WO2011105732A2 - Method and kit for detecting egfr mutation by using pna-based real-time pcr clamping - Google Patents

Method and kit for detecting egfr mutation by using pna-based real-time pcr clamping Download PDF

Info

Publication number
WO2011105732A2
WO2011105732A2 PCT/KR2011/001157 KR2011001157W WO2011105732A2 WO 2011105732 A2 WO2011105732 A2 WO 2011105732A2 KR 2011001157 W KR2011001157 W KR 2011001157W WO 2011105732 A2 WO2011105732 A2 WO 2011105732A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
clamping
pna
egfr
present
Prior art date
Application number
PCT/KR2011/001157
Other languages
French (fr)
Korean (ko)
Other versions
WO2011105732A3 (en
Inventor
박희경
최재진
조민혜
Original Assignee
주식회사 파나진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파나진 filed Critical 주식회사 파나진
Publication of WO2011105732A2 publication Critical patent/WO2011105732A2/en
Publication of WO2011105732A3 publication Critical patent/WO2011105732A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/107Modifications characterised by incorporating a peptide nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2549/00Reactions characterised by the features used to influence the efficiency or specificity
    • C12Q2549/10Reactions characterised by the features used to influence the efficiency or specificity the purpose being that of reducing false positive or false negative signals
    • C12Q2549/126Reactions characterised by the features used to influence the efficiency or specificity the purpose being that of reducing false positive or false negative signals using oligonucleotides as clamps

Definitions

  • the present invention is a real-time PCR based on PNA (Peptide Nucleic Acid, hereinafter 'PNA')
  • PNA probes that specifically bind to the wild type for detection of substitution are listed in Table 1 below.
  • It relates to a method for selectively detecting only a small amount of a mutant form by inhibition and a kit for use in the method.
  • Lung cancer one of the leading causes of cancer-related death, is epithelial cell carcinoma.
  • a type of cancer is a disease characterized by abnormally accelerated growth of epithelial cells.
  • Prostate cancer, breast cancer, colon cancer, pancreatic cancer, ovarian cancer, spleen cancer, testicular cancer, thymic cancer, etc. are included in the epithelial cell cancer. Accelerated growth of epithelial cells may initially lead to tumorigenesis and metastasis to other organ sites.
  • Lung cancer is the second most common form of prostate cancer in men and second only in breast cancer in women. Cancer that begins in the lungs is divided into two major types, depending on how the cancer cells look on the microscope
  • non-small cell lung cancer e.g. adenocarcinoma
  • small cell lung cancer e.g adenocarcinoma
  • NSCLC non-small cell lung cancer
  • Most lung carcinomas have a poor prognosis because they are difficult to detect early and are usually diagnosed in advanced conditions.
  • chemotherapy offers benefits in terms of survival, but with significant side effects, the need for therapeutic agents that specifically target significant genetic damage involved in tumor growth is emphasized [Schiller JH et al., N Engl. J. Med., 346: 92-98, 2002.
  • EGFR EGFR Receptor
  • EGFR is a member of the family of receptor family members of the protein tyrosine kinase, a class of cell cycle regulators (WJ GuUick et al., 1986, Cancer Res., 46: 285-292). EGFR is activated when its ligand (EGF or TGF- ⁇ ) binds to the extracellular domain, and as a result, the intracellular tyrosine kinase domain of the receptor causes autophosphorylation [S. Cohen et al., 1980, J. Biol. Chem., 255: 4834-4842; AB Schreiber et al., 1983, J. Biol. Chem.,
  • EGFR epidermal growth factor receptor
  • EGFR-TKIs EGFR tyrosine kinase inhibitors
  • EGFR-TKIs block cell surface receptors that are responsible for triggering or maintaining the signaling pathways of cells that cause tumor cells to grow and differentiate.
  • HER-1 EGFR kinase domain
  • Gefitinib Compound ZD1839 developed by AstraZeneca UK Ltd.
  • Erlotinib (compound OSI774 developed by Genentech, Inc. and OSI Pharmaceuticals, Inc .; available under the trade name TARCEVA; hereafter "Taceba”), both of which show encouraging clinical results.
  • Conventional cancer treatment methods using this resana thaceba are daily oral administration of each compound in an amount of no greater than 500 mg. The company was approved in May 2003 for the treatment of patients with advanced non-small cell lung cancer, the first of these products to enter the US market.
  • This resa is an orally active quinazoline that works by directly inhibiting the phosphorylation of tyrosine kinases on EGFR molecules. It acts competitively on the binding site of adenosine triphosphate (ATP), which leads to inhibition of the HER-kinase axis.
  • ATP adenosine triphosphate
  • TKI tyrosine kinase inhibitor
  • the assay has the advantage of identifying the amount of the mutant inherent because it is semi-quantitatively analyzed for identifying heat [Agaton et al., Gene. 289: 3-39, 2002; Kim et al., Diagn Mol Pathol. 17: 118-125, 2008.
  • the pyrosequencing method has a disadvantage of requiring expensive analysis costs because it requires expensive equipment.
  • PNA PNA probe that specifically binds to a wild type to inhibit amplification of a large amount of wild type. Clamping techniques have been developed.
  • PNA was first reported in 1991 as analogous DNA with nucleic acid bases linked by peptide bonds rather than phosphate bonds [Nielsen et al., Science, 254: 1497-1500, 1991].
  • PNAs are synthesized by chemical methods and are not found in nature. PNAs form hybridized strands by hybridization with complementary base sequences of natural nucleic acids.
  • PNA / DNA strands can be formed with the same number of nucleotide groups.
  • PNA / RNA strands are more stable than DNA / DNA strands.
  • the basic skeleton of PNA is
  • N- (2-aminoethyl) glycine is most commonly linked repeatedly by amide bonds, in which case the backbone of the peptide nucleic acid is electrically neutral, unlike the base skeleton of a negatively charged natural nucleic acid.
  • the four nucleobases present occupy a space similar to the nucleotide groups of DNA, and the distances between the nucleotide groups are nearly the same as those of natural nucleic acids.
  • PNA is not only chemically more stable than natural nucleic acid but also biologically stable because it is not degraded by nuclease or protease. Since PNA is also electrically neutral, the stability of PNA / DNA and PNA / RNA double strands is not affected by salt concentration.
  • PNA can recognize complementary nucleotide sequences better than natural nucleic acids and can therefore be used for diagnostic or other biological and medical purposes.
  • the PNA clamping technique takes advantage of the above-described advantages of PNA so that when the PNA probe is fully bound, the amplification reaction does not occur because the amplification reaction does not occur and if there is a point mutation, the amplification reaction occurs.
  • As a method of utilizing the principle it is widely used to detect a very small amount of mutations compared to wild type quickly and accurately.
  • the EGFR mutation detection technique using PNA includes a technique of detecting PNA using a gene scan or Taqman probe [US 2010/0009360 A1, Jan. 14, 2010]. Provides only examples using 17mer of EGFR gene heavy loss 19 deletion, 15mer of axon 21 L858R mutation, 14mer PNA probe of exon 20 T790M mutation, and the method using gene scan or Taqman probe to distinguish mutations. In addition to clamping probes, it contains a large number of probes with donor fluorophores and acceptors that can detect fluorescence for measuring the melting curve, which increases the cost of analysis and requires expensive equipment. There is a problem.
  • the present inventors have to use a long (15 to 30mer, especially 16 to 27mer) PNA clamping probe to detect variants with only amplification cycle differences with their livestock, making them easier to detect than variants using gene scan or taqman probes. In addition, it completely reduces the amplification of a large amount of wild-type, thereby increasing the detection sensitivity of the variant.
  • the present invention was completed by developing an EGFR mutation detection technique using detectable PNA-based real-time PCR clamping.
  • An object of the present invention is to provide a method for detecting EGFR mutation using PNA-based real-time PCR clamping.
  • Another object of the present invention is EGFR using PNA-based real time PCR clamping
  • a set of clamping primers to amplify a site comprising 21 nucleotides of wild type codon 858 or 861, and a PPT (Peptide Nucleic Acid) clamping probe having a length of 15 to 30mer that completely binds to the wild type gene recited at each of the codon sites Performing real-time polymerase chain reaction (PCR) on the EGFR gene in the presence of;
  • the present invention relates to a method for detecting a kinase domain mutation of an EGFR gene.
  • the second aspect of the present invention relates to a method for detecting a kinase domain mutation of an EGFR gene.
  • kit for use in a method for detecting a kinase domain mutation of the EGFR gene comprising:
  • the PNA probe according to the present invention is very useful for biological enzymes and physical elements.
  • the EGFR gene mutation detection method according to the present invention can quickly and accurately examine tumors such as prostate cancer, breast cancer, colon cancer, pancreatic cancer, ovarian cancer, spleen cancer, testicular cancer, thymic cancer and lung cancer. It will enable efficient treatment due to early cancer diagnosis.
  • Figure 1 shows the screening of probes for detecting EGFR axon 18 codon 719 mutations.
  • the PNA probes of SEQ ID NOs: 6 to 10 are graphs comparing detection sensitivity (: t ) according to probes.
  • [25] (G719A; mutant clone substituted with cytosine at axon 18 codon 719 guanine, G19S: mutant clone standard substituted with adenine at exon 18 codon 719 guanine, G19S: mutant clone substituted with thymine at axon 18 codon 719 guanine Standards)
  • Figure 2 shows the selection of a probe for detecting an EGFR axon 19 gene deletion.
  • FIG. 3 shows EGFR exon 20 2307_2308 CCAGCGTGG gene (a), EGFR axon 20
  • FIG. 4 is a graph comparing detection sensitivity (AC t ) according to probes using PNA probes of SEQ ID NOs: 61 and 62 in the selection of probes for detecting EGFR axon 20 codon 768 mutations. ;
  • FIG. 5 is a graph comparing detection sensitivity (AC t ) according to a probe using a PNA probe of SEQ ID NOs: 69 to 74 in the selection of a probe for detecting an EGFR exon 20 codon 790 mutation. ;
  • Figure 6 shows EGFR exon 21 codon 858 mutation (a) and EGFR exon 21 codon 861
  • FIG. 7 is a real-time PCR curve image (a) showing the detection sensitivity according to the deletion mutation concentration of the EGFR exon 19 gene and EGFR axon 19 gene by real-time PCR using the PNA probe of SEQ ID NO: 20 of the present invention Inclusion of deletion mutations It is a graph comparing detection sensitivity (b) according to the concentration,
  • Figure 10 shows a PNA probe of the prior art for cell lines with EGFR mutations.
  • the present invention uses PNA-based real-time PCR clamping to detect kinase domain mutations of the EGFR gene.
  • PNA clamping probes were designed and constructed for the detection of in frame deletions or substitutions in kinase domains of EGFR listed in Table 1 in exon 18, 19, 20 or 21.
  • the PNA probes of the present invention are perfectly matched with mutations of EGFR axons 18 19, 20 and 21 and perfectly matched to wild-type gene sequences where deletions, insertions and substitutions of genes occur. , Preferably 15 to 30, more preferably 16 to 27 sequences.
  • the PNA probe of the present invention is preferably designed so that mutations of EGFR axons 18, 19, 20, and 21, and regions in which deletions and substitutions of genes occur are located in the center of the probes and the sequences thereof have sequences of wild-type genes.
  • the PNA probe of the present invention may be any one of SEQ ID NOs 1 to 91 shown in Table 2 below. It can be composed of sequence sequences.
  • PNA probe sequences within the range that can be easily modified by those skilled in the art from the base sequence using the common knowledge should be considered to be within the scope of the present invention, the present invention as a PNA probe having a length of 16mer or more As long as it is possible to effectively detect mutants of EGFR axons 18, 19, 20 or 21, and deletions, insertions and substitutions of genes using only PNA clamping real-time PCR according to the present invention, the scope of the present invention. It is included in.
  • SEQ ID Nos. 1 to 10 are probes for completely binding with wild type of codon 719 of EGFR exon 18 to inhibit wild type amplification and to detect mutations.
  • the mutation in the detected exon 18 was substituted with guanine at nucleotide 2155 with thymine or adenine, with wild type glycine at codon 719 with cysteine or serine and guanine at nucleotide 2156.
  • the wild type glycine of codon 719 is substituted with alanine.
  • SEQ ID NOS: 1 to 10 are designed to specifically localize to the 2146-2166 base, including codon 719 of EGFR axon 18.
  • SEQ ID NOs: 11-26 are probes for completely binding with the wild type of the codons 746-759 portion of EGFR axon 19 to inhibit wild type amplification and detect mutations.
  • Gene mutations present in the axon 19 of the EGFR include the deletion of codons 746 to 759, including the deletion of 9, 12, 15, 18 nucleotides in nucleotides 2235 to 2258, or at the same time as the deletion of the nucleotides do.
  • SEQ ID NOS: 11-26 are designed to specifically localize to bases 2233-2260 including the codons 746-759 of EGFR axon 19.
  • SEQ ID NOs: 27-59 are probes for completely binding with wild type of codons 767-7 of EGFR axon 20 to inhibit wild type amplification and detect mutations.
  • the gene mutation present in the EGFR exon 20 includes the insertion of CCAGCGTGG between nucleotides 2307 and nucleotides 2308, insertion of cytosine, adenine and cytosine (CAC) between nucleotides 2319 and nucleotides 2320 (2319_2320 ins CAC), and Guanine, guanine, and between nucleotide 2310 and nucleotide 2311
  • Thymine is inserted.
  • SEQ ID NOs: 27-59 are specific for bases 2292-2330 comprising the codons 767-7 of EGFR axon 20
  • SEQ ID NOs: 60-65 are probes for completely binding to the wild type of codon 768 of EGFR exon 20 to inhibit amplification of the wild type and to detect mutations.
  • the mutation present in the EGFR exon 20 is a guanine of nucleotide 2303 is substituted with thymine. As a result of this substitution, an amino acid is substituted, and the wild-type serine of amino acid 768 is replaced with isoleucine.
  • SEQ ID NOs: 60-65 are designed to specifically localize to the 2292-2315th base, including codon 768 of EGFR axon 20.
  • SEQ ID NOs 66-78 perfectly bind the wild type of codon 790 of EGFR axon 20 to inhibit wild type amplification and Probe for detection. Mutations in codon 790 of EGFR axon 20 include the substitution of thymine for cytosine at nucleotide 2369, which replaces the amino acid, replacing the threonine, a wild type of amino acid 790, with methionine. SEQ ID NOs 66-78 are designed to specifically localize to 2359-2380th base, including codon 790 of EGFR axon 20.
  • SEQ ID NOs: 79-91 are probes that bind perfectly with the wild types of codons 858 and 861 of EGFR axon 21 to inhibit amplification of the wild type and detect mutations.
  • Substitution of the gene includes mutations in axon 21 of EGFR including substitution of at least one amino acid, including substitution of thymine of nucleotide 2573 with guanine.
  • substitution at axon 21 also includes the substitution of thymine at nucleotide 2582 with adenine, and as a result of this substitution, the wild type leucine of amino acid 861 is replaced with glutamine.
  • SEQ ID NOs: 79-91 are designed to specifically localize to bases 2567-2589 including codons 858 and 861 of EGFR exon 21.
  • Codons 858 and 861 of exon 21 by applying a probe of SEQ ID NOs: 89 to 91
  • the PNA probe of the present invention may include a hydrophilic functional group at the N-terminus or C-terminus to increase reaction efficiency and solubility.
  • a hydrophilic linker or a hydrophilic amino acid at the N-terminus or C-terminus Or one to several amine groups [7 Chem Technol Biotechnol 81: 892-899, 2006; Tetrahedron Lett 39: 7255-7258, 1998; Proc Natl Acad Sci USA 99: 5953-5958, 2002; Anal Chem 69: 5200-5202, 1997].
  • a PNA probe having one lysine attached to the N-terminus is used.
  • the PNA oligomer used in the present invention is a PNA monomer protected by Bts (Benzothiazolesulfonyl) group according to the method of Korean Patent No. 464,261, or known
  • EGFR gene clamping primer refers to suppression of amplification of wild-type genes that are perfectly bound to PNA probes, and to perfection with ⁇ probes. It refers to a CR primer that amplifies a mutant gene that is not bound (ie, a mismatch is present).
  • the clamping primer of the present invention is not particularly limited, but in order to detect mutations with higher sensitivity and specificity, a portion of the clamping primer overlaps the PNA probe in one direction and the other in the other direction based on the PNA clamping probe. Including the site to be detected, it is preferable to devise in consideration of the size of the PCR amplification product. In addition, considering 7 ⁇ with the PNA probe, the length is between 17mer and 30mer, especially between 17mer and 24mer, and it is preferable to design lower than the T m of the PNA probe. In order to maximize diagnostic sensitivity and specificity, it is desirable to design to include just before the base of the mutation in the PNA clamping probe sequence that complementarily binds to the wild type. According to a specific example, the clamping primers of 17mer to 30mer, especially 17mer to 24mer, were designed to include PNA probes of column numbers 1 to 91 and 3 to 12 base sequences.
  • the forward primer of SEQ ID NO: 103 illustrated in the present invention is designed to specifically recognize the upstream partial base of codon 719 of the EGFR gene axon 18 of SEQ ID NOs: 1-10.
  • the reverse primer of SEQ ID NO: 102 in combination with the forward primer of SEQ ID NO: 103 exemplified in the present invention is designed to specifically recognize the 64th to 83rd bases of the 18 region of the EGFR gene intron.
  • the forward and reverse primers of SEQ ID NOs: 106 to 1 10 are designed to specifically recognize upstream partial bases of the deletion of the EGFR gene exon 19 of SEQ ID NOs: 11 to 26.
  • the reverse primer of SEQ ID NO: 105 in combination with the forward primers of SEQ ID NOs: 106 to 109 exemplified in the present invention is designed to specifically recognize the 56th to 75th base of the 19 region of the EGFR gene intron.
  • the forward primer of SEQ ID NO: 104 in combination with the reverse primer of SEQ ID NO: 110 was designed to specifically recognize the 7th to 26th bases of the 19 site of the EGFR gene intron.
  • the forward primers of SEQ ID NOs 114-120 are designed to specifically recognize the gene insertion of the EGFR gene exon 20 of SEQ ID NOs 27-78 and the upstream partial bases of codons 768, 790.
  • the reverse primer of SEQ ID NO: 113 in combination with the forward primers of SEQ ID NOs: 114 to 120 illustrated in the present invention is designed to specifically recognize the 119th to 138th bases of the 20 region of the EGFR gene exon.
  • the forward primers of SEQ ID NOs: 122 and 123 are designed to specifically recognize the upstream partial bases of gene codons 858 and 861 of the EGFR gene axon 21 of SEQ ID NOs: 79-91.
  • the reverse primer of SEQ ID NO: 121 is designed to specifically recognize the 16th to 35th bases of the 21 region of the EGFR gene intron.
  • the length of the primer is between 17mer and 30mer, in particular between 17mer and 24mer, respectively. It is designed to be 50 bp to 500 bp in size.
  • the forward primers of SEQ ID NOs: 95 and 101, 104, and 111 provided in the present invention for gene identification by sequencing of axons 18 and 19 of the EGFR gene are -159 of the EGFR gene intron 18 site.
  • 9-28th base of 18-axon 18, 7-26th base of 19-axon 19, and -197--178th base of 19 intron 19 sites was designed to specifically recognize the 165th to 184th base of the 18 region of the EGFR gene intron at SEQ ID NO. 96, and the primer length was designed to be between 17mer and 30mer, especially between 17mer and 24mer.
  • These primers were designed to be combined so that the size of the amplification product was 400 bp to 1500 bp.
  • the forward primers of SEQ ID NOs: 97 and 1 12 provided in the present invention are -200 to -181 bases of the EGFR gene intron 20 region. And it is designed to specifically recognize the -95 to -77th base of the intron 20 site, the reverse primer in combination with the primer is specifically SEQ ID NO: 98 to 170 to 189 base of the intron 20 site of the EGFR gene It was designed to recognize and the primer length was designed between 17mer and 30mer, especially between 17mer and 24mer. These primers were designed to be combined so that the size of the amplification product was 300 bp to 700 bp.
  • the forward primer of SEQ ID NO: 99 provided in the present invention specifically targets the -28 to -9th bases of the intron 21 region of the EGFR gene. It was designed to recognize, and the reverse primer in combination with the primer to specifically recognize the 259 to 278 base of the 21 region of the EGFR gene intron at SEQ ID NO: 100
  • the length of the primer is designed to be between 17mer and 30mer, especially between 17mer and 24mer. These primers were designed to be combined so that the size of the amplification product was 300 bp to 700 bp.
  • the properties of each primer are summarized in Table 3 below.
  • a set of clamping primers to amplify a site comprising 21 nucleotides of wild type codon 858 or 861, and 15 to 15 completely binding to a wild type gene floating at each of said codon sites Performing real-time polymerase chain reaction (PCR) on the EGFR gene in the presence of a Peptide Nucleic Acid (PNA) clamping probe having a length of 30mer;
  • PNA Peptide Nucleic Acid
  • nucleic acid extraction there is no particular limitation on nucleic acid extraction in the present invention, any nucleic acid extraction method can be used in general, using a commercially available nucleic acid extraction kit to extract DNA from the patient's blood or tumor samples to prepare.
  • the kinase domain mutation of the EGFR gene of the present invention is a substitution of axon 18 G719X;
  • the PNA clamping probe of step (1) is 16 to 27mer
  • It consists of a base sequence of length, and includes any one selected from column numbers 1 to 91.
  • a primer comprising at least one primer selected from SEQ ID NOs: 103, 106-109, 114-120, 122, and 123, preferably selected from SEQ ID NOs: 103, 108, 115, 118-120, and 122 It is any one or more primers, and includes the primer of SEQ ID NO: 110 as the reverse primer.
  • the PNA clamping probe of step (1) of the present invention includes an N-terminal or C-terminal hydrophilic functional group, and the PNA clamping probe in the reaction product of real-time PCR clamping has a final concentration of 1 to 1000 nM. desirable.
  • the present invention detects mutations in the EGFR gene using a real-time PCR clamping method.
  • the amount of initial sample in which exponential amplification occurs is represented by the number of cycles (hereinafter referred to as the cycle threshold) at which an exponential increase in fluorescence is detected. Can be analyzed in real time.
