WO2011108366A1 - エンジン装置 - Google Patents

エンジン装置 Download PDF

Info

Publication number
WO2011108366A1
WO2011108366A1 PCT/JP2011/053389 JP2011053389W WO2011108366A1 WO 2011108366 A1 WO2011108366 A1 WO 2011108366A1 JP 2011053389 W JP2011053389 W JP 2011053389W WO 2011108366 A1 WO2011108366 A1 WO 2011108366A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
regeneration
exhaust gas
flag table
exhaust
Prior art date
Application number
PCT/JP2011/053389
Other languages
English (en)
French (fr)
Inventor
康男 野間
太一 富樫
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN201180011538.7A priority Critical patent/CN102859163B/zh
Priority to US13/581,650 priority patent/US9222428B2/en
Priority to KR1020127023237A priority patent/KR101743093B1/ko
Priority to EP11750478.7A priority patent/EP2543858B1/en
Publication of WO2011108366A1 publication Critical patent/WO2011108366A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2487Methods for rewriting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/263Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the program execution being modifiable by physical parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading

Definitions

  • the present invention relates to an engine device mounted on a work machine such as an engine generator, an agricultural machine, or a construction machine.
  • DPF diesel particulate filter
  • PM particulate matter
  • JP 2000-145430 A Japanese Patent Laid-Open No. 2003-27922
  • the engine is mounted on various working machines such as an engine generator, a compressor, an agricultural machine, and a construction machine.
  • specifications (required engine accessories, etc.) required for DPF regeneration in an engine with DPF vary depending on the type of work implement to be mounted, and control for DPF regeneration executed by the ECU is performed.
  • a program is also required for each work machine. Therefore, even if the engine model and the specifications of the hardware of the ECU are the same, the control program stored in the ECU differs depending on the working machine, so that there is a problem that the versatility of the ECU is low.
  • manufacturers have to manage various ECUs for each work machine when manufacturing engines, and are forced to store the work machine-specific ECUs as parts inventory for troubleshooting and maintenance after engine shipment. . Therefore, management and storage costs also increase.
  • the present invention has a technical problem to provide an engine device that has been improved by examining such a current situation.
  • the invention of claim 1 is an engine device comprising an exhaust gas purifying device disposed in an exhaust path of the engine and an ECU for controlling driving of the engine, and a plurality of regeneration modes for the exhaust gas purifying device.
  • the general-purpose playback program is executed in the mode.
  • the flag table is fixedly stored in advance, and the fixed storage unit and the variable storage unit are first accessed.
  • the flag table stored in the fixed storage means is written in the variable storage means.
  • a third aspect of the present invention is the engine device according to the first or second aspect, wherein as the plurality of regeneration modes, at least the self-regeneration mode for driving the engine under a condition in which the exhaust gas purification device can be regenerated, and Automatic auxiliary regeneration mode that automatically raises the temperature of exhaust gas when the degree of clogging of the exhaust gas purification device exceeds a specified level, and manual auxiliary regeneration that allows regeneration of the exhaust gas purification device by entering the manual operation means Mode.
  • a failure diagnosis of an engine accessory related to regeneration of the exhaust gas purification device is required. No is selected corresponding to the flag table.
  • an engine device including an exhaust gas purification device disposed in an exhaust path of the engine and an ECU that controls driving of the engine, and a plurality of regenerations for the exhaust gas purification device.
  • a rewritable variable storage means for storing a general-purpose reproduction program for selectively executing one of the modes and a flag table corresponding to an arbitrary reproduction mode, and the ECU is selected based on the flag table Since the general-purpose reproduction program is executed in the reproduction mode, it is possible to cope with a different reproduction mode for each type of work implement by simply changing the flag table in one type of the general-purpose reproduction program. For this reason, there is an effect that the ECU can be shared (common specification) for various working machines. That is, there is an effect that it is possible to achieve both the merit of improving the versatility of the ECU and the merit of ensuring the adaptability of the ECU to each regeneration mode.
  • the flag table is fixedly stored in advance, and the first access to the fixed storage unit and the variable storage unit is provided.
  • the flag table stored in the fixed storage means is written into the variable storage means, so that the playback mode different from the initial setting can be rewritten later by rewriting the flag table stored in the variable storage means.
  • the DPF regeneration control can be easily executed. Therefore, when it is desired to change the playback mode, it is not necessary to delete the flag table one by one, for example, by replacing the fixed storage means, or to rewrite the general-purpose playback program.
  • the effect is easy. For example, it is easy for a customer to correct the setting suitable for the company's specifications, even though the engine is purchased from outside.
  • the engine device in the engine device according to the first or second aspect, as the plurality of regeneration modes, at least a self-regeneration mode for driving the engine under a condition that the exhaust gas purification device can be regenerated;
  • An automatic auxiliary regeneration mode that automatically raises the temperature of the exhaust gas when the degree of clogging of the exhaust gas purification device exceeds a specified level, and a manual assistance that permits regeneration of the exhaust gas purification device by entering a manual operation means Since a regeneration mode is provided, a plurality of regeneration modes suitable for various types of work machines can be handled by a system of one type of engine device. Therefore, the customer satisfaction can be further improved.
  • a failure diagnosis of an engine auxiliary machine related to regeneration of the exhaust gas purifying apparatus is performed. Since necessity is selected corresponding to the flag table, even if the presence or absence of the engine accessory changes due to the difference in the regeneration mode, only one type of the general-purpose regeneration program can be used. Failure diagnosis can be executed, and when it is unnecessary, the failure diagnosis of the engine accessory can be omitted. That is, there is an effect that it is possible to easily switch between execution and omission of failure diagnosis according to the presence or absence of the engine accessory without performing a fine setting operation.
  • the engine 70 is a four-cylinder type diesel engine, and includes a cylinder block 75 having a cylinder head 72 fastened on the upper surface.
  • An intake manifold 73 is connected to one side of the cylinder head 72, and an exhaust manifold 71 is connected to the other side.
  • a common rail system 117 that supplies fuel to each cylinder of the engine 70 is provided below the intake manifold 73 on the side surface of the cylinder block 75.
  • An intake pipe 76 connected to the intake upstream side of the intake manifold 73 is connected to an intake throttle device 81 and an air cleaner (not shown) for adjusting the intake pressure (intake amount) of the engine 70.
  • a fuel tank 118 is connected to each of the injectors 115 for four cylinders in the engine 70 via a common rail system 117 and a fuel supply pump 116.
  • Each injector 115 is provided with an electromagnetic switching control type fuel injection valve 119.
  • the common rail system 117 includes a cylindrical common rail 120.
  • a fuel tank 118 is connected to the suction side of the fuel supply pump 116 via a fuel filter 121 and a low pressure pipe 122. The fuel in the fuel tank 118 is sucked into the fuel supply pump 116 via the fuel filter 121 and the low pressure pipe 122.
  • the fuel supply pump 116 of the embodiment is disposed in the vicinity of the intake manifold 73.
  • a common rail 120 is connected to the discharge side of the fuel supply pump 116 via a high-pressure pipe 123.
  • the common rail 120 is connected to injectors 115 for four cylinders via four fuel injection pipes 126.
  • the fuel in the fuel tank 118 is pumped to the common rail 120 by the fuel supply pump 116, and high-pressure fuel is stored in the common rail 120.
  • Each fuel injection valve 119 is controlled to open and close, whereby high-pressure fuel in the common rail 120 is injected from each injector 115 to each cylinder of the engine 70. That is, by electronically controlling each fuel injection valve 119, the injection pressure, injection timing, and injection period (injection amount) of the fuel supplied from each injector 115 are controlled with high accuracy. Therefore, nitrogen oxide (NOx) from the engine 70 can be reduced, and noise and vibration of the engine 70 can be reduced.
  • NOx nitrogen oxide
  • a fuel supply pump 116 is connected to the fuel tank 118 via a fuel return pipe 129.
  • a common rail return pipe 131 is connected to the end of the cylindrical common rail 120 in the longitudinal direction via a return pipe connector 130 that limits the pressure of fuel in the common rail 120. That is, surplus fuel from the fuel supply pump 116 and surplus fuel from the common rail 120 are collected in the fuel tank 118 via the fuel return pipe 129 and the common rail return pipe 131.
  • An exhaust pipe 77 connected to the exhaust downstream side of the exhaust manifold 71 includes an exhaust throttle device 82 for adjusting the exhaust pressure of the engine 70 and a diesel particulate filter 50 (hereinafter referred to as DPF) which is an example of an exhaust gas purification device. Connected). Exhaust gas discharged from each cylinder to the exhaust manifold 71 is purified through the exhaust pipe 77, the exhaust throttle device 82, and the DPF 50, and then released to the outside.
  • DPF diesel particulate filter 50
  • the DPF 50 is for collecting particulate matter (hereinafter referred to as PM) in the exhaust gas.
  • the DPF 50 is configured by accommodating a diesel oxidation catalyst 53 such as platinum and a soot filter 54 in series in a substantially cylindrical filter case 52 in a casing 51 made of a refractory metal material.
  • the diesel oxidation catalyst 53 is disposed on the exhaust upstream side of the filter case 52, and the soot filter 54 is disposed on the exhaust downstream side.
  • the soot filter 54 has a honeycomb structure having a large number of cells partitioned by porous (filterable) partition walls.
  • an exhaust introduction port 55 communicating with the exhaust downstream side of the exhaust throttle device 82 in the exhaust pipe 76 is provided.
  • One end of the casing 51 is closed by a first bottom plate 56, and one end of the filter case 52 facing the first bottom plate 56 is closed by a second bottom plate 57.
  • the annular gap between the casing 51 and the filter case 52 and the gap between the bottom plates 56 and 57 are filled with a heat insulating material 58 such as glass wool so as to surround the diesel oxidation catalyst 53 and the soot filter 54.
  • the other side of the casing 51 is closed by two lid plates 59 and 60, and a substantially cylindrical exhaust outlet 61 passes through both the lid plates 59 and 60.
  • a resonance chamber 63 that communicates with the inside of the filter case 52 via a plurality of communication pipes 62 is provided between the lid plates 59 and 60.
  • An exhaust gas introduction pipe 65 is inserted into an exhaust introduction port 55 formed on one side of the casing 51.
  • the tip of the exhaust gas introduction pipe 65 projects across the casing 51 to the side surface opposite to the exhaust introduction port 55.
  • a plurality of communication holes 66 opening toward the filter case 52 are formed on the outer peripheral surface of the exhaust gas introduction pipe 65.
  • a portion of the exhaust gas introduction pipe 65 that protrudes from the side surface opposite to the exhaust introduction port 55 is closed by a lid 67 that is detachably screwed to the portion.
  • the DPF 50 is provided with a differential pressure sensor 68 that detects a clogged state of the soot filter 54 as an example of a detection unit.
  • the differential pressure sensor 68 of the embodiment detects a pressure difference (differential pressure) between the upstream and downstream sides of the soot filter 54 in the DPF 50.
  • the upstream side exhaust pressure sensor 68 a constituting the differential pressure sensor 68 is attached to the lid 67 of the exhaust gas introduction pipe 65, and the downstream side exhaust pressure sensor 68 b is interposed between the soot filter 54 and the resonance chamber 63. It is installed. It is well known that there is a certain law between the pressure difference between the upstream and downstream of the DPF 50 and the amount of PM accumulated in the DPF 50.
  • the PM accumulation amount in the DPF 50 is estimated from the pressure difference detected by the differential pressure sensor 68, and the intake throttle device 81, the exhaust throttle device 82, and the common rail 120 are operated based on the estimation result. Then, regeneration control (DPF regeneration control) of the soot filter 54 is executed.
  • the clogged state of the soot filter 54 is not limited to the differential pressure sensor 68 but may be an exhaust pressure sensor that detects the pressure upstream of the soot filter 54 in the DPF 50.
  • the exhaust pressure sensor is adopted, the pressure (reference pressure) on the upstream side of the soot filter 54 when PM is not deposited on the soot filter 54 is compared with the current pressure detected by the exhaust pressure sensor. As a result, the clogged state of the soot filter 54 is determined.
  • the exhaust gas from the engine 5 enters the exhaust gas introduction pipe 65 via the exhaust introduction port 55 and is ejected into the filter case 52 from each communication hole 66 formed in the exhaust gas introduction pipe 65.
  • the diesel oxidation catalyst 53 and the soot filter 54 are passed through in this order for purification.
  • PM in the exhaust gas is collected without passing through the porous partition wall between the cells in the soot filter 54.
  • exhaust gas that has passed through the diesel oxidation catalyst 53 and the soot filter 54 is discharged from the exhaust outlet 61.
