WO2011109954A1 - 指示方法、子包发送方法及系统 - Google Patents

指示方法、子包发送方法及系统 Download PDF

Info

Publication number
WO2011109954A1
WO2011109954A1 PCT/CN2010/072939 CN2010072939W WO2011109954A1 WO 2011109954 A1 WO2011109954 A1 WO 2011109954A1 CN 2010072939 W CN2010072939 W CN 2010072939W WO 2011109954 A1 WO2011109954 A1 WO 2011109954A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
control station
packet
field
station
Prior art date
Application number
PCT/CN2010/072939
Other languages
English (en)
French (fr)
Inventor
陈宪明
刘锟
鲁照华
关艳峰
张磊
方惠英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011109954A1 publication Critical patent/WO2011109954A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control

Definitions

  • a control station e.g., a base station
  • a control station is a basic unit constituting a wireless cell, and performs communication and management functions between a mobile communication network and a mobile communication user through an uplink/downlink (Uplink/ Downlink, abbreviated as UL/DL, communicates with subordinate stations (eg, terminals), where downlink refers to the direction of the control station to the subordinate station, and uplink refers to the direction of the subordinate station to the control station.
  • uplink/ Downlink Uplink/ Downlink
  • subordinate stations eg, terminals
  • Multiple subordinate stations can simultaneously transmit data to the control station through the uplink, or can simultaneously receive data from the control station through the downlink.
  • scheduling allocation of system wireless resources is performed by a control station.
  • the control station in order to ensure that a subordinate station can perform cell selection and system access in an efficient manner, the control station usually needs to periodically transmit a relatively key system configuration information or a set of parameters by using the system's downlink broadcast control channel. For example, the use of Super-Frame Header (SFH) in 802.16m systems.
  • the operator may change some system configuration information or parameters from time to time.
  • FIG. 1 is a schematic diagram of a frame structure of a Institute for Electrical and Electronic Engineers (IEEE) 802.16m system according to the related art.
  • IEEE 802.16m system is taken as an example, and a radio resource is used. It is divided into consecutive superframes (Superframes, referred to as SUs) in time, and each superframe has a duration of 20 milliseconds. There are four 5 millisecond frames (Frame) in each superframe.
  • Superframes consecutive superframes
  • SUs consecutive superframes
  • Frame millisecond frames
  • the frame is composed of multiple (for example, 8) subframes (Subframes, hereinafter abbreviated as SF), and each subframe contains more than 1000 orthogonal frequency divisions. Orthogonal Frequency Division Multiple (OFDM) symbol.
  • the first subframe of each superframe does not include the first OFDM symbol for downlink synchronization (A-Preamble), and includes a downlink broadcast control channel, that is, the superframe header (SFH), for carrying key System configuration information or a collection of parameters, therefore, the subframe Also known as SFH subframes.
  • the SFH is further divided into a primary super-frame header (Primary-SFH, referred to as P-SFH) and a pre-cluster super-frame header (Second-SFH, referred to as S-SFH); wherein, the S-SFH is further divided into multiple sub-sub-fields.
  • the package that is, sub-package 1 (SP1), sub-package 2 (SP2), sub-package 3 (SP3), each sub-package corresponds to a system configuration information or a set of parameters, most of the system information in the three sub-S-SFH
  • the packets are sent, and these sub-packets are not available in every superframe.
  • the specific location at which these sub-packets are transmitted depends on the scheduling period of different sub-packets preset by the control station.
  • the current P-SFH includes description information about the S-SFH and other indication information, for example, changing the count. , occupy resource size, number of repetitions, scheduling information, sub-package change information, and indication information of system configuration information or parameters.
  • the bit length of the ⁇ -SFH is a fixed size (for example, 21 bits), and contains several (for example, 2) reserved bits, as shown in Table 1 below.
  • the S-SFH scheduling information bitmap and the S-SFH sub-packet change bitmap occupy a total of 6 bits, occupying a relatively large number of bits, and wasting bandwidth resources.
  • Another problem that exists is that the current reserved bits are only 2 bits. As the demand increases, the amount of valid information to be transmitted increases, and the reserved bits are not enough, which limits the scalability of the information unit.
  • the control station type related information is simultaneously placed in the S-SFH sub-packet 3 and the system configuration description message (AAI_SCD), that is, only the subordinate stations receive the S-SFH sub-package.
  • a primary object of the present invention is to provide a sub-packet transmission scheme to solve at least the above problems.
  • a seed packet transmitting method comprising the steps of: controlling, by using a field in a primary superframe header, information indicating scheduling and changing of a sub-packet of a secondary superframe header; and, a subordinate The station obtains the sub-package based on the information indicated by the field. Further, before the control station uses the field to indicate the scheduling and changing information of the sub-packets of the auxiliary super-frame header in the main super-frame header, the foregoing method further includes: determining all combinations of scheduling and changing of the sub-packets, according to all combinations The number determines the number of bits in the field and sets the value of the field to the corresponding relationship for each combination.
  • a seed packet transmitting system comprising a control station and a subordinate station, wherein the control station uses a field in the main superframe header to indicate scheduling and changing of a sub-packet of the auxiliary superframe header. Information; Subordinate stations are used to obtain sub-packages based on the information indicated by this field. Further, the number of bits of the field used by the control station is N, where N is less than 6.
  • a seed packet transmitting method comprising the steps of: controlling a station to transmit at most one sub-packet in a superframe header; and using a secondary superframe header in a main superframe header;
  • the packet scheduling field indicates the currently transmitted sub-packet, and the sub-packet change field is used to indicate whether all sub-packets have changed; and the subordinate station obtains the control station according to the auxiliary super-frame header sub-packet scheduling field and the auxiliary super-frame header sub-packet change field.
  • the secondary superframe header subpacket change field indicates whether all subpackets have changed using a bitmap.
  • the sum of the number of bits of the secondary superframe header sub-packet scheduling field and the secondary super-frame header sub-packet change field in the primary superframe header is N, where N is less than 6. Further, the number of bits of the secondary superframe header sub-packet scheduling field is 2 bits, and the number of bits of the secondary super-frame header sub-packet change field is 3 bits.
  • a seed packet transmission system including a control station and a subordinate station, the control station is configured to use a secondary superframe header sub-packet scheduling field in a primary superframe header to indicate a currently transmitted sub-packet, and
  • the sub-packet change field is used to indicate whether all sub-packets change, wherein the control station transmits at most one sub-packet in one super-frame header; the sub-station is used for the sub-superframe header sub-packet scheduling field and the auxiliary super-frame.
  • the header packet change field acquires the sub-packet sent by the control station.
  • the control station uses a field in the main superframe header to indicate the scheduling and changing information of the sub-packets of the auxiliary super-frame header, or the control station transmits at most one sub-packet in one super-frame header;
  • the control station uses the secondary superframe header sub-packet scheduling field in the primary superframe header to indicate the currently transmitted sub-packet, and uses the secondary super-frame header sub-packet change field to indicate whether all sub-packets have changed, and solves the S-SFH scheduling information in the related art.
  • Bitmaps and S-SFH sub-packet change bitmaps occupy a lot of bits and cause wasted bandwidth, which in turn saves bandwidth. It is also an object of the present invention to provide an indication scheme to solve at least one of the above problems. According to still another aspect of the present invention, an indication method is provided, the method comprising the steps of: a control station using a field in a sub-packet 1 of a secondary superframe header to indicate a type of a control station; and, a subordinate station according to the field Get the type of control station.
  • the type of the control station includes at least one of the following: a macro control station, a relay station, a micro control station, and a control station; and according to the closedness of the control station, the type of the control station includes at least one of the following : Fully enclosed, semi-closed, open.
