
From the above 1 H-NMR measurement results, it is estimated that the obtained B8 is a single cis or trans isomer.
<合成例23:B9の合成>
 2-ナフトール(10g)、クロロベンゼン(30mL)の懸濁溶液に塩化アルミニウム(10.6g)、2-クロロプロピオニルクロリド(10.1g)を添加し、混合液を40℃に加熱して2時間反応させた。氷冷下、反応液に4NHCl水溶液(60mL)を滴下し、酢酸エチル(50mL)を添加して分液した。有機層に炭酸カリウム(19.2g)を加え、40℃で1時間反応させた後、2NHCl水溶液(60mL)を添加して分液し、有機層を濃縮後、結晶をジイソプロピルエーテル(10mL)でリスラリーし、ろ過、乾燥してケトン化合物(6.5g)を得た。
 得られたケトン化合物(3.0g)、メタノール(30mL)の懸濁溶液に酢酸(7.3g)、50重量%ヒドロキシルアミン水溶液(8.0g)を添加し、加熱還流した。放冷後、水(50mL)を加え、析出した結晶をろ過、冷メタノール洗浄後、乾燥してオキシム化合物(2.4g)を得た。
 得られたオキシム化合物(1.8g)をアセトン(20mL)に溶解させ、氷冷下トリエチルアミン(1.5g)、p-トルエンスルホニルクロリド(2.4g)を添加し、室温に昇温して1時間反応させた。反応液に水(50mL)を添加し、析出した結晶をろ過後、メタノール(20mL)でリスラリーし、ろ過、乾燥してB9(2.3g)を得た。
 なお、B9の1H-NMRスペクトル(300MHz、CDCl3)は、δ=8.3(d,1H),8.0(d,2H),7.9(d,1H),7.8(d,1H),7.6(dd,1H),7.4(dd,1H)7.3(d,2H),7.1(d.1H),5.6(q,1H),2.4(s,3H),1.7(d,3H)であった。
<Synthesis Example 23: Synthesis of B9>
Aluminum chloride (10.6 g) and 2-chloropropionyl chloride (10.1 g) were added to a suspension of 2-naphthol (10 g) and chlorobenzene (30 mL), and the mixture was heated to 40 ° C. for 2 hours. I let you. Under ice-cooling, 4N HCl aqueous solution (60 mL) was added dropwise to the reaction solution, and ethyl acetate (50 mL) was added for liquid separation. Potassium carbonate (19.2 g) was added to the organic layer, reacted at 40 ° C. for 1 hour, 2N HCl aqueous solution (60 mL) was added and separated, and the organic layer was concentrated, and the crystals were diluted with diisopropyl ether (10 mL). The slurry was reslurried, filtered and dried to obtain a ketone compound (6.5 g).
Acetic acid (7.3 g) and 50% by weight hydroxylamine aqueous solution (8.0 g) were added to a suspension of the obtained ketone compound (3.0 g) and methanol (30 mL), and the mixture was heated to reflux. After allowing to cool, water (50 mL) was added, and the precipitated crystals were filtered, washed with cold methanol, and dried to obtain an oxime compound (2.4 g).
The obtained oxime compound (1.8 g) was dissolved in acetone (20 mL), triethylamine (1.5 g) and p-toluenesulfonyl chloride (2.4 g) were added under ice cooling, and the temperature was raised to room temperature. Reacted for hours. Water (50 mL) was added to the reaction solution, and the precipitated crystals were filtered, reslurried with methanol (20 mL), filtered and dried to obtain B9 (2.3 g).
The 1 H-NMR spectrum (300 MHz, CDCl 3 ) of B9 has δ = 8.3 (d, 1H), 8.0 (d, 2H), 7.9 (d, 1H), 7.8 ( d, 1H), 7.6 (dd, 1H), 7.4 (dd, 1H) 7.3 (d, 2H), 7.1 (d.1H), 5.6 (q, 1H), 2 .4 (s, 3H), 1.7 (d, 3H).
<合成例24:B10の合成〕
 2-ナフトール(20g)をN,N-ジメチルアセトアミド(150mL)に溶解させ、炭酸カリウム(28.7g)、2-ブロモオクタン酸エチル(52.2g)を添加して100℃で2時間反応させた。反応液に水(300mL)、酢酸エチル(200mL)を添加して分液し、有機層を濃縮後、48重量%水酸化ナトリウム水溶液(23g)、エタノール(50mL)、水(50mL)を添加し、2時間反応させた。反応液を1N HCl水溶液(500mL)にあけ、析出した結晶をろ過、水洗してカルボン酸粗体を得た後、ポリリン酸30gを添加して170℃で30分反応させた。反応液を水(300mL)にあけ、酢酸エチル(300mL)を添加して分液し、有機層を濃縮した後シリカゲルカラムクロマトグラフィーで精製し、ケトン化合物(10g)を得た。
 得られたケトン化合物(10.0g)、メタノール(100mL)の懸濁溶液に酢酸ナトリウム(30.6g)、塩酸ヒドロキシルアミン(25.9g)、硫酸マグネシウム(4.5g)を添加し、24時間加熱還流した。放冷後、水(150mL)、酢酸エチル(150mL)添加して分液し、有機層を水80mLで4回分液し、濃縮した後シリカゲルカラムクロマトグラフィーで精製してオキシム化合物(5.8g)を得た。
 得られたオキシム(3.1g)に対し、B8と同様にスルホネート化を行い、B10(3.2g)を得た。
 なお、B10の1H-NMRスペクトル(300MHz、CDCl3)は、δ=8.3(d,1H),8.0(d,2H),7.9(d,1H),7.8(d,1H),7.6(dd,1H),7.5(dd,1H)7.3(d,2H),7.1(d.1H),5.6(dd,1H),2.4(s,3H),2.2(ddt,1H),1.9(ddt,1H),1.4~1.2(m,8H),0.8(t,3H)であった。
<Synthesis Example 24: Synthesis of B10>
2-Naphthol (20 g) is dissolved in N, N-dimethylacetamide (150 mL), potassium carbonate (28.7 g) and ethyl 2-bromooctanoate (52.2 g) are added and reacted at 100 ° C. for 2 hours. It was. To the reaction solution are added water (300 mL) and ethyl acetate (200 mL), and the mixture is separated. The organic layer is concentrated, and then 48 wt% aqueous sodium hydroxide solution (23 g), ethanol (50 mL), and water (50 mL) are added. The reaction was performed for 2 hours. The reaction solution was poured into 1N HCl aqueous solution (500 mL), and the precipitated crystals were filtered and washed with water to obtain a crude carboxylic acid, and then 30 g of polyphosphoric acid was added and reacted at 170 ° C. for 30 minutes. The reaction solution was poured into water (300 mL), and ethyl acetate (300 mL) was added for liquid separation, and the organic layer was concentrated and purified by silica gel column chromatography to obtain a ketone compound (10 g).