  • an ECU 11 is provided for operating a fuel injection valve 119 for each cylinder in the engine 70.
  • the ECU 11 is a general-purpose reproduction program GPM that selectively executes any one of a plurality of reproduction modes (to be described later), a ROM 32 as a fixed storage unit that stores various data fixedly in advance, in addition to a CPU 31 that executes various arithmetic processes and controls.
  • EEPROM 33 as a rewritable variable storage means for storing etc., a RAM 34 for temporarily storing various data, a timer 35 for time measurement, an input / output interface, and the like, which are arranged at or near the engine 70 .
  • At least the rail pressure sensor 12 that detects the fuel pressure in the common rail 120, the electromagnetic clutch 13 that rotates or stops the fuel pump 116, and the rotational speed of the engine 70 (the camshaft position of the crankshaft 74).
  • An engine speed sensor 14 for detecting fuel, an injection setting device 15 for detecting and setting the number of fuel injections of the injector 115 (the number of fuel injections in one stroke), and an accelerator operating tool such as a throttle lever or an accelerator pedal (not shown)
  • the throttle position sensor 16 for detecting the operation position of the engine, the intake air temperature sensor 17 for detecting the intake air temperature in the intake passage, the exhaust temperature sensor 18 for detecting the exhaust gas temperature in the exhaust passage, and the cooling water temperature of the engine 70.
  • each fuel injection valve 119 for at least four cylinders is connected to the output side of the ECU 11. That is, the high-pressure fuel stored in the common rail 120 is injected from the fuel injection valve 119 in a plurality of times during one stroke while controlling the fuel injection pressure, the injection timing, the injection period, and the like, so that nitrogen oxide (NOx ), And complete combustion with reduced generation of soot and carbon dioxide is performed to improve fuel efficiency.
  • NOx nitrogen oxide
  • an intake throttle device 81 for adjusting the intake pressure (intake amount) of the engine 70, an exhaust throttle device 82 for adjusting the exhaust pressure of the engine 70, and a failure notification of the ECU 11 are notified.
  • An ECU failure lamp 22, an exhaust temperature warning lamp 23 for reporting an abnormally high exhaust gas temperature, and a regeneration lamp 24 that is turned on when each regeneration mode described later is executed are connected. Data relating to blinking of the lamps 22 to 24 is stored in the EEPROM 33 of the ECU 11 in advance.
  • the regeneration switch 21 and the lamps 22 to 24 are provided on an instrument panel 40 provided on a working machine to be mounted with an engine.
  • the EEPROM 33 of the ECU 11 stores in advance an output characteristic map M (see FIG. 3) indicating the relationship between the rotational speed N of the engine 70 and the torque T (load).
  • the EEPROM 33 also stores in advance a main program MPM (see FIG. 6) for DPF 50 regeneration control and a general-purpose reproduction program GPM (see FIG. 7) that selectively executes one of a plurality of regeneration modes. The flow of these programs MPM and GPM will be described later.
  • the output characteristic map M is obtained through experiments.
  • the rotational speed N is taken on the horizontal axis and the torque T is taken on the vertical axis.
  • the output characteristic map M is a region surrounded by a solid line Tmx drawn upwardly.
  • a solid line Tmx is a maximum torque line representing the maximum torque for each rotational speed N.
  • the output characteristic maps M stored in the ECU 11 are all the same (common).
  • the output characteristic map M is divided vertically by a boundary line BL representing the relationship between the rotational speed N and the torque T when the exhaust gas temperature is the regeneration boundary temperature (about 300 ° C.). .
  • the upper region across the boundary line BL is a reproducible region in which PM deposited on the soot filter 54 can be oxidized and removed (the oxidizing action of the oxidation catalyst 53 works), and the lower region is not oxidized and removed of PM. This is a non-reproducible region that accumulates on the soot filter 54.
  • the ECU 11 basically obtains the torque T from the rotational speed N detected by the engine speed sensor 14 and the throttle position detected by the throttle position sensor 16, and uses the torque T and the output characteristic map M to target fuel.
  • the fuel injection control is performed such that the injection amount is calculated and the common rail system 117 is operated based on the calculation result.
  • the fuel injection amount is adjusted by adjusting the valve opening period of each fuel injection valve 119 and changing the injection period to each injector 115.
  • a flag table FT corresponding to each regeneration mode related to the DPF 50 regeneration control is stored in advance. As shown in FIGS. 4A to 4C, the flag table FT exists for each type of reproduction mode, and plays a role as an identification factor of the reproduction mode.
  • an external tool such as a ROM writer, which is connected to the ECU 11 via a communication terminal line, has one type of flag table FT corresponding to the type of playback mode, that is, a working machine to be mounted with an engine. 39 is written before engine shipment (engine production).
  • the regeneration mode executed in the engine device is at least a self-regeneration mode in which the engine 70 is driven under conditions where the DPF 50 can be regenerated, and the exhaust gas is automatically heated when the degree of clogging of the DPF 50 exceeds a specified level.
  • the self-regeneration mode is mainly used in a working machine such as an engine generator that drives the engine 70 at a substantially constant rotational speed N and torque T.
  • the automatic auxiliary regeneration mode is mainly used in general work machines such as a combiner and a tractor.
  • the manual auxiliary regeneration mode is mainly used in a working machine such as a hydraulic excavator that performs precise work by relying on engine sound.
  • “reproducible conditions” in the self-regeneration mode means that the relationship between the rotational speed N and the torque T in the engine 70 is a reproducible region of the output characteristic map M (an upper region across the boundary line BL). In other words, the exhaust gas temperature of the engine 70 is so high that the PM oxidation amount in the DPF 50 exceeds the PM trapping amount.
  • the ROM 32 stores a self-regeneration flag table FT1 (see FIG. 4A) corresponding to the self-regeneration mode.
  • the ROM 32 stores an automatic auxiliary reproduction flag table FT2 (see FIG. 4B) corresponding to the automatic auxiliary reproduction mode.
  • the ROM 32 stores a manual auxiliary regeneration flag table FT3 (see FIG. 4C) corresponding to the manual auxiliary regeneration mode.
  • the flag table is expressed by type, a number is added to the code FT to indicate the relationship with the corresponding playback mode, and the flag table can be expressed collectively or an arbitrary flag table. "FT" with numbers removed is used when expressing.
  • flag table FT stored in the ROM 32 is written to the EEPROM 33 when the ROM 32 and the EEPROM 33 are accessed for the first time, that is, when the work machine is first turned on and the ROM 32 and the EEPROM 33 are electrically connected. (Copied).
  • the writing process is performed when the ECU 11 executes the main program MPM (see FIG. 6).
  • the ECU 11 selects a playback mode based on the flag table FT written on the EEPROM 33 side, and executes the general-purpose playback program GPM in the selected playback mode (see FIG. 7).
  • the general-purpose playback program GPM is called, a playback mode is selected based on the flag table FT written on the EEPROM 33 side, and loop processing (DPF playback control) based on the general-purpose playback program GPM is performed in the selected playback mode.
  • Execute S3.
  • an update process for rewriting data (flag table FT, general-purpose reproduction program GPM, etc.) stored in the EEPROM 33 is executed using the external tool 39 (S4). ).
  • the DPF regeneration control can be easily executed in a regeneration mode different from the initial setting by rewriting the flag table FT stored in the EEPROM 33 later.
  • the flowchart of the self-regeneration mode in FIG. 8 and the flowchart of the failure diagnosis process in FIGS. 11A and 11B are both subroutines of the general-purpose reproduction program GPM.
  • the general-purpose reproduction program GPM is read from the EEPROM 33 to the RAM 34 and executed by the CPU 31. Note that although the subroutine (see FIGS. 8 to 11) varies depending on the playback mode, the general-purpose playback program GPM is also used in the second and third embodiments described later.
  • the value of the mode selection flag RGMOD in the self-regeneration flag table FT1 read from the EEPROM 33 is determined (S11).
  • a self-regeneration mode subroutine shown in FIG. 8 is called to execute self-regeneration processing (S12).
  • the self-regeneration mode subroutine it is determined whether or not the DPF 50 is in “reproducible conditions” (S201). If it is in “reproducible conditions” (S201: YES), the regeneration on the instrument panel 40 is performed. The lamp 24 is turned on (S202) to inform the operator that the self-regeneration of the DPF 50 is smooth.
  • the process returns to the main routine of the loop process, and the value of the mode selection flag RGMOD is determined once again (S15).
  • RGMOD “0”
  • the subroutine shown in FIG. 11A is called to execute the first failure diagnosis process (S16).
  • the working machine of the type that executes the self-regeneration mode omits the engine auxiliary equipment that is used for the regeneration of the DPF 50, that is, the intake and exhaust throttle devices 81 and 82. There is no device to become. Accordingly, as shown in the flowchart of FIG. 11A, the first failure diagnosis process ends without doing anything, and the process returns to the main routine of the loop process to complete.
  • the automatic auxiliary reproduction mode subroutine shown in FIG. 9 is called to execute automatic auxiliary reproduction processing (S13).
  • the subroutine of the automatic auxiliary regeneration mode first, the PM accumulation amount in the DPF 50 is estimated based on the detection result from the differential pressure sensor 68 (S301), and it is determined whether or not the estimation result exceeds the limit amount (specified level). (S302). If the limit amount is exceeded (S302: YES), the timer 35 starts measuring the time after the limit (S303), and playback is repeated until a predetermined time (for example, 10 seconds) elapses (S304: NO). The lamp 24 is blinked (S305), and the operator is notified of the regeneration of the DPF 50.
  • post-injection is fuel injection performed after main injection in order to send high-pressure fuel to the exhaust path. Since the high-pressure fuel sent to the exhaust path mainly burns PM in the DPF 50, the DPF 50 can be regenerated.
  • the engine load is increased by limiting the intake air amount and the exhaust gas amount to raise the temperature of the exhaust gas, or the PM in the DPF 50 is directly combusted by post injection. As a result, the PM in the DPF 50 is removed, and the PM collection capability of the DPF 50 (the soot filter 54) is restored.
  • the expansion devices 81 and 82 may be opened and closed, and it may be confirmed from the detection result whether or not the operation state is normal. Thereafter, the process returns to the main routine of the loop process and is completed.
  • the third embodiment shows a case where the engine 70 is mounted on a working machine (for example, a hydraulic excavator) of a type that executes the manual auxiliary regeneration mode.
  • a working machine for example, a hydraulic excavator
  • regeneration of the DPF 50 is permitted by turning on the regeneration switch 21. Therefore, the engine device of the third embodiment includes not only the intake and exhaust throttle devices 81 and 82 but also the regeneration switch 21.
  • the manual auxiliary regeneration mode subroutine shown in FIG. 10 is called to execute the manual auxiliary regeneration processing (S14).
  • the PM accumulation amount in the DPF 50 is estimated based on the detection result from the differential pressure sensor 68 (S401), and it is determined whether or not the estimation result exceeds the limit amount (specified level). (S402). If the limit amount is exceeded (S402: YES), the regeneration lamp 24 is blinked (S403) to notify the operator that the clogged state of the DPF 50 exceeds the limit amount.
  • the engine device includes an exhaust gas purifying device 50 disposed in the exhaust path of the engine 70 and an ECU 11 that controls the driving of the engine 70.
  • a rewritable variable storage means 33 for storing a general-purpose regeneration program GPM for selectively executing one of a plurality of regeneration modes for the exhaust gas purifying device 50 and a flag table FT corresponding to an arbitrary regeneration mode. Since the ECU 11 executes the general reproduction program GPM in the reproduction mode selected based on the flag table FT, the operation can be performed only by changing the flag table FT in one type of the general reproduction program GPM. Different playback modes can be supported for each type of machine.
  • the flag table FT is fixedly stored in advance.
  • the fixed storage means 32 is provided, and the first of the fixed storage means 32 and the variable storage means 33 is provided.
  • the flag table FT stored in the fixed storage unit 32 is written in the variable storage unit 33, the flag table FT stored in the variable storage unit 33 can be rewritten later to perform initial setting and DPF regeneration control can be easily executed in different regeneration modes. Accordingly, when it is desired to change the reproduction mode, it is not necessary to delete the flag table FT one by one, for example, by replacing the fixed storage means 32, or to rewrite the general-purpose reproduction program GPM. There is an effect that it is easy to deal with. For example, it is easy for the customer to correct the setting suitable for the company's specifications despite the engine 70 purchased from the outside.
  • the present invention is not limited to the above-described embodiment, and can be embodied in various forms.
  • the fuel injection device of the engine device is not limited to the common rail type, but may be an electronic governor type.
  • the configuration of each unit is not limited to the illustrated embodiment, and various modifications can be made without departing from the spirit of the present invention.