  • the step of measuring the intensity with an image analyzer is omitted, and the method of amplifying the amplification product can be quickly and easily diagnosed by automating and quantifying.
  • the fluorescence is detected by using an intercalator method.
  • a fluorescent label binds to the amplified double-stranded DNA to emit fluorescence. The amount of produced is measured.
  • a DNA-binding fluorophore used in a real-time gene detection method is used as a fluorescent material to identify a gene amplification product, and there is no particular limitation on the type thereof.
  • SYBR Green I Evergreen, EtBr, BEBO, YO-PRO-1, TO-PRO-3, LC Green, SYTO-9, SYTO-13, SYTO-16 , SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO-3, SYTOX Orange
  • SYBR Green I Evergreen, EtBr, BEBO, YO-PRO-1, TO-PRO-3, LC Green, SYTO-9, SYTO-13, SYTO-16 , SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO-3, SYTOX Orange
  • Gi / i et al Nucleic Acids Res. 35 (19): el27
  • the present invention uses real-time PCR and PNA-based real-time PCR clamping
  • Prostate cancer breast cancer, colon cancer, pancreatic cancer, ovarian cancer, spleen cancer, testicular cancer, thymic cancer,
  • It can be used to treat or diagnose one or more cancers selected from lung cancer, and can be very useful for studying the mechanisms involved in the EGFR signaling system. It can also be effectively applied to studies that require large sample analysis, such as population-based studies.
  • PNA probes that perfectly bind to the exon 18, 19, 20 and 21 mutations of the EGFR gene and the wild type of deletion, insertion and substitution of the gene were constructed as shown in Table 2 above. Probes that fully bind the wild type of each codon are designed so that the base sequence of mutation occurs in the middle of the probe for effective isolation from the mutation. PNA probes were synthesized according to the method described in Korean Patent No. 464261 [Lee et al, Org Lett, 9: 3291-3293, 2007].
  • the primers include a set of primers consisting of SEQ ID NOs: 95 and 96 for identifying wild type and mutant genes of EGFR axons 18 and 19 and a set of primers consisting of SEQ ID NOs: 101 and 102 for identifying genes of codon 719 of exon 18.
  • the reverse primer used for clamping of the The designed reverse primers of SEQ ID NO: 105 were used identically.
  • One set of primers consisting of SEQ ID NOs: 97 and 98 and one set of primers consisting of SEQ ID NOs: 112 and 113, gene insertion of EGFR axon 20 of SEQ ID NOs 114-120 and codons 768 and 790 to identify the gene Clamping primer
  • the reverse primers used for the gene insertion of EGFR exon 20 and clamping codons 768 and 790 are identical to the reverse primers of SEQ ID NO: 113 designed to identify the gene insertion of EGFR axon EGFR axon 20 and codons 768 and 790 genes. Used.
  • Kits (Stratagene, USA) were used to obtain clones with the variant genes.
  • the obtained clone was confirmed by its sequence analysis for its mutation.
  • cell lines were distributed from the US Standard Cell Line Bank and the Korea Cell Line Bank.
  • the wild-type cell line A549 (genomic DNA) human lung cancer cell line [KCLB10185, Korea Cell Line Bank (KCLB), Seoul, South Korea] was distributed and the mutant cell lines shown in Table 4 are the Korea Cell Line Bank and
  • the distributed cell line was RPMI1640 (Hyclone, Thermo scientific, USA) and 10% heat-inactivated fetal bovine serum (FBS, Hyclone, Thermo scientific, USA) and IX
  • Penicillin-streptomycin (Welgene, Korea) was added to the culture medium was maintained in 37 ° C, 5% carbon dioxide (C0 2 ) using a medium.
  • the cultured cell line was extracted with DNA using a High Pure PCR Template Preparation Kit (Roche, USA) to obtain a target nucleic acid.
  • the obtained nucleic acid was quantified using a nanodrop spectrophotometer (ND 2000C, Thermo Scientific, USA) and stored at -20 ° C.
  • the total DNA isolated from the human cell lines thus received were respectively set of the primer sets of SEQ ID NOs: 95 and 96 and the primer sets of SEQ ID NOs: 97 and 98, listed in Table 3, SEQ ID NOs: 99 and 100.
  • a primer set was applied to amplify the genes of the EGFR axons 18, 19, 20 and 21 portions.
  • the amplified PCR product was purified using Labopass TM PCR purification kit (Cosmogenetech, Korea) and analyzed for sequencing to confirm genotype. Wild type and mutant cell lines confirmed genotype was used as a sample of the real-time PCR clamping method using the PNA probe of the present invention.
  • Mutations in the genes were made to contain 50 ng, 20 ng, 10 ng, 5 ng, and 1 ng, respectively, and the correlation between the Ct values according to the concentration of the mutant genes was analyzed to confirm the detection limit of the mutant.
  • the ⁇ value When using the SEQ ID NO: 94 probe, the ⁇ value may be increased depending on the presence of mutation or increase in concentration. Compared to the fact that it was difficult to detect mutants because there was no difference (that is, the ⁇ value is small), the ⁇ value due to the presence of the mutant when using the ⁇ probe according to the present invention. As the concentration of increased, the ⁇ value decreased constantly, and the mutation could be effectively detected.
  • SEQ ID NO: 93 Probe The detection sensitivity is similar to the ⁇ probe according to the present invention, but the mutant detection of the present invention exhibits a slightly higher ⁇ value, and is mixed at a rate of 1% using the ⁇ probe according to the present invention. The presence of mutations could be detected.
  • SEQ ID NO: 1 shows a PNA clamping probe for detection of mutants o of the present invention.
  • SEQ ID NO: 2 is a PNA clamping probe for detection of mutations of the present invention.
  • SEQ ID NO: 3 shows a PNA clamping probe for detection of mutants o of the present invention.
  • SEQ ID NO: 4 shows a PNA clamping probe for detection of mutants o of the present invention.
  • SEQ ID NO: 5 shows a PNA clamping probe for the detection of mutants o of the present invention.
  • SEQ ID NO: 6 is a PNA clamping probe for detection of mutations of the present invention.
  • SEQ ID NO: 7 shows a PNA clamping probe for detection of mutants o of the present invention.
  • SEQ ID NO: 8 shows a PNA clamping probe for detection of mutations of the present invention.
  • SEQ ID NO: 9 shows a PNA clamping probe for detecting mutation 0 of the present invention.
  • SEQ ID NO: 10 shows a PNA clamping probe for mutation detection of the present invention.
  • SEQ ID NO: 11 shows a PNA clamping probe for mutation detection of the present invention.
  • SEQ ID NO: 12 shows a PNA clamping probe for mutation detection of the present invention.
  • SEQ ID NO: 13 shows a PNA clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 14 shows a PNA clamping probe for mutation detection of the present invention.
  • SEQ ID NO: 15 shows the ⁇ clamping probe for the detection of a mutation of the present invention.
  • SEQ ID NO: 16 shows a ⁇ clamping probe for detecting a mutation of the present invention.
  • SEQ ID NO 17 shows a ⁇ clamping probe for detection of mutations of the present invention.
  • SEQ ID NO: 18 shows a ⁇ clamping probe for detection of mutations of the present invention.
  • SEQ ID NO: 19 shows a ⁇ clamping probe for the detection of a mutation of the present invention.
  • SEQ ID NO: 22 shows a ⁇ clamping probe for detecting a mutation of the present invention.
  • SEQ ID NO: 23 shows a ⁇ clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 24 shows the ⁇ clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 25 shows a ⁇ clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 26 shows a ⁇ clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 27 shows the ⁇ clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 28 shows the ⁇ clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 29 shows a ⁇ clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 30 shows the ⁇ clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 31 shows the ⁇ clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 32 shows the ⁇ clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 33 shows the ⁇ clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 34 shows a PNA clamping probe for detecting mutation 0 of the present invention.
  • SEQ ID NO: 35 shows a PNA clamping probe for detection of a mutation of the present invention.
  • SEQ ID NO: 36 shows a PNA clamping probe for detecting mutation 0 of the present invention.
  • SEQ ID NO: 37 shows a PNA clamping probe for detecting a mutation of the present invention.
  • SEQ ID NO: 38 shows a mutant o of the present invention: PNA clamping probe for detection.
  • SEQ ID NO: 39 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 40 shows a PNA clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 41 is a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 42 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 43 shows a PNA clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 44 shows a PNA clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 45 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 46 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 47 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 48 shows PNA clamping probe for mutation detection of the present invention.
  • SEQ ID NO: 49 is a PNA clamping probe for mutant detection of the present invention.
  • Sequence Listing 50 shows PNA clamping probes for detecting mutations of the present invention.
  • SEQ ID NO: 51 shows a PNA clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 52 shows a PNA clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 53 shows a PNA clamping probe for detecting mutation 0 of the present invention.
  • SEQ ID NO: 54 shows a PNA clamping probe for detecting a mutation of the present invention.
  • SEQ ID NO: 55 shows a PNA clamping probe for detection of mutations of the present invention.
  • SEQ ID NO: 56 shows a PNA clamping probe for detecting a mutation of the present invention.
  • SEQ ID NO: 58 shows a PNA clamping probe for the detection of a mutation of the present invention.
  • SEQ ID NO: 59 shows a PNA clamping probe for detecting a mutation of the present invention.
  • SEQ ID NO: 60 is a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 6 shows a PNA clamping probe for mutation detection of the present invention.
  • SEQ ID NO: 62 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 63 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 64 is a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 65 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 66 is a PNA clamping probe for mutation detection of the present invention.
  • SEQ ID NO: 67 shows a PNA clamping probe for detecting a mutation of the present invention.
  • SEQ ID NO: 68 is a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 69 is a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 70 is a PNA clamping probe for mutation detection of the present invention.
  • Sequence Listing is a PNA Clamping Probe for Mutation Detection of the Invention The base sequence of T790MCS-19-3.
  • SEQ ID NO: 72 is a PNA clamping probe for detection of mutation 0 of the present invention.
  • SEQ ID NO: 73 is a PNA clamping probe for detection of mutation 0 of the present invention.
  • SEQ ID NO: 74 is a PNA clamping probe for detecting mutation 0 of the present invention.
  • SEQ ID NO: 75 shows a PNA clamping probe for detecting mutation 0 of the present invention.
  • SEQ ID NO: 76 shows a PNA clamping probe for the detection of a mutation ' of the present invention.
  • Seo ⁇ List 77 shows PNA clamping probes for detecting mutations of the present invention.
  • SEQ ID NO: 78 shows a PNA clamping probe for the detection of mutants of the present invention.
  • SEQ ID NO 79 shows a PNA clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 80 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 81 is a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 82 is a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 83 shows a PNA clamping probe for detecting a mutation of the present invention.
  • SEQ ID NO: 84 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 85 is a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 86 shows a PNA clamping probe for detecting a mutation of the present invention.
  • SEQ ID NO: 87 is a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 88 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 89 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 90 shows a PNA clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 91 shows PNA clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 92 is a base sequence of E19-patent of Comparative Example 1 according to the present invention.
  • SEQ ID NO: 93 is a nucleotide sequence of T790M-patent of Comparative Example 1 according to the present invention.
  • SEQ ID NO: 94 is the base sequence of L858R-patent of Comparative Example 1 according to the present invention.
  • SEQ ID NO: 95 shows the EGFR gene clamping primer of the present invention.
  • Sequence Listing 96 differs from the sequencing sequence of the EGFR gene clamping primer EGFR-exonl8 / 19-R of the present invention.
  • SEQ ID NO: 97 is the nucleotide sequence of the EGFR gene clamping primer EGFR-exon20-F of the present invention.
  • Sequence Listing 98 differs from the base sequence of the EGFR gene clamping primer EGFR-exon20-R of the present invention.
  • SEQ ID NO: 99 is the nucleotide sequence of the EGFR gene clamping primer EGFR-exon21-F of the present invention.
  • SEQ ID NO: 100 is the base sequence of the EGFR gene clamping primer EGFR-exon21-R of the present invention.
  • SEQ ID NO: 1 shows the EGFR gene clamping primer E18-B-F of the present invention.
  • SEQ ID NO: 102 shows the sequence of the EGFR gene clamping primer E18-B-R of the present invention.
  • SEQ ID NO: 103 is the base sequence of the EGFR gene clamping primer E18 damping of the present invention.
  • SEQ ID NO: 104 of the EGFR gene clamping primer E19-B-F of the present invention [222] SEQ ID NO: 104 of the EGFR gene clamping primer E19-B-F of the present invention.
  • SEQ ID NO: 105 shows the sequence of the EGFR gene clamping primer E19-B-R of the present invention.
  • SEQ ID NO: 106 is the base sequence of the EGFR gene clamping primer E19 clamping F ′ of the present invention.
  • SEQ ID NO: 107 is a base sequence of the EGFR gene clamping primer E19 clamping F-1 of the present invention.
  • SEQ ID NO: 108 is the base sequence of the EGFR gene clamping primer E19 clamping F-2 of the present invention.
  • SEQ ID NO: 109 is the base sequence of the EGFR gene clamping primer E19 clamping F-3 of the present invention.
  • SEQ ID NO: 110 is a nucleotide sequence of the EGFR gene clamping primer E19 clamping R of the present invention.
  • SEQ ID NO: 111 is the base sequence of the EGFR gene clamping primer E19 clamping F of the present invention.
  • SEQ ID NO: 112 shows the sequence of the EGFR gene clamping primer E20-B-F of the present invention.
  • SEQ ID NO: 113 is a fragment of the EGFR gene clamping primer E20-B-R of the present invention.
  • SEQ ID NO: 114 is a nucleotide sequence of the EGFR gene clamping primer E20 clamping F of the present invention.
  • SEQ ID NO: 115 is a nucleotide sequence of the EGFR gene clamping primer E20 clamping F-1 of the present invention.
  • SEQ ID NO: 116 is a nucleotide sequence of the EGFR gene clamping primer E2016 clamping F of the present invention.
  • SEQ ID NO: 117 is a base sequence of the EGFR gene clamping primer E2016 clamping F-1 of the present invention.
  • Sequence Listing 118 differs from the sequencing sequence of the EGFR gene clamping primer T79 () M clamping F of the present invention.
  • SEQ ID NO: 119 is a nucleotide sequence of the EGFR gene clamping primer E2016 clamping F-2 of the present invention.
  • SEQ ID NO: 120 is a nucleotide sequence of the EGFR gene clamping primer E2017 clamping F of the present invention.
  • SEQ ID NO: 121 shows the sequence of the EGFR gene clamping primer E21-B-R of the present invention.
  • SEQ ID NO: 122 is the base sequence of the EGFR gene clamping primer E21 clamping F of the present invention.
  • Sequence Listing 123 is based on the base sequence of the EGFR gene clamping primer E21 clamping F-1 of the present invention.

Abstract

The present invention relates to a method for selectively detecting only a mutant by inhibiting the amplification of wild type by using a peptide nucleic acid (PNA) probe which specifically binds to wild type of in frame deletion or substitution portions at exon 18, 19, 20 or 21 where an EGFR mutation gene exists, and a kit for using the method. It is possible to rapidly and accurately examine tumors of prostate cancer, breast cancer, colon cancer, pancreatic cancer, ovarian cancer, spleen cancer, testicular cancer, thymus cancer, lung cancer and the like in the early stages by using the present invention, thereby enabling effective treatment due to cancer diagnosis at an early stage.

Description

명세서  Specification
발명의 명칭 : P N A 기반의 실시간 P C R 클램핑을 이용한  Title of the Invention: Real-time P C R clamping based on P N A
E G F R 돌연변이 검출 방법 및 키트 기술분야  E G F R mutation detection methods and kits
[1] 본 발명은 PNA(Peptide Nucleic Acid, 이하 'PNA'라 함) 기반의 실시간 PCR  [1] The present invention is a real-time PCR based on PNA (Peptide Nucleic Acid, hereinafter 'PNA')
클램핑을 이용한 EGFR 유전자 돌연변이 검출 방법 및 키트에 관한 것으로서 , 보다 상세하게는,하기 표 1에 열거된 EGFR의 키나제 도메인에서 의 변이 액손 18, 19, 20 또는 21에서의 인프레 임 결실 (in frame deletion) 또는 치환의 검출을 위하여 야생형에 특이 적으로 결합하는 PNA 프로브가 야생형 의 증폭을  A method and kit for detecting EGFR gene mutations using clamping, and more particularly, in frame deletion at mutant axons 18, 19, 20 or 21 in the kinase domains of EGFR listed in Table 1 below. Or PNA probes that specifically bind to the wild type for detection of substitution
억제함으로써 소량의 돌연변이형만을 선택적으로 검출하는 방법 및 상기 방법에 사용하기 위한 키트에 관한 것이다.  It relates to a method for selectively detecting only a small amount of a mutant form by inhibition and a kit for use in the method.
배경기술  Background
[2] 암과 관련된 주된 사망의 원인 중 하나인 폐암은 상피세포암 (epithelial cell  [2] Lung cancer, one of the leading causes of cancer-related death, is epithelial cell carcinoma.
cancer)의 일종으로 상피세포들의 비 정상적 인 가속화된 성장을 특징으로 하는 질환이다. 전립선암이나,유방암, 결장암, 이자암,난소암, 지라암,고환암, 흉선암 등이 상피 세포암에 포함된다. 상피 세포의 가속화된 성장은 초기에는 종양형성을 유발하여 다른 기관 부위들로의 전이가 발생하기도 한다.  A type of cancer is a disease characterized by abnormally accelerated growth of epithelial cells. Prostate cancer, breast cancer, colon cancer, pancreatic cancer, ovarian cancer, spleen cancer, testicular cancer, thymic cancer, etc. are included in the epithelial cell cancer. Accelerated growth of epithelial cells may initially lead to tumorigenesis and metastasis to other organ sites.
[3] 폐암을 진단하고 치료하고자 하는 많은 노력 이 있었음에도 폐암의 5년  [3] Five years of lung cancer despite many efforts to diagnose and treat lung cancer
생존율은 70년대 12%에서 최근 15% 전후로 고작 3% 밖에 개선되지 않았다. 폐암은 남성에 게 있어 전립선암에 이어 2번째, 여성에 게 있어 유방암에 이어 2번째로 많이 발병한다. 폐에서 시작되는 암은 두 가지 주요한 타입으로 나누어지는데, 현미 경 상에 그 암세포들이 어 떻게 보이느냐에 따라  Survival rate improved by only 3% from 12% in the 70s to the recent 15%. Lung cancer is the second most common form of prostate cancer in men and second only in breast cancer in women. Cancer that begins in the lungs is divided into two major types, depending on how the cancer cells look on the microscope
비소세포 (non-small cell) 폐암과 소세포 (small cell) 폐암으로 나누어진다. 전체 폐 암의 약 75%가 비소세포폐암 (NSCLC)으로 분류되며 (예,선암종), 나머지 25%가 소세포 폐암이다. 대부분의 폐암종은 초기에는 발견이 어 려우며 진행된 상태에서 주로 진단되기 때문에 나쁜 예후를 나타낸다. 폐암 환자들의 경우 화학요법은 생존과 관련하여 효과를 제공하지만, 상당한 부작용이 따르므로 종양성장에 관여하는 중요한 유전적 손상을 특이적으로 표적화하는 치료제에 대한 필요성 이 강조된다 [Schiller JH et al., N Engl. J. Med., 346: 92-98, 2002].  It is divided into non-small cell lung cancer and small cell lung cancer. About 75% of all lung cancers are classified as non-small cell lung cancer (NSCLC) (eg adenocarcinoma), and the remaining 25% are small cell lung cancer. Most lung carcinomas have a poor prognosis because they are difficult to detect early and are usually diagnosed in advanced conditions. In patients with lung cancer, chemotherapy offers benefits in terms of survival, but with significant side effects, the need for therapeutic agents that specifically target significant genetic damage involved in tumor growth is emphasized [Schiller JH et al., N Engl. J. Med., 346: 92-98, 2002.
[4] 암화과정 에 중요한 역 할을 하는 표피성장인자 수용체 (Epidermal Growth Factor [4] Epidermal growth factor receptors play an important role in the cancer process
Receptor; 이하 "EGFR")는 질량이 170 킬로달톤 (kDa)으로 막에 결합된 Receptor; "EGFR") is bound to the membrane with a mass of 170 kilodaltons (kDa)
단백질이며,상피세포의 표면에 발현된다. EGFR은 세포주기조절분자들의 부류 (class)인 단백질 티로신 키나제의 성 장인자수용체 군 (family)의 일원이다 [W. J. GuUick et al., 1986, Cancer Res., 46:285-292]. EGFR은 세포외 도메인에 자신의 리간드 (EGF 또는 TGF-α)가 결합하면 활성화되고, 그 결과, 동 수용체의 세포내 티로신 키나제 도메인이 자가인산화반웅을 일으키 게 된다 [S. Cohen et al., 1980, J. Biol. Chem., 255:4834-4842; A. B. Schreiber et al., 1983, J. Biol.Chem., It is a protein and is expressed on the surface of epithelial cells. EGFR is a member of the family of receptor family members of the protein tyrosine kinase, a class of cell cycle regulators (WJ GuUick et al., 1986, Cancer Res., 46: 285-292). EGFR is activated when its ligand (EGF or TGF-α) binds to the extracellular domain, and as a result, the intracellular tyrosine kinase domain of the receptor causes autophosphorylation [S. Cohen et al., 1980, J. Biol. Chem., 255: 4834-4842; AB Schreiber et al., 1983, J. Biol. Chem.,
258:846-853].  258: 846-853.