  • the method further includes: determining, by the subordinate station, whether to access the control station according to the type of the control station, where the method includes: if the type of the control station is completely closed, Or a semi-closed type and the subordinate station is not a member of the closed subscriber group of the control station, then the subordinate station determines not to access the control station; if the control station is completely closed, or is a semi-closed control station and the subordinate station is the closed of the control station If the user group member, the subordinate station checks whether the control station can be accessed according to the control station identifier and/or the closed subscriber group identifier.
  • an indication system including a control station and a subordinate station,
  • the control station uses the field in sub-packet 1 of the secondary superframe header to indicate the type of the control station; the subordinate station obtains the type of the control station according to the field.
  • the control station uses the field in the sub-packet 1 of the secondary superframe header to indicate the type of the control station, and the subordinate station acquires the type of the control station according to the field, and solves the problem that the parameter cannot be parsed from the sub-package 1. , in turn, can obtain the parameters carried in the sub-package 1.
  • FIG. 1 is a schematic structural diagram of a frame of an IEEE 802.16m system according to the related art
  • FIG. 2 is a flowchart of a method for transmitting a sub-packet according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart according to the present invention.
  • FIG. 4 is a flowchart of an indication method according to Embodiment 3 of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • Embodiment 1 FIG. 2 is a flowchart of a method for transmitting a sub-packet according to Embodiment 1 of the present invention.
  • Step S202 The control station uses a field in the main superframe header to indicate a sub-frame header.
  • the scheduling and changed information of the packet
  • Step S204 the subordinate station acquires the sub-package according to the information indicated by the field.
  • a field may be used to indicate the scheduling and changed information of the sub-packets of the secondary superframe header, thereby indicating the occupied bandwidth of the information.
  • the control station may use a field instead of the secondary superframe header subpacket scheduling field and the secondary superframe header subpacket change field in the primary superframe header.
  • the sub-packet scheduling and change information in the primary superframe header may indicate whether the currently transmitted sub-packet and the currently transmitted sub-packet are changed, and the sub-packet scheduling and change information is set to a single information. area.
  • the number of bits of the field (or information field) is N, where N is less than 6.
  • the control station occupies 6 bits because the original S-SFH scheduling information bitmap and the S-SFH sub-packet change bitmap, and the new field is indicated by the number of bits smaller than 6, so that it can be in the main superframe header. Add 6-N bits to the reserved bits to extend the reserved bits.
  • a seed packet transmission system comprising a control station and a subordinate station, in which the control station is configured to use a field in the main superframe header to indicate the auxiliary superframe header. Sub-packet scheduling and changed information; the subordinate station is used to obtain sub-packets based on the information indicated by the field.
  • the number of bits of the field used by the control station is N, where N is less than
  • Step 1 Determine the combination in the case where only one sub-packet is sent. Specifically, the case where only the sub-packet 1 is transmitted, that is, the sub-packet 1 is changed and the sub-packet 1 is not changed, and there are two combinations; specifically, the case where only the sub-packet 2 is transmitted, that is, the sub-package 2 is changed and The sub-packet 2 does not change, and there are two combinations; specifically, the case where only the sub-packet 3 is transmitted, that is, the sub-packet 3 is changed and the sub-packet 3 is not changed, and there are two combinations; in the end, only one sub-packet is sent.
  • Step 2 determine the combination in the case of sending 2 sub-packets.
  • the case includes sending sub-package 1 and sub-package 2, that is, sub-packet 1 and sub-packet 2 are not changed, sub-package 1 and sub-package 2 are changed, only sub-package 1 is changed, and only sub-package 2 is changed.
  • Change a total of 4 combinations; specifically, including the case of sending sub-package 1 and sub-package 3, that is, sub-package
  • the case includes the sub-packet 1, the sub-packet 2, and the sub-packet 3, that is, only the sub-packet 1 changes, only the sub-packet 2 changes, only the sub-packet 3 changes, and the sub-packet 1 and the sub-packet 2 occur.
  • Step 4 determine the combination without any sub-packets sent.
  • the sub-package 1 is included, and none of the sub-packets 2 and the sub-packets 3 are transmitted, and a total of one combination is used.
  • step five the total number of actual combinations and the number of bits required for indexing the above combination are determined.
  • Step 6 Determine the mapping relationship between the index number and the actual combination. Specifically, the mapping relationship between each index number and the corresponding actual combination is given in the form of a table, for example, as shown in Table 2, but is not limited thereto. Table 2 Example of mapping between index numbers and actual combinations
  • the sub-packet scheduling and change information field carries the binary index number of 5 bits as shown in Table 2.
  • the control station or the subordinate station obtains the index number to be sent by means of table lookup or Sub-packet scheduling and change information. If the current superframe header includes subpacket 1 and subpacket 2, and only subpacket 2 is changed, the main superframe header (P-SFH) format is shown in Table 3, but is not limited thereto. Table 3 P-SFH information unit format
  • the control station looks up Table 2, determines that the scheduled sub-packets are sub-package 1 and sub-packet 2, and the sub-package 2 changes the corresponding entry of the entry to 9, and the current S-SFH sub-packet scheduling and change information field content is "01001". ". If the subordinate station correctly receives the P-SFH and parses out the sub-packet scheduling and change information i or the value is "01001", the subordinate station also determines that the index of the entry corresponding to "01001" is 9, by looking up Table 2. That is, it is determined that the currently scheduled sub-packets are sub-package 1 and sub-package 2, and sub-package 2 changes.
  • Embodiment 2 FIG.
  • Step S302 The control station sends at most one sub-packet in a super-frame header
  • Step S304 The control station uses the secondary superframe header sub-packet scheduling field in the primary superframe header to indicate the currently transmitted sub-packet, and uses the secondary super-frame header sub-packet change field to indicate whether all the sub-packets have changed
  • step S306 the subordinate station according to the auxiliary superframe header
  • the packet scheduling field and the secondary superframe header subpacket change field acquire the subpackets sent by the control station.
  • the control station transmits at most one sub-packet in one super-frame header, thereby achieving the purpose of reducing the sum of the auxiliary super-frame header sub-packet scheduling field and the auxiliary super-frame header sub-packet changing field bit number.
  • the sum of the number of bits of the secondary superframe header sub-packet scheduling field and the secondary super-frame header sub-packet change field in the primary superframe header is N, where N is less than 6.
  • the control station can add 6-N bits to the reserved bits of the main superframe header, thereby achieving the purpose of adding reserved bits.
  • a seed packet transmission system comprising a control station and a subordinate station, in which the control station is configured to use the secondary superframe header sub-packet scheduling field indication in the main superframe header The currently transmitted sub-packet, and using the sub-superframe header sub-packet change field to indicate whether all sub-packets have changed, wherein the control station transmits at most one sub-packet in one super-frame header; the subordinate station is used according to the auxiliary super-frame header The packet scheduling field and the secondary superframe header subpacket change field acquire the subpackets sent by the control station.
  • the sum of the number of bits of the secondary superframe header sub-packet scheduling field and the secondary super-frame header sub-packet change field used by the control station is ⁇ , where ⁇ is less than 6.
  • the sub-packet information field in the main superframe header indicates the currently transmitted sub-packet, and each super-frame header is required to transmit at most one sub-packet.
  • the change of the information field by the sub-packet in the main superframe header indicates the current change of each sub-packet, where each of the current sub-packets includes the currently transmitted sub-packet or the sub-packet that is not sent.