Abstract

本願発明は、エンジン(70)の駆動制御及びDPF(50)の再生制御を司るECU(11)の汎用性を向上させたエンジン装置を提供することを課題としたものである。本願発明のエンジン装置は、エンジン(70)の排気経路に配置された排気ガス浄化装置(50)と、前記エンジン(70)の駆動を制御するECU(11)と、前記排気ガス浄化装置(50)に対する複数の再生モードのいずれかを選択的に実行する汎用再生プログラムGPMと、任意の再生モードに対応するフラグテーブルFTとを記憶する書換可能な可変記憶手段(33)を備える。前記ECU(11)が前記フラグテーブルFTに基づき選択される再生モードにて前記汎用再生プログラムGPMを実行する。

Description

エンジン装置
 本願発明は、例えばエンジン発電機、農作業機及び建設機械といった作業機に搭載されるエンジン装置に関するものである。
 昨今、ディーゼルエンジン(以下単に、エンジンという)に関する高次の排ガス規制が適用されるのに伴い、エンジンが搭載されるエンジン発電機、農作業機及び建設機械等に、排気ガス中の大気汚染物質を浄化処理する排気ガス浄化装置を搭載することが要望されつつある。排気ガス浄化装置としては、ディーゼルパティキュレートフィルタ(以下、DPFという)が知られている(特許文献1及び2参照)。DPFは、排気ガス中の粒子状物質(以下、PMという)等を捕集するためのものである。この場合、DPFにて捕集されたPMが規定量を超えると、DPF内の流通抵抗が増大してエンジン出力の低下をもたらすため、排気ガスの昇温によってDPFに堆積したPMを除去し、DPFのPM捕集能力を回復させる(DPFを再生させる)こともよく行われている。
特開2000-145430号公報 特開2003-27922号公報
 ところで、エンジンは、例えばエンジン発電機やコンプレッサ、農作業機並びに建設機械といった多種多様な作業機に搭載される。このため、DPF付きエンジンにおいて、DPFの再生に要求される仕様(必要なエンジン補機等)は、搭載対象である作業機の種類によって様々であり、ECUにて実行されるDPF再生用の制御プログラムも作業機別に必要になる。従って、仮にエンジンの型式及びECUのハードウェアとしての仕様が同じであっても、ECUに記憶される制御プログラムが作業機別に異なるから、ECUの汎用性が低いという問題があった。また、メーカは、エンジン製造にあたり、種々のECUを作業機別に管理しなければならないばかりか、エンジン出荷後も、故障対応やメンテナンス用に作業機別のECUを部品在庫として保管せざるを得ない。従って、管理・保管コストも嵩むのであった。
 そこで、本願発明は、このような現状を検討して改善を施したエンジン装置を提供することを技術的課題とするものである。
 請求項1の発明は、エンジンの排気経路に配置された排気ガス浄化装置と、前記エンジンの駆動を制御するECUとを備えているエンジン装置であって、前記排気ガス浄化装置に対する複数の再生モードのいずれかを選択的に実行する汎用再生プログラムと、任意の再生モードに対応するフラグテーブルとを記憶する書換可能な可変記憶手段を備えており、前記ECUが前記フラグテーブルに基づき選択される再生モードにて前記汎用再生プログラムを実行するというものである。
 請求項2の発明は、請求項1に記載したエンジン装置において、前記フラグテーブルを予め固定的に記憶した固定記憶手段を備えており、前記固定記憶手段と前記可変記憶手段との最初のアクセス時に、前記固定記憶手段に記憶された前記フラグテーブルが前記可変記憶手段に書き込まれるというものである。
 請求項3の発明は、請求項1又は2に記載したエンジン装置において、前記複数の再生モードとして少なくとも、前記排気ガス浄化装置が再生可能な条件下で前記エンジンを駆動させる自己再生モードと、前記排気ガス浄化装置の詰まり程度が規定水準を超えた場合に自動的に排気ガスを昇温させる自動補助再生モードと、手動操作手段の入り操作によって前記排気ガス浄化装置の再生を許可する手動補助再生モードとを備えているというものである。
 請求項4の発明は、請求項1~3のうちいずれかに記載したエンジン装置において、前記汎用再生プログラムを実行するにあたり、前記排気ガス浄化装置の再生に関連するエンジン補機の故障診断の要否が前記フラグテーブルに対応して選択されるというものである。
 請求項1の発明によると、エンジンの排気経路に配置された排気ガス浄化装置と、前記エンジンの駆動を制御するECUとを備えているエンジン装置であって、前記排気ガス浄化装置に対する複数の再生モードのいずれかを選択的に実行する汎用再生プログラムと、任意の再生モードに対応するフラグテーブルとを記憶する書換可能な可変記憶手段を備えており、前記ECUが前記フラグテーブルに基づき選択される再生モードにて前記汎用再生プログラムを実行するから、1種類の前記汎用再生プログラムにおいて前記フラグテーブルを変更するだけで、作業機の種類毎に異なる再生モードに対応可能となる。このため、多種多様な作業機に対して前記ECUの共用化(共通仕様化)を図れるという効果を奏する。つまり、前記ECUの汎用性向上というメリットと、前記ECUの各再生モードに対する適合性確保というメリットとを両立できるという効果を奏する。
 また、様々な作業機の種類別に、前記排気ガス浄化装置の再生用プログラムを開発しなくて済み、コスト抑制に寄与するという利点もある。更に、プログラミングに特別な知識がなくても、前記フラグテーブルを変更するだけで、前記汎用再生プログラムを、作業機の種類別に対応したものに簡単に切換できるから、顧客(エンジン購入メーカ)の希望に沿ったエンジン装置の提供が容易になる。
 請求項2の発明によると、請求項1に記載したエンジン装置において、前記フラグテーブルを予め固定的に記憶した固定記憶手段を備えており、前記固定記憶手段と前記可変記憶手段との最初のアクセス時に、前記固定記憶手段に記憶された前記フラグテーブルが前記可変記憶手段に書き込まれるものであるから、前記可変記憶手段に記憶された前記フラグテーブルを後から書き換えることによって、初期設定と異なる再生モードにてDPF再生制御を簡単に実行できることになる。従って、再生モードを変更したい場合に、前記フラグテーブルを例えば前記固定記憶手段の交換等にて一々削除したり、前記汎用再生プログラムを書き換えたりしなくて済み、様々な作業機のシステムに対処し易いという効果を奏する。例えば顧客にとっては、外部から購入したエンジンであるにも拘らず、自社仕様に適した設定に修正し易いのである。
 請求項3の発明によると、請求項1又は2に記載したエンジン装置において、前記複数の再生モードとして少なくとも、前記排気ガス浄化装置が再生可能な条件下で前記エンジンを駆動させる自己再生モードと、前記排気ガス浄化装置の詰まり程度が規定水準を超えた場合に自動的に排気ガスを昇温させる自動補助再生モードと、手動操作手段の入り操作によって前記排気ガス浄化装置の再生を許可する手動補助再生モードとを備えているから、様々なタイプの作業機に適した複数の再生モードを、1種類のエンジン装置のシステムで対処できることになる。従って、顧客満足をより一層向上できるという効果を奏する。
 請求項4の発明によると、請求項1~3のうちいずれかに記載したエンジン装置において、前記汎用再生プログラムを実行するにあたり、前記排気ガス浄化装置の再生に関連するエンジン補機の故障診断の要否が前記フラグテーブルに対応して選択されるから、再生モードの違いによって前記エンジン補機の有無が変わっても、1種類の前記汎用再生プログラムだけで、必要な場合は前記エンジン補機の故障診断を実行できるし、不要な場合は前記エンジン補機の故障診断を省略できる。つまり、細かい設定操作等をしなくても、前記エンジン補機の有無に応じて故障診断の実行・省略を簡単に切換できるという効果を奏する。
エンジンの燃料系統説明図である。 エンジン及び排気ガス浄化装置の関係を示す機能ブロック図である。 出力特性マップの説明図である。 各再生モードに対応したフラグテーブルの説明図であり、(a)は自己再生用フラグテーブル、(b)は自動補助再生用フラグテーブル、(c)は手動補助再生用フラグテーブルの図である。 表示パネルの説明図である。 DPF再生制御についての基本プログラムの流れを示すフローチャートである。 汎用再生プログラムの流れを示すフローチャートである。 自己再生モードのフローチャートである。 自動補助再生モードのフローチャートである。 手動補助再生モードのフローチャートである。 故障診断処理のフローチャートであり、(a)は自己再生モードに対応したもの、(b)は自動及び手動補助再生モードに対応したものである。
 以下に、本願発明を具体化した実施形態を図面に基づいて説明する。
 (1).エンジン及びその周辺の構造
 まず、図1及び図2を参照しながら、エンジン及びその周辺の構造を説明する。図2に示すように、エンジン70は4気筒型のディーゼルエンジンであり、上面にシリンダヘッド72が締結されたシリンダブロック75を備えている。シリンダヘッド72の一側面には吸気マニホールド73が接続されており、他側面には排気マニホールド71が接続されている。シリンダブロック75の側面のうち吸気マニホールド73の下方には、エンジン70の各気筒に燃料を供給するコモンレールシステム117が設けられている。吸気マニホールド73の吸気上流側に接続された吸気管76には、エンジン70の吸気圧(吸気量)を調節するための吸気絞り装置81とエアクリーナ(図示省略)とが接続される。