[5] 표피성장인자 수용체 (EGFR)는 HER 키나제 축의 구성원 중의 하나로서 , 몇 가지 서로 다른 암 치료법들의 개발을 위한 선택의 표적 이 된다. EGFR 티로신 키나제 저해제 (EGFR tyrosine kinase inhibitors: EGFR-TKIs)들은 이 러 한 치료법들 중의 하나이며 , EGFR 경로의 활성화에는 티로신 잔기들의 가역 인산화 과정 이 요구된다. 결과적으로 EGFR-TKI들은 종양 세포들의 성장과 분화를 일으키는 세포의 신호경로를 촉발하거나 유지하는 일을 하고 있는 세포 표면의 수용체를 차단한다. 이 러한 티로신 키나제 저해제는 HER-1로 명명되는 EGFR 키나제 도메 인을 간섭 (interfere)한다고 알려 져 있으며 EGFR-TKI로는  [5] Epidermal growth factor receptor (EGFR) is a member of the HER kinase axis and is the target of choice for the development of several different cancer therapies. EGFR tyrosine kinase inhibitors (EGFR-TKIs) are one of these therapies, and activation of the EGFR pathway requires the reversible phosphorylation of tyrosine residues. As a result, EGFR-TKIs block cell surface receptors that are responsible for triggering or maintaining the signaling pathways of cells that cause tumor cells to grow and differentiate. These tyrosine kinase inhibitors are known to interfere with the EGFR kinase domain, named HER-1.
퀴나졸린 (quinazolines)과 피 리도피 리미딘 (pyridopyrimidines), 그리고  Quinazolines and pyridopyrimidines, and
피를로피 리미딘 (pyrrolopyrimidines)이 라는 3가지 종류의 화합물이 알려져 있다. 임상적 인 개발에 있어서 보다 진보된 화합물들 중의 2가지로서  Three types of compounds are known, pyrrolopyrimidines. As two of the more advanced compounds in clinical development
제피티니브 (Gefitinib)(AstraZeneca UK Ltd.에 의해 개발된 화합물 ZD1839;  Gefitinib (Compound ZD1839 developed by AstraZeneca UK Ltd.);
상표명 IRESSA 로 구입가능; 이하 "이 레사 ")와  Available under the trade name IRESSA; With less than "Lesa")
에를로티니브 (Erlotinib)(Genentech, Inc.과 OSI Pharmaceuticals, Inc.에 의해 개발된 화합물 OSI774; 상표명 TARCEVA로 구입가능; 이하 "타세바 ")가 있는데, 둘 다 고무적 인 임상결과들올 나타내고 있다. 이 레사나 타세바를 사용하는 종래의 암 치료법은 각 화합물을 500 mg을 넘지 않는 양으로 매일, 경구 투여하는 것이다. 이 레사는, 2003년 5월에,진행된 비소세포 폐암 환자들의 치료를 위해 승인되어,이 러한 제품들 중 제일 먼저 미국 시장에 진입하게 되 었다. 이 레사는 경구적으로 유효한 (orally active) 퀴나졸린으로서 EGFR 분자상의 티로신 키나제의 인산화를 직 접 저해하여 효과를 나타낸다. 아데노신 삼인산 (ATP)의 결합부위에 경쟁 적으로 작용하며,이는 HER-키나제 축의 억제로 이어진다.  Erlotinib (compound OSI774 developed by Genentech, Inc. and OSI Pharmaceuticals, Inc .; available under the trade name TARCEVA; hereafter "Taceba"), both of which show encouraging clinical results. Conventional cancer treatment methods using this resana thaceba are daily oral administration of each compound in an amount of no greater than 500 mg. The company was approved in May 2003 for the treatment of patients with advanced non-small cell lung cancer, the first of these products to enter the US market. This resa is an orally active quinazoline that works by directly inhibiting the phosphorylation of tyrosine kinases on EGFR molecules. It acts competitively on the binding site of adenosine triphosphate (ATP), which leads to inhibition of the HER-kinase axis.
[6] 그러나 상기 화합물들은 그 치료법에 있어서 환자들이 처음에는 반웅을 하나 곧 내성을 나타내거나, 또는 처음부터 EGFR-TKI에 대해 측정 가능한 정도의 반웅을 전혀 보이지 않을 수도 있다는 한계점 이 있다. 즉,진행된 비소세포 폐암 환자들 중 단지 10 내지 15%만이 EGFR 키나제 저해제들에 반웅한다는 것이다. 따라서 이 레사와 타세바에 대한 분자수준의 메카니즘에 대한 이 해는 아마도 표적 치료법에 있어서 그러한 치료를 통한 효과를 극대화하는데 필수적 인 요건이 될 것이다. ' [6] However, these compounds have limitations in that the patient may initially react but may be resistant or may not show measurable response to EGFR-TKI at first. That is, only 10-15% of advanced non-small cell lung cancer patients respond to EGFR kinase inhibitors. Thus, understanding the molecular mechanisms for this resa and Tarceva will probably be an essential requirement for maximizing the effectiveness of such treatments in targeted therapies. '
[7] 이 레사 같은 티로신 키나제 저해제 (TKI) 치료법은 대다수의 환자들에 게서  [7] This lesa-like tyrosine kinase inhibitor (TKI) therapy has been found in most patients.
효과적 이지 않다ᅳ 종래 연구를 통해 EGFR의 키나제 도메인에서의 체세포 돌연변이의 존재가, 이 레사 또는 타세바 같은 TKI에 대한 EGFR의 민감성을 현저하게 증가시 킴을 발견하였다. 이 러한 체세포 돌연변이들을 가진  Not effective Previous studies have found that the presence of somatic mutations in the kinase domain of EGFR significantly increases the sensitivity of EGFR to TKIs such as Lesa or Tarceva. With these somatic mutations
환자들에 게 현재의 TKI, 예를 들면 이 레사 같은,치료는 더욱 효과적으로 반웅할 것이다. [8] 현재까지의 EGFR 돌연변이에 대한 스크리닝은 직접 서 열분석 또는 단일가닥 입 체 다형 태 분석 (single-strand conformation polymorphism analysis)어 1 기초해 왔다. 핵산 증폭을 통한 스크리닝 방법은 염 기서 열분석 단계를 거 쳐 돌연변이를 검출하는 방법 이므로 반웅시간이 오래 소요되고 번거로우며 많은 비용이 소요된다. 또한 임상 시료는 돌연변이가 야생형에 비해 아주 극소량 존재하는 경우가 많기 때문에 , 소량의 돌연변이를 검출하는 것이 매우 중요함에도 블구하고,상기의 방법은 낮은 검출 민감도를 가지므로 극소량의 돌연변이의 검출이 어 렵다 [Chung et al., Clin Endocrinol. 65:660-666, 2006; Trovisco et al., J Pathol. 202:247-251 , 2004]. For patients, treatment with current TKIs, such as Lesa, will be more effective. [8] To date, screening for EGFR mutations has been based on direct sequence analysis or single-strand conformation polymorphism analysis. The screening method through nucleic acid amplification is a method of detecting mutations through a base thermal analysis step, which takes a long time, is cumbersome and expensive. In addition, since clinical samples have very few mutations compared to wild type, it is very important to detect a small amount of mutations, and the above method has low detection sensitivity, making it difficult to detect very small mutations [ Chung et al., Clin Endocrinol. 65: 660-666, 2006; Trovisco et al., J Pathol. 202: 247-251, 2004.
[9] 민감도를 증가시키기 위해 돌연변이에 특이 적 인 프라이머로 돌연변이를  [9] Mutation with primers specific for the mutation to increase sensitivity
선택 적으로 증폭하는 대 립형질 특이 적 (allele specific) PCR 방법 [Rhodes et al., Diagn mol pathol. 6(l):49-57, 1997], 임 계적 변성온도 (critical denaturation temperature, Tc)를 이용하여 돌연변이 만을 선택적으로 검출하는 Allele specific PCR method to selectively amplify [Rhodes et al., Diagn mol pathol. 6 (l): 49-57, 1997], for the selective detection of mutations only using critical denaturation temperature (T c ).
콜드 -PCR(Cold-PCR) 방법 [Zuo et al., Modern Pathol. 22: 1023-1031, 2009] 등이 사용되고 있다. 또한, 스코피 언 (scorpion) 프로브를 이용하여 돌연변이를 선택적으로 검출하는 스코피 언 실시간 대 립형질 특이 적 PCR(scorpion Real-time allele specific PCR)(DxS' scorpions and ARMS) 방법도 사용되고 있다 [Mark et al., Journal of Thoracic Oncology 4(12): 1466-1472, 2009]. 이 러 한 기술은 쉽고 빠르게 다양한 진단에 적용이 가능하며,암 관련 유전자의 변이 진단 및 분석을 위해 좋은 기술이 되고 있다 [Bernard et al., Clinical Chemistry 48(8): 1 178-1 185, 2002]. 그러나 상기한 방법은 돌연변이를 검출하기 위하여 돌연변이가 발생하는 부위에 각각 프로브나 프라이머를 모두 사용해야 하기 때문에 하나의  Cold-PCR method [Zuo et al., Modern Pathol. 22: 1023-1031, 2009, and the like. In addition, a scorpion real-time allele specific PCR (DxS 'scorpions and ARMS) method of selectively detecting mutations using scorpion probes is also used [Mark et al. , Journal of Thoracic Oncology 4 (12): 1466-1472, 2009]. This technique can be applied to various diagnosis easily and quickly, and it is a good technique for diagnosis and analysis of mutation of cancer-related genes [Bernard et al., Clinical Chemistry 48 (8): 1 178-1 185, 2002 ]. However, the above method requires the use of both probes and primers at the site of mutation to detect mutations.
돌연변이를 검출하기 위하여 여 러 반웅이 요구되는 번거로움이 있다 [Rhodes et al., Diagn mol pathol. 6(l):49-57, 1997, Zuo et al., Modern Pathol. 22: 1023-1031, 2009].  There is a need for multiple reactions to detect mutations [Rhodes et al., Diagn mol pathol. 6 (l): 49-57, 1997, Zuo et al., Modern Pathol. 22: 1023-1031, 2009.
[10] 파이로씨퀀싱 (Pyrosequencing) 분석 법은 96 시료를 분석하는데  [10] Pyrosequencing method analyzes 96 samples
중합효소연쇄반웅 단계를 포함하여 4시간 정도의 시간으로 분석 이 가능하며 직접 염기서 열 분석법에서 필요한 형 광결합 증폭단계 없이 , 정 제와 소식자 결합 단계만으로 간단하게 분석 이 가능하며,정확한 염기서 열을 확인하는데 있어서 반 정량적으로 분석하므로 내재된 돌연변이체의 양을 확인할 수 있는 장점을 가진 분석 법 이라고 보고되어 있다 [Agaton et al., Gene. 289:3-39, 2002; Kim et al., Diagn Mol Pathol. 17: 118-125, 2008]. 그러나 상기 파이로씨퀀싱 (Pyrosequencing) 분석 법은 고가의 장비가 필요하므로 고가의 분석비용이 소요되는 단점 이 있다ᅳ It can be analyzed for 4 hours including the polymerase chain reaction step, and can be analyzed simply by the purification and the electron binding step without the fluorescence amplification step required by the direct sequencing method. It is reported that the assay has the advantage of identifying the amount of the mutant inherent because it is semi-quantitatively analyzed for identifying heat [Agaton et al., Gene. 289: 3-39, 2002; Kim et al., Diagn Mol Pathol. 17: 118-125, 2008. However, the pyrosequencing method has a disadvantage of requiring expensive analysis costs because it requires expensive equipment.
[11] 최근에는 돌연변이형을 선택적으로 검출하는 기술로 상기 한 방법과는 달리 야생형 에 특이 적으로 결합하는 PNA 프로브를 이용하여 다량 존재하는 야생형의 증폭을 억제하는 방법으로 돌연변이를 선택적으로 검출하는 PNA 클램핑 (damping) 기술이 개발되 었다. PNA는 핵산염기가 인산 결합이 아니라 펩티드 결합으로 연결된 유사 DNA로 1991년에 처음 보고되 었다 [Nielsen et al., Science, 254:1497-1500, 1991]. PNA는화학적인방법으로합성되고 자연계에서는발견되지않는다 .PNA는상보적인염기서열의천연핵산과 흔성화 (hybridization)반웅을일으켜서겹가닥을형성한다.핵산염기의수가 같은경우 PNA/DNA겹가닥은 DNA/DNA겹가닥보다, PNA/RNA겹가닥은 DNA/RNA겹가닥보다안정하다. PNA의기본골격으로는 [11] Recently, a technique for selectively detecting a mutant type, unlike the above method, uses a PNA probe that specifically binds to a wild type to inhibit amplification of a large amount of wild type. Clamping techniques have been developed. PNA was first reported in 1991 as analogous DNA with nucleic acid bases linked by peptide bonds rather than phosphate bonds [Nielsen et al., Science, 254: 1497-1500, 1991]. PNAs are synthesized by chemical methods and are not found in nature. PNAs form hybridized strands by hybridization with complementary base sequences of natural nucleic acids. PNA / DNA strands can be formed with the same number of nucleotide groups. PNA / RNA strands are more stable than DNA / DNA strands. The basic skeleton of PNA is
N-(2-아미노에틸)글리신이아미드결합에의해반복적으로연결된것이가장 흔히쓰이고,이경우펩티드핵산의기본골격 (backbone)은음전하를띠는천연 핵산의기본골격과달리전기적으로중성이다 .PNA에존재하는 4개의핵산 염기 (nucleobase)는 DNA의핵산염기와비슷한공간을차지하고핵산염기 사이의거리도천연핵산의경우와거의같다. PNA는화학적으로천연핵산보다 안정할뿐아니라핵산분해효소 (Nuclease)나단백질분해효소 (protease)에의해 분해되지않아생물학적으로도안정하다. PNA는또한전기적으로중성이기 때문에 PNA/DNA, PNA/RNA겹가닥의안정성은염농도에영향을받지않는다. 이러한성질때문에 PNA는상보적인핵산염기서열을천연핵산보다더잘 인식할수있어서진단또는다른생물학적,의학적목적으로웅용된다. PNA 클램핑기술은상기한 PNA의장점을이용하여 PNA프로브가완벽하게 결합되면효소둥이인지하지못하여증폭반웅이일어나지않고,점돌연변이가 있는경우에는 PNA프로브가완벽하게결합하지못하기때문에증폭반응이 일어나게되는원리를이용하는방법으로,야생형에비해극소량존재하는 돌연변이를빠르고정확하게검출할수있어많이이용되고있다.  N- (2-aminoethyl) glycine is most commonly linked repeatedly by amide bonds, in which case the backbone of the peptide nucleic acid is electrically neutral, unlike the base skeleton of a negatively charged natural nucleic acid. The four nucleobases present occupy a space similar to the nucleotide groups of DNA, and the distances between the nucleotide groups are nearly the same as those of natural nucleic acids. PNA is not only chemically more stable than natural nucleic acid but also biologically stable because it is not degraded by nuclease or protease. Since PNA is also electrically neutral, the stability of PNA / DNA and PNA / RNA double strands is not affected by salt concentration. Because of these properties, PNA can recognize complementary nucleotide sequences better than natural nucleic acids and can therefore be used for diagnostic or other biological and medical purposes. The PNA clamping technique takes advantage of the above-described advantages of PNA so that when the PNA probe is fully bound, the amplification reaction does not occur because the amplification reaction does not occur and if there is a point mutation, the amplification reaction occurs. As a method of utilizing the principle, it is widely used to detect a very small amount of mutations compared to wild type quickly and accurately.
[12] PNA를이용한 EGFR돌연변이검출기술로는 PNA를탐침자로이용하여 gene scan또는 Taqman probe를이용하여검출하는기술이 있다 [US 2010/0009360 A1, Jan.14,2010].그러나상기미국공개특허는 EGFR유전자중액손 19결손의 17mer,액손 21 L858R돌연변이의 15mer,엑손 20 T790M돌연변이의 14merPNA 탐침을이용한구체예만을제공하고있고또한,돌연변이형을구별하기위한 gene scan또는 Taqman probe를이용한방법은 PNA클램핑프로브이외에 용융곡선을측정하기위한형광을검출할수있는공여체형광물질 (donor fluorophore)과수용체 (acceptor)가부착되어있는프로브가다량포함되어있기 때문에분석비용이높아지는단점과이를위한고가의장비가요구되는 문제점이 있다. [12] The EGFR mutation detection technique using PNA includes a technique of detecting PNA using a gene scan or Taqman probe [US 2010/0009360 A1, Jan. 14, 2010]. Provides only examples using 17mer of EGFR gene heavy loss 19 deletion, 15mer of axon 21 L858R mutation, 14mer PNA probe of exon 20 T790M mutation, and the method using gene scan or Taqman probe to distinguish mutations. In addition to clamping probes, it contains a large number of probes with donor fluorophores and acceptors that can detect fluorescence for measuring the melting curve, which increases the cost of analysis and requires expensive equipment. There is a problem.
발명의상세한설명  Detailed description of the invention
기술적과제  Technical task
[13] 이에본발명자들은길이가긴 (15내지 30mer,특히 16내지 27mer) PNA클램핑 프로브를이용하여야생형과의증폭사이클차이만으로변이형을검출함으로써 gene scan이나 taqman probe를이용한변이형검출기술보다간편할뿐만아니라, 다량의야생형의증폭을완벽하게저해하여변이형의검출민감도를  [13] The present inventors have to use a long (15 to 30mer, especially 16 to 27mer) PNA clamping probe to detect variants with only amplification cycle differences with their livestock, making them easier to detect than variants using gene scan or taqman probes. In addition, it completely reduces the amplification of a large amount of wild-type, thereby increasing the detection sensitivity of the variant.
향상시킴으로써극소량섞여있는돌연변이를높은민감도로신속정확하게 검출할 수 있는, PNA 기 반의 실시간 PCR 클램핑을 이용한 EGFR 돌연변이 검출 기술을 개발하여, 본 발명을 완성하였다. Improves rapid and accurate sensitivity to very small amounts of mixed mutations The present invention was completed by developing an EGFR mutation detection technique using detectable PNA-based real-time PCR clamping.
[14] 본 발명의 목적은 PNA 기반의 실시간 PCR 클램핑을 이용한 EGFR 돌연변이 검출 방법을 제공하기 위한 것이다/ [14] An object of the present invention is to provide a method for detecting EGFR mutation using PNA-based real-time PCR clamping.
[15] 본 발명의 다른 목적은 PNA 기반의 실시간 PCR 클램핑을 이용한 EGFR [15] Another object of the present invention is EGFR using PNA-based real time PCR clamping
돌연변이를 검출하는 방법에 사용하기 위한 검출 키트를 제공하기 위 한 것 이다. 과제 해결 수단  To provide a detection kit for use in a method of detecting mutations. Challenge solution
[16] 본 발명의 제 1면은 [16] The first aspect of the present invention
[17] (1) EGFR(Epidermal Growth Factor Receptor) 유전자의 액손 18 야생형 코돈 719. 액손 19 야생형 코돈 746 내지 749, 액손 20 야생형 코돈 767 내지 771, 엑손 20 야생형 코돈 768, 엑손 20 야생형 코돈 790,엑손 21 야생형 코돈 858 또는 861의 뉴클레오티드를 포함하는 부위를 증폭시키는 클램핑 프라이머 세트와,상기 각각의 코돈 부위에 상웅하는 야생형 유전자와 완전하게 결합하는 15 내지 30mer의 길이를 갖는 PNA(Peptide Nucleic Acid) 클램핑 프로브의 존재 하에 , EGFR 유전자에 대해 실시간 PCR(real-time Polymerase Chain Reaction)을 수행하고;  [17] (1) Axon 18 wild type codon 719. Axon 19 wild type codons 746 to 749, axon 20 wild type codons 767 to 771, exon 20 wild type codon 768, exon 20 wild type codon 790, exon of EGFR (Epidermal Growth Factor Receptor) gene A set of clamping primers to amplify a site comprising 21 nucleotides of wild type codon 858 or 861, and a PPT (Peptide Nucleic Acid) clamping probe having a length of 15 to 30mer that completely binds to the wild type gene recited at each of the codon sites Performing real-time polymerase chain reaction (PCR) on the EGFR gene in the presence of;
[18] (2) 상기 실시간 PCR에 의 한 유전자 증폭을 분석하여 EGFR 유전자의 돌연변이 유무 또는 농도를 결정하는;  [2] (2) analyzing the gene amplification by the real-time PCR to determine the presence or absence of mutation of the EGFR gene;
[19] 단계를 포함하는, EGFR 유전자의 키나제 도메인 돌연변이 검출 방법에 관한 것이다. - [20] 본 발명의 제 2면은 [19] The present invention relates to a method for detecting a kinase domain mutation of an EGFR gene. [20] The second aspect of the present invention
[21] 서 열번호 1 내지 91로부터 선택되는 어느 하나의 PNA 클램핑 프로브를  [21] any one of the PNA clamping probes selected from SEQ ID NOs: 1 to 91
포함하는, 상기 EGFR 유전자의 키나제 도메인 돌연변이 검출방법에 사용하기 위한 키트에 관한 것이다ᅳ  It relates to a kit for use in a method for detecting a kinase domain mutation of the EGFR gene comprising:
발명의 효과  Effects of the Invention
[22] 본 발명 에 따른 PNA 프로브로는 생물학적 효소 및 물리 적 인 요소에 매우  [22] The PNA probe according to the present invention is very useful for biological enzymes and physical elements.
안정하고 검출하는 방법 이 매우 간단하며, EGFR 유전자의 돌연변이를 단시간 내에 우수한 민감도 및 특이도로 극소량 포함되어 있는 돌연변이까지 검출이 이루어지므로 대량 분석 및 임상에서 사용하기에 매우 용이 할 것으로 기 대된다.  It is expected to be very easy to use in mass analysis and clinician because it is very simple and easy to detect and detects EGFR gene mutations in a short time with very high sensitivity and specificity.
[23] 또한,본 발명 에 따른 EGFR 유전자의 돌연변이 검출방법은 전립선암, 유방암, 결장암, 이자암, 난소암,지라암,고환암,흉선암 및 폐암 등의 종양을 조기에 신속하고 정확하게 검사할 수 있어,조기 암 진단으로 인한 효율적 인 치료를 가능하게 할 것이다. [23] In addition, the EGFR gene mutation detection method according to the present invention can quickly and accurately examine tumors such as prostate cancer, breast cancer, colon cancer, pancreatic cancer, ovarian cancer, spleen cancer, testicular cancer, thymic cancer and lung cancer. It will enable efficient treatment due to early cancer diagnosis.