  • the sub-packet scheduling information field takes a value of 1.
  • the sub-packet scheduling information field takes a value of 2.
  • the sub-packet scheduling information field takes a value of 3.
  • no sub-packets are sent, the sub-packet scheduling information field takes a value of 0.
  • the sub-packet change information field indicates whether each sub-package is changed in the form of a bitmap (bitmap), for example, using 3 bits to indicate whether any sub-packets of the three sub-packets are changed, and the last-bit corresponding sub-packets 1 , the middle bit corresponds to sub-packet 2, and the highest bit corresponds to sub-packet 3, but is not limited to jt ⁇ .
  • bitmap bitmap
  • the subordinate station can determine whether the sub-packet changes the value of each binary bit of the information field relative to the value saved by the last subordinate station, for example, from "0" to " ⁇ , or from "1" to "0".
  • the main superframe header format is shown in Table 4, but is not limited to this.
  • S-SFH change count 4 bits indicates the change count value associated with the sub-packet transmitted in the superframe
  • S-SFH size 2 bits Number of logical resource units occupied
  • S-SFH transmission format 1 bit Indicates the number of repetitions of S-SFH
  • S-SFH scheduling information 2 bits Indicates the currently transmitted sub-packet
  • S-SFH sub-packet change bitmap 3 bit subordinate station The bit map acquires whether three sub-packets have changed.
  • Effective indication information 2 bits indicate whether the changed system information is Effective
  • the reserved bit control station for the future expansion determines that the scheduled sub-packet is sub-packet 2, then the S-SFH scheduling information field takes a value of 2, and the corresponding binary value is "10"; the control station determines the current sub- Packet 1 and sub-packet 2 change. If the previous S-SFH sub-packet change bitmap is "010", adjust the current sub-packet change bitmap to "100". If the subordinate station correctly receives the above P-SFH, and parses out the subpacket scheduling information field as "10”, the subpacket change information field takes "100", assuming that the subordinate station also knows the last subpacket change.
  • FIG. 4 is a flowchart of an indication method according to Embodiment 3 of the present invention.
  • the process includes the following steps: Step S402: The control station uses at least one field to indicate a control station in a sub-packet 1 in a secondary superframe header. Type information; Step S404, the subordinate station acquires the control station type according to the information indicated by the field.
  • the sub-packet 3 of the secondary superframe header does not carry the control station type indication information.
  • the type of control station includes at least one of the following: fully enclosed (fully private), semi-closed (semi-private), open; coverage from the control station From the perspective of the range, the control station type includes at least one of the following: Macro Control Station (Macro BS), Relay Station (Relay Station), Hot Spot Control Station (Macro Hotzone BS, or Pico BS, also known as Control Station). Control station (Femto BS).
  • the control station type information indication indicates that the subordinate station is closed (including fully enclosed or semi-closed type). If the subordinate station is a member of the closed subscriber group, it is checked whether the connection is permitted according to the control station identifier and/or the closed subscriber group identifier. Enter the control station.
  • CSG Closed Subscriber Group
  • the control station uses a 3-bit field in the secondary superframe header sub-packet 1 to indicate control station type information, as shown in Table 5 below: Table 5
  • the macro control station or the non-macro control station class is indicated by the secondary synchronization signal (SA-Preamble). Therefore, the indication information of the macro control station type may not be carried in the super frame header.
  • the subordinate station receives the superframe header of the control station, if the superframe header indicates that the control station type is a closed type control station, including a fully enclosed and/or semi-closed control station, if the subordinate station is not a member of the closed subscriber group , that is, if no closed subscriber group is added, the subordinate station does not access the control station, or if the subordinate station is a member of the closed subscriber group, that is, the subordinate station at least joins a closed subscriber group, the subordinate station further resides at the control station Identification (where the last 12 bits of the control station identity are included in the superframe header subpackage 1, the first 36 bits are included in the superframe header subpackage 2) and/or the closed subscriber group identity (CSGID, used to identify a closed subscribe
  • the second control station uses the one or two 2-bit fields in the secondary superframe header sub-packet 1 to indicate the control station type information, as shown in the following Table 6: Table 6
  • the sub-packet 1 has a 2-bit field 1 for the hotspot Control station, relay station, control Indicates the control station type within the station range if the control station type indicated by field 1 is
  • the control station also includes the following fields 2:
  • Field 2 of size 2 in sub-package 1 is used to indicate the type of control station from a closedness perspective
  • Obl l reservation preferably indicates that the macro control station or the non-macro control station class is indicated by a secondary synchronization signal (SA-Preamble). Therefore, the indication information of the macro control station type may not be carried in the super frame header.
  • the subordinate station receives the superframe header of the control station, if the superframe header indicates that the control station type is a closed type control station, including a fully enclosed and/or semi-closed control station, if the subordinate station is not a member of the closed subscriber group , that is, if no closed subscriber group is added, the subordinate station does not access the control station, or if the subordinate station is a member of the closed subscriber group, that is, the subordinate station at least joins a closed subscriber group, the subordinate station further resides at the control station Identification (where the last 12 bits of the control station identity are included in the superframe header subpackage 1, the first 36 bits are included in the superframe header subpackage 2) and/or the closed subscriber group identity (CSGID
  • the third control station uses the 4-bit field in the secondary superframe header sub-packet 1 to indicate the control station type information, as shown in Table 7 below: Table 7 The 4-bit size field in the sub-packet 1 is used to indicate the control station type.
  • the specific instructions are as follows:
  • the subordinate station After the subordinate station receives the superframe header of the control station, if the superframe header indicates that the control station type is a closed control station, including a fully enclosed and/or semi-closed control station, if the subordinate station is not a member of the closed subscriber group, If no closed subscriber group is added, the subordinate station does not access the control station, or if the subordinate station is a member of the closed subscriber group, that is, the subordinate station at least joins a closed subscriber group, then the subordinate station further-based on the control station identifier (where the last 12 bits of the Control Station ID are included in Superframe Header Packet 1, the first 36 bits are included in Superframe Header Packet 2) and/or the Closed User Group Identifier (CSGID, used to identify a closed subscriber group) to check if Allow access to the control station.
  • the control station identifier where the last 12 bits of the Control Station ID are included in Superframe Header Packet 1, the first 36 bits are included in Super
  • control station uses the two 2-bit fields in the secondary superframe header sub-packet 1 to indicate the control station type information, as shown in Table 8 below: Table 8
  • the subordinate station of the Obl l subordinate station After receiving the superframe header of the control station, the subordinate station of the Obl l subordinate station, if the superframe header indicates that the control station type is closed, including fully enclosed and/or semi-closed, if the subordinate station is not a member of the closed user group, That is, if no closed subscriber group is added, the subordinate station does not access the control station, or if the subordinate station is a member of the closed subscriber group, that is, the subordinate station joins at least one closed subscriber group, then the subordinate station further controls the control.
  • each field value in the preferred example 1 to the preferred example 4 is not limited thereto, that is, as long as the control station and the subordinate station side include the same mapping between the field value and the control station type. Rules, each value can be mapped to any type of control station.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above description is only a preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本发明公开了一种指示方法、子包发送方法及系统,该指示方法包括:控制站使用辅超帧头的子包1中的字段指示控制站的类型;下属站根据该字段获取控制站的类型。通过本发明解决了不能从子包1中解析出参数的问题,进而可以获取到子包1中携带的参数。