 図1に示すように、エンジン70における4気筒分の各インジェクタ115に、コモンレールシステム117及び燃料供給ポンプ116を介して、燃料タンク118が接続される。各インジェクタ115は電磁開閉制御型の燃料噴射バルブ119を備えている。コモンレールシステム117は円筒状のコモンレール120を備えている。燃料供給ポンプ116の吸入側には、燃料フィルタ121及び低圧管122を介して燃料タンク118が接続されている。燃料タンク118内の燃料が燃料フィルタ121及び低圧管122を介して燃料供給ポンプ116に吸い込まれる。実施形態の燃料供給ポンプ116は吸気マニホールド73の近傍に配置されている。一方、燃料供給ポンプ116の吐出側には、高圧管123を介してコモンレール120が接続されている。コモンレール120には、4本の燃料噴射管126を介して、4気筒分のインジェクタ115が接続されている。
 上記の構成において、燃料タンク118の燃料は燃料供給ポンプ116によってコモンレール120に圧送され、高圧の燃料がコモンレール120に蓄えられる。各燃料噴射バルブ119がそれぞれ開閉制御されることによって、コモンレール120内の高圧の燃料が各インジェクタ115からエンジン70の各気筒に噴射される。すなわち、各燃料噴射バルブ119を電子制御することによって、各インジェクタ115から供給される燃料の噴射圧力、噴射時期、噴射期間(噴射量)が高精度にコントロールされる。従って、エンジン70からの窒素酸化物(NOx)を低減できると共に、エンジン70の騒音振動を低減できる。
 なお、図1に示すように、燃料タンク118には、燃料戻り管129を介して燃料供給ポンプ116が接続されている。円筒状のコモンレール120の長手方向の端部に、コモンレール120内の燃料の圧力を制限する戻り管コネクタ130を介して、コモンレール戻り管131が接続されている。すなわち、燃料供給ポンプ116の余剰燃料とコモンレール120の余剰燃料とが、燃料戻り管129及びコモンレール戻り管131を介して燃料タンク118に回収されることになる。
 排気マニホールド71の排気下流側に接続された排気管77には、エンジン70の排気圧を調節するための排気絞り装置82と、排気ガス浄化装置の一例であるディーゼルパティキュレートフィルタ50(以下、DPFという)とが接続される。各気筒から排気マニホールド71に排出された排気ガスは、排気管77、排気絞り装置82及びDPF50を経由して浄化処理をされてから外部に放出される。
 DPF50は、排気ガス中の粒子状物質(以下、PMという)等を捕集するためのものである。実施形態のDPF50は、耐熱金属材料製のケーシング51内にある略筒型のフィルタケース52に、例えば白金等のディーゼル酸化触媒53とスートフィルタ54とを直列に並べて収容してなるものである。実施形態では、フィルタケース52内のうち排気上流側にディーゼル酸化触媒53が配置され、排気下流側にスートフィルタ54が配置されている。スートフィルタ54は、多孔質な(ろ過可能な)隔壁にて区画された多数のセルを有するハニカム構造になっている。
 ケーシング51の一側部には、排気管76のうち排気絞り装置82より排気下流側に連通する排気導入口55が設けられている。ケーシング51の一端部は第1底板56にて塞がれ、フィルタケース52のうち第1底板56に臨む一端部は第2底板57にて塞がれている。ケーシング51とフィルタケース52との間の環状隙間、並びに両底板56,57間の隙間には、ガラスウールのような断熱材58がディーゼル酸化触媒53及びスートフィルタ54の周囲を囲うように充填されている。ケーシング51の他側部は2枚の蓋板59,60にて塞がれていて、これら両蓋板59,60を略筒型の排気排出口61が貫通している。また、両蓋板59,60の間は、フィルタケース52内に複数の連通管62を介して連通する共鳴室63になっている。
 ケーシング51の一側部に形成された排気導入口55には排気ガス導入管65が挿入されている。排気ガス導入管65の先端は、ケーシング51を横断して排気導入口55と反対側の側面に突出している。排気ガス導入管65の外周面には、フィルタケース52に向けて開口する複数の連通穴66が形成されている。排気ガス導入管65のうち排気導入口55と反対側の側面に突出する部分は、これに着脱可能に螺着された蓋体67にて塞がれている。
 DPF50には、検出手段の一例として、スートフィルタ54の詰まり状態を検出する差圧センサ68が設けられている。実施形態の差圧センサ68は、DPF50内におけるスートフィルタ54を挟んだ上下流間の圧力差(差圧)を検出するものである。この場合、排気ガス導入管65の蓋体67に、差圧センサ68を構成する上流側排気圧センサ68aが装着され、スートフィルタ54と共鳴室63との間に、下流側排気圧センサ68bが装着されている。DPF50上下流間の圧力差とDPF50内のPM堆積量との間に一定の法則性があることはよく知られている。実施形態では、差圧センサ68にて検出される圧力差から、DPF50内のPM堆積量を推定し、当該推定結果に基づいて吸気絞り装置81、排気絞り装置82並びにコモンレール120を作動させることにより、スートフィルタ54の再生制御(DPF再生制御)が実行される。
 なお、スートフィルタ54の詰まり状態を検出するのは、差圧センサ68に限らず、DPF50内におけるスートフィルタ54上流側の圧力を検出する排気圧センサであってもよい。排気圧センサを採用した場合は、スートフィルタ54にPMが堆積していない新品時のスートフィルタ54上流側の圧力(基準圧力)と、排気圧センサにて検出された現在の圧力とを比較することによって、スートフィルタ54の詰まり状態を判断することになる。
 上記の構成において、エンジン5からの排気ガスは、排気導入口55を介して排気ガス導入管65に入って、排気ガス導入管65に形成された各連通穴66からフィルタケース52内に噴出し、フィルタケース52内の広い領域に分散したのち、ディーゼル酸化触媒53からスートフィルタ54の順に通過して浄化処理される。排気ガス中のPMは、この段階でスートフィルタ54における各セル間の多孔質な仕切り壁を通り抜けできずに捕集される。その後、ディーゼル酸化触媒53及びスートフィルタ54を通過した排気ガスが排気排出口61から放出される。
 排気ガスがディーゼル酸化触媒53及びスートフィルタ54を通過するに際して、排気ガス温度が再生可能温度(例えば約300℃)を超えていれば、ディーゼル酸化触媒53の作用にて、排気ガス中のNO(一酸化窒素)が不安定なNO(二酸化窒素)に酸化する。そして、NOがNOに戻る際に放出するO(酸素)にて、スートフィルタ54に堆積したPMを酸化除去することにより、スートフィルタ54のPM捕集能力が回復する(スートフィルタ54(DPF50)が再生する)ことになる。
 (2).エンジンの制御関連の構成
 次に、図1~図5を参照しながら、エンジン70の制御関連の構成を説明する。図1に示す如く、エンジン70における各気筒の燃料噴射バルブ119を作動させるECU11を備えている。ECU11は、各種演算処理や制御を実行するCPU31の他、各種データを予め固定的に記憶した固定記憶手段としてのROM32、後述する複数の再生モードのいずれかを選択的に実行する汎用再生プログラムGPM等を記憶する書換可能な可変記憶手段としてのEEPROM33、各種データを一時的に記憶させるRAM34、時間計測用のタイマ35、及び入出力インターフェイス等を備えており、エンジン70又はその近傍に配置される。
 ECU11の入力側には、少なくともコモンレール120内の燃料圧力を検出するレール圧センサ12と、燃料ポンプ116を回転又は停止させる電磁クラッチ13と、エンジン70の回転速度(クランク軸74のカムシャフト位置)を検出するエンジン速度センサ14と、インジェクタ115の燃料噴射回数(1行程の燃料噴射期間中の回数)を検出及び設定する噴射設定器15と、スロットルレバー又はアクセルペダルといったアクセル操作具(図示省略)の操作位置を検出するスロットル位置センサ16と、吸気経路中の吸気温度を検出する吸気温度センサ17と、排気経路中の排気ガス温度を検出する排気温度センサ18と、エンジン70の冷却水温度を検出する冷却水温度センサ19と、コモンレール120内の燃料温度を検出する燃料温度センサ20と、後述する手動補助再生モードの実行の可否を選択操作する手動操作手段としての再生スイッチ21と、差圧センサ68(上流側排気圧センサ68a及び下流側排気圧センサ68b)とが接続されている。
 ECU11の出力側には、少なくとも4気筒分の各燃料噴射バルブ119の電磁ソレノイドがそれぞれ接続されている。すなわち、コモンレール120に蓄えた高圧燃料が燃料噴射圧力、噴射時期及び噴射期間等を制御しながら、1行程中に複数回に分けて燃料噴射バルブ119から噴射されることによって、窒素酸化物(NOx)の発生を抑えると共に、すすや二酸化炭素等の発生も低減した完全燃焼を実行し、燃費を向上させるように構成されている。
 また、ECU11の出力側には、エンジン70の吸気圧(吸気量)を調節するための吸気絞り装置81、エンジン70の排気圧を調節するための排気絞り装置82、ECU11の故障を警告報知するECU故障ランプ22、排気ガス温度の異常高温を報知する排気温度警告ランプ23、及び、後述する各再生モードの実行に伴い点灯する再生ランプ24が接続されている。各ランプ22~24の明滅に関するデータは予めECU11のEEPROM33に記憶されている。なお、図5に示すように、再生スイッチ21及び各ランプ22~24は、エンジン搭載対象の作業機に設けられた計器パネル40に設けられている。