도면의 간단한 설명  Brief description of the drawings
[24] 도 1은 EGFR 액손 18 코돈 719 돌연변이를 검출하는 프로브의 선별에 [24] Figure 1 shows the screening of probes for detecting EGFR axon 18 codon 719 mutations.
있어서 ,본 발명의 서 열번호 6 내지 10의 PNA 프로브를 이용하여 프로브에 따른 검출 민감도 ( :t)를 비교한 그래프이고, [25] (G719A; 액손 18코돈 719 구아닌에서 시토신으로 치환된 돌연변이 클론, G19S: 엑손 18코돈 719 구아닌에서 아데닌으로 치환된 돌연변이 클론 표준물질, G19S: 액손 18코돈 719 구아닌에서 티민으로 치환된 돌연변이 클론 표준물질) In accordance with the present invention, the PNA probes of SEQ ID NOs: 6 to 10 are graphs comparing detection sensitivity (: t ) according to probes. [25] (G719A; mutant clone substituted with cytosine at axon 18 codon 719 guanine, G19S: mutant clone standard substituted with adenine at exon 18 codon 719 guanine, G19S: mutant clone substituted with thymine at axon 18 codon 719 guanine Standards)
[26] 도 2는 EGFR 액손 19 유전자 결손을 검출하는 프로브의 선별에 있어서,본  [26] Figure 2 shows the selection of a probe for detecting an EGFR axon 19 gene deletion.
발명의 서 열번호 11 및 20 내지 26의 PNA 프로브를 이용하여 프로브에 따른 검출 민감도 (Δ¾를 비교한 그래프이며,  It is a graph comparing the detection sensitivity (Δ¾) according to the probe using the PNA probe of SEQ ID NO: 11 and 20 to 26 of the invention,
[27] (E1918; 액손 19 코돈 746-750 결손된 돌연변이 클론, E1919; 엑손 19 코돈  [27] (E1918; axon 19 codon 746-750 missing mutant clone, E1919; exon 19 codon
746- 751 결손되고 ΑΑΤ가 삽입된 돌연변이 클론 , Ε1920; 엑손 19 코돈 746-752 결손된 돌연변이 클론, E1921 ; 액손 19 코돈 746-751 결손된 돌연변이 클론, E1922; 엑손 19 코돈 746-752 결손된 돌연변이 클론, E1923; 엑손 19 코돈 746-750 결손되고 Τ가 삽입된 돌연변이 클론 , Ε1924; 엑손 19 코돈 746-750 결손된 돌연변이 클론, E1925; 엑손 19 코돈 746-752 결손된 돌연변이 클론, E1926; 엑손 19 코돈 747-750 결손되고 GC가 삽입된 돌연변이 클론 , E1927; 엑손 19 코돈 746-751 mutant clone deleted with ΑΑΤ inserted, Ε1920; Exon 19 codon 746-752 deleted mutant clone, E1921; Axon 19 codon 746-751 deleted mutant clone, E1922; Exon 19 codon 746-752 deleted mutant clone, E1923; Exon 19 codon 746-750 mutant clone with missing and inserted Τ, Ε1924; Exon 19 codon 746-750 deleted mutant clone, E1925; Exon 19 codon 746-752 deleted mutant clone, E1926; Mutant clones with exon 19 codon 747-750 deleted and GC inserted, E1927; Exon 19 codon
747- 751 결손되고 GCA가 삽입된 돌연변이 클론, E1928; 액손 19 코돈 747-749 결손된 돌연변이 클론, E1929; 엑손 19 코돈 747-751 결손된 돌연변이 클론, E1930; 액손 19 코돈 747-752 결손된 돌연변이 클론, E1931; 액손 19 코돈 747-749 결손되고 TTAAGAGAAG가 C로 치환된 돌연변이 클론, E1932; 엑손 19 코돈 747-753 결손되고 CA가 삽입된 돌연변이 클론, E1933; 엑손 19 코돈 747-751 결손된 돌연변이 클론, E1934; 액손 19 코돈 747-753 결손된 돌연변이 클론, E1935; 액손 19 코돈 747-751 결손된 돌연변이 클론, E1936; 엑손 19 코돈 747-751 결손되고 C가 삽입된 돌연변이 클론) 747-751 deleted mutant clone with GCA inserted, E1928; Axon 19 codon 747-749 deleted mutant clone, E1929; Exon 19 codon 747-751 deleted mutant clone, E1930; Axon 19 codon 747-752 deleted mutant clone, E1931; Mutant clones lacking axon 19 codon 747-749 and replacing TTAAGAGAAG with C, E1932; Mutant clone deleted from exon 19 codon 747-753 and inserted CA, E1933; Exon 19 codon 747-751 deleted mutant clone, E1934; Axon 19 codon 747-753 deleted mutant clone, E1935; Axon 19 codon 747-751 deleted mutant clone, E1936; Exon 19 codon 747-751 deleted and C inserted mutant clone)
[28] 도 3은 EGFR 엑손 20 2307_2308 CCAGCGTGG 유전자 (a), EGFR 액손 20  3 shows EGFR exon 20 2307_2308 CCAGCGTGG gene (a), EGFR axon 20
2307_2308 CCAGCGTGG 유전자 (b) 및 EGFR 액손 20 2319_2320 CAC 유전자 (c) 삽입을 검출하는 프로브의 선별에 있어서 , 본 발명의 서 열번호 35 내지 37의 . PNA 프로브,서 열번호 42 내지 46의 PNA 프로브 및 서 열번호 55 내지 59의 PNA 프로브를 이용하여 프로브에 따른 검출 민감도 (ACt)를 비교한 그래프이고, 2307_2308 CCAGCGTGG gene (b) and EGFR axon 20 2319_2320 In the selection of probes to detect the insertion of CAC gene (c), the sequence of SEQ ID NOS 35 to 37 of the present invention. PNA probe, a graph comparing the detection sensitivity (AC t ) according to the probe using the PNA probe of SEQ ID NO: 42 to 46 and the PNA probe of SEQ ID NO: 55 to 59,
[29] 도 4는 EGFR 액손 20 코돈 768 돌연변이를 검출하는 프로브의 선별에 있어서, 본 발명의 서 열번호 61 및 62의 PNA 프로브를 이용하여 프로브에 따른 검출 민감도 (ACt)를 비교한 그래프이며 ; 4 is a graph comparing detection sensitivity (AC t ) according to probes using PNA probes of SEQ ID NOs: 61 and 62 in the selection of probes for detecting EGFR axon 20 codon 768 mutations. ;
[30] 도 5는 EGFR 엑손 20코돈 790 돌연변이를 검출하는 프로브의 선별에 있어서, 본 발명의 서 열번호 69 내지 74의 PNA 프로브를 이용하여 프로브에 따른 검출 민감도 (ACt)를 비교한 그래프이고; 5 is a graph comparing detection sensitivity (AC t ) according to a probe using a PNA probe of SEQ ID NOs: 69 to 74 in the selection of a probe for detecting an EGFR exon 20 codon 790 mutation. ;
[31] 도 6은 EGFR 엑손 21 코돈 858 돌연변이 (a) 및 EGFR 엑손 21 코돈 861 [31] Figure 6 shows EGFR exon 21 codon 858 mutation (a) and EGFR exon 21 codon 861
돌연변이 (b)의 검출 프로브의 선별에 있어서,본 발명의 서 열번호 89 내지 91의 In the selection of the detection probe for the mutation (b), SEQ ID NOs: 89 to 91 of the present invention
PNA 프로브의 검출 민감도 (ACt)를 비교한 그래프이 며 ; A graph comparing the detection sensitivity (AC t ) of the PNA probes;
[32] 도 7은 EGFR 엑손 19 유전자의 결실 돌연변이 농도에 따른 검출 민감도 결과를 보여주는 실시간 PCR 곡선 이미지 (a) 및 본 발명의 서 열번호 20의 PNA 프로브를 이용하여 실시간 PCR을 통한 EGFR 액손 19 유전자 결실 돌연변이의 포함 농도에따른검출민감도 (b)를비교한그래프이고, 7 is a real-time PCR curve image (a) showing the detection sensitivity according to the deletion mutation concentration of the EGFR exon 19 gene and EGFR axon 19 gene by real-time PCR using the PNA probe of SEQ ID NO: 20 of the present invention Inclusion of deletion mutations It is a graph comparing detection sensitivity (b) according to the concentration,
[33] 도 8은 EGFR액손 20코돈 790돌연변이농도에따른검출민감도결과를  8 shows the detection sensitivity according to the EGFR axon 20 codon 790 mutation concentration.
보여주는실시간 PCR곡선이미지 (a)및본발명의서열번호 74의 PNA프로브를 이용하여실시간 PCR을통한 EGFR엑손 20코돈 790돌연변이의포함농도에 따른검출민감도 (b)를비교한그래프이며,  Shown is a graph comparing the detection sensitivity (b) according to the inclusion concentration of the EGFR exon 20 codon 790 mutation by real-time PCR using a real-time PCR curve image (a) and a PNA probe of SEQ ID NO: 74 of the present invention,
[34] 도 9는 EGFR엑손 21코돈 858돌연변이농도에따른검출민감도결과를  9 shows detection sensitivity according to EGFR exon 21 codon 858 mutation concentration.
보여주는실시간 PCR곡선이미지 (a)및본발명의서열번호 90의 PNA프로브를 이용하여실시간 PCR을통한 EGFR액손 21코돈 858돌연변이의포함농도에 따른검출민감도 (b)를비교한그래프이고,  This shows a comparison of detection sensitivity (b) according to the inclusion concentration of the EGFR axon 21 codon 858 mutation by real-time PCR using a real-time PCR curve image (a) and a PNA probe of SEQ ID NO: 90 of the present invention.
[35] 도 10은 EGFR돌연변이를가진세포주를대상으로,종래기술의 PNA프로브와 [35] Figure 10 shows a PNA probe of the prior art for cell lines with EGFR mutations.
[36] 본발명의서열번호 20(a),서열번호 90(b)및서열번호 74(c)의 PNA프로브를 이용하여 EGFR돌연변이농도에따른검출민감도 (ΔΟ를비교한그래프이다. 발명의실시를위한형태 [36] Detection sensitivity according to EGFR mutation concentration (ΔΟ is compared using a PNA probe of SEQ ID NO: 20 (a), SEQ ID NO: 90 (b) and SEQ ID NO: 74 (c) of the present invention). Form for
[37] 이하,본발명을상세히설명한다.  [37] Hereinafter, the present invention will be described in detail.
[38] 본발명은 PNA기반의실시간 PCR클램핑을이용하여 EGFR유전자의키나제 도메인돌연변이를검출하는것이다.  [38] The present invention uses PNA-based real-time PCR clamping to detect kinase domain mutations of the EGFR gene.
[39] 1-P A큼 프로브의섬계 ¾제작 [39] Fabrication of ¾ of 1-P A Large Probes
[40] 하기표 1에열거된 EGFR의키나제도메인에서의변이엑손 18, 19, 20또는 21에서의인프레임결실 (in frame deletion)또는치환의검출을위하여 PNA 클램핑프로브를설계및제작하였다. [40] PNA clamping probes were designed and constructed for the detection of in frame deletions or substitutions in kinase domains of EGFR listed in Table 1 in exon 18, 19, 20 or 21.
[41] [표 1] [41] [Table 1]
Figure imgf000010_0001
Figure imgf000010_0001
[42] 본 발명의 PNA 프로브는 EGFR 액손 18 19, 20 및 21의 돌연변이 및 유전자의 결실,삽입 및 치환이 발생하는 부분의 야생형 유전자 서 열에 완벽하게 결합할 수 있는 (perfectly matched) 것으로서 15개 이상, 바람직하게는 15 내지 30개,보다 바람직하게는 16 내지 27개의 염기서 열로 구성되는 것을 특징으로 한다.  [42] The PNA probes of the present invention are perfectly matched with mutations of EGFR axons 18 19, 20 and 21 and perfectly matched to wild-type gene sequences where deletions, insertions and substitutions of genes occur. , Preferably 15 to 30, more preferably 16 to 27 sequences.
[43] 본 발명의 PNA 프로브는 EGFR 액손 18, 19, 20 및 21의 돌연변이 및 유전자의 결실 및 치환이 발생하는 부분이 프로브의 가운데에 위치하고 그 서 열은 야생형 유전자의 서 열을 갖도록 고안된 것이 바람직하다. 예를 들어,본 발명의 PNA 프로브는 하기 표 2에 기재한 서 열번호 1 내지 91 중 어느 하나에 기재된 염기서 열로 구성될 수 있다. 상기 염기서 열로부터 당업자가 통상의 지식을 이용하여 용이하게 변형할 수 있는 범위 내의 PNA 프로브 서 열은 모두 본 발명의 범위 내에 속하는 것으로 보아야 할 것 인 바, 16mer 이상의 길이를 갖는 PNA 프로브로서 본 발명에 따른 PNA 클램핑 실시간 PCR을 이용하여 증폭 사이클 차이만으로 EGFR 액손 18, 19, 20 또는 21의 돌연변이 및 유전자의 결실 및 삽입 그리고 치환이 발생하는 부분을 효과적으로 검출해낼 수 있는 것 인 한, 본 발명의 범위 내에 포함되는 것이다. [43] The PNA probe of the present invention is preferably designed so that mutations of EGFR axons 18, 19, 20, and 21, and regions in which deletions and substitutions of genes occur are located in the center of the probes and the sequences thereof have sequences of wild-type genes. Do. For example, the PNA probe of the present invention may be any one of SEQ ID NOs 1 to 91 shown in Table 2 below. It can be composed of sequence sequences. PNA probe sequences within the range that can be easily modified by those skilled in the art from the base sequence using the common knowledge should be considered to be within the scope of the present invention, the present invention as a PNA probe having a length of 16mer or more As long as it is possible to effectively detect mutants of EGFR axons 18, 19, 20 or 21, and deletions, insertions and substitutions of genes using only PNA clamping real-time PCR according to the present invention, the scope of the present invention. It is included in.
구체적으로는, 서 열번호 1 내지 10은 EGFR 엑손 18의 코돈 719의 야생형과 완벽하게 결합하여 야생형의 증폭을 저해하고,돌연변이를 검출하기 위 한 프로브이다. 상기 검출하는 엑손 18에서의 돌연변이는 뉴클레오티드 2155의 구아닌이 티 민 또는 아데닌으로 치환되어 코돈 719의 야생형 글리신이 각각 시스테 인 또는 세 린으로 치환된 것과 뉴클레오티드 2156의 구아닌이  Specifically, SEQ ID Nos. 1 to 10 are probes for completely binding with wild type of codon 719 of EGFR exon 18 to inhibit wild type amplification and to detect mutations. The mutation in the detected exon 18 was substituted with guanine at nucleotide 2155 with thymine or adenine, with wild type glycine at codon 719 with cysteine or serine and guanine at nucleotide 2156.
시토신으로 치환되어 코돈 719의 야생형 글리신이 알라닌으로 치환된 것이 포함된다. 서 열번호 1 내지 10은 EGFR 액손 18의 코돈 719를 포함하는 2146 내지 2166번째 염기에 특이 적으로 흔성화되도록 고안되었다. 서 열번호 11 내지 26은 EGFR 액손 19의 코돈 746 내지 759 부분의 야생형과 완벽하게 결합하여 야생형의 증폭을 저해하고 돌연변이를 검출하기 위한 프로브이다. 상기 EGFR의 액손 19에 존재하는 유전자 돌연변이에는 코돈 746 내지 759의 결실이 포함되며 , 뉴클레오티드 2235 내지 2258에서 9, 12, 15, 18mer의 뉴클레오티드가 결실되어 있거나,뉴클레오티드의 결실과 동시에 치환되어 있는 것이 포함된다. 서 열번호 11 내지 26은 EGFR 액손 19의 코돈 746 내지 759를 포함하는 2233 내지 2260번째 염기에 특이 적으로 흔성화되도록 고안되었다. 서 열번호 27 내지 59는 EGFR 액손 20의 코돈 767 내지 7기의 야생형과 완벽하게 결합하여 야생형의 증폭을 저해하고 돌연변이를 검출하기 위한 프로브이다. 상기 EGFR 엑손 20에 존재하는 유전자 돌연변이에는 뉴클레오티드 2307와 뉴클레오티드 2308 사이에 CCAGCGTGG가 삽입되는 것과,뉴클레오티드 2319와 뉴클레오타이드 2320의 사이에 시토신,아데닌 및 시토신 (CAC)이 삽입된 것 (2319_2320 ins CAC), 그리고 뉴클레오티드 2310와 뉴클레오티드 2311 사이에 구아닌, 구아닌 및 Substituted with cytosine, the wild type glycine of codon 719 is substituted with alanine. SEQ ID NOS: 1 to 10 are designed to specifically localize to the 2146-2166 base, including codon 719 of EGFR axon 18. SEQ ID NOs: 11-26 are probes for completely binding with the wild type of the codons 746-759 portion of EGFR axon 19 to inhibit wild type amplification and detect mutations. Gene mutations present in the axon 19 of the EGFR include the deletion of codons 746 to 759, including the deletion of 9, 12, 15, 18 nucleotides in nucleotides 2235 to 2258, or at the same time as the deletion of the nucleotides do. SEQ ID NOS: 11-26 are designed to specifically localize to bases 2233-2260 including the codons 746-759 of EGFR axon 19. SEQ ID NOs: 27-59 are probes for completely binding with wild type of codons 767-7 of EGFR axon 20 to inhibit wild type amplification and detect mutations. The gene mutation present in the EGFR exon 20 includes the insertion of CCAGCGTGG between nucleotides 2307 and nucleotides 2308, insertion of cytosine, adenine and cytosine (CAC) between nucleotides 2319 and nucleotides 2320 (2319_2320 ins CAC), and Guanine, guanine, and between nucleotide 2310 and nucleotide 2311
티민 (GGT)이 삽입된 것이 포함된다. 서 열번호 27 내지 59는 EGFR 액손 20의 코돈 767 내지 7기을 포함하는 2292 내지 2330번째 염기에 특이적으로 Thymine (GGT) is inserted. SEQ ID NOs: 27-59 are specific for bases 2292-2330 comprising the codons 767-7 of EGFR axon 20
흔성화되도록 고안되 었다. 서 열번호 60 내지 65는 EGFR 엑손 20의 코돈 768의 야생형과 완벽하게 결합하여 야생형의 증폭을 저해하고 돌연변이를 검출하기 위한 프로브이다. 상기 EGFR 엑손 20에 존재하는 돌연변이는 뉴클레오티드 2303의 구아닌이 티민으로 치환된 것으로서 이 치환의 결과, 아미노산이 치환되는데, 아미노산 768의 야생형 세린이 이소루신으로 대체된다. 서 열번호 60 내지 65는 EGFR 액손 20의 코돈 768을 포함하는 2292 내지 2315번째 염기에 특이 적으로 흔성화되도록 고안되 었다. 서 열번호 66 내지 78은 EGFR 액손 20의 코돈 790의 야생형과 완벽하게 결합하여 야생형의 증폭을 저해하고 돌연변이를 검출하기 위한 프로브이다. EGFR 액손 20의 코돈 790에서의 돌연변이에는 뉴클레오티드 2369의 시토신이 티민으로 치환된 것 이 포함되는데 이 치환의 결과, 아미노산이 치환되며 , 아미노산 790의 야생형 인 트레오닌이 메티오닌으로 대체된다. 서 열번호 66 내지 78은 EGFR 액손 20의 코돈 790을 포함하는 2359 내지 2380번째 염기에 특이 적으로 흔성화되도록 고안되 었다. 서 열번호 79 내지 91은 EGFR 액손 21의 코돈 858 및 861의 야생형과 완벽하게 결합하여 야생형의 증폭을 저해하고 돌연변이를 검출하기 위 한 프로브이다. 상기 유전자의 치환은 EGFR의 액손 21에 존재하는 돌연변이는 적어도 하나의 아미노산의 치환이 포함되며 , 이에는 뉴클레오티드 2573의 티민이 구아닌으로 치환되는 것이 포함된다. 상기 치환의 결과로 아미노산 858의 야생형 류신이 아르기닌으로 대체된다. 또한 액손 21에서의 상기 치환에는 뉴클레오티드 2582의 티민이 아데닌으로 치환된 것이 포함되며,이 치환의 결과, 아미노산 861의 야생형 류신이 글루타민으로 대체된다. 서 열번호 79 내지 91은 EGFR 엑손 21의 코돈 858 및 861을 포함하는 2567 내지 2589번째 염 기에 특이 적으로 흔성화되도록 고안되었다. It is designed to be popular. SEQ ID NOs: 60-65 are probes for completely binding to the wild type of codon 768 of EGFR exon 20 to inhibit amplification of the wild type and to detect mutations. The mutation present in the EGFR exon 20 is a guanine of nucleotide 2303 is substituted with thymine. As a result of this substitution, an amino acid is substituted, and the wild-type serine of amino acid 768 is replaced with isoleucine. SEQ ID NOs: 60-65 are designed to specifically localize to the 2292-2315th base, including codon 768 of EGFR axon 20. SEQ ID NOs 66-78 perfectly bind the wild type of codon 790 of EGFR axon 20 to inhibit wild type amplification and Probe for detection. Mutations in codon 790 of EGFR axon 20 include the substitution of thymine for cytosine at nucleotide 2369, which replaces the amino acid, replacing the threonine, a wild type of amino acid 790, with methionine. SEQ ID NOs 66-78 are designed to specifically localize to 2359-2380th base, including codon 790 of EGFR axon 20. SEQ ID NOs: 79-91 are probes that bind perfectly with the wild types of codons 858 and 861 of EGFR axon 21 to inhibit amplification of the wild type and detect mutations. Substitution of the gene includes mutations in axon 21 of EGFR including substitution of at least one amino acid, including substitution of thymine of nucleotide 2573 with guanine. As a result of this substitution, the wild type leucine of amino acid 858 is replaced with arginine. The substitution at axon 21 also includes the substitution of thymine at nucleotide 2582 with adenine, and as a result of this substitution, the wild type leucine of amino acid 861 is replaced with glutamine. SEQ ID NOs: 79-91 are designed to specifically localize to bases 2567-2589 including codons 858 and 861 of EGFR exon 21.