Description

旨示方法、 子包发送方法及系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种指示方法、 子包发送方法及 系统。 背景技术 在无线通信系统中, 控制站 (例如, 基站) 是组成无线蜂窝小区的基本 单元, 完成移动通信网和移动通信用户之间的通信和管理功能, 其通过上 / 下行链路(Uplink/Downlink, 简称为 UL/DL )与下属站 (例如, 终端)进行 通信, 其中, 下行是指控制站到下属站的方向, 而上行是指下属站到控制站 的方向。 多个下属站可以通过上行链路同时向控制站发送数据, 也可以通过 下行链路同时从控制站接收数据。 在釆用控制站实现无线资源调度控制的无 线通信系统中, 系统无线资源的调度分配由控制站完成。 在无线通信系统中, 为了保证下属站能够以一种高效的方式完成小区选 择和系统接入, 控制站通常需要利用系统的下行广播控制信道周期性地发送 比较关键的系统配置信息或参数的集合, 例如, 802.16m 系统中的超帧头 ( Super-Frame Header, 简称 SFH )的使用。 根据操作场景的不同, 运营商可 能不定期地改变某些系统配置信息或参数, 因此, 下属站需要及时的更新并 应用这些必要的系统配置信息或参数, 以免影响其正常的数据传输。 为了实 现上述目的, 控制站通常需要在下行广播控制信道中广播当前系统配置信息 或参数集合的调度信息和 /或改变信息。 图 1是才艮据相关技术的电气和电子工程师协会( Institute for Electrical and Electronic Engineers, 简称为 IEEE ) 802.16m 系统的帧结构示意图, 如图 1 所示, 以 IEEE 802.16m 系统为例, 无线资源在时间上被划分为连续的超帧 ( Superframe, 简称为 SU ), 每个超帧的时长为 20毫秒。 而每个超帧中有 4 个 5毫秒的帧 (Frame ), 帧由多个 (例如, 8个) 子帧 ( Subframe, 简称为 SF )组成,每个子帧包含若千个正交频分多址 ( Orthogonal Frequency Division Multiple, 简称为 OFDM ) 符号。 每个超帧的第一个子帧, 不包括用于下行 同步( A-Preamble ) 的第一个 OFDM符号, 包含下行广播控制信道, 即所述 超帧头(SFH ), 用于承载关键的系统配置信息或参数的集合, 因此, 该子帧 又被称为 SFH子帧。
SFH 又被分为主超帧头 ( Primary-SFH, 简称为 P-SFH ) 和库前超帧头 ( Secondary-SFH, 简称为 S-SFH ); 其中, S-SFH又被进一步分为多个子包, 即子包 1 ( SP1 )、 子包 2 ( SP2 )、 子包 3 ( SP3 ), 每个子包对应一个系统配 置信息或参数的集合, 大部分的系统信息在 S-SFH的这三个子包中发送, 且 这些子包不是每个超帧都有, 具体在什么位置发送这些子包依赖于控制站预 先设定的不同子包的调度周期。 为了支持下属站对所述系统配置信息或参数 集合, 即 S-SFH SP的解码与更新过程, 当前 P-SFH包括了对所述 S-SFH的 描述信息以及其它的指示信息, 例如, 改变计数, 占据资源大小, 重复次数, 调度信息, 子包改变信息以及系统配置信息或参数的生效指示信息。 仍然以 IEEE 802.16m系统为例,目前,Ρ-SFH的比特长度为固定大小(例 如 21个比特位 ), 且包含几个 (例如 2个)保留比特, 如下表 1所示。 表 1 P-SFH信息单元格式
Figure imgf000004_0001
由表 1可知, S-SFH调度信息位图与 S-SFH子包改变位图一共占据 6个 比特, 占用了比较多的比特位, 浪费带宽资源。 另外存在的另一个问题是目 前的保留位只有 2个比特, 随着需求的增加, 需要发送的有效信息的增多, 保留位不够用, 限制了信息单元的扩展性。 仍然以 IEEE 802.16m系统为例, 目前,控制站类型相关信息是被同时置 于 S-SFH子包 3与系统配置描述消息( AAI_SCD ) 内, 即, 下属站只有全部 接收了 S-SFH子包 3与系统配置描述消息后,才能够最终确定该控制站类型。 但在当前设计中, 对 S-SFH子包 1 (例如, 测距参数) 的解析需要预先获取 控制站类型, 因此, 在现有技术中, 在获取不到控制站类型的情况下无法从 子包 1中解析出参数, 需要等到到获取控制站类型之后才能解析。 此外, 在 现有技术中, 可以通过获取到子包 3和系统配置描述信息后能得到控制站的 类型, 这样的处理有比较大的延时。 发明内容 本发明的主要目的在于提供一种子包发送方案, 以至少解决上述问题之
根据本发明的一个方面, 提供了一种子包发送方法, 该方法包括以下步 骤: 控制站在主超帧头中使用一个字段指示辅超帧头的子包的调度和改变的 信息; 以及, 下属站根据该字段所指示的信息获取子包。 进一步地, 控制站在主超帧头中使用该字段指示辅超帧头的子包的调度 和改变的信息之前, 上述方法还包括: 确定子包的调度和改变的所有组合, 根据所有组合的数量确定字段的比特数, 并设置字段的值与每种组合的对应 关系。 进一步地, 该字段的比特数为 N, 其中, N小于 6。 才艮据本发明的一个方面, 还提供了一种子包发送系统, 包括控制站和下 属站, 控制站用于在主超帧头中使用一个字段指示辅超帧头的子包的调度和 改变的信息; 下属站用于根据该字段所指示的信息获取子包。 进一步地, 控制站使用的字段的比特数为 N, 其中, N小于 6。 根据本发明的另一方面, 提供了一种子包发送方法, 该方法包括以下步 骤: 控制站在一个超帧头中至多只发送一个子包; 控制站使用主超帧头中的 辅超帧头子包调度字段指示当前发送的子包, 使用辅超帧头子包改变字段指 示所有的子包是否发生改变; 以及, 下属站根据辅超帧头子包调度字段和辅 超帧头子包改变字段获取控制站发送的子包。 进一步地, 辅超帧头子包改变字段使用比特图的方式指示所有的子包是 否发生改变。 进一步地, 主超帧头中的辅超帧头子包调度字段和辅超帧头子包改变字 段的比特数之和为 N, 其中, N小于 6。 进一步地, 辅超帧头子包调度字段的比特数为 2比特, 辅超帧头子包改 变字段的比特数为 3比特。 根据本发明的另一方面, 还提供了一种子包发送系统, 包括控制站和下 属站, 控制站用于使用主超帧头中的辅超帧头子包调度字段指示当前发送的 子包, 并使用辅超帧头子包改变字段指示所有的子包是否发生改变, 其中, 控制站在一个超帧头中至多只发送一个子包; 下属站用于 居辅超帧头子包 调度字段和辅超帧头子包改变字段获取控制站发送的子包。 进一步地, 控制站使用的辅超帧头子包调度字段和辅超帧头子包改变字 段的比特数之和为 N, 其中, N小于 6。 通过本发明, 釆用控制站在主超帧头中使用一个字段指示辅超帧头的子 包的调度和改变的信息, 或者釆用控制站在一个超帧头中至多只发送一个子 包; 控制站使用主超帧头中的辅超帧头子包调度字段指示当前发送的子包, 使用辅超帧头子包改变字段指示所有的子包是否发生改变, 解决了相关技术 中 S-SFH调度信息位图与 S-SFH子包改变位图占用了比较多的比特位而导致 的浪费带宽的问题, 进而达到了节约带宽。 本发明的目的还在于提供了一种指示方案,以解决上述问题的至少之一。 才艮据本发明的再一方面, 提供了一种指示方法, 该方法包括以下步骤: 控制站使用辅超帧头的子包 1中的字段指示控制站的类型; 以及, 下属站根 据该字段获取控制站的类型。 