 ECU11のEEPROM33には、エンジン70の回転速度NとトルクT(負荷)との関係を示す出力特性マップM(図3参照)が予め記憶されている。EEPROM33には、DPF50再生制御についてのメインプログラムMPM(図6参照)、及び複数の再生モードのいずれかを選択的に実行する汎用再生プログラムGPM(図7参照)も予め記憶されている。これらプログラムMPM,GPMの流れについては後述する。
 出力特性マップMは実験等にて求められる。図3に示す出力特性マップMでは、回転速度Nを横軸に、トルクTを縦軸に採っている。出力特性マップMは、上向き凸に描かれた実線Tmxで囲まれた領域である。実線Tmxは、各回転速度Nに対する最大トルクを表した最大トルク線である。この場合、エンジン70の型式が同じであれば、ECU11に記憶される出力特性マップMはいずれも同一(共通)のものになる。図3に示すように、出力特性マップMは、排気ガス温度が再生境界温度(約300℃程度)の場合における回転速度NとトルクTとの関係を表した境界ラインBLによって上下に分断される。境界ラインBLを挟んで上側の領域は、スートフィルタ54に堆積したPMを酸化除去できる(酸化触媒53の酸化作用が働く)再生可能領域であり、下側の領域は、PMが酸化除去されずにスートフィルタ54に堆積する再生不能領域である。
 ECU11は基本的に、エンジン速度センサ14にて検出される回転速度Nとスロットル位置センサ16にて検出されるスロットル位置とからトルクTを求め、トルクTと出力特性マップMとを用いて目標燃料噴射量を演算し、当該演算結果に基づきコモンレールシステム117を作動させるという燃料噴射制御を実行するように構成されている。ここで、燃料噴射量は、各燃料噴射バルブ119の開弁期間を調節して、各インジェクタ115への噴射期間を変更することによって調節される。
 ECU11のROM32には、DPF50再生制御に関する各再生モードに対応するフラグテーブルFTが予め記憶されている。図4(a)~(c)に示すように、フラグテーブルFTは再生モードの種類別に存在するものであり、再生モードの識別因子としての役割を担っている。実施形態のROM32には、再生モードの種類別、すなわち、エンジン搭載対象である作業機に対応した1種類のフラグテーブルFTが、ECU11に通信端末線を介して接続されるROMライタ等の外部ツール39を用いて、エンジン出荷前(エンジン製造時)に書き込まれる。
 エンジン装置において実行される再生モードとしては少なくとも、DPF50が再生可能な条件下でエンジン70を駆動させる自己再生モードと、DPF50の詰まり程度が規定水準を超えた場合に自動的に排気ガスを昇温させる自動補助再生モードと、再生スイッチ21の入り操作によってDPF50の再生を許可する手動補助再生モードとがある。自己再生モードは主に、ほぼ一定の回転速度N及びトルクTにてエンジン70を駆動させるエンジン発電機等の作業機において用いられる。自動補助再生モードは主に、コンバインやトラクタ等の一般的な作業機において用いられる。手動補助再生モードは主に、エンジン音を頼りに緻密作業を実行する油圧ショベル等の作業機において用いられる。ここで、自己再生モードにおける「再生可能な条件下」とは、エンジン70における回転速度NとトルクTとの関係が、出力特性マップMの再生可能領域(境界ラインBLを挟んで上側の領域)にあり、DPF50内でのPM酸化量がPM捕集量を上回る程度に、エンジン70の排気ガス温度が高い状態を意味している。
 従って、エンジン搭載対象が例えばエンジン発電機の場合、ROM32には、自己再生モードに対応した自己再生用フラグテーブルFT1(図4(a)参照)が記憶される。エンジン搭載対象が例えばコンバインの場合、ROM32には、自動補助再生モードに対応した自動補助再生用フラグテーブルFT2(図4(b)参照)が記憶される。エンジン搭載対象が例えば油圧ショベルの場合、ROM32には、手動補助再生モードに対応した手動補助再生用フラグテーブルFT3(図4(c)参照)が記憶される。なお、上記説明のように、フラグテーブルを種類別に表現する場合は、符号FTに数字を付すことによって、それぞれ対応する再生モードとの関係を示し、フラグテーブルをまとめて表現したり任意のフラグテーブルを表現したりする際は、数字を外した「FT」を用いることとする。
 ROM32に記憶された1種類のフラグテーブルFTは、ROM32とEEPROM33との最初のアクセス時、すなわち、初めて作業機に電源投入してROM32及びEEPROM33が電気的に接続されたときに、EEPROM33側に書き込まれる(コピーされる)。当該書き込みプロセスは、ECU11がメインプログラムMPMを実行する際に行われる(図6参照)。ECU11は、EEPROM33側に書き込まれたフラグテーブルFTに基づき再生モードを選択し、当該選択された再生モードにて汎用再生プログラムGPMを実行することになる(図7参照)。
 (3).メイン処理の態様
 次に、図6のフローチャートを参照しながら、ECU11によるDPF再生制御のメイン処理の一例について説明する。図6のフローチャートにて示すアルゴリズムは、EEPROM33にメインプログラムMPMとして記憶されていて、RAM34に呼び出されてからCPU31にて実行される。この場合、作業機の電源投入によってメインプログラムMPMが起動し、ROM32とEEPROM33とのアクセスが初めてであれば(S1:YES)、ROM32に記憶された1種類のフラグテーブルFTを、EEPROM33側に書き込む(S2)。次いで、汎用再生プログラムGPMを呼び出して、EEPROM33側に書き込まれたフラグテーブルFTに基づき再生モードを選択し、当該選択された再生モードにて、汎用再生プログラムGPMに基づくループ処理(DPF再生制御)を実行する(S3)。その後、ECU11に外部ツール39が接続されていれば、外部ツール39を用いて、EEPROM33に記憶されているデータ(フラグテーブルFTや汎用再生プログラムGPM等)を書き換えたりする更新処理を実行する(S4)。
 上記の制御によると、EEPROM33に記憶されたフラグテーブルFTを後から書き換えることによって、初期設定と異なる再生モードにてDPF再生制御を簡単に実行できるから、再生モードを変更したい場合に、フラグテーブルFTを例えばROM32の交換等にて一々削除したり、汎用再生プログラムGPMを書き換えたりしなくて済む。従って、様々な作業機のシステムに対処し易いという効果を奏する。例えば顧客(エンジン購入メーカ)にとっては、外部から購入したエンジン70であるにも拘らず、自社仕様に適した設定に修正し易いのである。
 (4).ループ処理の第1実施例
 次に、図7、図8及び図11のフローチャートを参照しながら、ECU11によるDPF再生制御のループ処理の第1実施例について説明する。第1実施例は、自己再生モードを実行するタイプの作業機(例えばエンジン発電機等)にエンジン70を搭載した場合を示している。この種の作業機では、ほぼ一定の回転速度N及びトルクTにてエンジン70を駆動させるから、DPF50内でのPM酸化量がPM捕集量を上回る程度に、エンジン70の排気ガス温度が高温になっている。このような点を考慮して、第1実施例のエンジン装置では、吸気絞り装置81、排気絞り装置82及び再生スイッチ21が省略されている。
 図7、図8及び図11のフローチャートにて示すアルゴリズムは、EEPROM33に汎用再生プログラムGPMとして記憶されている。図8の自己再生モードのフローチャート、及び図11(a)(b)の故障診断処理のフローチャートはいずれも、汎用再生プログラムGPMのサブルーチンである。汎用再生プログラムGPMは、EEPROM33からRAM34に読み出されてCPU31にて実行される。なお、汎用再生プログラムGPMは、再生モードの違いによってサブルーチン(図8~図11参照)が変わるものの、後述する第2及び第3実施例でも共通のものが用いられる。
 第1実施例のループ処理ではまず、EEPROM33から読み出された自己再生用フラグテーブルFT1中のモード選択フラグRGMODの値を判別する(S11)。第1実施例では、モード選択フラグRGMODの値が「0」であるから、図8に示す自己再生モードのサブルーチンを呼び出して、自己再生処理を実行する(S12)。自己再生モードのサブルーチンでは、DPF50が「再生可能な条件下」にあるか否かを判別し(S201)、「再生可能な条件下」にあれば(S201:YES)、計器パネル40上の再生ランプ24を点灯させ(S202)、DPF50の自己再生が順調である旨をオペレータに知らせる。それから、ループ処理のメインルーチンに戻り、モード選択フラグRGMODの値をもう一度判別し(S15)。この場合はRGMOD=「0」だから、図11(a)に示すサブルーチンを呼び出して、第1故障診断処理を実行する(S16)。前述の通り、自己再生モードを実行するタイプの作業機には、DPF50の再生に利用されるエンジン補機、すなわち、吸気及び排気絞り装置81,82が省略されているため、故障診断の対象となる機器が存在しない。従って、図11(a)のフローチャートに示すように、第1故障診断処理では何もせずに終了し、ループ処理のメインルーチンに戻って完了する。
 (5).ループ処理の第2実施例
 次に、図9のフローチャートを参照しながら、ECU11によるDPF再生制御のループ処理の第2実施例について説明する。第2実施例は、自動補助再生モードを実行するタイプの作業機(例えばコンバイン等)にエンジン70を搭載した場合を示している。自動補助再生モードでは、DPF50の詰まり程度が規定水準を超えた場合に自動的に排気ガスを昇温させるから、第2実施例のエンジン装置では、吸気及び排気絞り装置81,82を備えているものの、再生モードを実行するか否かをオペレータの意思で選択する再生スイッチ21が省略されている。