Sodium acetate (30.6 g), hydroxylamine hydrochloride (25.9 g), and magnesium sulfate (4.5 g) were added to a suspension of the resulting ketone compound (10.0 g) and methanol (100 mL) for 24 hours. Heated to reflux. After standing to cool, water (150 mL) and ethyl acetate (150 mL) were added for liquid separation, and the organic layer was separated four times with 80 mL of water, concentrated and purified by silica gel column chromatography to obtain an oxime compound (5.8 g). Got.
The obtained oxime (3.1 g) was sulfonated in the same manner as B8 to obtain B10 (3.2 g).
The 1 H-NMR spectrum (300 MHz, CDCl 3 ) of B10 has δ = 8.3 (d, 1H), 8.0 (d, 2H), 7.9 (d, 1H), 7.8 ( d, 1H), 7.6 (dd, 1H), 7.5 (dd, 1H) 7.3 (d, 2H), 7.1 (d.1H), 5.6 (dd, 1H), 2 .4 (s, 3H), 2.2 (ddt, 1H), 1.9 (ddt, 1H), 1.4 to 1.2 (m, 8H), 0.8 (t, 3H) .
<合成例25:B11の合成>
 B9の合成におけるp-トルエンスルホニルクロリドの代わりにベンゼンスルホニルクロリドを用いた以外は、B9の合成と同様にしてB11を合成した。
 なお、B11の1H-NMRスペクトル(300MHz、CDCl3)は、δ=8.3(d,1H),8.1(d,2H),7.9(d,1H),7.8(d,1H),7.7-7.5(m,4H),7.4(dd,1H),7.1(d.1H),5.6(q,1H),1.7(d,3H)であった。
<Synthesis Example 25: Synthesis of B11>
B11 was synthesized in the same manner as B9 except that benzenesulfonyl chloride was used instead of p-toluenesulfonyl chloride in the synthesis of B9.
Note that the 1 H-NMR spectrum (300 MHz, CDCl 3 ) of B11 is δ = 8.3 (d, 1H), 8.1 (d, 2H), 7.9 (d, 1H), 7.8 ( d, 1H), 7.7-7.5 (m, 4H), 7.4 (dd, 1H), 7.1 (d.1H), 5.6 (q, 1H), 1.7 (d , 3H).
(実施例1~50、及び、比較例1~14)
(1)感光性樹脂組成物の調製
 表1及び表2に示す各成分を混合して均一な溶液とした後、0.2μmのポアサイズを有するポリテトラフルオロエチレン製フィルタを用いてろ過して、実施例1~50及び比較例1~14の感光性樹脂組成物をそれぞれ調製した。
(Examples 1 to 50 and Comparative Examples 1 to 14)
(1) Preparation of photosensitive resin composition After mixing each component shown in Table 1 and Table 2 into a uniform solution, it was filtered using a polytetrafluoroethylene filter having a pore size of 0.2 μm, Photosensitive resin compositions of Examples 1 to 50 and Comparative Examples 1 to 14 were prepared.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 なお、表1及び表2中の略号は以下の通りである。
 B1:CGI1397(下記構造、チバジャパン(株)製)
 B2:CGI1325(下記構造、チバジャパン(株)製)
 B3:CGI725(下記構造、チバジャパン(株)製)
 B4:OS-2(合成品)
 B5:OS-16(合成品)
 B6:4,7-ジ-n-ブトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート
 B7:m/p-クレゾールノボラックと1,2-ナフトキノンジアジド-5-スルホン酸エステルとの組成物の市販品(東京応化工業(株)製)
 B8:下記の化合物(合成品)
 B9:下記の化合物(合成品)
 B10:下記の化合物(合成品)
 B11:下記の化合物(合成品)
 C1:プロピレングリコールモノメチルエーテルアセテート(メトキシプロピルアセテート)
 C2:ジエチレングリコールエチルメチルエーテル
 D1:アデカスタブAO-60(下記構造、(株)ADEKA製)
 E1:JER-157S70(多官能ノボラック型エポキシ樹脂(エポキシ当量200~220g/eq)、ジャパンエポキシレジン(株)製)
 H1:メガファックR-08(パーフルオロアルキル基含有ノニオン性界面活性剤、DIC(株)製)
 H2:W-3(下記構造)
 G1:4-ジメチルアミノピリジン
 G2:1,5-ジアザビシクロ[4.3.0]-5-ノネン
 F1:KBM-403(下記構造、信越化学工業(株)製)
In addition, the symbol in Table 1 and Table 2 is as follows.
B1: CGI1397 (the following structure, manufactured by Ciba Japan)
B2: CGI1325 (the following structure, manufactured by Ciba Japan Co., Ltd.)
B3: CGI725 (the following structure, manufactured by Ciba Japan Co., Ltd.)
B4: OS-2 (Synthetic product)
B5: OS-16 (composite product)
B6: 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate B7: commercial product of a composition of m / p-cresol novolak and 1,2-naphthoquinonediazide-5-sulfonate (Manufactured by Tokyo Ohka Kogyo Co., Ltd.)
B8: The following compound (synthetic product)
B9: The following compound (synthetic product)
B10: The following compound (synthetic product)
B11: The following compound (synthetic product)
C1: Propylene glycol monomethyl ether acetate (methoxypropyl acetate)
C2: Diethylene glycol ethyl methyl ether D1: ADK STAB AO-60 (the following structure, manufactured by ADEKA Corporation)
E1: JER-157S70 (polyfunctional novolac type epoxy resin (epoxy equivalent: 200 to 220 g / eq), manufactured by Japan Epoxy Resins Co., Ltd.)
H1: Megafax R-08 (perfluoroalkyl group-containing nonionic surfactant, manufactured by DIC Corporation)
H2: W-3 (the following structure)
G1: 4-dimethylaminopyridine G2: 1,5-diazabicyclo [4.3.0] -5-nonene F1: KBM-403 (the following structure, manufactured by Shin-Etsu Chemical Co., Ltd.)
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
(2)感度の評価
 シリコン酸化膜を有するシリコンウエハ上に、各実施例及び比較例の感光性樹脂組成物をスリット塗布した後、95℃で90秒間ホットプレート上においてプリベークして、膜厚3μmの塗膜を形成した。
 次に、i線ステッパー(キヤノン(株)製FPA-3000i5+)を用いて、所定のマスクを介して露光した。露光後、0.4重量%のテトラメチルアンモニウムヒドロキシド水溶液により23℃で80秒間液盛り法により現像した後、超純水で1分間リンスした。これらの操作により10μmのラインアンドスペースを1:1で解像する時の最適露光量を感度とした。感度は、以下の評価基準により評価した。
 A:15mJ/cm2未満
 B:15~30mJ/cm2
 C:30~50mJ/cm2
 D:50mJ/cm2を超える
(2) Sensitivity evaluation After slit coating the photosensitive resin compositions of the examples and comparative examples on a silicon wafer having a silicon oxide film, it was pre-baked on a hot plate at 95 ° C. for 90 seconds to obtain a film thickness of 3 μm. The coating film was formed.