进一步地, 根据控制站的覆盖范围, 控制站的类型包括以下至少之一: 宏控制站、 中继站、 微控制站、 仔控制站; 根据控制站的封闭性, 控制站的 类型包括以下至少之一: 完全封闭型、 半封闭型、 开放型。 进一步地, 在下属站根据该字段获取控制站的类型之后, 上述方法还包 括: 下属站根据控制站的类型确定是否接入到该控制站, 其中包括: 如果控 制站的类型为完全封闭型, 或者为半封闭型且下属站不是控制站的封闭用户 组成员, 则下属站确定不接入控制站; 如果控制站为完全封闭型, 或者为半 封闭型控制站且下属站是控制站的封闭用户组成员, 则下属站根据控制站标 识和 /或封闭用户组标识检查是否可接入该控制站。 根据本发明的再一方面,还提供了一种指示系统, 包括控制站和下属站, 控制站使用辅超帧头的子包 1中的字段指示控制站的类型; 下属站根据该字 段获取控制站的类型。 通过本发明, 釆用控制站使用辅超帧头的子包 1中的字段指示控制站的 类型, 下属站根据该字段获取控制站的类型, 解决了不能从子包 1中解析出 参数的问题, 进而可以获取到子包 1中携带的参数。 另外, 由于在子包 1中 的字段指示了控制站的类型, 减少了获取控制站类型的时延。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据相关技术的 IEEE 802.16m系统的帧的结构示意图; 图 2是才艮据本发明实施例一的子包发送方法的流程图; 图 3是才艮据本发明实施例二的子包发送方法的流程图; 以及, 图 4是^ f艮据本发明实施例三的指示方法的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例一 图 2是才艮据本发明实施例一的子包发送方法的流程图, 该流程包括如下 步骤: 步骤 S202,控制站在主超帧头中使用一个字段指示辅超帧头的子包的调 度和改变的信息; 步骤 S204, 下属站根据该字段所指示的信息获取子包。 通过上述步骤 S202和步骤 S204, 可以使用一个字段来指示辅超帧头的 子包的调度和改变的信息, 从而可以指示信息的所占用的带宽。 优选地, 在上述步骤 S202 中, 控制站可以使用一个字段替代主超帧头 中的辅超帧头子包调度字段和辅超帧头子包改变字段。 即, 可以通过主超帧 头 (P-SFH ) 中的子包调度与改变信息指示当前发送的子包以及当前发送的 子包是否发生改变, 将子包调度与改变信息设置为一个单独的信息域。 优选地, 该字段(或称为信息域) 的比特数为 N, 其中, N小于 6。 控制站由于原有的 S-SFH调度信息位图与 S-SFH子包改变位图占用了 6 比特, 而新的字段用了小于 6的比特数来进行指示, 那么, 可以在主超帧头 的保留位中增加 6-N个比特, 以扩展保留位。 在本实施例的变型实施例中, 还提供了一种子包发送系统, 包括控制站 和下属站, 在该系统中, 控制站用于在主超帧头中使用一个字段指示辅超帧 头的子包的调度和改变的信息;下属站用于根据字段所指示的信息获取子包。 优选地, 在该系统中, 控制站使用的字段的比特数为 N, 其中, N小于
6。 以下本实施例的变型实施例, 该变型实施例综合了上述多个优选实施例 的技术方案, 包括如下步骤: 步骤一, 确定只发送 1个子包情况下的组合。 具体地, 包括只发送子包 1的情形, 即子包 1发生改变与子包 1不发生 改变, 共 2种组合; 具体地, 包括只发送子包 2的情形, 即子包 2发生改变 与子包 2不发生改变, 共 2种组合; 具体地, 包括只发送子包 3的情形, 即 子包 3发生改变与子包 3不发生改变, 共 2种组合; 最终只发送 1个子包的 情况下共有 6种组合。 步骤二, 确定发送 2个子包情况下的组合。 具体地, 包括发送子包 1与子包 2的情形, 即子包 1与子包 2都没有发 生改变, 子包 1与子包 2 发生改变, 只有子包 1发生改变以及只有子包 2 发生改变, 共 4种组合; 具体地, 包括发送子包 1与子包 3的情形, 即子包
1与子包 3都没有发生改变, 子包 1与子包 3都发生改变, 只有子包 1发生 改变以及只有子包 3发生改变, 共 4种组合; 具体地, 包括发送子包 2与子 包 3的情形, 即子包 2与子包 3都没有发生改变, 子包 2与子包 3都发生改 变, 只有子包 2发生改变以及只有子包 3发生改变, 共 4种组合; 最终, 发 送 2个子包的情况下共有 12种组合。 步骤三, 确定发送 3个子包情况下的组合。 具体地, 包括同时发送子包 1 , 子包 2与子包 3的情形, 即只有子包 1 发生改变, 只有子包 2发生改变, 只有子包 3发生改变, 子包 1与子包 2发 生改变, 子包 1与子包 3发生改变, 子包 2与子包 3发生改变, 子包 1、 子 包 2与子包 3同时发生改变, 子包 1、 子包 2与子包 3都没有发生改变, 共 8种组合。 步骤四, 确定没有任何子包发送情况下的组合。 具体地, 包括子包 1 , 子包 2与子包 3没有任何一个被发送, 共 1种组 合。 步骤五, 确定总的实际组合数与索引上述组合需要的比特数目。 具体地,总的实际组合数为从步骤一至步骤四中分别确定的组合数之和, 即
Figure imgf000009_0001
12+8+ 1=27 , 其中, Ntoia/表示总的实际组合数, N表示从步骤 确定的组合数。 具体地, 由总的实际组合数确定索引上述组 合需要的比特数目, 即 M=Ceiling ( log2Ntotai ) =Ceiling ( log227 ) =5 , 其中, M表示索引上述组合需要的比特数目, Ceiling表示向上取整操作。 步骤六, 确定索引编号与实际组合的映射关系。 具体地, 通过表格的形式给出各索引编号与相应实际组合的映射关系, 例如, 如表 2所示, 但并不限与此。 表 2 索引编号与实际组合的映射关系举例
十进制索 二进制索引编号 调度子包 调度子包改变情况 引编号
0 00000 子包 1 子包 1改变
1 00001 子包 1不变
2 00010 子包 2 子包 2改变
3 00011 子包 2不变
4 00100 子包 3 子包 3改变
5 00101 子包 3不变
6 00110 子包 1 , 子包 2 子包 1 ,子包 2改变
7 00111 子包 1 ,子包 2不变
8 01000 只有子包 1改变 9 01001 只有子包 2改变
10 01010 子包 1, 子包 3 子包 1,子包 3改变
11 01011 子包 1,子包 3不变
12 01100 只有子包 1改变
13 01101 只有子包 3改变
14 01110 子包 2, 子包 3 子包 2,子包 3改变
15 01111 子包 2,子包 3不变
16 10000 只有子包 2改变
17 10001 只有子包 3改变
18 10010 子包 1, 子包 2, 子 所有子包 ^t改变
19 10011 包 3 所有子包都不变
20 10100 子包 1,子包 2改变
21 10101 子包 1,子包 3改变
22 10110 子包 2,子包 3改变
23 10111 只有子包 1改变
24 11000 只有子包 2改变
25 11001 只有子包 3改变
26 11010 没有调度任何子包
27〜31 iioii〜mii 保留 最终, 子包调度与改变信息域承载如表 2所示的 5个比特大小的二进制 索引编号, 控制站或下属站通过查表方式获得需要发送的所述索引编号或子 包调度与改变信息。 £设当前超帧头中包括子包 1与子包 2, 且只有子包 2发生改变, 主超 帧头 (P-SFH)格式釆用如表 3所示, 但并不限于此。 表 3 P-SFH信息单元格式
Figure imgf000010_0001