 第2実施例のループ処理においては、モード選択フラグRGMODの値が「1」であるから、図9に示す自動補助再生モードのサブルーチンを呼び出して、自動補助再生処理を実行する(S13)。自動補助再生モードのサブルーチンではまず、差圧センサ68からの検出結果に基づきDPF50内のPM堆積量を推定し(S301)、当該推定結果が限界量(規定水準)を超えたか否かを判別する(S302)。限界量を超えていれば(S302:YES)、超過してからの時間をタイマ35にて計測開始し(S303)、所定時間(例えば10秒)を経過するまでは(S304:NO)、再生ランプ24を点滅させ(S305)、オペレータにDPF50の再生を予告しておく。
 所定時間を経過したら(S304:YES)、タイマ35による計測を終了して再生ランプ24を点灯させ(S306)、EEPROM33から読み出された自動補助再生用フラグテーブルFT2中の吸気絞りフラグINTSLTの値を判別する(S307)。第2実施例では、吸気絞り装置81を備えていてINTSLT=「1」であるから、吸気絞り装置81の開度を所定開度まで閉弁して各気筒への吸気量を制限する(S308)。それから、排気絞りフラグOUTSLTの値を判別する(S309)。第2実施例では、排気絞り装置82を備えていてOUTSLT=「1」であるから、排気絞り装置82の開度を所定開度まで閉弁して排気ガスの排出を抑制する(S310)。
 次いで、ポスト噴射フラグAPSTINJの値を判別する(S311)。ここで、ポスト噴射とは、排気経路に高圧燃料を送るためにメイン噴射後に行われる燃料噴射のことである。排気経路に送られた高圧燃料は主としてDPF50内のPMを燃焼させるため、DPF50を再生できる。第2実施例では、燃料噴射装置としてコモンレール120を備えていてAPSTINJ=「1」であるから、コモンレール120によってポスト噴射を実行する(S312)。このように自動再生補助モードでは、吸気量及び排気量の制限によってエンジン負荷を増大させて排気ガスを昇温させたり、ポスト噴射によってDPF50内のPMを直接燃焼させたりする。その結果、DPF50内のPMが除去され、DPF50(スートフィルタ54)のPM捕集能力が回復する。
 それから、ループ処理のメインルーチンに戻り、モード選択フラグRGMODの値をもう一度判別し(S15)。この場合はRGMOD=「1」だから、図11(b)に示すサブルーチンを呼び出して、第2故障診断処理を実行する(S17)。第2実施例では吸気及び排気絞り装置81,82の両方を備えているため、第2故障診断処理においては、吸気絞りフラグINTSLTの値を判別する(S501)。この場合もINTSLT=「1」だから、吸気絞り装置81の故障診断を実行する(S502)。次いで、排気絞りフラグOUTSLTの値を判別する(S503)。この場合もOUTSLT=「1」だから、吸気絞り装置81の故障診断を実行する(S504)。各絞り装置81,82の故障診断としては、例えば各絞り装置81,82を開閉作動させて、その作動状態が正常であるか否かを検出結果から確認すればよい。その後、ループ処理のメインルーチンに戻って完了する。
 (6).ループ処理の第3実施例
 次に、図10のフローチャートを参照しながら、ECU11によるDPF再生制御のループ処理の第3実施例を説明する。第3実施例は、手動補助再生モードを実行するタイプの作業機(例えば油圧ショベル等)にエンジン70を搭載した場合を示している。手動補助再生モードでは、再生スイッチ21の入り操作によってDPF50の再生を許可するから、第3実施例のエンジン装置では、吸気及び排気絞り装置81,82だけでなく、再生スイッチ21も備えている。
 第3実施例のループ処理においては、モード選択フラグRGMODの値が「2」であるから、図10に示す手動補助再生モードのサブルーチンを呼び出して、手動補助再生処理を実行する(S14)。手動補助再生モードのサブルーチンではまず、差圧センサ68からの検出結果に基づきDPF50内のPM堆積量を推定し(S401)、当該推定結果が限界量(規定水準)を超えたか否かを判別する(S402)。限界量を超えていれば(S402:YES)、再生ランプ24を点滅させ(S403)、DPF50の詰まり状態が限界量を超えている旨をオペレータに知らせる。
 次いで、再生スイッチ24を入り操作したら(S404:YES)、再生ランプ24を点灯させ(S405)、EEPROM33から読み出された手動補助再生用フラグテーブルFT3中の吸気絞りフラグINTSLTの値を判別する(S406)。ステップS406~S411の流れは、第2実施例にて説明した自動補助再生モードのステップS307~S312の流れと同じであるから、その詳細な説明を省略する。ステップS411の後は、ループ処理のメインルーチンに戻り、モード選択フラグRGMODの値をもう一度判別し(S15)。この場合はRGMOD=「2」だから、図11(b)に示すサブルーチンを呼び出して、第2故障診断処理を実行する(S17)。その後、ループ処理のメインルーチンに戻って完了する。
 (7).まとめ
 上記の記載並びに図1~図7から明らかなように、エンジン70の排気経路に配置された排気ガス浄化装置50と、前記エンジン70の駆動を制御するECU11とを備えているエンジン装置であって、前記排気ガス浄化装置50に対する複数の再生モードのいずれかを選択的に実行する汎用再生プログラムGPMと、任意の再生モードに対応するフラグテーブルFTとを記憶する書換可能な可変記憶手段33を備えており、前記ECU11が前記フラグテーブルFTに基づき選択される再生モードにて前記汎用再生プログラムGPMを実行するから、1種類の前記汎用再生プログラムGPMにおいて前記フラグテーブルFTを変更するだけで、作業機の種類毎に異なる再生モードに対応可能となる。このため、多種多様な作業機に対して前記ECU11の共用化(共通仕様化)を図れるという効果を奏する。つまり、前記ECU11の汎用性向上というメリットと、前記ECU11の各再生モードに対する適合性確保というメリットとを両立できるという効果を奏する。
 また、様々な作業機の種類別に、前記排気ガス浄化装置50の再生用プログラムを開発しなくて済み、コスト抑制に寄与するという利点もある。更に、プログラミングに特別な知識がなくても、前記フラグテーブルFTを変更するだけで、前記汎用再生プログラムGPMを、作業機の種類別に対応したものに簡単に切換できるから、顧客(エンジン購入メーカ)の希望に沿ったエンジン装置の提供が容易になる。
 上記の記載並びに図1~図6から明らかなように、前記フラグテーブルFTを予め固定的に記憶した固定記憶手段32を備えており、前記固定記憶手段32と前記可変記憶手段33との最初のアクセス時に、前記固定記憶手段32に記憶された前記フラグテーブルFTが前記可変記憶手段33に書き込まれるため、前記可変記憶手段33に記憶された前記フラグテーブルFTを後から書き換えることによって、初期設定と異なる再生モードにてDPF再生制御を簡単に実行できることになる。従って、再生モードを変更したい場合に、前記フラグテーブルFTを例えば前記固定記憶手段32の交換等にて一々削除したり、前記汎用再生プログラムGPMを書き換えたりしなくて済み、様々な作業機のシステムに対処し易いという効果を奏する。例えば顧客にとっては、外部から購入したエンジン70であるにも拘らず、自社仕様に適した設定に修正し易いのである。
 上記の記載並びに図1~図10から明らかなように、前記複数の再生モードとして少なくとも、前記排気ガス浄化装置50が再生可能な条件下で前記エンジン70を駆動させる自己再生モードと、前記排気ガス浄化装置50の詰まり程度が規定水準を超えた場合に自動的に排気ガスを昇温させる自動補助再生モードと、手動操作手段24の入り操作によって前記排気ガス浄化装置50の再生を許可する手動補助再生モードとを備えているから、様々なタイプの作業機に適した複数の再生モードを、1種類のエンジン装置のシステムで対処できることになる。従って、顧客満足をより一層向上できるという効果を奏する。
 上記の記載並びに図1~図11から明らかなように、前記汎用再生プログラムGPMを実行するにあたり、前記排気ガス浄化装置50の再生に関連するエンジン補機81,82の故障診断の要否が前記フラグテーブルFTに対応して選択されるから、再生モードの違いによって前記エンジン補機81,82の有無が変わっても、1種類の前記汎用再生プログラムGPMだけで、必要な場合は前記エンジン補機81,82の故障診断を実行できるし、不要な場合は前記エンジン補機81,82の故障診断を省略できる。つまり、細かい設定操作等をしなくても、前記エンジン補機81,82の有無に応じて故障診断の実行・省略を簡単に切換できるという効果を奏する。
 (8).その他
 本願発明は、前述の実施形態に限らず、様々な態様に具体化できる。例えばエンジン装置の燃料噴射装置はコモンレール式のものに限らず、電子ガバナ式のものでもよい。その他、各部の構成は図示の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更が可能である。
FT フラグテーブル
GPM 汎用再生プログラム
11 ECU
21 再生スイッチ(手動操作手段)
24 再生ランプ
31 CPU
32 ROM(固定記憶手段)
33 EEPROM(可変記憶手段)
50 DPF(排気ガス浄化装置)
70 エンジン
120 コモンレール