Next, exposure was performed through a predetermined mask using an i-line stepper (FPA-3000i5 + manufactured by Canon Inc.). After the exposure, the resist film was developed with a 0.4 wt% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 80 seconds and rinsed with ultrapure water for 1 minute. By these operations, the optimum exposure amount when resolving a 10 μm line and space at 1: 1 was defined as sensitivity. The sensitivity was evaluated according to the following evaluation criteria.
A: 15mJ / cm 2 less than B: 15 ~ 30mJ / cm 2
C: 30-50 mJ / cm 2
D: Over 50 mJ / cm 2
(3)未露光部残膜率の評価
 感度の評価と同様に形成した塗膜の現像後における未露光部の膜厚を、触針式の膜厚計にて測定し、同様に測定した初期膜厚に対する残存膜厚の比率を残膜率として評価した。すなわち、「未露光部残膜率=現像後の膜厚(未露光部)÷現像前の膜厚(未露光部)×100」である。未露光部残膜率が高い方が、現像マージンが良好である。
(3) Evaluation of unexposed part residual film ratio Initial thickness of unexposed part after development of the coating film formed in the same manner as the sensitivity evaluation was measured with a stylus type film thickness meter. The ratio of the remaining film thickness to the film thickness was evaluated as the remaining film ratio. That is, “unexposed portion remaining film ratio = film thickness after development (unexposed portion) ÷ film thickness before development (unexposed portion) × 100”. The higher the unexposed portion remaining film ratio, the better the development margin.
(4)透明性の評価
ガラス基板「コーニング1737(コーニング社製)」上に感光性樹脂組成物溶液をスリット塗布した後、95℃で90秒間ホットプレート上においてプリベークして膜厚3μmの塗膜を形成した。得られた塗膜にキヤノン(株)製PLA-501F露光機(超高圧水銀ランプ)で積算照射量が200mJ/cm2(照度:20mW/cm2)となるように露光し、その後、この基板をオーブンにて230℃で1時間加熱して硬化膜を得た。得られた硬化膜をオーブンにて230℃で2時間更に加熱した後、光線透過率を分光光度計「150-20型ダブルビーム((株)日立製作所製)」を用いて400~800nmの範囲の波長で測定した。そのときの400nmにおける透過率の評価を、透明性の評価として、この値が90%以上であれば、耐熱透明性が良好であるといえる。
(4) Transparency Evaluation After a photosensitive resin composition solution is slit-coated on a glass substrate “Corning 1737 (manufactured by Corning)”, it is pre-baked on a hot plate at 95 ° C. for 90 seconds, and a coating film having a thickness of 3 μm Formed. The obtained coating film was exposed with a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc. so that the integrated irradiation amount was 200 mJ / cm 2 (illuminance: 20 mW / cm 2 ). Was heated in an oven at 230 ° C. for 1 hour to obtain a cured film. The obtained cured film was further heated in an oven at 230 ° C. for 2 hours, and the light transmittance was in the range of 400 to 800 nm using a spectrophotometer “150-20 type double beam (manufactured by Hitachi, Ltd.)”. Measured at a wavelength of. The evaluation of the transmittance at 400 nm at that time is the transparency evaluation. If this value is 90% or more, it can be said that the heat resistant transparency is good.
(5)耐熱透明性の評価
 上述で得られた硬化膜をオーブンにて、更に230℃で2時間加熱した後、光線透過率を分光光度計「150-20型ダブルビーム((株)日立製作所製)」を用いて400~800nmの範囲の波長で測定した。そのときの400nmにおける透過率の評価を、耐熱透明性の評価として、この値が90%以上であれば、耐熱透明性が良好であるといえる。
(5) Evaluation of heat-resistant transparency The cured film obtained above was further heated in an oven at 230 ° C. for 2 hours, and then the light transmittance was measured with a spectrophotometer “150-20 type double beam (Hitachi, Ltd.). ) ”At a wavelength in the range of 400 to 800 nm. The evaluation of the transmittance at 400 nm at that time is the evaluation of heat-resistant transparency. If this value is 90% or more, it can be said that the heat-resistant transparency is good.
(5)比誘電率の評価
 ベアウエハ(N型低抵抗)(SUMCO社製)上に、感光性樹脂組成物をスリット塗布した後、90℃にて2分間ホットプレート上でプリベークして膜厚3.0μmの感光性樹脂組成物層を形成した。得られた感光性樹脂組成物を、キヤノン(株)製PLA-501F露光機(超高圧水銀ランプ)で積算照射量が300mJ/cm2(照度:20mW/cm2)となるように露光し、この基板をオーブンにて220℃で1時間加熱することにより、硬化膜を得た。
 この硬化膜について、CVmap92A(Four Dimensions Inc.社製)を用い、測定周波数1MHzで比誘電率を測定した。結果を表3及び表4に示す。この値が低いほど好ましく、3.9以下のとき、硬化膜の比誘電率は良好であるといえる。
(5) Evaluation of relative dielectric constant After a photosensitive resin composition was slit-coated on a bare wafer (N-type low resistance) (manufactured by SUMCO), it was pre-baked on a hot plate at 90 ° C. for 2 minutes to obtain a film thickness of 3 A photosensitive resin composition layer having a thickness of 0.0 μm was formed. The obtained photosensitive resin composition was exposed with a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc. so that the integrated irradiation amount was 300 mJ / cm 2 (illuminance: 20 mW / cm 2 ), The substrate was heated in an oven at 220 ° C. for 1 hour to obtain a cured film.
With respect to this cured film, the relative dielectric constant was measured at a measurement frequency of 1 MHz using CVmap92A (made by Four Dimensions Inc.). The results are shown in Tables 3 and 4. This value is preferably as low as possible. When the value is 3.9 or less, it can be said that the relative dielectric constant of the cured film is good.