控制站查找表 2, 确定调度的子包为子包 1与子包 2, 且子包 2发生改 变对应的表项索引为 9 , 则当前 S-SFH 子包调度与改变信息域内容为 "01001"。 如果下属站正确接收到上述 P-SFH, 且解析出子包调度与改变信 息 i或取值为 "01001" , 下属站同样通过查找表 2, 可以确定 "01001" 对应的 表项索引为 9, 即确定当前调度的子包为子包 1与子包 2, 且子包 2发生改 变。 实施例二 图 3是才艮据本发明实施例二的子包发送方法的流程图, 该流程包括以下 步骤: 步骤 S302, 控制站在一个超帧头中至多只发送一个子包; 步骤 S304,控制站使用主超帧头中的辅超帧头子包调度字段指示当前发 送的子包, 使用辅超帧头子包改变字段指示所有的子包是否发生改变; 步骤 S306,下属站根据辅超帧头子包调度字段和辅超帧头子包改变字段 获取控制站发送的子包。 通过上述步骤, 控制站在一个超帧头中至多发送一个子包, 从而达到了 减少辅超帧头子包调度字段和辅超帧头子包改变字段比特数之和的目的。 优选地, 主超帧头中的辅超帧头子包调度字段和辅超帧头子包改变字段 的比特数之和为 N, 其中, N小于 6。 与实施例一类似, 控制站可以在主超帧头的保留位中增加 6-N个比特, 进而到达增加保留位的目的。 优选地, 辅超帧头子包调度字段的比特数为 2比特, 辅超帧头子包改变 字段的比特数为 3比特。 作为上述优选实施例的变型实施例, 还提供了一种子包发送系统, 包括 控制站和下属站, 在该系统中, 控制站用于使用主超帧头中的辅超帧头子包 调度字段指示当前发送的子包, 并使用辅超帧头子包改变字段指示所有的子 包是否发生改变, 其中, 控制站在一个超帧头中至多只发送一个子包; 下属 站用于根据辅超帧头子包调度字段和辅超帧头子包改变字段获取控制站发送 的子包。 优选地, 在该系统中, 控制站使用的辅超帧头子包调度字段和辅超帧头 子包改变字段的比特数之和为 Ν, 其中, Ν小于 6。 以下各个的变型实施例综合了上述多个优选实施例的技术方案, 下面对 此进行说明。 通过主超帧头中的子包调度信息域指示当前发送的子包, 且要求每个超 帧头至多只发送一个子包。 通过主超帧头中的子包改变信息域指示当前每个 子包的改变情况, 其中, 所述当前每个子包包括当前发送的子包或没有发送 的子包。 当发送子包 1时, 子包调度信息域取值为 1; 当发送子包 2时, 子包调 度信息域取值为 2; 当发送子包 3 时, 子包调度信息域取值为 3 ; 当不发送 任何子包时, 子包调度信息域取值为 0。 优选地, 子包改变信息域釆用比特图 (Bitmap ) 的形式表示每个子包是 否发生改变, 例如使用 3个比特表示 3个子包中的任意子包是否发生改变, 最氐比特位对应子包 1 , 中间比特对应子包 2 , 最高比特位对应子包 3 , 但并 不限于 jt匕。 下属站可以通过判断子包改变信息域的每一个二进制比特相对上一次下 属站保存的值是否发生转换, 例如, 从 "0" 转换为 " Γ , 或从 " 1" 转换为 "0" , 来识别相应子包是否发生改变, 例如, 如果发生转换, 则认为相应子 包发生改变, 否则, 没有发生改变。 個—设当前超帧头中包括子包 2, 且当前的子包 1与子包 2都发生改变, 主超帧头格式釆用如表 4所示, 但并不限于此。 表 4 P-SFH信息单元格式
字段名称 字段大小 字段说明
超帧编号的低比特位 4比特 超帧编号的一部分
S-SFH改变计数 4比特 指示与该超帧中发送的子 包有关的改变计数值
S-SFH大小 2比特 占据的逻辑资源单元数目
S-SFH传输格式 1比特 指示 S-SFH的重复次数
S-SFH调度信息 2比特 指示当前发送的子包
S-SFH子包改变位图 3比特 下属站该比特图获取三个 子包是否发生改变 生效指示信息 2比特 指示改变的系统信息是否 生效
保留位 3比特 用于未来扩展的保留比特 控制站确定调度的子包为子包 2, 则 S-SFH调度信息域取值为 2, 相应 的二进制取值为 " 10" ; 控制站确定当前子包 1 与子包 2发生改变, 如果之 前的 S-SFH子包改变位图为 "010" , 则调整当前子包改变位图取值为 " 100"。 如果下属站正确接收到上述 P-SFH, 且解析出子包调度信息域取值为 " 10" , 子包改变信息域取值为 " 100" ,假设下属站同样已知上一次的子包改变位图, 因此, 下属站能够知道当前调度的子包为子包 2, 且当前子包 1与子包 2都 发生改变。 综上所述, 通过上述实施例, 节约了带宽, 并提高了广播控制信息单元 或超帧头的扩展性。 实施例三 图 4是才艮据本发明实施例三的指示方法的流程图,该流程包括如下步骤: 步骤 S402,控制站在辅超帧头中的子包 1中使用至少一个字段指示控制 站类型信息; 步骤 S404, 下属站根据该字段所指示的信息获取控制站类型。 优选地, 辅超帧头的子包 3中不携带控制站类型指示信息。 从控制站的封闭性 (私有性) 的角度, 所述控制站类型至少包括如下之 一: 完全封闭型 (完全私有型), 半封闭型 (半私有型), 开放型; 从控制站 的覆盖范围的角度, 控制站类型至少包括如下之一: 宏控制站 (Macro BS ), 中继站 ( Relay Station ), 热点控制站 ( Macro Hotzone BS , 或 Pico BS , 也可 以称为 ^啟控制站), 仔控制站 (Femto BS )。 对于接收到所述控制站类型信息指示为封闭型的下属站, 如果下属站不 是封闭用户组(Closed Subscriber Group, 简称为 CSG )成员, 则下属站不接 入到该控制站; 对于接收到所述控制站类型信息指示为封闭型 (包括完全封 闭型或半封闭型) 的下属站, 如果下属站是封闭用户组成员, 则才艮据控制站 标识和 /或封闭用户组标识检查是否允许接入到该控制站。 以下是本实施例的变型实施例, 该变型实施例综合了上述多个优选实施 例的技术方案, 下面对此进行说明。 优选实例一 控制站使用辅超帧头子包 1中的一个 3比特字段指示控制站类型信息, 如下表 5所示: 表 5
Figure imgf000014_0001
优选地, 通过辅同步信号(SA-Preamble )指示宏控制站或非宏控制站类 因此, 在超帧头中可以不携带宏控制站类型的指示信息。 下属站接收到控制站的超帧头后, 如果超帧头中指示控制站类型为封闭 型仔控制站, 包括完全封闭型和 /或半封闭型仔控制站, 如果下属站不是封闭 用户组成员, 即没有加入任何的封闭用户组, 则下属站不接入到该控制站, 或者如果下属站是封闭用户组成员, 即下属站至少加入了一个封闭用户组, 则下属站进一步地 居控制站标识 (其中控制站标识的末 12 位在超帧头子 包 1中包括,前 36位在超帧头子包 2中包括)和/或封闭用户组标识( CSGID, 用于标识一个封闭用户组)检查是否允许接入到该控制站。 优选实例二 控制站使用辅超帧头子包 1中的一个或两个 2比特字段指示控制站类型 信息, 如下表 6所示: 表 6 子包 1中大小为 2比特的字段 1 用于在热点控制站, 中继站, 仔控 制站范围内指示控制站类型 如果由字段 1 指示的控制站类型为
仔控制站, 则还包括以下字段 2:
子包 1中大小为 2比特的字段 2 用于从封闭性角度指示仔控制站类 型
具体指示方式如下:
控制站类型字段 1取值 控制站类型描述
ObOO 热点控制站
ObOl 中继站
OblO 仔控制站
Obl l 保留 控制站类型字段 2取值 控制站类型描述
ObOO 开放型仔控制站
ObOl 完全封闭型仔控制站
OblO 半封闭型仔控制站