Claims (4)

  1.  エンジンの排気経路に配置された排気ガス浄化装置と、前記エンジンの駆動を制御するECUとを備えているエンジン装置であって、
     前記排気ガス浄化装置に対する複数の再生モードのいずれかを選択的に実行する汎用再生プログラムと、任意の再生モードに対応するフラグテーブルとを記憶する書換可能な可変記憶手段を備えており、前記ECUが前記フラグテーブルに基づき選択される再生モードにて前記汎用再生プログラムを実行する、
    エンジン装置。
  2.  前記フラグテーブルを予め固定的に記憶した固定記憶手段を備えており、前記固定記憶手段と前記可変記憶手段との最初のアクセス時に、前記固定記憶手段に記憶された前記フラグテーブルが前記可変記憶手段に書き込まれる、
    請求項1に記載したエンジン装置。
  3.  前記複数の再生モードとして少なくとも、前記排気ガス浄化装置が再生可能な条件下で前記エンジンを駆動させる自己再生モードと、前記排気ガス浄化装置の詰まり程度が規定水準を超えた場合に自動的に排気ガスを昇温させる自動補助再生モードと、手動操作手段の入り操作によって前記排気ガス浄化装置の再生を許可する手動補助再生モードとを備えている、
    請求項1又は2に記載したエンジン装置。
  4.  前記汎用再生プログラムを実行するにあたり、前記排気ガス浄化装置の再生に関連するエンジン補機の故障診断の要否が前記フラグテーブルに対応して選択される、
    請求項1~3のうちいずれかに記載したエンジン装置。
PCT/JP2011/053389 2010-03-05 2011-02-17 エンジン装置 WO2011108366A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180011538.7A CN102859163B (zh) 2010-03-05 2011-02-17 发动机装置
US13/581,650 US9222428B2 (en) 2010-03-05 2011-02-17 Engine device
KR1020127023237A KR101743093B1 (ko) 2010-03-05 2011-02-17 엔진 장치
EP11750478.7A EP2543858B1 (en) 2010-03-05 2011-02-17 Engine device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010048792A JP5307056B2 (ja) 2010-03-05 2010-03-05 エンジン装置
JP2010-048792 2010-03-05