(6)残渣の評価
 感度の評価と同様にして、各感光性樹脂組成物をスリット塗布した後、95℃で90秒間ホットプレート上においてプリベークして、膜厚3μmの塗膜を形成した。
 得られた塗膜を、10μmのコンタクトホールを形成するためのマスクを介して、円状に最適露光量パターン露光し、感度の評価と同様にして、現像後、リンスした。得られた円状のパターン(硬化膜)の端部の残渣について、光学顕微鏡を用いて、硬化膜が形成されている場所から完全に膜が無くなった場所までの距離を観察した。評価基準は以下の通りである。
 A:1.0μm未満
 B:1.0~2.0μm
 C:硬化膜の端部から2.0μmより外側まで残膜している
(6) Evaluation of Residue Similarly to the evaluation of sensitivity, each photosensitive resin composition was slit-coated and then pre-baked on a hot plate at 95 ° C. for 90 seconds to form a coating film having a thickness of 3 μm.
The obtained coating film was exposed to an optimal exposure amount pattern in a circular shape through a mask for forming a 10 μm contact hole, and rinsed after development in the same manner as the sensitivity evaluation. About the residue of the edge part of the obtained circular pattern (cured film), the distance from the place where the cured film was completely formed to the place where the film disappeared was observed using an optical microscope. The evaluation criteria are as follows.
A: Less than 1.0 μm B: 1.0 to 2.0 μm
C: Remaining film from the edge of the cured film to the outside of 2.0 μm
(7)表面あれの評価
 耐熱透明性の評価と同様にして硬化膜を形成した。
 得られたポストベーク後の硬化膜について、接触膜厚計(Tencor社製触針式表面粗さ計P10)用い、その表面のRaを測定し、以下の評価基準により評価した。
 A:5.0nm未満
 B:5.0nm以上10nm未満
 C:10nm以上
(7) Evaluation of surface roughness A cured film was formed in the same manner as the evaluation of heat-resistant transparency.
About the obtained cured film after the post-baking, Ra of the surface was measured using the contact film thickness meter (Tencor Corporation stylus type surface roughness meter P10), and the following evaluation criteria evaluated.
A: Less than 5.0 nm B: 5.0 nm or more and less than 10 nm C: 10 nm or more
 実施例1~50及び比較例1~14の感光性樹脂組成物における前記各評価の評価結果を、まとめて表3及び表4に示す。 Tables 3 and 4 collectively show the evaluation results of the respective evaluations in the photosensitive resin compositions of Examples 1 to 50 and Comparative Examples 1 to 14.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 なお、表3及び表4における「-」は、評価できなかった、又は、未露光部残膜率が80%未満であり実用範囲外であるため評価していないことを示す。
 表3及び表4から、特定樹脂を含有する各実施例の感光性樹脂組成物は、各比較例の感光性樹脂組成物との対比において、いずれも感度が高く、残渣の発生が抑制され、形成された硬化膜の表面あれも生じておらず、更に、透明性及び耐熱透明性に優れ、比誘電率の評価においても良好な結果が得られていることが分かる。
In Tables 3 and 4, “-” indicates that the evaluation could not be performed, or the unexposed portion remaining film ratio was less than 80% and out of the practical range, so that the evaluation was not performed.
From Table 3 and Table 4, the photosensitive resin composition of each Example containing a specific resin is highly sensitive in comparison with the photosensitive resin composition of each Comparative Example, and the generation of residues is suppressed, It can be seen that there is no surface roughness of the formed cured film, and it is excellent in transparency and heat-resistant transparency, and good results are obtained in the evaluation of relative dielectric constant.
(実施例51)
 シリコン酸化膜を有するシリコンウエハ上に実施例2で用いた感光性樹脂組成物溶液をスリット塗布した後、95℃で90秒間ホットプレート上においてプリベークして膜厚3μmの塗膜を形成した。
 次に、塗膜から150μmの間隔を介して、所定のフォトマスクをセットし、波長355nmのレーザを、露光量15mJ/cm2で照射した。なお、レーザ装置は、(株)ブイ・テクノロジー製の「AEGIS」を使用し(波長355nm、パルス幅6nsec)、露光量はOPHIR社製の「PE10B-V2」を用いて測定した。露光後、0.4%のテトラメチルアンモニウムヒドロキシド水溶液により23℃で80秒間液盛り法により現像した後、超純水で1分間リンスした。これらの操作により10μmのラインアンドスペースを1:1で解像することができた。
 更に、露光をi線ステッパーからUV-LED光源露光機に変更した以外は、上記(2)感度の評価(PEB無し)と同様の評価を実施したところ、いずれもパターン形成可能であることが分かった。
(Example 51)
The photosensitive resin composition solution used in Example 2 was slit coated on a silicon wafer having a silicon oxide film, and then pre-baked on a hot plate at 95 ° C. for 90 seconds to form a coating film having a thickness of 3 μm.
Next, a predetermined photomask was set through the coating film at an interval of 150 μm, and a laser having a wavelength of 355 nm was irradiated with an exposure amount of 15 mJ / cm 2 . The laser device used was “AEGIS” manufactured by Buoy Technology Co., Ltd. (wavelength 355 nm, pulse width 6 nsec), and the exposure amount was measured using “PE10B-V2” manufactured by OPHIR. After the exposure, the resist film was developed with a 0.4% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 80 seconds and rinsed with ultrapure water for 1 minute. By these operations, a 10 μm line and space could be resolved 1: 1.
Further, except that the exposure was changed from an i-line stepper to a UV-LED light source exposure machine, the same evaluation as in the above (2) sensitivity evaluation (without PEB) was carried out. It was.
(実施例52)
 薄膜トランジスター(TFT)を用いた有機EL表示装置を以下の方法で作製した(図1参照)。
 ガラス基板6上にボトムゲート型のTFT1を形成し、このTFT1を覆う状態でSi34から成る絶縁膜3を形成した。次に、この絶縁膜3に、ここでは図示を省略したコンタクトホールを形成した後、このコンタクトホールを介してTFT1に接続される配線2(高さ1.0μm)を絶縁膜3上に形成した。この配線2は、TFT1間又は、後の工程で形成される有機EL素子とTFT1とを接続するためのものである。
 更に、配線2の形成による凹凸を平坦化するために、配線2による凹凸を埋め込む状態で絶縁膜3上へ平坦化層4を形成した。絶縁膜3上への平坦化膜4の形成は、実施例9の感光性樹脂組成物を基板上にスピン塗布し、ホットプレート上でプリベーク(90℃×2分)した後、マスク上から高圧水銀灯を用いてi線(365nm)を15mJ/cm2(照度20mW/cm2)照射した後、アルカリ水溶液にて現像してパターンを形成し、230℃で60分間の加熱処理を行った。該感光性樹脂組成物を塗布する際の塗布性は良好で、露光、現像、焼成の後に得られた硬化膜には、しわやクラックの発生は認められなかった。更に、配線2の平均段差は500nm、作製した平坦化膜4の膜厚は2,000nmであった。
(Example 52)
An organic EL display device using a thin film transistor (TFT) was produced by the following method (see FIG. 1).