[45] [표 2] [Table 2]
타¾ 서 열번호 이름 서 열 ( 5 ' 3 ' ) Mer수  Other sequence number Name sequence (5 '3') Mer number
1 E18CS-21-1 AAAGTGCTGGGCTCCGGTGCG 21 1 E18CS-21-1 AAAGTGCTGGGCTCCGGTGCG 21
2 E18CS-20-1 AAGTGCTGGGC CCGGTGCG 202 E18CS-20-1 AAGTGCTGGGC CCGGTGCG 20
3 E18CS-20-2 AMGTGCTGGGCTCCGGTGC 203 E18CS-20-2 AMGTGCTGGGCTCCGGTGC 20
4 E18CS-19-1 AAGTGCTGGGCTCCGGTGC 194 E18CS-19-1 AAGTGCTGGGCTCCGGTGC 19
5 E18CS-18-1 GTGCTGGGCTCCGGTGCG 18 액손 18 G719X 5 E18CS-18-1 GTGCTGGGCTCCGGTGCG 18 Axon 18 G719X
6 E18CAS-21-1 CGCACCGGAGCCCAGCACTTT 21 6 E18CAS-21-1 CGCACCGGAGCCCAGCACTTT 21
7 E18CAS-20-1 CGCACCGGAGCCCAGCAQT 207 E18CAS-20-1 CGCACCGGAGCCCAGCAQT 20
8 E18CAS-20-2 GCACCGGAGCCCAGCAC TT 208 E18CAS-20-2 GCACCGGAGCCCAGCAC TT 20
9 E18CAS-19-1 GCACCGGAGCCCAGCACTT 199 E18CAS-19-1 GCACCGGAGCCCAGCACTT 19
10 E18CAS-18-1 CGCACCGGAGCCCAGCAC 1810 E18CAS-18-1 CGCACCGGAGCCCAGCAC 18
11 E19CAS— 24-1 AGATGTTGaTCTCTTMlTCCTT 2411 E19CAS— 24-1 AGATGTTGaTCTCTTMlTCCTT 24
12 E19CAS— 23-1 AGATGTTGCTTCTCITAATTCa 2312 E19CAS— 23-1 AGATGTTGCTTCTCITAATTCa 23
13 E19CAS-23-2 GATGTTGCTrCTC TAATTCCTT 2313 E19CAS-23-2 GATGTTGCTrCTC TAATTCCTT 23
14 E19CAS-22-1 GATGT GCTTCTCrTAAnCCT 2214 E19CAS-22-1 GATGT GCTTCTCrTAAnCCT 22
15 E19AS-REF AGATCTTGC TCTCnM 1815 E19AS-REF AGATCTTGC TCTCnM 18
16 E19CAS-19-1 TGTTGCI CTOTAATTCC 1916 E19CAS-19-1 TGTTGCI CTOTAATTCC 19
17 E19CAS-18-1 TGTTGCTTCTCTTAATTC 18 액손 19 결손 18 E19CAS-20-2 ATGTTGOTCTCTTAATTCC 20 및 치환 19 E19CAS-20-1 TGTTGCTTCTCTTMTTCCT 20 17 E19CAS-18-1 TGTTGCTTCTCTTAATTC 18 Axon 19 Defect 18 E19CAS-20-2 ATGTTGOTCTCTTAATTCC 20 and Substitution 19 E19CAS-20-1 TGTTGCTTCTCTTMTTCCT 20
20 E19CAS-24-2 GATGTTGCTTCTCTTAATTCCTTG 24 20 E19CAS-24-2 GATGTTGCTTCTCTTAATTCCTTG 24
21 E19CAS-24-3 ATGTTGCTTCTCrTAATTCCTTGA 2421 E19CAS-24-3 ATGTTGCTTCTCrTAATTCCTTGA 24
22 E19CAS-25-1 GATGnGCTTCTCrrAAnCCITGA 2522 E19CAS-25-1 GATGnGCTTCTCrrAAnCCITGA 25
23 E19CAS-25-2 AGATGnGCTTCTCTTAATTCCTTG 2523 E19CAS-25-2 AGATGnGCTTCTCTTAATTCCTTG 25
24 E19CAS-26-1 AGATGTTGCTTCTCTTAATTCCTTGA 2624 E19CAS-26-1 AGATGTTGCTTCTCTTAATTCCTTGA 26
25 E19CAS-26-2 GATGTTGOTCTOTAA TCCTTGAT 2625 E19CAS-26-2 GATGTTGOTCTOTAA TCCTTGAT 26
26 E19CAS-27-1 AGATGnGCTTCTCTTAAnCCTTGAT 27 [46] 타겟 서 열번호 이름 서 열 ( 5 ' ― > 3 ' ) Mer수 26 E19CAS-27-1 AGATGnGCTTCTCTTAAnCCTTGAT 27 [46] Target sequence number Name sequence (5 '―>3') Mer number
27 E20CS-21-1 ATGGCCAGCGTGGACAACCCC 21 27 E20CS-21-1 ATGGCCAGCGTGGACAACCCC 21
28 E20CS-21-2 TGGCCAGCGTGGACAACCCCC 2128 E20CS-21-2 TGGCCAGCGTGGACAACCCCC 21
29 E20CS-20-1 TGGCCAGCGTGGACAACCCC 2029 E20CS-20-1 TGGCCAGCGTGGACAACCCC 20
30 E20CS-20-2 ATGGCCAGCGTGGACMCCC 2030 E20CS-20-2 ATGGCCAGCGTGGACMCCC 20
31 E20CAS-21-1 GGGCTTGTCCACGCTGGCCAT 2131 E20CAS-21-1 GGGCTTGTCCACGCTGGCCAT 21
32 E20CAS-21-2 GGGGGnGTCCACGCTGGCCA 2132 E20CAS-21-2 GGGGGnGTCCACGCTGGCCA 21
33 E20CAS-20-1 GGGGTTGTCCACGCTGGCCA 2033 E20CAS-20-1 GGGGTTGTCCACGCTGGCCA 20
34 E20CAS-20-2 GGGTTGTCCACGCTGGCCAT 2034 E20CAS-20-2 GGGTTGTCCACGCTGGCCAT 20
35 E20CS-17 ATGCCCAGCGTGGACAA 1735 E20CS-17 ATGCCCAGCGTGGACAA 17
36 E20CS-18 ATGCCCAGCGTGGACMC 1836 E20CS-18 ATGCCCAGCGTGGACMC 18
37 E20CS-19 GATGCCCAGCGTGGACAAC 1937 E20CS-19 GATGCCCAGCGTGGACAAC 19
38 E20CAS-17 TTGTCCACGCTGGCCAT 1738 E20CAS-17 TTGTCCACGCTGGCCAT 17
39 E20CAS-18 GTTGTCCACGCTGGCCAT 1839 E20CAS-18 GTTGTCCACGCTGGCCAT 18
40 E20CAS-19 GTTGTCCACGCTGGCCATC 1940 E20CAS-19 GTTGTCCACGCTGGCCATC 19
41 E2017CS-21 GCCAGCGTGGACAACCCCCAC 2141 E2017CS-21 GCCAGCGTGGACAACCCCCAC 21
42 E2017CS-19 CAGCGTGGACAACCTCCAC 19 액손 20 삽입 43 E2017CS-18 AGCGTGGACAACCTCCAC 18 42 E2017CS-19 CAGCGTGGACAACCTCCAC 19 Axon 20 Insertion 43 E2017CS-18 AGCGTGGACAACCTCCAC 18
44 E2017CAS-21 TGGTGGTTGTCCACGCTGGC 20 44 E2017CAS-21 TGGTGGTTGTCCACGCTGGC 20
45 E2017CAS-19 GGTGGTTGTCCACGCTGGC 1945 E2017CAS-19 GGTGGTTGTCCACGCTGGC 19
46 E2017CAS-18 GGTGGTTGTCCACGCTGG 1846 E2017CAS-18 GGTGGTTGTCCACGCTGG 18
47 E2016CS— 21-1 ACMCCCCCACGTGTGCCGCC 2147 E2016CS— 21-1 ACMCCCCCACGTGTGCCGCC 21
48 E2016CS— 21-2 CAACCCCCACGTGTGCCGCCT 2148 E2016CS— 21-2 CAACCCCCACGTGTGCCGCCT 21
49 E2016CS— 20-1 CAACCCCCACGTGTGCCGCC 2049 E2016CS— 20-1 CAACCCCCACGTGTGCCGCC 20
50 E2016CS-19-1 MCCCCCACGTGTGCCGCC 1950 E2016CS-19-1 MCCCCCACGTGTGCCGCC 19
51 ' E2016CS-21-3 ACAACCTCCACGTGTGCCGCC 2151 '' E2016CS-21-3 ACAACCTCCACGTGTGCCGCC 21
52 E2016CS-21-4 CMCCTCCACGTGTGCCGCCT 2152 E2016CS-21-4 CMCCTCCACGTGTGCCGCCT 21
53 E2016CS-20-2 CAACCTCCAC6TGTGCCGCC 2053 E2016CS-20-2 CAACCTCCAC6TGTGCCGCC 20
54 E2016CS-19-2 MCCTCCACGTGTGCCGCC 1954 E2016CS-19-2 MCCTCCACGTGTGCCGCC 19
55 E2016CS-18-1 AACCTCCACGTGTGCCGC 1855 E2016CS-18-1 AACCTCCACGTGTGCCGC 18
56 E2016CS-18-2 ACCTCCACGTGTGCCGCT 1856 E2016CS-18-2 ACCTCCACGTGTGCCGCT 18
57 E2016CS-17-1 ACCTCCACGTGTGCCGT 1757 E2016CS-17-1 ACCTCCACGTGTGCCGT 17
58 E2016CS-17-2 AACCTCCACGTGTGCCG 1758 E2016CS-17-2 AACCTCCACGTGTGCCG 17
59 E2016CS-16-1 ACCTCCACGTGTGCCG 16 타¾ 서열번호 이름 서열 ( 5 ' ——- > 3 ' ) Mer수 59 E2016CS-16-1 ACCTCCACGTGTGCCG 16 Other sequence number name sequence (5 '——->3') Mer number
60 S768ICS-21 GTGATGCCCAGCGTGGACAAC 21  60 S768ICS-21 GTGATGCCCAGCGTGGACAAC 21
61 S768ICS-20 TGATGCCCAGCGTGGACAAC 20  61 S768ICS-20 TGATGCCCAGCGTGGACAAC 20
62 S768ICS-19 TGATGCCCAGCGTGGACAA 19 액손 20 S768I  62 S768ICS-19 TGATGCCCAGCGTGGACAA 19 Axon 20 S768I
63 S7681CAS-21 GTTGTCCACGCTGGCCATCAC 21  63 S7681CAS-21 GTTGTCCACGCTGGCCATCAC 21
64 S768ICAS-20 GTTGTCCACGCTGGCCATCA 20  64 S768ICAS-20 GTTGTCCACGCTGGCCATCA 20
65 S768ICAS-19 TTGTCCACGCTGGCCATCA 19  65 S768ICAS-19 TTGTCCACGCTGGCCATCA 19
66 T790 CS-21-1 CAGCTCA CACGCAGCTCATG 21  66 T790 CS-21-1 CAGCTCA CACGCAGCTCATG 21
67 T790MCS-20-1 CAGCTCATCACGCAGCTCAT 20  67 T790MCS-20-1 CAGCTCATCACGCAGCTCAT 20
68 T790 CS-20-2 AGCTCATCACGCAGCTCATG 20  68 T790 CS-20-2 AGCTCATCACGCAGCTCATG 20
69 T790MCS-19-1 AGCTCATCACGCAGCTCAT 19  69 T790MCS-19-1 AGCTCATCACGCAGCTCAT 19
70 T790MCS-19-2 GCTCATCACGCAGCTCATG 19  70 T790MCS-19-2 GCTCATCACGCAGCTCATG 19
71 T790MCS-19-3 CAGCTCATCACGCAGCTCA 19 액손 20 T790 72 T790MCS-18-1 AGCTCATCACGCAGC CA 18  71 T790MCS-19-3 CAGCTCATCACGCAGCTCA 19 Axon 20 T790 72 T790MCS-18-1 AGCTCATCACGCAGC CA 18
73 T790 CS-18-2 GCTCATCACGCAGCTCAT 18  73 T790 CS-18-2 GCTCATCACGCAGCTCAT 18
74 T790MCS-17-1 GCTCATCACGCAGCTCA 17  74 T790MCS-17-1 GCTCATCACGCAGCTCA 17
75 T790MCAS-21-1 CATGAGCTGCGTGATGAGCTG 21  75 T790MCAS-21-1 CATGAGCTGCGTGATGAGCTG 21
76 T790MCAS-20-1 ATGAGCTGCGTGATGAGCTG 20  76 T790MCAS-20-1 ATGAGCTGCGTGATGAGCTG 20
77 T790MCAS-20-2 CATGAGCTGCGTGATGAGCT 20  77 T790MCAS-20-2 CATGAGCTGCGTGATGAGCT 20
78 T790MCAS-19-1 ATGAGC GCGTGATGAGCT 19  78 T790MCAS-19-1 ATGAGC GCGTGATGAGCT 19
79 E2 ICS— 22-1 TOGGCTGGCCAAACTGCTGGG 22  79 E2 ICS— 22-1 TOGGCTGGCCAAACTGCTGGG 22
80 E2 ICS— 21-1 rrGGGCTGGCCAAACTGCTGG 21  80 E2 ICS— 21-1 rrGGGCTGGCCAAACTGCTGG 21
81 E21CS-21-2 TGGGCTGGCCWACTGCTGGG 21  81 E21CS-21-2 TGGGCTGGCCWACTGCTGGG 21
82 E2 ICS— 20-1 TGGGCTGGCCAAACTGCTGG 20  82 E2 ICS— 20-1 TGGGCTGGCCAAACTGCTGG 20
83 E21CS-20-2 TTGGGCTGGCCAMCTGCTG 20  83 E21CS-20-2 TTGGGCTGGCCAMCTGCTG 20
84 E21CAS-22-1 CCCAGCAGTTTGGCCAGCCCAA 22 액손 21 L858R,  84 E21CAS-22-1 CCCAGCAGTTTGGCCAGCCCAA 22 Axon 21 L858R,
85 E21CAS-21-1 CCAGCAGTTTGGCCAGCCCAA 21  85 E21CAS-21-1 CCAGCAGTTTGGCCAGCCCAA 21
L861Q  L861Q
86 E21CAS— 21-2 CCCAGCAGTTTGGCCAGCCCA 21  86 E21CAS— 21-2 CCCAGCAGTTTGGCCAGCCCA 21
87 E21CAS-20-1 CCAGCAGTTTGGCCAGCCCA 20  87 E21CAS-20-1 CCAGCAGTTTGGCCAGCCCA 20
88 E21CAS-20-2 CAGCAGTTTGGCCAGCCCAA 20  88 E21CAS-20-2 CAGCAGTTTGGCCAGCCCAA 20
89 E21CAS-19-1 CAGCAGTTTGGCCAGCCCA 19  89 E21CAS-19-1 CAGCAGTTTGGCCAGCCCA 19
90 E21CAS— 19-2 AGCAGTTTGGCCAGCCCAA 19  90 E21CAS— 19-2 AGCAGTTTGGCCAGCCCAA 19
91 E21CAS-19-3 CCAGCAGTTTGGCCAGCCC 19 상기 프로브들 중 대표적으로 서 열번호 6 내지 10의 프로브를 적용하여 액손 18의 코돈 719의 야생형의 증폭을 저해하고 돌연변이를 검출하는 효과를 확인한 결과, 서 열번호 8 내지 10의 프로브 모두 우수한 효과를 나타내며 특히 서 열번호 8의 프로브가 보다 우수한 효과를 나타내는 것으로 확인되었다 (도 1 참조). 서 열번호 11 및 20 내지 26의 프로브를 적용하여 액손 19의 코돈 746 내지 759 야생형의 증폭을 저해하고 유전자 결손이 있는 돌연변이를 검출하는 효과를 확인한 결과 서 열번호 1 1 및 20의 프로브가 우수한 효과를 나타내며 특히 서 열번호 20의 프로브가 보다 우수한 효과를 나타내는 것으로 확인되 었다 (도 2 참조)ᅳ 91 E21CAS-19-3 CCAGCAGTTTGGCCAGCCC 19 Representative of the probes of SEQ ID NOs 6 to 10 by applying the probes of SEQ ID NO: 6 to 10 to confirm the effect of inhibiting the amplification of the wild type of codon 719 of axon 18 and detecting the mutation, SEQ ID NO: 8 All of the probes 10 to 10 showed excellent effects, and in particular, the probes of SEQ ID NO: 8 were found to show better effects (see FIG. 1). Codons 746-759 of axon 19 by applying the probes of SEQ ID NOs: 11 and 20-26 As a result of inhibiting wild-type amplification and detecting mutations with gene deletions, it was confirmed that the probes of SEQ ID NOs: 1 and 20 showed excellent effects, and in particular, the probes of SEQ ID NO: 20 showed better effects ( 2)
[50] 서 열번호 35 내지 37 및 42 내지 46 그리고 55 내지 59의 프로브를 적용하여 액손 20의 코돈 767 내지 771 야생형의 증폭을 저해하고 유전자 삽입 이 있는 돌연변이를 검출하는 효과를 확인한 결과 서 열번호 35, 42, 43, 55 및 58의 프로브가 우수한 효과를 나타내며,특히 서 열번호 35, 43, 58의 프로브가 보다 우수한 효과를 나타내는 것으로 확인되 었다 (도 3 참조).  [50] As a result of confirming the effect of inhibiting the amplification of codons 767 to 771 wild type of axon 20 and detecting mutations with gene insertion by applying the probes of SEQ ID NOs: 35 to 37, 42 to 46, and 55 to 59 Probes 35, 42, 43, 55 and 58 showed an excellent effect, in particular, it was confirmed that the probes of SEQ ID NO: 35, 43, 58 shows a better effect (see Fig. 3).
[51] 서 열번호 61 및 62의 프로브를 적용하여 엑손 20의 코돈 768의 야생형의 증폭을 저해하고 돌연변이를 검출하는 효과를 확인한 결과, 두 개의 프로브 모두 우수한 효과를 나타내며 특히 서열번호 62의 프로브가 보다 우수한 효과를 나타내는 것으로 확인되었다 (도 4 참조).  [51] As a result of applying the probes of SEQ ID NOs 61 and 62, the effect of inhibiting the amplification of the wild type of the codon 768 of exon 20 and detecting the mutation showed that both probes showed an excellent effect. It was confirmed to exhibit a better effect (see FIG. 4).
[52] 서 열번호 69 내지 74의 프로브를 적용하여 엑손 20의 코돈 790의 야생형의  [52] a wild type of codon 790 of exon 20 by applying a probe of SEQ ID NOs: 69-74
증폭을 저해하고 돌연변이를 검출하는 효과를 확인한 결과,서 열번호 72 내지 74의 프로브 모두 우수한 효과를 나타내며 특히 서 열번호 74의 프로브가 보다 우수한 효과를 나타내는 것으로 확인되 었다 (도 5 참조).  As a result of inhibiting amplification and detecting mutations, it was confirmed that the probes of SEQ ID NOs: 72 to 74 all exhibited excellent effects, and in particular, the probes of SEQ ID NO: 74 showed better effects (see FIG. 5).
[53] 서 열번호 89 내지 91의 프로브를 적용하여 엑손 21의 코돈 858 및 861의  [53] Codons 858 and 861 of exon 21 by applying a probe of SEQ ID NOs: 89 to 91
야생형의 증폭을 저해하고 돌연변이를 검출하는 효과를 확인한 결과, 서 열번호 89 내지 91의 프로브 모두 우수한 효과를 나타내며 특히 서 열번호 90의 프로브가 보다 우수한 효과를 나타내는 것으로 확인되었다 (도 6 참조).  As a result of inhibiting the amplification of the wild type and detecting the mutation, it was confirmed that all of the probes of SEQ ID NOs: 89 to 91 showed excellent effects, and in particular, the probes of SEQ ID NO: 90 showed better effects (see FIG. 6).
[54] 본 발명의 PNA 프로브는 반웅효율 및 용해도를 증가시키기 위 해 N-말단 또는 C-말단에 친수성 기능기를 포함할 수 있으며,예로서 N-말단 또는 C-말단에 친수성 링커나 친수성 아미노산,또는 아민기를 1개 내지 여 러 개 포함할 수 있다 [7 Chem Technol Biotechnol 81 : 892-899, 2006; Tetrahedron Lett 39:7255-7258, 1998; Proc Natl Acad Sci USA 99:5953-5958, 2002; Anal Chem 69:5200-5202, 1997]. 구체적 인 예로서 , N-말단에 라이신 (lysine)이 1개 부착된 PNA 프로브를  The PNA probe of the present invention may include a hydrophilic functional group at the N-terminus or C-terminus to increase reaction efficiency and solubility. For example, a hydrophilic linker or a hydrophilic amino acid at the N-terminus or C-terminus, Or one to several amine groups [7 Chem Technol Biotechnol 81: 892-899, 2006; Tetrahedron Lett 39: 7255-7258, 1998; Proc Natl Acad Sci USA 99: 5953-5958, 2002; Anal Chem 69: 5200-5202, 1997]. As a specific example, a PNA probe having one lysine attached to the N-terminus is used.
사용하였다.  Used.
[55] 본 발명에서 사용되는 PNA 올리고머는 한국등록특허 게 464,261호의 방법에 따라 Bts(Benzothiazolesulfonyl)기로 보호된 PNA 단량체 , 또는 공지 의  [55] The PNA oligomer used in the present invention is a PNA monomer protected by Bts (Benzothiazolesulfonyl) group according to the method of Korean Patent No. 464,261, or known
Fmoc(9-flourenylmethloxycarbonyl) 또는 t-Boc(t-butoxycarbonyl)으로 보호된 PNA 단량체를 이용하여 합성될 수 있다[Dueholm et al., J 6>rg ί/Iem. 59(19): 5767-5773, 1994; Christensen J peptide Sci 1(3): 175-183, 1995; Thomson et al., Tetrahedron 51(22): 6179-6194, 1995]. Fmoc (9-flourenylmethloxycarbonyl) or can be synthesized using the t-Boc PNA monomer protected with a (t-butoxycarbonyl) [Dueholm et al., J 6> rg ί ■ / Iem. 59 (19): 5767-5773, 1994; Christensen J peptide Sci 1 (3): 175-183, 1995; Thomson et al., Tetrahedron 51 (22): 6179-6194, 1995].