Obl l 保留 优选地, 通过辅同步信号(SA-Preamble )指示宏控制站或非宏控制站类 因此, 在超帧头中可以不携带宏控制站类型的指示信息。 下属站接收到控制站的超帧头后, 如果超帧头中指示控制站类型为封闭 型仔控制站, 包括完全封闭型和 /或半封闭型仔控制站, 如果下属站不是封闭 用户组成员, 即没有加入任何的封闭用户组, 则下属站不接入到该控制站, 或者如果下属站是封闭用户组成员, 即下属站至少加入了一个封闭用户组, 则下属站进一步地 居控制站标识 (其中控制站标识的末 12 位在超帧头子 包 1中包括,前 36位在超帧头子包 2中包括)和/或封闭用户组标识( CSGID, 用于标识一个封闭用户组)检查是否允许接入到该控制站。 优选实例三 控制站使用辅超帧头子包 1中的一个 4比特字段指示控制站类型信息, 如下表 7所示: 表 7 子包 1中大小为 4比特的字段 用于指示控制站类型 具体指示方式如下:
Figure imgf000016_0001
下属站接收到控制站的超帧头后, 如果超帧头中指示控制站类型为封闭 型控制站, 包括完全封闭型和 /或半封闭型控制站, 如果下属站不是封闭用户 组成员, 即没有加入任何的封闭用户组, 则下属站不接入到该控制站, 或者 如果下属站是封闭用户组成员, 即下属站至少加入了一个封闭用户组, 则下 属站进一步地 -据控制站标识 (其中控制站标识的末 12 位在超帧头子包 1 中包括, 前 36位在超帧头子包 2中包括) 和 /或封闭用户组标识 ( CSGID, 用于标识一个封闭用户组)检查是否允许接入到该控制站。 需要说明的是, 实际使用的指示方式除了表 7之外, 也可以是表 7所指 示的控制站类型的子集, 即某些表 7中的控制站类型无需指示。 优选实例四 控制站使用辅超帧头子包 1中的两个 2比特字段分别指示控制站类型信 息, 如下表 8所示: 表 8
Figure imgf000016_0002
具体指示方式如下: 控制站类型字段 1取值 控制站类型描述
ObOO 开放型
ObO l 完全封闭型
OblO 半封闭型
Obl l 保留 控制站类型字段 2取值 控制站类型描述
ObOO 宏控制站
ObO l 热点下属站
OblO 中继站
Obl l 仔下属站 下属站接收到控制站的超帧头后, 如果超帧头中指示控制站类型为封闭 型, 包括完全封闭型和 /或半封闭型, 如果下属站不是封闭用户组成员, 即没 有加入任何的封闭用户组, 则下属站不接入到该控制站, 或者如果下属站是 封闭用户组成员, 即下属站至少加入了一个封闭用户组, 则下属站进一步地 才艮据控制站标识 (其中控制站标识的末 12位在超帧头子包 1 中包括, 前 36 位在超帧头子包 2中包括 )和 /或封闭用户组标识( CSGID, 用于标识一个封 闭用户组) 判断是否允许接入到该控制站。 需要说明的是, 优选实例一至优选实例四中所述各字段取值所表示的内 容并不限于此, 即只要控制站与下属站侧包含相同的所述字段取值与控制站 类型间的映射规则, 每一取值能够映射为任意的控制站类型。 通过实施例三, 解决了不能从子包 1中解析出参数的问题, 进而可以获 取到子包 1中携带的参数。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种指示方法, 其特征在于, 包括以下步^^
控制站使用辅超帧头的子包 1 中的至少一个字段指示所述控制站的 类型; 以及, 下属站根据所述字段获取所述控制站的类型。
2. 根据权利要求 1所述的方法, 其特征在于, 根据所述控制站的覆盖范围 , 所述控制站的类型包括以下至少之一: 宏控制站、 中继站、 微控制站、 仔控制站; 根据所述控制站的封闭性, 所述控制站的类型包括以下至少 之一: 完全封闭型、 半封闭型、 开放型。
3. 根据权利要求 2所述的方法, 其特征在于, 在所述下属站根据所述字段 获取所述控制站的类型之后, 所述方法还包括:
所述下属站根据所述控制站的类型确定是否接入到该控制站, 其中 包括: 如果所述控制站的类型为完全封闭型, 或者为半封闭型且所述下 属站不是所述控制站的封闭用户组成员, 则所述下属站确定不接入所述 控制站; 如果所述控制站为完全封闭型, 或者为半封闭型控制站且所述 下属站是所述控制站的封闭用户组成员, 则所述下属站根据控制站标识 和 /或封闭用户组标识检查是否可接入该控制站。
4. 根据权利要求 1或 2所述的方法, 其特征在于, 所述控制站在子包 3中 不携带用于指示所述控制站类型的指示信息。
5. —种子包发送方法, 其特征在于, 包括以下步 4聚:
控制站在主超帧头中使用一个字段指示辅超帧头的子包的调度和改 变的信息; 以及,
下属站根据所述字段所指示的信息获取所述子包。
6. 根据权利要求 5所述的方法, 其特征在于, 所述控制站在主超帧头中使 用所述字段指示辅超帧头的子包的调度和改变的信息之前, 所述方法还 包括: 确定所述子包的调度和改变的所有组合; 才艮据所述所有组合的数量 确定所述字段的比特数, 并设置所述字段的值与每种所述组合的对应关 系。
7. 根据权利要求 5或 6所述的方法, 其特征在于, 所述字段的比特数为 N, 其中, N小于 6。
8. —种子包发送方法, 其特征在于, 包括以下步 4聚:
控制站在一个超帧头中至多只发送一个子包;
所述控制站使用主超帧头中的辅超帧头子包调度字段指示当前发送 的子包, 使用辅超帧头子包改变字段指示所有的子包是否发生改变; 以 及,
下属站根据所述辅超帧头子包调度字段和辅超帧头子包改变字段获 取所述控制站发送的子包。
9. 根据权利要求 8所述的方法, 其特征在于, 所述辅超帧头子包改变字段 使用比特图的方式指示所述所有的子包是否发生改变。
10. 根据权利要求 8所述的方法, 其特征在于, 所述主超帧头中的辅超帧头 子包调度字段和所述辅超帧头子包改变字段的比特数之和为 N, 其中, N小于 6。
11. 根据权利要求 9或 10所述的方法, 其特征在于, 所述辅超帧头子包调度 字段的比特数为 2比特,所述辅超帧头子包改变字段的比特数为 3比特。
12. 一种指示系统, 包括控制站和下属站, 其特征在于,
所述控制站使用辅超帧头的子包 1 中的字段指示所述控制站的类 型;
所述下属站根据所述字段获取所述控制站的类型。
13. —种子包发送系统, 包括控制站和下属站, 其特征在于,
所述控制站用于在主超帧头中使用一个字段指示辅超帧头的子包的 调度和改变的信息;
下属站用于根据所述字段所指示的信息获取所述子包。
14. 根据权利要求 13所述的系统, 其特征在于, 所述控制站使用的所述字段 的比特数为 N, 其中, N小于 6。
15. —种子包发送系统, 包括控制站和下属站, 其特征在于,
所述控制站用于使用主超帧头中的辅超帧头子包调度字段指示当前 发送的子包, 并使用辅超帧头子包改变字段指示所有的子包是否发生改 变, 其中, 所述控制站在一个超帧头中至多只发送一个子包;
所述下属站用于根据所述辅超帧头子包调度字段和辅超帧头子包改 变字段获取所述控制站发送的子包。
16. 居权利要求 15所述的系统, 其特征在于, 所述控制站使用的所述辅超 帧头子包调度字段和所述辅超帧头子包改变字段的比特数之和为 N, 其 中, N小于 6。
PCT/CN2010/072939 2010-03-12 2010-05-19 指示方法、子包发送方法及系统 WO2011109954A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010144149.9 2010-03-12
CN201010144149.9A CN102195747B (zh) 2010-03-12 2010-03-12 指示方法、子包发送方法及系统