A bottom gate type TFT 1 was formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 was formed so as to cover the TFT 1. Next, a contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height 1.0 μm) connected to the TFT 1 through the contact hole is formed on the insulating film 3. . The wiring 2 is used to connect the TFT 1 to the organic EL element formed between the TFTs 1 or in a later process.
Further, in order to flatten the unevenness due to the formation of the wiring 2, the flattening layer 4 was formed on the insulating film 3 in a state where the unevenness due to the wiring 2 was embedded. The planarizing film 4 is formed on the insulating film 3 by spin-coating the photosensitive resin composition of Example 9 on a substrate, pre-baking on a hot plate (90 ° C. × 2 minutes), and then applying high pressure from above the mask. After irradiating 15 mJ / cm 2 (illuminance 20 mW / cm 2 ) with i-line (365 nm) using a mercury lamp, a pattern was formed by developing with an alkaline aqueous solution, and heat treatment was performed at 230 ° C. for 60 minutes. The applicability when applying the photosensitive resin composition was good, and no wrinkles or cracks were observed in the cured film obtained after exposure, development and baking. Furthermore, the average step of the wiring 2 was 500 nm, and the thickness of the prepared planarizing film 4 was 2,000 nm.
 次に、得られた平坦化膜4上に、ボトムエミッション型の有機EL素子を形成した。まず、平坦化膜4上に、ITOからなる第一電極5を、コンタクトホール7を介して配線2に接続させて形成した。その後、レジストを塗布、プリベークし、所望のパターンのマスクを介して露光し、現像した。このレジストパターンをマスクとして、ITOエッチャント用いたウエットエッチングによりパターン加工を行った。その後、レジスト剥離液(モノエタノールアミンとジメチルスルホキシド(DMSO)との混合液)を用いて該レジストパターンを剥離した。こうして得られた第一電極5は、有機EL素子の陽極に相当する。
 次に、第一電極5の周縁を覆う形状の絶縁膜8を形成した。絶縁膜8には、実施例7の感光性樹脂組成物を用い、前記と同様の方法で形成した。この絶縁膜8を設けることによって、第一電極5とこの後の工程で形成する第二電極との間のショートを防止することができる。
 更に、真空蒸着装置内で所望のパターンマスクを介して、正孔輸送層、有機発光層、電子輸送層を順次蒸着して設けた。次いで、基板上方の全面にAlからなる第二電極を形成した。得られた上記基板を蒸着機から取り出し、封止用ガラス板と紫外線硬化型エポキシ樹脂を用いて貼り合わせることで封止した。
 以上のようにして、各有機EL素子にこれを駆動するためのTFT1が接続してなるアクティブマトリックス型の有機EL表示装置が得られた。駆動回路を介して電圧を印加したところ、良好な表示特性を示し、信頼性の高い有機EL表示装置であることが分かった。
Next, a bottom emission type organic EL element was formed on the obtained planarization film 4. First, a first electrode 5 made of ITO was formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7. Thereafter, a resist was applied, prebaked, exposed through a mask having a desired pattern, and developed. Using this resist pattern as a mask, pattern processing was performed by wet etching using an ITO etchant. Thereafter, the resist pattern was stripped using a resist stripping solution (mixed solution of monoethanolamine and dimethyl sulfoxide (DMSO)). The first electrode 5 thus obtained corresponds to the anode of the organic EL element.
Next, an insulating film 8 having a shape covering the periphery of the first electrode 5 was formed. The insulating film 8 was formed by the same method as described above using the photosensitive resin composition of Example 7. By providing this insulating film 8, it is possible to prevent a short circuit between the first electrode 5 and the second electrode formed in the subsequent process.
Furthermore, a hole transport layer, an organic light emitting layer, and an electron transport layer were sequentially deposited through a desired pattern mask in a vacuum deposition apparatus. Next, a second electrode made of Al was formed on the entire surface above the substrate. The obtained board | substrate was taken out from the vapor deposition machine, and it sealed by bonding together using the glass plate for sealing, and an ultraviolet curable epoxy resin.
As described above, an active matrix type organic EL display device in which each organic EL element is connected to the TFT 1 for driving the organic EL element was obtained. When a voltage was applied via the drive circuit, it was found that the organic EL display device showed good display characteristics and high reliability.
(実施例53)
 実施例9の感光性樹脂組成物と実施例7の感光性樹脂組をいずれも実施例22の感光性樹脂組成物に変更した以外は、実施例52と同様にして有機EL表示装置を作製した。得られた有機EL表示装置は、良好な表示特性を示し、信頼性の高い有機EL表示装置であることが分かった。
(Example 53)
An organic EL display device was produced in the same manner as in Example 52 except that the photosensitive resin composition of Example 9 and the photosensitive resin group of Example 7 were both changed to the photosensitive resin composition of Example 22. . The obtained organic EL display device showed good display characteristics and was found to be a highly reliable organic EL display device.
(実施例54)
 実施例9の感光性樹脂組成物と実施例7の感光性樹脂組をいずれも実施例35の感光性樹脂組成物に変更した以外は、実施例52と同様にして有機EL表示装置を作製した。得られた有機EL表示装置は、良好な表示特性を示し、信頼性の高い有機EL表示装置であることが分かった。
(Example 54)
An organic EL display device was produced in the same manner as in Example 52 except that the photosensitive resin composition of Example 9 and the photosensitive resin group of Example 7 were both changed to the photosensitive resin composition of Example 35. . The obtained organic EL display device showed good display characteristics and was found to be a highly reliable organic EL display device.
(実施例55)
 実施例9の感光性樹脂組成物と実施例7の感光性樹脂組をいずれも実施例41の感光性樹脂組成物に変更した以外は、実施例52と同様にして有機EL表示装置を作製した。得られた有機EL表示装置は、良好な表示特性を示し、信頼性の高い有機EL表示装置であることが分かった。
(Example 55)
An organic EL display device was produced in the same manner as in Example 52 except that the photosensitive resin composition of Example 9 and the photosensitive resin group of Example 7 were both changed to the photosensitive resin composition of Example 41. . The obtained organic EL display device showed good display characteristics and was found to be a highly reliable organic EL display device.
(実施例56)
 特許第3321003号公報の図1及び図2に記載のアクティブマトリクス型液晶表示装置において、層間絶縁膜として硬化膜17を以下のようにして形成し、実施例17の液晶表示装置を得た。
 すなわち、実施例9の感光性樹脂組成物を用い、実施例52における有機EL表示装置の平坦化膜4の形成方法と同様の方法で、層間絶縁膜として硬化膜17を形成した。
 得られた液晶表示装置に対して、駆動電圧を印加したところ、良好な表示特性を示し、信頼性の高い液晶表示装置であることが分かった。
(Example 56)
In the active matrix type liquid crystal display device shown in FIGS. 1 and 2 of Japanese Patent No. 332003, a cured film 17 was formed as an interlayer insulating film as follows, and a liquid crystal display device of Example 17 was obtained.