[56]  [56]
[57] 2. EGFR 유저자 클램핑 프라이 머의 설 계 및 제작  [57] 2. Design and Fabrication of EGFR User Clamping Primer
[58] 본 발명에서 "EGFR 유전자 클램핑 프라이머 "라 함은 PNA 프로브와 완벽하게 결합되어 있는 야생형 유전자의 증폭은 억 제하고 , ΡΝΑ 프로브와 완벽하게 결합되어 있지 않는 (즉,미스매치가 존재하는) 돌연변이 유전자를 증폭시키는 CR 프라이머를 가리킨다. [58] In the present invention, the term "EGFR gene clamping primer" refers to suppression of amplification of wild-type genes that are perfectly bound to PNA probes, and to perfection with ΡΝΑ probes. It refers to a CR primer that amplifies a mutant gene that is not bound (ie, a mismatch is present).
[59] 본 발명의 클램핑 프라이 머는 특별히 제한되는 것은 아니나,보다 높은 민감도 및 특이도로 돌연변이를 검출하기 위해서는 PNA 클램핑 프로브를 기준으로 하여 한 방향으로는 PNA 프로브와 일부분이 겹쳐지도록 하며 다른 한 방향으로는 검출하고자 하는 부위를 포함하되 PCR 증폭산물의 크기를 고려하여 고안하는 것이 바람직하다. 또한 PNA 프로브와의 7^을 고려하고,길이는 17mer 내지 30mer, 특히 17mer 내지 24mer 사이 이며 , PNA 프로브의 Tm 보다 낮게 설계하는 것이 바람직하다. 진단 민감도 및 특이도를 극대화할 수 있도록, 야생형과 상보적으로 결합하는 PNA 클램핑 프로브 서 열 중 돌연변이가 일어나는 염기 바로 앞부분을 포함하도록 설계하는 것이 바람직하다. 구체적 인 예에 따르면,서 열번호 1 내지 91의 PNA 프로브와 3 내지 12개의 염기서 열이 포함되도록 17mer 내지 30mer, 특히 17mer 내지 24mer의 클램핑 프라이 머를 설계하였다. The clamping primer of the present invention is not particularly limited, but in order to detect mutations with higher sensitivity and specificity, a portion of the clamping primer overlaps the PNA probe in one direction and the other in the other direction based on the PNA clamping probe. Including the site to be detected, it is preferable to devise in consideration of the size of the PCR amplification product. In addition, considering 7 ^ with the PNA probe, the length is between 17mer and 30mer, especially between 17mer and 24mer, and it is preferable to design lower than the T m of the PNA probe. In order to maximize diagnostic sensitivity and specificity, it is desirable to design to include just before the base of the mutation in the PNA clamping probe sequence that complementarily binds to the wild type. According to a specific example, the clamping primers of 17mer to 30mer, especially 17mer to 24mer, were designed to include PNA probes of column numbers 1 to 91 and 3 to 12 base sequences.
[60] 본 발명에서 예시된 서 열번호 103의 정방향 프라이머는 서 열번호 1 내지 10의 EGFR 유전자 액손 18의 코돈 719의 상류 부분 염기를 특이 적으로 인식하도록 고안되 었다. 본 발명 에서 예시된 서 열번호 103의 정방향 프라이머와 조합되는 서 열번호 102의 역방향 프라이머는 EGFR 유전자 인트론 18 부위의 64 내지 83번째 염기를 특이 적으로 인식하도록 고안되 었다. 서 열번호 106 내지 1 10의 정방향 및 역방향 프라이머는 서 열번호 11 내지 26의 EGFR 유전자 엑손 19의 결손의 상류 부분 염기를 특이 적으로 인식하도록 고안되 었다.  The forward primer of SEQ ID NO: 103 illustrated in the present invention is designed to specifically recognize the upstream partial base of codon 719 of the EGFR gene axon 18 of SEQ ID NOs: 1-10. The reverse primer of SEQ ID NO: 102 in combination with the forward primer of SEQ ID NO: 103 exemplified in the present invention is designed to specifically recognize the 64th to 83rd bases of the 18 region of the EGFR gene intron. The forward and reverse primers of SEQ ID NOs: 106 to 1 10 are designed to specifically recognize upstream partial bases of the deletion of the EGFR gene exon 19 of SEQ ID NOs: 11 to 26.
[61] 본 발명 에서 예시된 서 열번호 106 내지 109의 정방향 프라이 머와 조합되는 서 열번호 105의 역방향 프라이머는 EGFR 유전자 인트론 19 부위의 56 내지 75번째 염 기를 특이 적으로 인식하도록 고안되 었으며 , 또한 서 열번호 110의 역방향 프라이머와 조합되는 서 열번호 104의 정방향 프라이머는 EGFR 유전자 인트론 19 부위의 7 내지 26번째 염기를 특이 적으로 인식하도록 고안되 었다. 서 열번호 114 내지 120의 정방향 프라이머는 서 열번호 27 내지 78의 EGFR 유전자 엑손 20의 유전자 삽입 및 코돈 768, 790의 상류 부분 염기를 특이 적으로 인식하도록 고안되었다.  The reverse primer of SEQ ID NO: 105 in combination with the forward primers of SEQ ID NOs: 106 to 109 exemplified in the present invention is designed to specifically recognize the 56th to 75th base of the 19 region of the EGFR gene intron. In addition, the forward primer of SEQ ID NO: 104 in combination with the reverse primer of SEQ ID NO: 110 was designed to specifically recognize the 7th to 26th bases of the 19 site of the EGFR gene intron. The forward primers of SEQ ID NOs 114-120 are designed to specifically recognize the gene insertion of the EGFR gene exon 20 of SEQ ID NOs 27-78 and the upstream partial bases of codons 768, 790.
[62] 본 발명에서 예시된 서 열번호 114 내지 120의 정방향 프라이머와 조합되는 서 열번호 113의 역방향 프라이머는 EGFR 유전자 엑손 20 부위의 119 내지 138번째 염 기를 특이 적으로 인식하도록 고안되 었다. 서 열번호 122 및 123의 정방향 프라이머는 서 열번호 79 내지 91의 EGFR 유전자 액손 21의 유전자 코돈 858 및 861의 상류 부분 염 기를 특이 적으로 인식하도록 고안되었다.  The reverse primer of SEQ ID NO: 113 in combination with the forward primers of SEQ ID NOs: 114 to 120 illustrated in the present invention is designed to specifically recognize the 119th to 138th bases of the 20 region of the EGFR gene exon. The forward primers of SEQ ID NOs: 122 and 123 are designed to specifically recognize the upstream partial bases of gene codons 858 and 861 of the EGFR gene axon 21 of SEQ ID NOs: 79-91.
[63] 본 발명에서 예시된 서 열번호 1.22 및 123의 정방향 프라이머와 조합되는  [63] combined with the forward primers of SEQ ID NOs: 1.22 and 123 exemplified herein
서 열번호 121의 역방향 프라이머는 EGFR 유전자 인트론 21 부위의 16 내지 35번째 염기를 특이 적으로 인식하도록 고안되 었다. 프라이머의 길이는 17mer 내지 30mer,특히 17mer 내지 24mer사이로 각각 프라이머 조합의 증폭산물의 크기가 50 bp 내지 500 bp가 되도록 고안되 었다. The reverse primer of SEQ ID NO: 121 is designed to specifically recognize the 16th to 35th bases of the 21 region of the EGFR gene intron. The length of the primer is between 17mer and 30mer, in particular between 17mer and 24mer, respectively. It is designed to be 50 bp to 500 bp in size.
[64] 한편, EGFR 유전자의 액손 18 및 19의 염기서 열분석을 통한 유전자 확인을 위하여 본 발명 에서 제공되는 서 열번호 95 및 101, 104, 111의 정방향 프라이머는 EGFR 유전자 인트론 18 부위의 -159 내지 -139번째 염 기,액손 18 부위의 9 내지 28번째 염기,액손 19 부위의 7 내지 26번째 염 기 및 인트론 19 부위의 -197 내지 -178번째 염 기를 특이 적으로 인식하도록 고안되었고,상기 프라이머와 조합되는 역방향 프라이머는 서 열번호 96으로 EGFR 유전자 인트론 18 부위의 165 내지 184번째 염기를 특이 적으로 인식하도록 고안되 었으며,프라이머의 길이는 17mer 내지 30mer, 특히 17mer 내지 24mer 사이로 고안되었다. 이들 프라이머는 조합되어 증폭산물의 크기가 400 bp 내지 1500 bp가 되도록 고안되 었다.  On the other hand, the forward primers of SEQ ID NOs: 95 and 101, 104, and 111 provided in the present invention for gene identification by sequencing of axons 18 and 19 of the EGFR gene are -159 of the EGFR gene intron 18 site. To -139th base, 9-28th base of 18-axon 18, 7-26th base of 19-axon 19, and -197--178th base of 19 intron 19 sites, and the primer The reverse primer in combination with was designed to specifically recognize the 165th to 184th base of the 18 region of the EGFR gene intron at SEQ ID NO. 96, and the primer length was designed to be between 17mer and 30mer, especially between 17mer and 24mer. These primers were designed to be combined so that the size of the amplification product was 400 bp to 1500 bp.
[65] EGFR 유전자의 엑손 20의 염기서 열분석을 통한 유전자 확인을 위하여,본 발명에서 제공되는 서 열번호 97 및 1 12의 정방향 프라이머는 EGFR 유전자 인트론 20 부위의 -200 내지 -181번째 염 기 및 인트론 20 부위의 -95 내지 -77번째 염 기를 특이 적으로 인식하도록 고안되 었고,상기 프라이머와 조합되는 역방향 프라이머는 서 열번호 98으로 EGFR 유전자 인트론 20 부위의 170 내지 189번째 염기를 특이 적으로 인식하도록 고안되 었으며 프라이머의 길이는 17mer 내지 30mer,특히 17mer 내지 24mer 사이로 고안되 었다. 이들 프라이머는 조합되 어 증폭산물의 크기가 300 bp 내지 700 bp가 되도록 고안되었다.  [65] For the identification of genes by sequencing of exon 20 of the EGFR gene, the forward primers of SEQ ID NOs: 97 and 1 12 provided in the present invention are -200 to -181 bases of the EGFR gene intron 20 region. And it is designed to specifically recognize the -95 to -77th base of the intron 20 site, the reverse primer in combination with the primer is specifically SEQ ID NO: 98 to 170 to 189 base of the intron 20 site of the EGFR gene It was designed to recognize and the primer length was designed between 17mer and 30mer, especially between 17mer and 24mer. These primers were designed to be combined so that the size of the amplification product was 300 bp to 700 bp.
[66] EGFR 유전자의 액손 21의 염기서 열분석을 통한 유전자 확인을 위하여,본 발명에서 제공되는 서 열번호 99의 정방향 프라이머는 EGFR 유전자 인트론 21 부위의 -28 내지 -9번째 염기를 특이 적으로 인식하도록 고안되 었고, 상기 프라이머와 조합되는 역방향 프라이머는 서 열번호 100으로 EGFR 유전자 인트론 21 부위의 259 내지 278번째 염 기를 특이 적으로 인식하도록  [66] In order to identify genes by sequencing the axon 21 of the EGFR gene, the forward primer of SEQ ID NO: 99 provided in the present invention specifically targets the -28 to -9th bases of the intron 21 region of the EGFR gene. It was designed to recognize, and the reverse primer in combination with the primer to specifically recognize the 259 to 278 base of the 21 region of the EGFR gene intron at SEQ ID NO: 100
고안되 었으며,프라이머의 길이는 17mer 내지 30mer, 특히 17mer 내지 24mer 사이로 고안되 었다. 이들 프라이머는 조합되어 증폭산물의 크기가 300 bp 내지 700 bp가 되도록 고안되 었다. 각각의 프라이머의 특성은 하기 표 3에 정 리되어 있다. The length of the primer is designed to be between 17mer and 30mer, especially between 17mer and 24mer. These primers were designed to be combined so that the size of the amplification product was 300 bp to 700 bp. The properties of each primer are summarized in Table 3 below.
[67] [표 3] [Table 3]
Figure imgf000019_0001
Figure imgf000019_0001
[68] 3. PNA 기반의 심 시 ? PCR 클램핑을 이용하 RGFR 돌여 변 이 검출  [68] 3. PNA-based examination RGFR rounding detection using PCR clamping
[69] 본 발명 에 따른 EGFR 유전자의 키나제 도메 인 돌연변이 검출방법은 [69] The kinase domain mutation detection method of the EGFR gene according to the present invention
[70] (1) EGFR(Epidermal Growth Factor Receptor) 유전자의 액손 18 야생형 코돈 Ή9, 엑손 19 야생형 코돈 746 내지 749,액손 20 야생형 코돈 767 내지 771,액손 20 야생형 코돈 768,액손 20 야생형 코돈 790, 액손 21 야생형 코돈 858 또는 861의 뉴클레오티드를 포함하는 부위를 증폭시키는 클램핑 프라이머 세트와, 상기 각각의 코돈 부위에 상웅하는 야생형 유전자와 완전하게 결합하는 15 내지 30mer의 길이를 갖는 PNA(Peptide Nucleic Acid) 클램핑 프로브의 존재 하에 , EGFR 유전자에 대해 실시간 PCR(real-time Polymerase Chain Reaction)을 수행하고; (1) Axon 18 wild type codon 코 9, exon 19 wild type codons 746 to 749, axon 20 wild type codon 767 to 771, axon 20 wild type codon 768, axon 20 wild type codon 790, axon A set of clamping primers to amplify a site comprising 21 nucleotides of wild type codon 858 or 861, and 15 to 15 completely binding to a wild type gene floating at each of said codon sites Performing real-time polymerase chain reaction (PCR) on the EGFR gene in the presence of a Peptide Nucleic Acid (PNA) clamping probe having a length of 30mer;
[71] (2) 상기 실시간 PCR에 의 한 유전자 증폭을 분석하여 EGFR 유전자의 돌연변이 유무 또는 농도를 결정하는;단계를 포함한다.  (2) analyzing the gene amplification by the real-time PCR to determine the presence or absence of a mutation or concentration of the EGFR gene;
[72] 본 발명의 상기 단계 (1)의 EGFR 유전자는 대상 검체로부터 추출하여  [72] The EGFR gene of step (1) of the present invention is extracted from the sample
준비한다ᅳ 본 발명 에서는 핵산추출에 특별한 제한이 없으며 , 일반적으로 사용하는 모든 핵산 추출방법을 사용할 수 있으며 , 시판중인 핵산 추출키트 둥을 사용하여 환자의 혈액 또는 종양 표본으로부터 DNA를 추출하여 준비한다.  Preparation ᅳ There is no particular limitation on nucleic acid extraction in the present invention, any nucleic acid extraction method can be used in general, using a commercially available nucleic acid extraction kit to extract DNA from the patient's blood or tumor samples to prepare.
[73] 본 발명의 EGFR 유전자의 키나제 도메인 돌연변이는 액손 18 G719X의 치환;  [73] The kinase domain mutation of the EGFR gene of the present invention is a substitution of axon 18 G719X;
액손 19의 결손 또는 결손 및 치환; 엑손 20의 삽입 , S768I 또는 T790M의 치환; 액손 21 L858R 또는 L861Q의 치환;으로부터 선택되는 어느 하나 이상인 것이다.  Deletion or deletion and substitution of axon 19; Insertion of exon 20, substitution of S768I or T790M; Axon 21 L858R or L861Q substitution;
[74] 본 발명 에 있어서 , 상기 (1) 단계의 PNA 클램핑 프로브는 16 내지 27mer의  In the present invention, the PNA clamping probe of step (1) is 16 to 27mer
길이의 염 기서 열로 이루어지는 것으로,서 열번호 1 내지 91로부터 선택되는 어느 하나인 것을 포함한다.  It consists of a base sequence of length, and includes any one selected from column numbers 1 to 91.
[75] 본 발명의 상기 단계 (1)의 EGFR 유전자 클램핑 프라이머 세트는 정방향  [75] The EGFR gene clamping primer set of step (1) of the present invention is forward
프라이머로서 서 열번호 103, 106 내지 109, 114 내지 120, 122 및 123로부터 선택되는 어느 하나 이상인 프라이 머를 포함하고,바람직하게는 서 열번호 103, 108, 115, 118 내지 120 및 122로부터 선택되는 어느 하나 이상인 프라이머 이며, 역방향 프라이머로서는 서 열번호 110의 프라이머를 포함한다.  A primer comprising at least one primer selected from SEQ ID NOs: 103, 106-109, 114-120, 122, and 123, preferably selected from SEQ ID NOs: 103, 108, 115, 118-120, and 122 It is any one or more primers, and includes the primer of SEQ ID NO: 110 as the reverse primer.
[76] 본 발명의 상기 단계 (1)의 PNA 클램핑 프로브는 N-말단 또는 C-말단 친수성 기능기를 포함하며,실시간 PCR 클램핑의 반웅물 중 PNA 클램핑 프로브는 1 내지 1000 nM의 최종농도를 갖는 것이 바람직하다.  The PNA clamping probe of step (1) of the present invention includes an N-terminal or C-terminal hydrophilic functional group, and the PNA clamping probe in the reaction product of real-time PCR clamping has a final concentration of 1 to 1000 nM. desirable.
[77] 본 발명은 실시간 PCR 클램핑 방법을 이용하여 EGFR 유전자의 돌연변이를 검출한다. 상기 실시간 PCR 클램핑 방법은 지수적 인 증폭이 일어나는 초기 시료의 양을 형 광물질의 지수적 증가가 탐지되기 시작하는 사이클의 수 (Cycle threshold, 이하 라 함)로 나타내므로 보다 정확한 정량분석 이 가능하며 반응을 실시간으로 분석할 수 있다. 상기 방법은 전기 영동 후,영상분석기로 강도를 측정하는 단계가 생략되고 증폭산물의 증폭 정도를 자동화 및 수치화시 켜 신속.간편하게 진단할 수 있는 방법 이다.  The present invention detects mutations in the EGFR gene using a real-time PCR clamping method. In the real-time PCR clamping method, the amount of initial sample in which exponential amplification occurs is represented by the number of cycles (hereinafter referred to as the cycle threshold) at which an exponential increase in fluorescence is detected. Can be analyzed in real time. After the electrophoresis, the step of measuring the intensity with an image analyzer is omitted, and the method of amplifying the amplification product can be quickly and easily diagnosed by automating and quantifying.
[78] 본 발명에서는 인터 컬레이터 (intercalator) 방법을 이용하여 형광을 검출하는데, 이 방법은 증폭된 이중가닥 DNA에 형 광표지가 결합해 형광을 발하게 되는데 이 때의 형광 강도를 측정함으로써 증폭산물의 생성량을 측정하게 된다.  In the present invention, the fluorescence is detected by using an intercalator method. In this method, a fluorescent label binds to the amplified double-stranded DNA to emit fluorescence. The amount of produced is measured.
[79] 본 발명 에서는 유전자 증폭산물을 확인하기 위 한 형광물질로서 실시간 유전자 검출방법에 사용되는 DNA-결합 형광물질 (DNA-binding fluorophore)을 사용하며 그 종류에 특별한 제한은 없다. 예를 들어,사이버 그린 (SYBR Green) I 외 에도 에버그린,에티디움브로마이드 (EtBr), BEBO, YO-PRO-1, TO-PRO-3, LC 그린, SYTO-9, SYTO-13, SYTO-16, SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO-3, SYTOX Orange 둥을 사용할 수 있다 (Gi/ i et al, Nucleic Acids Res. 35(19):el27, 2007; Bengtsson et al, Nucleic Acids Res. 31(8):e45; Wittwer et al, Clinical Chemistry 49(6):853-860, 2003). In the present invention, a DNA-binding fluorophore used in a real-time gene detection method is used as a fluorescent material to identify a gene amplification product, and there is no particular limitation on the type thereof. For example, in addition to SYBR Green I, Evergreen, EtBr, BEBO, YO-PRO-1, TO-PRO-3, LC Green, SYTO-9, SYTO-13, SYTO-16 , SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO-3, SYTOX Orange, can be used (Gi / i et al, Nucleic Acids Res. 35 (19): el27, 2007; Bengtsson et al, Nucleic Acids Res. 31 (8): e45; Wittwer et al, Clinical Chemistry 49 (6): 853-860, 2003).
[80] 본 발명에서는 실시간 PCR 클램핑 에 의 한 유전자 증폭을 분석하여 , EGFR 유전자의 돌연변이 유무 또는 농도를 결정하는 바,증폭된 Ct값을 비교하여 EGFR 유전자의 돌연변이 유무를 확인할 수 있다. 야생형 유전자와 In the present invention, by analyzing the gene amplification by real-time PCR clamping to determine the presence or absence of the mutation of the EGFR gene, it is possible to confirm the presence or absence of the mutation of the EGFR gene by comparing the amplified C t value. With wild-type genes
혼성화되도록 고안된 PNA 프로브가 EGFR 돌연변이 코돈 유전자 부위에 혼성화되어 증폭을 저해하게 되면 증폭이 저해되어 높은 Ct값이 나타나게 된다. When a PNA probe designed to hybridize hybridizes to an EGFR mutant codon gene site and inhibits amplification, the amplification is inhibited, resulting in high C t value.
[81] 돌연변이 유무 및 그 농도는 하기 식 1에 의해 얻어지는 ACt값으로부터 [81] The presence or absence of the mutation and its concentration from the AC t value obtained by
확인한다.  Check it.
[82] [식 υ [82] [Equation υ
ACt = 양성대조 시료로부터 얻어진 Ct값 - 미지의 시료로부터 얻어진 CtAC t = C t obtained from a positive control sample value - C t value obtained from the sample of unknown
[83] 돌연변이형 유전자가 다량 포함되어 있을수록 Ct 값이 낮게 나타나므로, ACt 값은 큰 값을 나타내게 된다. The higher the mutant gene is included, the lower the value of C t , and therefore the greater the value of AC t .