Publications (1)

Publication Number Publication Date
WO2011108366A1 true WO2011108366A1 (ja) 2011-09-09

Family

ID=44542028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053389 WO2011108366A1 (ja) 2010-03-05 2011-02-17 エンジン装置

Country Status (6)

Country Link
US (1) US9222428B2 (ja)
EP (1) EP2543858B1 (ja)
JP (1) JP5307056B2 (ja)
KR (1) KR101743093B1 (ja)
CN (1) CN102859163B (ja)
WO (1) WO2011108366A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912487B2 (ja) * 2011-12-14 2016-04-27 株式会社クボタ 作業機
JP5643389B2 (ja) * 2013-06-26 2014-12-17 ヤンマー株式会社 エンジン装置
WO2015129046A1 (ja) * 2014-02-28 2015-09-03 株式会社小松製作所 後処理装置の管理装置、作業車両、管理システムおよび後処理装置の管理方法
US20220279718A1 (en) * 2021-03-04 2022-09-08 Deere & Company State-based mechanism for performing engine regeneration procedure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145430A (ja) 1998-11-13 2000-05-26 Ibiden Co Ltd 排気ガス浄化装置
JP2003027922A (ja) 2001-07-13 2003-01-29 Ibiden Co Ltd 排気ガス浄化装置
JP2008297969A (ja) * 2007-05-31 2008-12-11 Denso Corp 内燃機関の排気浄化装置
JP2009257264A (ja) * 2008-04-18 2009-11-05 Yanmar Co Ltd 排気浄化装置
JP2009257220A (ja) * 2008-04-17 2009-11-05 Yanmar Co Ltd ディーゼルエンジン用排気浄化装置
JP2009287456A (ja) * 2008-05-29 2009-12-10 Mitsubishi Fuso Truck & Bus Corp 排気絞り弁の故障診断装置
JP2010281311A (ja) * 2009-06-08 2010-12-16 Yanmar Co Ltd ディーゼルエンジン

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3580606D1 (de) * 1984-03-31 1991-01-03 Mitsubishi Motors Corp Regenerationssystem fuer eine diesel-partikel-oxydierungseinrichtung.
DE3802241A1 (de) * 1988-01-27 1989-08-10 Opel Adam Ag Elektronisches steuergeraet fuer kraftfahrzeuge
JP3442806B2 (ja) * 1993-01-08 2003-09-02 富士重工業株式会社 ジョブの優先処理方法
JP3864910B2 (ja) * 2003-01-10 2007-01-10 日産自動車株式会社 内燃機関の排気浄化装置
JP4386265B2 (ja) 2004-03-19 2009-12-16 日立建機株式会社 建設機械の操作パターン切換装置及び建設機械の操作パターン切換システム
JP4161932B2 (ja) * 2004-04-09 2008-10-08 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP4447510B2 (ja) * 2005-05-13 2010-04-07 本田技研工業株式会社 内燃機関の排ガス浄化装置
US7587892B2 (en) * 2005-12-13 2009-09-15 Cummins Ip, Inc Apparatus, system, and method for adapting a filter regeneration profile
JP4694402B2 (ja) * 2006-04-07 2011-06-08 富士重工業株式会社 ディーゼルエンジンの排気浄化装置
US7793492B2 (en) * 2007-02-27 2010-09-14 International Truck Intellectual Property Company, Llc Diesel engine exhaust after-treatment operator interface algorithm
JP4100451B1 (ja) * 2007-03-02 2008-06-11 いすゞ自動車株式会社 排気ガス浄化方法及び排気ガス浄化システム
WO2010016077A1 (en) * 2008-08-08 2010-02-11 Pirelli & C. Eco Technology S.P.A. Method and device for controlling the regeneration of a particulate filter
US8474247B2 (en) * 2009-03-18 2013-07-02 GM Global Technology Operations LLC Particulate filter regeneration post-injection fuel rate control
JP5155979B2 (ja) * 2009-10-21 2013-03-06 ヤンマー株式会社 ディーゼルエンジン
JP5562697B2 (ja) * 2010-03-25 2014-07-30 三菱重工業株式会社 Dpfの再生制御装置、再生制御方法、および再生支援システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145430A (ja) 1998-11-13 2000-05-26 Ibiden Co Ltd 排気ガス浄化装置
JP2003027922A (ja) 2001-07-13 2003-01-29 Ibiden Co Ltd 排気ガス浄化装置
JP2008297969A (ja) * 2007-05-31 2008-12-11 Denso Corp 内燃機関の排気浄化装置
JP2009257220A (ja) * 2008-04-17 2009-11-05 Yanmar Co Ltd ディーゼルエンジン用排気浄化装置
JP2009257264A (ja) * 2008-04-18 2009-11-05 Yanmar Co Ltd 排気浄化装置
JP2009287456A (ja) * 2008-05-29 2009-12-10 Mitsubishi Fuso Truck & Bus Corp 排気絞り弁の故障診断装置
JP2010281311A (ja) * 2009-06-08 2010-12-16 Yanmar Co Ltd ディーゼルエンジン

Also Published As

Publication number Publication date
CN102859163A (zh) 2013-01-02
US9222428B2 (en) 2015-12-29
JP2011185109A (ja) 2011-09-22
KR20130037662A (ko) 2013-04-16
EP2543858B1 (en) 2020-04-01
CN102859163B (zh) 2015-06-17
US20120330531A1 (en) 2012-12-27
EP2543858A1 (en) 2013-01-09
JP5307056B2 (ja) 2013-10-02
EP2543858A4 (en) 2016-06-08
KR101743093B1 (ko) 2017-06-02

Similar Documents

Publication Publication Date Title
JP5839784B2 (ja) 排気ガス浄化システム
JP5828579B2 (ja) 作業機の排気ガス浄化システム
KR101802224B1 (ko) 배기가스 정화 시스템
JP5307056B2 (ja) エンジン装置
JP2011256767A (ja) 作業機の排気ガス浄化システム
KR101774303B1 (ko) 배기가스 정화 시스템
JP2016166537A (ja) エンジン、及び当該エンジンを備えた作業車両
JP5828578B2 (ja) 排気ガス浄化システム
JP5643389B2 (ja) エンジン装置
JP5667783B2 (ja) 排気ガス浄化システム
JP2013241936A (ja) エンジン装置
JP5828577B2 (ja) 排気ガス浄化システム
JP5710891B2 (ja) 排気ガス浄化システム
JP5667784B2 (ja) 排気ガス浄化システム
JP2014238091A (ja) 排気ガス浄化システム
JP5731047B2 (ja) エンジン装置
JP5788148B2 (ja) 作業機の排気ガス浄化システム
JP2015083840A (ja) 作業機
JP2016026281A (ja) 作業機
JP2011127518A (ja) エンジン装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011538.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750478

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13581650

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127023237

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011750478

Country of ref document: EP