That is, using the photosensitive resin composition of Example 9, the cured film 17 was formed as an interlayer insulating film by the same method as the method for forming the planarizing film 4 of the organic EL display device in Example 52.
When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed good display characteristics and high reliability.
 1:TFT(薄膜トランジスター)、2:配線、3:絶縁膜、4:平坦化膜、5:第一電極、6:ガラス基板、7:コンタクトホール、8:絶縁膜、10:液晶表示装置、12:バックライトユニット、14,15:ガラス基板、16:TFT、17:硬化膜、18:コンタクトホール、19:ITO透明電極、20:液晶、22:カラーフィルタ 1: TFT (thin film transistor), 2: wiring, 3: insulating film, 4: planarization film, 5: first electrode, 6: glass substrate, 7: contact hole, 8: insulating film, 10: liquid crystal display device, 12: Backlight unit, 14, 15: Glass substrate, 16: TFT, 17: Cured film, 18: Contact hole, 19: Transparent ITO electrode, 20: Liquid crystal, 22: Color filter

Claims (23)

  1.  (成分A)下記式(1)で表される構成単位と酸性基を有する構成単位と架橋性基を有する構成単位とを有する樹脂、及び、
     (成分B)オキシムスルホネート基を有する酸発生剤を含有することを特徴とする
     ポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R1は水素原子又はアルキル基を表し、L1はカルボニル基又はフェニレン基を表し、R21~R27はそれぞれ独立に、水素原子又はアルキル基を表す。)
    (Component A) a resin having a structural unit represented by the following formula (1), a structural unit having an acidic group, and a structural unit having a crosslinkable group; and
    (Component B) A positive photosensitive resin composition comprising an acid generator having an oxime sulfonate group.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), R 1 represents a hydrogen atom or an alkyl group, L 1 represents a carbonyl group or a phenylene group, and R 21 to R 27 each independently represents a hydrogen atom or an alkyl group.)
  2.  前記R1が、メチル基である、請求項1に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to claim 1, wherein R 1 is a methyl group.
  3.  前記R21~R27のうち1つ以上が、水素原子である、請求項1又は2に記載のポジ型感光性樹脂組成物。 3. The positive photosensitive resin composition according to claim 1, wherein one or more of R 21 to R 27 are hydrogen atoms.
  4.  前記R21~R27の全てが、水素原子である、請求項1~3のいずれか1項に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 3, wherein all of R 21 to R 27 are hydrogen atoms.
  5.  前記L1が、カルボニル基である、請求項1~4のいずれか1項に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 4, wherein L 1 is a carbonyl group.
  6.  前記酸性基が、カルボキシ基又はフェノール性水酸基である、請求項1~5のいずれか1項に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 5, wherein the acidic group is a carboxy group or a phenolic hydroxyl group.
  7.  前記酸性基が、カルボキシ基である、請求項6に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to claim 6, wherein the acidic group is a carboxy group.
  8.  前記架橋性基が、エポキシ基又はオキセタニル基である、請求項1~7のいずれか1項に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 7, wherein the crosslinkable group is an epoxy group or an oxetanyl group.
  9.  前記架橋性基が、オキセタニル基である、請求項8に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to claim 8, wherein the crosslinkable group is an oxetanyl group.
  10.  前記酸性基がカルボキシ基であり、かつ、前記架橋性基がオキセタニル基である、請求項7又は9に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to claim 7 or 9, wherein the acidic group is a carboxy group and the crosslinkable group is an oxetanyl group.
  11.  前記成分(B)が、下記式(OS-103)、式(OS-104)、及び、式(OS-105)で表される化合物よりなる群から選ばれた少なくとも1種の化合物である、請求項1~10のいずれか1項に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(OS-103)~(OS-105)中、R11はアルキル基、アリール基又はヘテロアリール基を表し、複数存在するR12はそれぞれ独立に、水素原子、アルキル基、アリール基又はハロゲン原子を表し、複数存在するR16はそれぞれ独立に、ハロゲン原子、アルキル基、アルキルオキシ基、スルホン酸基、アミノスルホニル基又はアルコキシスルホニル基を表し、XはO又はSを表し、nは1又は2を表し、mは0~6の整数を表す。)
    The component (B) is at least one compound selected from the group consisting of compounds represented by the following formula (OS-103), formula (OS-104), and formula (OS-105). The positive photosensitive resin composition according to any one of claims 1 to 10.
    Figure JPOXMLDOC01-appb-C000002
    (In the formulas (OS-103) to (OS-105), R 11 represents an alkyl group, an aryl group or a heteroaryl group, and a plurality of R 12 are each independently a hydrogen atom, an alkyl group, an aryl group or a halogen atom. A plurality of R 16 each independently represent a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group, X represents O or S, and n represents 1 or 2 represents m, and m represents an integer of 0 to 6.)
  12.  前記成分Bが、下記式(2)で表されるオキシムスルホネート化合物である、請求項1~10のいずれか1項に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(2)中、R4はアルキル基又はアリール基を表し、Xはそれぞれ独立に、アルキル基、アルコキシ基、又は、ハロゲン原子を表し、mは0~3の整数を表す。)
    The positive photosensitive resin composition according to any one of claims 1 to 10, wherein the component B is an oxime sulfonate compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (2), R 4 represents an alkyl group or an aryl group, X represents each independently an alkyl group, an alkoxy group, or a halogen atom, and m represents an integer of 0 to 3.)
  13.  ポジ型感光性樹脂組成物の全固形分に対し、前記成分Aを40~95重量%の範囲で含み、かつ、前記成分Bを0.1~10重量%の範囲で含む、請求項1~12のいずれか1項に記載のポジ型感光性樹脂組成物。 The component A is contained in the range of 40 to 95% by weight and the component B is contained in the range of 0.1 to 10% by weight with respect to the total solid content of the positive photosensitive resin composition. The positive photosensitive resin composition according to any one of 12 above.
  14.  架橋剤を更に含む、請求項1~13のいずれか1項に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 13, further comprising a crosslinking agent.
  15.  ポジ型感光性樹脂組成物の全固形分に対し、前記成分Aを40~70重量%の範囲で含み、前記成分Bを0.1~10重量%の範囲で含み、かつ、前記架橋剤を3~40重量%の範囲で含む、請求項14に記載のポジ型感光性樹脂組成物。 The component A is contained in the range of 40 to 70% by weight, the component B is contained in the range of 0.1 to 10% by weight, and the crosslinking agent is contained in the total solid content of the positive photosensitive resin composition. The positive photosensitive resin composition according to claim 14, comprising 3 to 40% by weight.