[84] 본 발명은 Real-Time PCR 및 PNA 기반의 실시간 PCR 클램핑을 이용하여 [84] The present invention uses real-time PCR and PNA-based real-time PCR clamping
전립선암,유방암, 결장암,이자암,난소암, 지 라암,고환암, 흉선암 및  Prostate cancer, breast cancer, colon cancer, pancreatic cancer, ovarian cancer, spleen cancer, testicular cancer, thymic cancer,
폐암으로부터 선택되는 1종 이상의 암의 치료 또는 진단하는데 이용할 수 있으며 , EGFR 신호 전달 체 계에 관여하는 기작을 연구하는 데에도 매우 유용하게 사용될 수 있다. 또한 개체군 -기초 연구와 같이 다량의 시료 분석을 요구하는 연구에도 효과적으로 적용될 수 있다.  It can be used to treat or diagnose one or more cancers selected from lung cancer, and can be very useful for studying the mechanisms involved in the EGFR signaling system. It can also be effectively applied to studies that require large sample analysis, such as population-based studies.
[85] 이하,본 발명을 실시 예에 의해 보다 구체적으로 설명하나, 이는 본 발명의 이해를 돕기 위한 것 일 뿐 본 발명의 범위를 어떤 식으로든 제한하고자 하는 - 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples, which are intended to aid the understanding of the present invention but are not intended to limit the scope of the present invention in any way.
[86]  [86]
[87] [실시 예 1] EGFR 액손 18, 19, 20 및 21의 돌연변이 및 유전자의 결실,삽입 및 치환되는 야생형의 증폭을 억 제하기 위 한 PNA 프로브 합성  Example 1 Synthesis of PNA Probes to Suppress Mutation of EGFR Axons 18, 19, 20, and 21 and Wild-type Amplification of Deletion, Insertion, and Substitution of Genes
[88] EGFR 유전자의 엑손 18, 19, 20 및 21의 돌연변이 및 유전자의 결실,삽입 및 치환의 야생형과 완벽하게 결합하는 91개의 PNA 프로브를 상기 표 2에 나타낸 바와 같이 제작하였다. 각 코돈의 야생형과 완벽하게 결합하는 프로브는 돌연변이와의 효과적 인 분리를 위하여 돌연변이가 일어나는 염 기서 열이 프로브의 중간에 위 치하도록 고안하였다. 한국등록특허 제 464261호에 기재된 방법에 따라, PNA 프로브를 합성하였다 [Lee et al, Org Lett, 9:3291-3293, 2007]. 91 PNA probes that perfectly bind to the exon 18, 19, 20 and 21 mutations of the EGFR gene and the wild type of deletion, insertion and substitution of the gene were constructed as shown in Table 2 above. Probes that fully bind the wild type of each codon are designed so that the base sequence of mutation occurs in the middle of the probe for effective isolation from the mutation. PNA probes were synthesized according to the method described in Korean Patent No. 464261 [Lee et al, Org Lett, 9: 3291-3293, 2007].
[89]  [89]
[90] [실시 예 2] EGFR 액손 18, 19, 20 및 21의 돌연변이 및 유전자의 결실,삽입 및 치환의 표적 핵산을 증폭하기 위한 프라이머 합성  [90] Example 2 Synthesis of primers for amplifying target nucleic acids of deletions, insertions and substitutions of mutations and genes of EGFR axons 18, 19, 20 and 21
[91] EGFR 액손 18, 19, 20 및 21의 돌연변이 및 유전자의 결실,삽입 및 치환의 [91] Deletion, insertion and substitution of EGFR axons 18, 19, 20 and 21 mutations and genes
표적 핵산의 증폭 및 클램핑 PCR을 위하여 EGFR 유전자의 액손 18, 19, 20 및 21 부위를 분석하여 프라이머를 제작하였다. 상기 프라이머는 EGFR 액손 18 및 19의 야생형 및 돌연변이 유전자를 확인하기 위한 서열번호 95 및 96으로 이루어진 프라이머 한 세트와 엑손 18의 코돈 719의 유전자를 확인하기 위한 서 열번호 101 및 102로 이루어진 프라이머 한 세트,액손 19의 유전자 결손을 ' 확인하기 위 한 서 열번호 104 및 111과 조합되는 서 열번호 105로 이루어진 프라이머 한 세트와 서 열번호 103 및 서 열번호 106 내지 109의 EGFR 액손 18 코돈 719 및 액손 19 유전자 결손의 클램핑 프라이머를 합성하였으며,액손 18 코돈 719의 클램핑에 사용된 역방향 프라이머는 EGFR 엑손 18 코돈 719 유전자를 확인하기 위하여 고안된 서 열번호 102의 역방향 프라이머를 동일하게 사용하였고,엑손 19 유전자 결손의 클램핑 에 사용된 역방향 프라이머는 서 열번호 EGFR 엑손 19 유전자 결손을 확인하기 위하여 고안된 서 열번호 105의 역방향 프라이머를 동일하게 사용하였다. Axons 18, 19, 20, and 21 of the EGFR gene for amplification and clamping PCR of target nucleic acids The site was analyzed to prepare primers. The primers include a set of primers consisting of SEQ ID NOs: 95 and 96 for identifying wild type and mutant genes of EGFR axons 18 and 19 and a set of primers consisting of SEQ ID NOs: 101 and 102 for identifying genes of codon 719 of exon 18. A set of primers consisting of SEQ ID NO: 105 in combination with SEQ ID NOs: 104 and 111, and EGFR axon 18 codons 719 and axons of SEQ ID NOs: 103 and SEQ ID NOs: 106-109 to identify the genetic defect of Axon 19; Clamping primers of the 19 gene deletion were synthesized, and the reverse primers used for clamping the axon 18 codon 719 were used in the same manner as the reverse primer of SEQ ID NO: 102 designed to identify the EGFR exon 18 codon 719 gene. The reverse primer used for clamping of the The designed reverse primers of SEQ ID NO: 105 were used identically.
[92] EGFR 엑손 20의 유전자 삽입 및 코돈 768 및 790의 야생형 및 돌연변이 [92] Gene Insertion of EGFR Exon 20 and Wild-type and Mutations of Codons 768 and 790
유전자를 확인하기 위 한 서 열번호 97 및 98으로 이루어진 프라이 머 한 세트와 서 열번호 112 및 113으로 이루어진 프라이머 한 세트,서 열번호 114 내지 120의 EGFR 액손 20의 유전자 삽입 및 코돈 768 및 790의 클램핑 프라이 머를  One set of primers consisting of SEQ ID NOs: 97 and 98 and one set of primers consisting of SEQ ID NOs: 112 and 113, gene insertion of EGFR axon 20 of SEQ ID NOs 114-120 and codons 768 and 790 to identify the gene Clamping primer
합성하였으며, EGFR 엑손 20의 유전자 삽입 및 코돈 768 및 790 클램핑에 사용된 역방향 프라이머는 EGFR 액손 EGFR 액손 20의 유전자 삽입 및 코돈 768 및 790 유전자를 확인하기 위하여 고안된 서 열번호 113의 역방향 프라이머를 동일하게 사용하였다.  The reverse primers used for the gene insertion of EGFR exon 20 and clamping codons 768 and 790 are identical to the reverse primers of SEQ ID NO: 113 designed to identify the gene insertion of EGFR axon EGFR axon 20 and codons 768 and 790 genes. Used.
[93] EGFR 엑손 21의 코돈 858 및 861의 야생형 및 돌연변이 유전자를 확인하기 위 한 서열번호 99 및 100으로 이루어진 프라이 머 한 세트와 서 열번호 122 및 123의 EGFR 엑손 21의 코돈 858 및 861의 클램핑 프라이머를 합성하였으며 , EGFR 엑손 21의 코돈 858 및 861 클램핑에 사용된 역방향 프라이 머로 서 열번호 122의 프라이머를 합성하여 사용하였다. 사용한 프라이머의 서 열은 상기 표 3에 나타낸 바와 같다. 프라이머는 ^바이오니아 (한국)에 의뢰하여 합성하였다.  [93] Clamping of codons 858 and 861 of EGFR exon 21 of SEQ ID NOs: 122 and 123 and a set of primers to identify wild type and mutant genes of codons 858 and 861 of EGFR exon 21 Primers were synthesized, and primers of SEQ ID NO: 122 were synthesized as reverse primers used for codons 858 and 861 clamping of EGFR exon 21. The sequence of the used primer is as shown in Table 3 above. Primers were synthesized by ^ Bionia (Korea).
[94]  [94]
[95] [실시 예 3] EGFR 액손 18, 19, 20 및 21의 표적 핵산을 제조하기 위한 돌연변 이유발 및 클론제조  [95] [Example 3] Mutant weaning and cloning for preparing target nucleic acids of EGFR axons 18, 19, 20 and 21
[96] 인간의 전체 DNA를 이용하여 서 열번호 95 및 96 한 세트와 97 및 98 한 세트, 99 및 100 한 세트 프라이머를 적용하여 EGFR 엑손 18, 19, 20 및 21 부분의 유전자를 증폭하였다. 증폭된 핵산을 pGEM-T 이지 백터 (promega, USA)에 결찰하고 E.Coli ]M 109 세포에 형 질전환하여 DNA를 대량 확보하였다. 변이 유전자를 가진 클론올 확보하기 위해 상기 한 방법으로 제조된 정상 클론을 이용하여 돌연변이용 프라이머를 제작하고 부위특이 적 돌연변이유발  [0096] Using human whole DNA, one set of SEQ ID Nos. 95 and 96, one set of 97 and 98, and one set of 99 and 100 were used to amplify genes of EGFR exons 18, 19, 20 and 21. The amplified nucleic acid was ligated into pGEM-T easy vector (promega, USA) and transformed into E. Coli] M 109 cells to obtain a large amount of DNA. In order to secure a clone with a mutant gene, a primer for mutation was prepared using a normal clone prepared by the above method, and site-specific mutagenesis was made.
키트 (Stratagene, USA)를 사용하여 변이 유전자를 가진 클론을 확보하였다.  Kits (Stratagene, USA) were used to obtain clones with the variant genes.
확보된 클론은 염기서 열 분석으로 그 변이 여부를 확인하였다.  The obtained clone was confirmed by its sequence analysis for its mutation.
[97] [98] [실시 예 4] EGFR 액손 18, 19, 20 및 21의 야생형 및 돌연변이 세포주 (cell line)로부터의 핵산 추출 [97] Example 4 Nucleic Acid Extraction from Wild and Mutant Cell Lines of EGFR Axons 18, 19, 20, and 21
[99] EGFR 엑손 18, 19, 20 및 21의 돌연변이 및 유전자의 결실,삽입 및 치환의  [99] Deletion, Insertion, and Replacement of EGFR Exons 18, 19, 20, and 21 Mutations and Genes
야생형 및 돌연변이의 표적 핵산을 확보하기 위하여 , 미국표준세포주은행 및 한국세포주은행으로부터 세포주를 분양 받았다. 야생형 세포주로 A549(genomic DNA) 인간 폐암 세포주 [KCLB10185, 한국세포주은행 (KCLB), 서울,한국]를 분양 받았으며,하기 표 4의 돌연변이 세포주들은 한국세포주은행 및  In order to secure target nucleic acids of wild type and mutant, cell lines were distributed from the US Standard Cell Line Bank and the Korea Cell Line Bank. The wild-type cell line A549 (genomic DNA) human lung cancer cell line [KCLB10185, Korea Cell Line Bank (KCLB), Seoul, South Korea] was distributed and the mutant cell lines shown in Table 4 are the Korea Cell Line Bank and
미국표준세포주은행으로부터 분양 받았다.  It was sold by the American Standard Cell Line Bank.
[100] [표 4]  [Table 4]
Figure imgf000023_0001
Figure imgf000023_0001
[101] 상기 분양 받은 세포주는 RPMI1640(Hyclone, Thermo scientific, USA)에 10% 열-불활성화 우태아혈청 (FBS, Hyclone, Thermo scientific, USA)과 IX  [101] The distributed cell line was RPMI1640 (Hyclone, Thermo scientific, USA) and 10% heat-inactivated fetal bovine serum (FBS, Hyclone, Thermo scientific, USA) and IX
페니실린-스트렙토마이신 (Welgene, Korea)이 첨 가된 배지를 사용하여 37°C, 5% 이산화탄소 (C02)가 유지되는 배양기 에서 배양하였다. 배양된 세포주는 High Pure PCR Template Preparation Kit(Roche, USA)를 사용하여 키트에서 제공한 매뉴얼에 의거하여 DNA를 추출하여 표적 핵산을 확보하였다. 상기 확보된 핵산은 나노드롭 스펙트로포토미터 (ND 2000C, Thermo Scientific, USA)를 사용하여 정 량하고 -20oC에 보관하여 사용하였다. Penicillin-streptomycin (Welgene, Korea) was added to the culture medium was maintained in 37 ° C, 5% carbon dioxide (C0 2 ) using a medium. The cultured cell line was extracted with DNA using a High Pure PCR Template Preparation Kit (Roche, USA) to obtain a target nucleic acid. The obtained nucleic acid was quantified using a nanodrop spectrophotometer (ND 2000C, Thermo Scientific, USA) and stored at -20 ° C.
[102] 상기 분양 받은 인간 세포주들로부터 각각 분리한 전체 DNA를 상기 표 3에 기 재되어 있는 서 열번호 95 및 96의 프라이머 세트와 서 열번호 97 및 98의 프라이머 세트,서 열번호 99 및 100 프라이머 세트를 적용하여 EGFR 액손 18, 19, 20 및 21 부분의 유전자를 증폭하였다. 증폭된 PCR 산물을 Labopass™ PCR 정 제 키트 (코스모진텍 , 한국)를 사용하여 정 제한 후 염기서 열을 분석 하여 유전자형을 확인하였다. 유전자형 이 확인된 야생형 및 변이형 세포주는 본 발명의 PNA 프로브를 이용한 실시간 PCR 클램핑 방법의 검체로 사용하였다.  [102] The total DNA isolated from the human cell lines thus received were respectively set of the primer sets of SEQ ID NOs: 95 and 96 and the primer sets of SEQ ID NOs: 97 and 98, listed in Table 3, SEQ ID NOs: 99 and 100. A primer set was applied to amplify the genes of the EGFR axons 18, 19, 20 and 21 portions. The amplified PCR product was purified using Labopass ™ PCR purification kit (Cosmogenetech, Korea) and analyzed for sequencing to confirm genotype. Wild type and mutant cell lines confirmed genotype was used as a sample of the real-time PCR clamping method using the PNA probe of the present invention.
[103]  [103]
[104] [실시 예 5] EGFR 엑손 15 코돈 600에 대한 PNA 프로브를 이용한 실시간 PCR 클램핑 방법 확립  [Example 5] Establishment of Real-Time PCR Clamping Method Using PNA Probe for EGFR Exon 15 Codon 600
[105] 실시 예 3에서의 클론으로부터 추출된 DNA와 실시 예 4에서의 세포주로부터 추출된 DNA를 이용하여 하기 조건으로 실시간 PCR 클램핑을 수행하여 PNA 기반의 실시간 PCR 클램핑 방법을 확립하고 최 적의 PNA 프로브를 선정하였다.  [105] Real time PCR clamping using the DNA extracted from the clone in Example 3 and the DNA extracted from the cell line in Example 4 under the following conditions to establish a PNA-based real-time PCR clamping method and the optimal PNA probe Was selected.
[106] 클론에서 추출된 DNA 용액 1 또는 cell line에서 추출된 주형 DNA 용액 (50 ng//^) 1 μί, 상기 표 2에 나타난 1개의 정방향의 클램핑 프라이머 (10 pmole//O 1 βί, 역방향의 프라이머 (lO pmole/ ) 1≠, 상기 표 2에 나타낸 프로브 중 1개의 클램핑프로브 (100 nM) 1 f , 2X IQ Sybr그린슈퍼믹스 (Bio-Rad, USA) 10 μΐ, 증류수 6 [i 가하고실시간 DNA증폭기 (Real-time PCR machine, CFX96TM Real-Time PCR System, Bio-RAD사제품)를이용하여 95°C에서 3분동안 반웅시킨후 95°C 30초, 70°C 20초, 63°C 30초, 72°C 30초로이루어진반웅과정을 40회반복하였다.형광은 720C중합반웅단계에서측정하였다.그결과는도 1 내지 6에나타내었다. [106] 1 μί of DNA solution 1 extracted from clone or template DNA solution extracted from cell line (50 ng // ^), 1 forward clamping primer shown in Table 2 (10 pmole // O 1 βί, reverse Primer of (lO pmole /) 1 ≠, one of the probes shown in Table 2 above Clamping probe (100 nM) 1 f, 2X IQ Sybr Green Supermix (Bio-Rad, USA) 10 μΐ, distilled water 6 [i Real-time PCR machine, CFX96TM Real-Time PCR System, Bio-RAD After 3 minutes at 95 ° C, repeated 40 cycles of 95 ° C 30 seconds, 70 ° C 20 seconds, 63 ° C 30 seconds, 72 ° C 30 seconds. Measurements were taken at 72 0 C polymerization reaction steps. The results are shown in Figures 1-6.
[107]  [107]
[108] [실시예 6]PNA기반의실시간 PCR클램핑을이용한 EGFR유전자의  Example 6 EGFR Gene Utilization Using PNA-based Real-Time PCR Clamping
돌연변이검출한계측정  Mutation Detection Limit Measurement
[109] 상기실시예 5에서확립된실시간 PCR클램핑방법을사용하여야생형 [109] The real time PCR clamping method established in Example 5 should be used.
유전자에돌연변이유전자를각각 50 ng, 20 ng, 10 ng, 5 ng, 1 ng이포함하도록 제작하여돌연변이유전자의농도에따른 Ct값사이의상관관계를분석하여, 돌연변이형의검출한계를확인하였다.  Mutations in the genes were made to contain 50 ng, 20 ng, 10 ng, 5 ng, and 1 ng, respectively, and the correlation between the Ct values according to the concentration of the mutant genes was analyzed to confirm the detection limit of the mutant.
[110] 그결과를도 7내지 9에나타내었다.도 7내지 9에나타난바와같이,용액내 상대적인돌연변이유전자의농도가높을수록형광이역치값에도달하는 반웅흿수를나타내는 Q값이일정하게감소하여용액내돌연변이유전자의 농도와 Q값사이에상관관계가있음을확인할수있었다. The results are shown in Figs. 7-9. As shown in Figs. 7-9, the higher the concentration of the relative mutant gene in the solution, the more consistently the Q value representing the number of fluctuations of the fluorescence reaching the threshold value decreases uniformly. It was found that there is a correlation between the concentration of the mutant gene and the Q value.
[111]  [111]
[112] [비교예 1]EGFR돌연변이유전자검출을위한종래기술과의비교  [112] [Comparative Example 1] Comparison with Conventional Techniques for Detection of EGFR Mutations
[113] 미국공개특허 US2010/0009360에개시된 PNA프로브와본발명에따른 PNA 프로브를비교하기위하여,하기표 5에나타낸바와같은상기미국공개특허의 EGFR액손 19유전자결실및엑손 20의코돈 790,엑손 21의코돈 858의 돌연변이의야생형에대한 PNA프로브를제작하였다.  [113] In order to compare the PNA probe disclosed in US Patent Publication No. 2010/0009360 with the PNA probe according to the present invention, the EGFR axon 19 gene deletion and exon 20 of codon 790, exon, as shown in Table 5 below. PNA probes for the wild type of the mutant of codon 858 of 21 were constructed.
[114] [표 5] [Table 5]
Figure imgf000024_0001
Figure imgf000024_0001
[115] 상기미국공개특허의프로브와본발명에따른프로브를이용하여실시간 PCR 클램핑을실시하여돌연변이검출여부를확인하였다.  [115] Real-time PCR clamping was performed using the probe of the U.S. Patent Publication and the probe according to the present invention to determine whether the mutation was detected.
[116] 그결과를도 10에나타내었다.도 10의 a에서확인할수있는바와같이,상기 미국공개특허서열번호 92의프로브사용시에는돌연변이형의존재나농도 증가에따라 α값에별다른차이가없어 (즉 Δα값이작아)돌연변이검출이 어려웠던것에비해,본발명에따른 ΡΝΑ프로브사용시돌연변이형의존재에 의해 ct값이크게감소할 (즉 Δα값이클)뿐만아니라,돌연변이형의농도증가에 따라 Ct값이일정하게감소하여돌연변이형을효과적으로검출해낼수있었다. The results are shown in FIG. 10. As can be seen from a of FIG. 10, when using the probe of US Patent Publication No. 92, there was no difference in the α value due to the presence of mutations or increase in concentration ( In other words, it was difficult to detect mutations due to the small Δα value, and the Ct value was not only reduced significantly due to the presence of the mutant when using the ΡΝΑ probe according to the present invention (that is, the Δα value cycle). This constant reduction enabled effective detection of mutations.
[117] 또한,도 10의 b의결과에서확인할수있는바와같이,미국공개특허의 [117] In addition, as can be seen in the results of FIG.
서열번호 94프로브사용시에는돌연변이형의존재나농도증가에따라 α값에 별다른차이가없어 (즉 Δα값이작아)돌연변이의검출이어려웠던것에비해, 본발명에따른 ΡΝΑ프로브사용시돌연변이형의존재에의해 α값.이크게 감소할 (즉 Δα값이클)뿐만아니라,돌연변이형의농도증가에따라 α값이 일정하게감소하여돌연변이형을효과적으로검출해낼수있었다. When using the SEQ ID NO: 94 probe, the α value may be increased depending on the presence of mutation or increase in concentration. Compared to the fact that it was difficult to detect mutants because there was no difference (that is, the Δα value is small), the α value due to the presence of the mutant when using the ΡΝΑ probe according to the present invention. As the concentration of increased, the α value decreased constantly, and the mutation could be effectively detected.
[118] 마지막으로도 10의 c로부터확인할수있는바와같이,미국공개특허 [118] Finally, as can be seen from c.