Publications (1)

Publication Number Publication Date
WO2011109954A1 true WO2011109954A1 (zh) 2011-09-15

Family

ID=44562799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072939 WO2011109954A1 (zh) 2010-03-12 2010-05-19 指示方法、子包发送方法及系统

Country Status (2)

Country Link
CN (1) CN102195747B (zh)
WO (1) WO2011109954A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517935A (zh) * 2006-09-26 2009-08-26 皇家飞利浦电子股份有限公司 Ieee802.22无线区域网通信系统的物理层超帧、帧、前导和控制报头
CN101548519A (zh) * 2007-01-10 2009-09-30 华为技术有限公司 在基于ofdm的通信系统中使用前导码以指示保护音调数目
CN101547073A (zh) * 2008-03-26 2009-09-30 中兴通讯股份有限公司 基于无线通信时分双工系统的上行传输/反馈方法及系统
CN101594216A (zh) * 2008-05-28 2009-12-02 华为技术有限公司 子包传输方法、发送端、接收端及网络系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029828A1 (de) * 2003-09-17 2005-03-31 Siemens Aktiengesellschaft Verfahren und telekommunikationssystem mit drahtloser telekommunikation zwischen einem mobilteil und einer basisstation zum registrieren eines mobilteils
US9113386B2 (en) * 2004-11-12 2015-08-18 Alcatel Lucent Fast handover with reduced service interruption for high speed data channels in a wireless system
CN101299882B (zh) * 2008-05-04 2012-02-08 中兴通讯股份有限公司 承载类型识别和指示方法
US8310987B2 (en) * 2008-07-03 2012-11-13 Samsung Electronics Co., Ltd. Apparatus and method for notifying change of system control information in a broadband wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517935A (zh) * 2006-09-26 2009-08-26 皇家飞利浦电子股份有限公司 Ieee802.22无线区域网通信系统的物理层超帧、帧、前导和控制报头
CN101548519A (zh) * 2007-01-10 2009-09-30 华为技术有限公司 在基于ofdm的通信系统中使用前导码以指示保护音调数目
CN101547073A (zh) * 2008-03-26 2009-09-30 中兴通讯股份有限公司 基于无线通信时分双工系统的上行传输/反馈方法及系统
CN101594216A (zh) * 2008-05-28 2009-12-02 华为技术有限公司 子包传输方法、发送端、接收端及网络系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIH-GUANG JAN ET AL.: "Inter-Cell Interference Management in DL/UL PHY Control for IEEE802.16m 2009", IEEE MOBILE WIMAX SYMPOSIUM, 31 December 2009 (2009-12-31), pages 46 - 51 *

Also Published As

Publication number Publication date
CN102195747B (zh) 2014-08-20
CN102195747A (zh) 2011-09-21

Similar Documents

Publication Publication Date Title
US11601936B2 (en) Method and device for configuring sidelink resources
US11659544B2 (en) Method and apparatus for transmitting and receiving sidelink signal in wireless cellular communication system
US20210250159A1 (en) Resource configuration method and apparatus
EP3439395B1 (en) Terminal device, base station and communication method
US20230019024A1 (en) Hybrid Automatic Repeat Request (HARQ) Mechanism for Multicast in NR
US8553633B2 (en) Bandwidth request method and bandwidth allocation method in broadband wireless access system
WO2010133043A1 (zh) 多子帧调度方法、系统及终端、基站
US20230171778A1 (en) Systems and methods related to sub-slot physical uplink control channel (pucch) repetitions
CN110417518B (zh) 基于harq技术的通信方法、设备及系统
JP2022519123A (ja) 通信システム
US20210400635A1 (en) Feedback Signaling for Sidelink
JP2022520829A (ja) リミテッドバッファレートマッチングの制約に対する補正
JP2023526735A (ja) Tci状態のアクティブ化及びコードポイントからtci状態へのマッピングのためのシステム及び方法
US20200083933A1 (en) Data Transmission Method, Apparatus, and System
WO2022121832A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
WO2012130097A1 (zh) 一种用于资源请求的方法、站点和中心接入点
CN116368884A (zh) 利用朝向多个trp的时隙内重复的pucch增强的系统和方法
WO2011110034A1 (zh) 广播消息的资源指示信息的传输方法和系统
WO2018024150A1 (zh) 一种被用于低延迟通信的用户设备、基站中的方法和装置
WO2011134365A1 (zh) 资源配置参数的指示和更新方法、终端及基站
CN116325621A (zh) 用于pucch重复的系统和方法
US11589339B2 (en) Method and device for configuring uplink control channel in wireless cellular communication system
JP6997802B2 (ja) 確認応答リソースの割り当て
WO2023050081A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847213

Country of ref document: EP

Kind code of ref document: A1