  16.  溶剤を更に含む、請求項1~15のいずれか1項に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 15, further comprising a solvent.
  17.  請求項1~16のいずれか1項に記載のポジ型感光性樹脂組成物に対して、光及び熱の少なくとも一方を付与して硬化させた硬化膜。 A cured film obtained by applying and curing at least one of light and heat to the positive photosensitive resin composition according to any one of claims 1 to 16.
  18.  (1)請求項16に記載のポジ型感光性樹脂組成物を基板上に塗布する塗布工程、
     (2)塗布されたポジ型感光性樹脂組成物から溶剤を除去する溶剤除去工程、
     (3)溶剤を除去されたポジ型感光性樹脂組成物を活性放射線で露光する露光工程、
     (4)露光されたポジ型感光性樹脂組成物を水性現像液で現像する現像工程、及び、
     (5)現像されたポジ型感光性樹脂組成物を熱硬化するポストベーク工程、
    を含む硬化膜の形成方法。
    (1) A coating step of coating the positive photosensitive resin composition according to claim 16 on a substrate,
    (2) a solvent removal step of removing the solvent from the applied positive photosensitive resin composition;
    (3) An exposure step of exposing the positive photosensitive resin composition from which the solvent has been removed with actinic radiation,
    (4) a development step of developing the exposed positive photosensitive resin composition with an aqueous developer, and
    (5) a post-baking step of thermosetting the developed positive photosensitive resin composition;
    A method for forming a cured film comprising:
  19.  前記露光工程における露光後に、加熱処理を行わずに前記現像工程を行う、請求項18に記載の硬化膜の形成方法。 The method for forming a cured film according to claim 18, wherein the development step is performed without performing a heat treatment after the exposure in the exposure step.
  20.  請求項18又は19に記載の硬化膜の形成方法により形成された硬化膜。 A cured film formed by the method for forming a cured film according to claim 18 or 19.
  21.  層間絶縁膜である請求項17又は20に記載の硬化膜。 The cured film according to claim 17 or 20, which is an interlayer insulating film.
  22.  請求項17又は20に記載の硬化膜を具備する液晶表示装置。 A liquid crystal display device comprising the cured film according to claim 17 or 20.
  23.  請求項17又は20に記載の硬化膜を具備する有機EL表示装置。 An organic EL display device comprising the cured film according to claim 17 or 20.
PCT/JP2011/051084 2010-03-11 2011-01-21 Positive photosensitive resin composition, method for forming cured film, cured film, liquid crystal display device, and organic el display device WO2011111424A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180013398.7A CN102792227B (en) 2010-03-11 2011-01-21 Positive photosensitive resin composition, method for forming cured film, cured film, liquid crystal display device, and organic EL display device
KR1020127025614A KR101570447B1 (en) 2010-03-11 2011-01-21 Positive photosensitive resin composition, method for forming cured film, cured film, liquid crystal display device, and organic el display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-054589 2010-03-11
JP2010054589 2010-03-11

Publications (1)

Publication Number Publication Date
WO2011111424A1 true WO2011111424A1 (en) 2011-09-15

Family

ID=44563253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051084 WO2011111424A1 (en) 2010-03-11 2011-01-21 Positive photosensitive resin composition, method for forming cured film, cured film, liquid crystal display device, and organic el display device

Country Status (4)

Country Link
JP (1) JP5498971B2 (en)
KR (1) KR101570447B1 (en)
CN (1) CN102792227B (en)
WO (1) WO2011111424A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051695A1 (en) * 2011-10-06 2013-04-11 富士フイルム株式会社 Positive photosensitive resin composition, method for producing cured product, method for producing resin pattern, cured product and optical member
CN103376649A (en) * 2012-04-25 2013-10-30 Jsr株式会社 Radioactivity sensitive composition, interlayer insulating film for display element, and forming method thereof
WO2014017667A1 (en) * 2012-07-27 2014-01-30 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, resist film, using the same, pattern forming method, manufacturing method of electronic device, and electronic device
JPWO2013157459A1 (en) * 2012-04-16 2015-12-21 富士フイルム株式会社 Photosensitive resin composition, method for producing cured film, cured film, organic EL display device and liquid crystal display device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5514284B2 (en) * 2011-12-06 2014-06-04 富士フイルム株式会社 Method for producing resin pattern using composition for microlens array exposure machine
JP5814143B2 (en) * 2012-01-30 2015-11-17 富士フイルム株式会社 Photosensitive resin composition and method for producing pattern using the same
JP5814144B2 (en) * 2012-01-30 2015-11-17 富士フイルム株式会社 Photosensitive resin composition and method for producing pattern using the same
JP5970865B2 (en) * 2012-03-05 2016-08-17 大日本印刷株式会社 Substrate for thin film element, thin film element, organic electroluminescence display device, and electronic paper
JP5897498B2 (en) * 2012-04-27 2016-03-30 富士フイルム株式会社 Method for producing permanent film for optical material, method for producing organic EL display device, and method for producing liquid crystal display device
KR20150043452A (en) * 2012-10-17 2015-04-22 후지필름 가부시키가이샤 Process for producing permanent film for optical material, cured film produced thereby, and organic el display device and liquid-crystal display device each obtained using said cured film
JP6038951B2 (en) * 2012-11-21 2016-12-07 富士フイルム株式会社 Photosensitive resin composition, method for producing cured film, cured film, organic EL display device and liquid crystal display device
KR20150091380A (en) * 2013-02-14 2015-08-10 후지필름 가부시키가이샤 Photosensitive resin composition for inkjet application, heat-treated substance, manufacturing method therefor, resin-pattern manufacturing method, liquid-crystal display, organic electroluminescent display, touch panel, manufacturing method therefor, and touch-panel display
CN105051608B (en) * 2013-03-27 2020-03-13 富士胶片株式会社 Photosensitive resin composition, interlayer insulating film and method for producing same, liquid crystal display device, and organic electroluminescent display device
JP6093438B2 (en) * 2013-03-27 2017-03-08 富士フイルム株式会社 Photosensitive resin composition, method for producing cured film, cured film, organic EL display device and liquid crystal display device
TWI480697B (en) * 2013-06-10 2015-04-11 Chi Mei Corp Photosensitive resin composition and applications thereof
JP6284849B2 (en) 2013-08-23 2018-02-28 富士フイルム株式会社 Laminate
JP6167016B2 (en) 2013-10-31 2017-07-19 富士フイルム株式会社 Laminate, organic semiconductor manufacturing kit and organic semiconductor manufacturing resist composition
WO2017069172A1 (en) * 2015-10-21 2017-04-27 昭和電工株式会社 Positive photosensitive resin composition
EP4210089A4 (en) 2020-09-04 2024-02-21 Fujifilm Corp Method for manufacturing organic layer pattern, and method for manufacturing semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259203A (en) * 1997-03-19 1998-09-29 Mitsui Chem Inc Poly(1-(2-tetrahydrofuranyloxy)-4-(1-methylethenyl) benzene) with narrow distribution and its production
JPH10301283A (en) * 1997-04-28 1998-11-13 Toshiba Corp Photosensitive composition and pattern forming method using the same
JPH11140411A (en) * 1997-11-13 1999-05-25 Mitsubishi Rayon Co Ltd Ultraviolet-curable tack agent composition
JP2008247780A (en) * 2007-03-29 2008-10-16 Fujifilm Corp Oxime sulfonic acid compound and photosensitive composition by using the same
JP2010231074A (en) * 2009-03-27 2010-10-14 Fujifilm Corp Resist composition for forming fine pattern and method for forming pattern using the composition
JP2011013118A (en) * 2009-07-02 2011-01-20 Jsr Corp Acid transferable resin composition, biochip, and method for manufacturing the biochip
JP2011017921A (en) * 2009-07-09 2011-01-27 Panasonic Corp Pattern formation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3430028B2 (en) 1998-09-08 2003-07-28 松下電器産業株式会社 Pattern formation method
CN101374878B (en) * 2006-01-25 2012-01-18 日产化学工业株式会社 Positive photosensitive resin composition and cured film obtained therefrom
CN101067668B (en) * 2006-05-02 2011-06-15 富士胶片株式会社 Method of manufacturing color filter, color filter and displaying device
JP4637209B2 (en) * 2007-06-05 2011-02-23 富士フイルム株式会社 Positive photosensitive resin composition and cured film forming method using the same
JP5190602B2 (en) 2007-07-25 2013-04-24 公立大学法人大阪府立大学 Photosensitive resin composition, screen printing plate using the same, and method for producing screen printing plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259203A (en) * 1997-03-19 1998-09-29 Mitsui Chem Inc Poly(1-(2-tetrahydrofuranyloxy)-4-(1-methylethenyl) benzene) with narrow distribution and its production
JPH10301283A (en) * 1997-04-28 1998-11-13 Toshiba Corp Photosensitive composition and pattern forming method using the same
JPH11140411A (en) * 1997-11-13 1999-05-25 Mitsubishi Rayon Co Ltd Ultraviolet-curable tack agent composition
JP2008247780A (en) * 2007-03-29 2008-10-16 Fujifilm Corp Oxime sulfonic acid compound and photosensitive composition by using the same
JP2010231074A (en) * 2009-03-27 2010-10-14 Fujifilm Corp Resist composition for forming fine pattern and method for forming pattern using the composition
JP2011013118A (en) * 2009-07-02 2011-01-20 Jsr Corp Acid transferable resin composition, biochip, and method for manufacturing the biochip
JP2011017921A (en) * 2009-07-09 2011-01-27 Panasonic Corp Pattern formation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051695A1 (en) * 2011-10-06 2013-04-11 富士フイルム株式会社 Positive photosensitive resin composition, method for producing cured product, method for producing resin pattern, cured product and optical member
JP2013083698A (en) * 2011-10-06 2013-05-09 Fujifilm Corp Positive photosensitive resin composition, method for producing cured product, method for producing resin pattern, cured product and optical member
JPWO2013157459A1 (en) * 2012-04-16 2015-12-21 富士フイルム株式会社 Photosensitive resin composition, method for producing cured film, cured film, organic EL display device and liquid crystal display device
CN103376649A (en) * 2012-04-25 2013-10-30 Jsr株式会社 Radioactivity sensitive composition, interlayer insulating film for display element, and forming method thereof
WO2014017667A1 (en) * 2012-07-27 2014-01-30 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, resist film, using the same, pattern forming method, manufacturing method of electronic device, and electronic device
US9551933B2 (en) 2012-07-27 2017-01-24 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, resist film, using the same, pattern forming method, manufacturing method of electronic device, and electronic device

Also Published As

Publication number Publication date
KR101570447B1 (en) 2015-11-19
JP5498971B2 (en) 2014-05-21
CN102792227B (en) 2014-11-12
CN102792227A (en) 2012-11-21
JP2011209692A (en) 2011-10-20
KR20130014051A (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5498971B2 (en) Positive photosensitive resin composition, method for forming cured film, cured film, liquid crystal display device, and organic EL display device
JP5623896B2 (en) Photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5524037B2 (en) Photosensitive resin composition, cured film, method for forming cured film, organic EL display device, and liquid crystal display device
JP5417422B2 (en) Positive photosensitive resin composition
TWI550351B (en) Positive type photosensitive resin composition, manufacturing method of cured film, cured film, liquid crystal display device and organic el display device
JP5451569B2 (en) Photosensitive resin composition, cured film, method for forming cured film, organic EL display device, and liquid crystal display device
TWI557508B (en) Positive type photosensitive resin composition, cured film and forming method thereof, interlayer dielectric film and display device
JP5846622B2 (en) Photosensitive resin composition, cured film, method for forming cured film, organic EL display device, and liquid crystal display device
JP5623897B2 (en) Positive photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5642578B2 (en) Photosensitive resin composition, method for producing cured film, cured film, organic EL display device and liquid crystal display device
JP5555732B2 (en) Photosensitive resin composition, method for producing cured film using the same, cured film, liquid crystal display device, and organic EL display device
JP5492812B2 (en) Photosensitive resin composition, cured film, method for forming cured film, organic EL display device, and liquid crystal display device
JP5814144B2 (en) Photosensitive resin composition and method for producing pattern using the same
JP2012008223A (en) Positive photosensitive resin composition, hardening film formation method, hardening film, liquid crystal display device and organic el display device
JP5524036B2 (en) Positive photosensitive resin composition, method for forming cured film, cured film, liquid crystal display device, and organic EL display device
JP2013171101A (en) Positive photosensitive resin composition, production method of cured film, cured film, organic el display device and liquid crystal display device
JP2012042837A (en) Positive photosensitive composition, method for forming cured film, cured film, liquid crystal display device and organic el display device
JP5603223B2 (en) Positive photosensitive resin composition
JP5686708B2 (en) Positive photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5734152B2 (en) Photosensitive resin composition, cured film and method for producing the same
JP5546567B2 (en) Photosensitive resin composition, method for producing cured film, cured film, organic EL display device and liquid crystal display device
JP2013060537A (en) Copolymer for photoresist and method of producing the same
KR20110087208A (en) Positive type photosensitive resin composition, method for forming cured film, cured film, liquid crystal display device, and organic el display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013398.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127025614

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11753086

Country of ref document: EP

Kind code of ref document: A1