서열번호 93프로브본발명에따른 ΡΝΑ프로브와유사한검출민감도를 나타내나,본발명의돌연변이형검출이조금더높은 Δα값을나타내고있어,본 발명에따른 ΡΝΑ프로브를사용으로 1%의비율로섞여있는돌연변이의유무도 검출할수있음을확인할수있었다.  SEQ ID NO: 93 Probe The detection sensitivity is similar to the ΡΝΑ probe according to the present invention, but the mutant detection of the present invention exhibits a slightly higher Δα value, and is mixed at a rate of 1% using the ΡΝΑ probe according to the present invention. The presence of mutations could be detected.
서열목록 Free Text  Sequence List Free Text
[119] 서열목록 1은본발명의돌연변 o 검출을위한 PNA클램핑프로브  [119] SEQ ID NO: 1 shows a PNA clamping probe for detection of mutants o of the present invention.
E18CS-21-1의염기서열이다.  The base sequence of E18CS-21-1.
[120] 서열목록 2는본발명의돌연변。 검출을위한 PNA클램핑프로브 [120] SEQ ID NO: 2 is a PNA clamping probe for detection of mutations of the present invention.
E18CS-20-1의염기서열이다.  The base sequence of E18CS-20-1.
[121] 서열목록 3은본발명의돌연변 o 검출을위한 PNA클램핑프로브 [121] SEQ ID NO: 3 shows a PNA clamping probe for detection of mutants o of the present invention.
E18CS-20-2의염기서열이다.  Base sequence of E18CS-20-2.
[122] 서열목록 4는본발명의돌연변 o 검출을위한 PNA클램핑프로브 [122] SEQ ID NO: 4 shows a PNA clamping probe for detection of mutants o of the present invention.
E18CS-19-1의염기서열이다.  Base sequence of E18CS-19-1.
[123] 서열목록 5는본발명의돌연변 o 검출을위한 PNA클램핑프로브 [123] SEQ ID NO: 5 shows a PNA clamping probe for the detection of mutants o of the present invention.
E18CS-18-1의염기서열이다.  The base sequence of E18CS-18-1.
[124] 서열목록 6은본발명의돌연변。 검출을위한 PNA클램핑프로브 [124] SEQ ID NO: 6 is a PNA clamping probe for detection of mutations of the present invention.
E18CAS-21-1의염기서열이다.  The base sequence of E18CAS-21-1.
[125] 서열목록 7은본발명의돌연변 o 검출을위한 PNA클램핑프로브 [125] SEQ ID NO: 7 shows a PNA clamping probe for detection of mutants o of the present invention.
E18CAS-2()-l의염기서열이다.  The base sequence of E18CAS-2 ()-1.
[126] 서열목록 8은본발명의돌연변。 검출을위한 PNA클램핑프로브 [126] SEQ ID NO: 8 shows a PNA clamping probe for detection of mutations of the present invention.
E18CAS-21-2의염기서열이다.  Base sequence of E18CAS-21-2.
[127] 서열목록 9는본발명의돌연변0 검출을위한 PNA클램핑프로브 [127] SEQ ID NO: 9 shows a PNA clamping probe for detecting mutation 0 of the present invention.
E18CAS-19-1의염기서열이다.  The base sequence of E18CAS-19-1.
[128] 서열목록 10은본발명의돌연변이검출을위한 PNA클램핑프로브 [128] SEQ ID NO: 10 shows a PNA clamping probe for mutation detection of the present invention.
E18CAS-18-1의염기서열이다.  The base sequence of E18CAS-18-1.
[129] 서열목록 11은본발명의돌연변이검출을위한 PNA클램핑프로브 [129] SEQ ID NO: 11 shows a PNA clamping probe for mutation detection of the present invention.
E19CAS-24-1의염기서열이다.  The base sequence of E19CAS-24-1.
[130] 서열목록 12는본발명의돌연변이검출을위한 PNA클램핑프로브 [130] SEQ ID NO: 12 shows a PNA clamping probe for mutation detection of the present invention.
E19CAS-23-1의염기서열이다.  The base sequence of E19CAS-23-1.
[131] 서열목록 13은본발명의돌연변이검출을위한 PNA클램핑프로브 [131] SEQ ID NO: 13 shows a PNA clamping probe for detecting mutations of the present invention.
E19CAS-23-2의염기서열이다.  The base sequence of E19CAS-23-2.
[132] 서열목록 14는본발명의돌연변이검출을위한 PNA클램핑프로브 EI9CAS-22-1의염기서열이다. [132] SEQ ID NO: 14 shows a PNA clamping probe for mutation detection of the present invention. Base sequence of EI9CAS-22-1.
[133] 서열목록 15는본발명의돌연변 o 검출을위한 ΡΝΑ클램핑프로브[133] SEQ ID NO: 15 shows the ΡΝΑ clamping probe for the detection of a mutation of the present invention.
E19AS-REF의염기서열이다. Base sequence of E19AS-REF.
[134] 서열목록 16은본발명의돌연변 o 검출을위한 ΡΝΑ클램핑프로브[134] SEQ ID NO: 16 shows a ΡΝΑ clamping probe for detecting a mutation of the present invention.
E19CAS-19-1의염기서열이다. The base sequence of E19CAS-19-1.
[135] 서열목록 17은본발명의돌연변。 검출을위한 ΡΝΑ클램핑프로브[135] SEQ ID NO 17 shows a ΡΝΑ clamping probe for detection of mutations of the present invention.
E19CAS-18-1의염기서열이다. The base sequence of E19CAS-18-1.
[136] 서열목록 18은본발명의돌연변。 검출을위한 ΡΝΑ클램핑프로브[136] SEQ ID NO: 18 shows a ΡΝΑ clamping probe for detection of mutations of the present invention.
E19CAS-20-2의염기서열이다. The base sequence of E19CAS-20-2.
[137] 서열목록 19는본발명의돌연변 o 검출을위한 ΡΝΑ클램핑프로브[137] SEQ ID NO: 19 shows a ΡΝΑ clamping probe for the detection of a mutation of the present invention.
E19CAS-20-1의염기서열이다. The base sequence of E19CAS-20-1.
[138] 서열목록 20은본발명의돌연변 ο' 검출을위한 ΡΝΑ클램핑프로브[138] SEQ ID NO. 20 mutation in eunbon invention ο 'ΡΝΑ clamping probe for detecting
E19CAS-24-2의염기서열이다. The base sequence of E19CAS-24-2.
[139] 서열목록 21은본발명의돌연변 ο' 검출을위한 ΡΝΑ클램핑프로브[139] SEQ ID NO. 21 mutation in eunbon invention ο 'ΡΝΑ clamping probe for detecting
E19CAS-24-3의염기서열이다. The base sequence of E19CAS-24-3.
[140] 서열목록 22는본발명의돌연변으 검출을위한 ΡΝΑ클램핑프로브[140] SEQ ID NO: 22 shows a ΡΝΑ clamping probe for detecting a mutation of the present invention.
E19CAS-25-1의염기서열이다. The base sequence of E19CAS-25-1.
[141] 서열목록 23은본발명의돌연변이 검출을위한 ΡΝΑ클램핑프로브[141] SEQ ID NO: 23 shows a ΡΝΑ clamping probe for detecting mutations of the present invention.
E19CAS-25-2의염기서열이다. The base sequence of E19CAS-25-2.
[142] 서열목록 24는본발명의돌연변이검출을위한 ΡΝΑ클램핑프로브[142] SEQ ID NO: 24 shows the ΡΝΑ clamping probe for detecting mutations of the present invention.
E19CAS-26-1의염기서열이다. The base sequence of E19CAS-26-1.
[143] 서열목록 25는본발명의돌연변이검출을위한 ΡΝΑ클램핑프로브[143] SEQ ID NO: 25 shows a ΡΝΑ clamping probe for detecting mutations of the present invention.
E19CAS-26-2의염기서열이다. The base sequence of E19CAS-26-2.
[144] 서열목록 26은본발명의돌연변이검출을위한 ΡΝΑ클램핑프로브[144] SEQ ID NO: 26 shows a ΡΝΑ clamping probe for detecting mutations of the present invention.
E19CAS-27-1의염기서열이다. The base sequence of E19CAS-27-1.
[145] 서열목록 27은본발명의돌연변이검출올위한 ΡΝΑ클램핑프로브[145] SEQ ID NO: 27 shows the ΡΝΑ clamping probe for detecting mutations of the present invention.
E20CS-21-1의염기서열이다. The base sequence of E20CS-21-1.
[146] 서열목록 28은본발명의돌연변이검출을위한 ΡΝΑ클램핑프로브[146] SEQ ID NO: 28 shows the ΡΝΑ clamping probe for detecting mutations of the present invention.
E20CS-21-2의염기서열이다. Base sequence of E20CS-21-2.
[147] 서열목록 29는본발명의돌연변이검출을위한 ΡΝΑ클램핑프로브[147] SEQ ID NO: 29 shows a ΡΝΑ clamping probe for detecting mutations of the present invention.
E20CS-20-1의염기서열이다. Base sequence of E20CS-20-1.
[148] 서열목록 30은본발명의돌연변이검출을위한 ΡΝΑ클램핑프로브[148] SEQ ID NO: 30 shows the ΡΝΑ clamping probe for detecting mutations of the present invention.
E20CS-21-2의염기서열이다. Base sequence of E20CS-21-2.
[149] 서열목록 31은본발명의돌연변이검출을위한 ΡΝΑ클램핑프로브[149] SEQ ID NO: 31 shows the ΡΝΑ clamping probe for detecting mutations of the present invention.
E20CAS-21-1의염기서열이다. The base sequence of E20CAS-21-1.
[150] 서열목록 32는본발명의돌연변이검출을위한 ΡΝΑ클램핑프로브[150] SEQ ID NO: 32 shows the ΡΝΑ clamping probe for detecting mutations of the present invention.
E20CAS-21-2의염기서열이다. Base sequence of E20CAS-21-2.
[151] 서열목록 33은본발명의돌연변이검출을위한 ΡΝΑ클램핑프로브 E20CAS-20- 1의염기서열이다. [151] SEQ ID NO: 33 shows the ΡΝΑ clamping probe for detecting mutations of the present invention. Base sequence of E20CAS-20-1.
[152] 서열목록 34는본발명의돌연변 0 검출을위한 PNA클램핑프로브[152] SEQ ID NO: 34 shows a PNA clamping probe for detecting mutation 0 of the present invention.
E20CAS-20-2의염기서열이다. Base sequence of E20CAS-20-2.
[153] 서열목록 35는본발명의돌연변 o 검출올위한 PNA클램핑프로브[153] SEQ ID NO: 35 shows a PNA clamping probe for detection of a mutation of the present invention.
E20CS-17의염기서열이다. The base sequence of E20CS-17.
[154] 서열목록 36은본발명의돌연변 0 검출을위한 PNA클램핑프로브[154] SEQ ID NO: 36 shows a PNA clamping probe for detecting mutation 0 of the present invention.
E20CS-18의염기서열이다. Base sequence of E20CS-18.
[155] 서열목록 37은본발명의돌연변 o 검출을위한 PNA클램핑프로브[155] SEQ ID NO: 37 shows a PNA clamping probe for detecting a mutation of the present invention.
E20CS-19의염기서열이다. Base sequence of E20CS-19.
[156] 서열목록 38은본발명의돌연변 o: 검출을위한 PNA클램핑프로브[156] SEQ ID NO: 38 shows a mutant o of the present invention: PNA clamping probe for detection.
E20CAS-17의염기서열이다. The base sequence of E20CAS-17.
[157] 서열목록 39는본발명의돌연변이검출을위한 PNA클램핑프로브[157] SEQ ID NO: 39 shows a PNA clamping probe for mutant detection of the present invention.
E20CAS-18의염기서열이다. The base sequence of E20CAS-18.
[158] 서열목록 40은본발명의돌연변이검출을위한 PNA클램핑프로브[158] SEQ ID NO: 40 shows a PNA clamping probe for detecting mutations of the present invention.
E20CAS-19의염기서열이다. Base sequence of E20CAS-19.
[159] 서열목록 41은본발명의돌연변이검출을위한 PNA클램핑프로브[159] SEQ ID NO: 41 is a PNA clamping probe for mutant detection of the present invention.
E2017CS-21의염기서열이다. The base sequence of E2017CS-21.
[160] 서열목록 42는본발명의돌연변이검출을위한 PNA클램핑프로브[160] SEQ ID NO: 42 shows a PNA clamping probe for mutant detection of the present invention.
E2017CS-19의염기서열이다. The base sequence of E2017CS-19.
[161] 서열목록 43은본발명의돌연변이검출을위한 PNA클램핑프로브[161] SEQ ID NO: 43 shows a PNA clamping probe for detecting mutations of the present invention.
E2017CS-18의염기서열이다. Base sequence of E2017CS-18.
[162] 서열목록 44는본발명의돌연변이검출을위한 PNA클램핑프로브[162] SEQ ID NO: 44 shows a PNA clamping probe for detecting mutations of the present invention.
E2017CAS-21의염기서열이다. The base sequence of E2017CAS-21.
[163] 서열목록 45는본발명의돌연변이검출을위한 PNA클램핑프로브[163] SEQ ID NO: 45 shows a PNA clamping probe for mutant detection of the present invention.
E2017CAS-19의염기서열이다. The base sequence of E2017CAS-19.
[164] 서열목록 46은본발명의돌연변이검출을위한 PNA클램핑프로브[164] SEQ ID NO: 46 shows a PNA clamping probe for mutant detection of the present invention.
E2017CAS-18의염기서열이다. The base sequence of E2017CAS-18.
[165] 서열목록 47은본발명의돌연변이검출을위한 PNA클램핑프로브[165] SEQ ID NO: 47 shows a PNA clamping probe for mutant detection of the present invention.
E2016CS-21-1의염기서열이다. The base sequence of E2016CS-21-1.
[166] 서열목록 48은본발명의돌연변이검출을위한 PNA클램핑프로브[166] SEQ ID NO: 48 shows PNA clamping probe for mutation detection of the present invention.
E2016CS-21-2의염기서열이다. The base sequence of E2016CS-21-2.
[167] 서열목록 49는본발명의돌연변이검출을위한 PNA클램핑프로브[167] SEQ ID NO: 49 is a PNA clamping probe for mutant detection of the present invention.
E2016CS-20-1의염기서열이다. Base sequence of E2016CS-20-1.
[168] 서열목록 50은본발명의돌연변이검출을위한 PNA클램핑프로브[168] Sequence Listing 50 shows PNA clamping probes for detecting mutations of the present invention.
E2016CS-19-1의염기서열이다. The base sequence of E2016CS-19-1.
[169] 서열목록 51은본발명의돌연변이검출을위한 PNA클램핑프로브[169] SEQ ID NO: 51 shows a PNA clamping probe for detecting mutations of the present invention.
E2016CS-21-3의염기서열이다. The base sequence of E2016CS-21-3.
[170] ,서열목록 52는본발명의돌연변이검출을위한 PNA클램핑프로브 E2016CS-21-4의염기서열이다. [170], SEQ ID NO: 52 shows a PNA clamping probe for detecting mutations of the present invention. The base sequence of E2016CS-21-4.
[171] 서열목록 53은본발명의돌연변 0 검출을위한 PNA클램핑프로브[171] SEQ ID NO: 53 shows a PNA clamping probe for detecting mutation 0 of the present invention.
E2016CS-20-2의염기서열이다. The base sequence of E2016CS-20-2.
172] 서열목록 54는본발명의돌연변 o 검출을위한 PNA클램핑프로브172] SEQ ID NO: 54 shows a PNA clamping probe for detecting a mutation of the present invention.
E2016CS-19-2의염기서열이다. The base sequence of E2016CS-19-2.
:173] 서열목록 55는본발명의돌연변 o 검출을위한 PNA클램핑프로브SEQ ID NO: 55 shows a PNA clamping probe for detection of mutations of the present invention.
E2016CS-18-I의염기서열이다. The base sequence of E2016CS-18-I.
:174] 서열목록 56은본발명의돌연변 검출을위한 PNA클램핑프로브SEQ ID NO: 56 shows a PNA clamping probe for detecting a mutation of the present invention.
E2016CS-18-2의염기서열이다. The base sequence of E2016CS-18-2.
:175] 서열목록 57은본발명의돌연변 ο' 검출을위한 PNA클램핑프로브: 175; SEQ ID NO. 57 mutation in eunbon invention ο 'PNA clamping probe for detecting
E2016CS-17-4의염기서열이다. The base sequence of E2016CS-17-4.
:176] 서열목록 58은본발명의돌연변 검출을위한 PNA클램핑프로브SEQ ID NO: 58 shows a PNA clamping probe for the detection of a mutation of the present invention.
E2016CS-17-2의염기서열이다. The base sequence of E2016CS-17-2.
:177] 서열목록 59는본발명의돌연변 검출을위한 PNA클램핑프로브SEQ ID NO: 59 shows a PNA clamping probe for detecting a mutation of the present invention.
E2016CS-16-1의염기서열이다. The base sequence of E2016CS-16-1.
178] 서열목록 60은본발명의돌연변이검출을위한 PNA클램핑프로브178] SEQ ID NO: 60 is a PNA clamping probe for mutant detection of the present invention.
S768ICS-21의염기서열이다. Base sequence of S768ICS-21.
179] 서열목록 6】은본발명의돌연변이검출을위한 PNA클램핑프로브179] SEQ ID NO: 6 shows a PNA clamping probe for mutation detection of the present invention.
S768ICS-20의염기서열이다. Base sequence of S768ICS-20.
180] 서열목록 62는본발명의돌연변이검출을위한 PNA클램핑프로브SEQ ID NO: 62 shows a PNA clamping probe for mutant detection of the present invention.
S768ICS-19의염기서열이다. Base sequence of S768ICS-19.
181] 서열목록 63은본발명의돌연변이검출을위한 PNA클램핑프로브181] SEQ ID NO: 63 shows a PNA clamping probe for mutant detection of the present invention.
S768ICAS-21의염기서열이다. The base sequence of S768ICAS-21.
182] 서열목록 64는본발명의돌연변이검출을위한 PNA클램핑프로브182] SEQ ID NO: 64 is a PNA clamping probe for mutant detection of the present invention.
S768ICAS-20의염기서열이다. Base sequence of S768ICAS-20.
183] 서열목록 65는본발명의돌연변이검출을위한 PNA클램핑프로브183] SEQ ID NO: 65 shows a PNA clamping probe for mutant detection of the present invention.
S768ICAS-19의염기서열이다. The base sequence of S768ICAS-19.
184] 서열목록 66은본발명의돌연변이검출을위한 PNA클램핑프로브184] SEQ ID NO: 66 is a PNA clamping probe for mutation detection of the present invention.
T79()MCS-21-1의염기서열이다. The base sequence of T79 () MCS-21-1.
185] 서열목록 67은본발명의돌연변이검출을위한 PNA클램핑프로브185] SEQ ID NO: 67 shows a PNA clamping probe for detecting a mutation of the present invention.
T790MCS-20- 1의염기서열이다. The base sequence of T790MCS-20-1.
186] 서열목록 68은본발명의돌연변이검출을위한 PNA클램핑프로브186] SEQ ID NO: 68 is a PNA clamping probe for mutant detection of the present invention.
T790MCS-20-2의염기서열이다. Base sequence of T790MCS-20-2.
187] 서열목록 69는본발명의돌연변이검출을위한 PNA클램핑프로브187] SEQ ID NO: 69 is a PNA clamping probe for mutant detection of the present invention.
T790MCS-19-1의염기서열이다. The base sequence of T790MCS-19-1.
188] 서열목록 70은본발명의돌연변이검출을위한 PNA클램핑프로브188] SEQ ID NO: 70 is a PNA clamping probe for mutation detection of the present invention.
T790MCS-19-2의염기서열이다. The base sequence of T790MCS-19-2.
189] 서열목록기은본발명의돌연변이검출을위한 PNA클램핑프로브 T790MCS-19-3의염기서열이다. 189] Sequence Listing is a PNA Clamping Probe for Mutation Detection of the Invention The base sequence of T790MCS-19-3.
[190] 서열목록 72는본발명의돌연변 0 검출을위한 PNA클램핑프로브[190] SEQ ID NO: 72 is a PNA clamping probe for detection of mutation 0 of the present invention.
T790MCS-18-1의염기서열이다. The base sequence of T790MCS-18-1.
[191] 서열목록 73은본발명의돌연변 0 검출을위한 PNA클램핑프로브[191] SEQ ID NO: 73 is a PNA clamping probe for detection of mutation 0 of the present invention.
T790MCS-18-2의염기서열이다. The base sequence of T790MCS-18-2.
[192] 서열목록 74는본발명의돌연변 0 검출을위한 PNA클램핑프로브[192] SEQ ID NO: 74 is a PNA clamping probe for detecting mutation 0 of the present invention.
T790MCS-17-1의염기서열이다. The base sequence of T790MCS-17-1.
[193] 서열목록 75는본발명의돌연변 0 검출을위한 PNA클램핑프로브[193] SEQ ID NO: 75 shows a PNA clamping probe for detecting mutation 0 of the present invention.
T790MCAS-21-1의염기서열이다. The base sequence of T790MCAS-21-1.
[194] 서열목록 76은본발명의돌연변 o' 검출을위한 PNA클램핑프로브[194] SEQ ID NO: 76 shows a PNA clamping probe for the detection of a mutation ' of the present invention.
T790MCAS-20-1의염기서열이다. The base sequence of T790MCAS-20-1.
[195] 서 ^목록 77은본발명의돌연변 검출을위한 PNA클램핑프로브[195] Seo ^ List 77 shows PNA clamping probes for detecting mutations of the present invention.
T790MCAS-20-2의염기서열이다. Base sequence of T790MCAS-20-2.
[196] 서열목록 78은본발명의돌연변어 검출을위한 PNA클램핑프로브[196] SEQ ID NO: 78 shows a PNA clamping probe for the detection of mutants of the present invention.
T790MCAS-19-1의염기서열이다. The base sequence of T790MCAS-19-1.
[197] 서열목록 79는본발명의돌연변이검출을위한 PNA클램핑프로브[197] SEQ ID NO 79 shows a PNA clamping probe for detecting mutations of the present invention.
E21CS-22-1의염기서열이다. The base sequence of E21CS-22-1.
[198] 서열목록 80은본발명의돌연변이검출을위한 PNA클램핑프로브[198] SEQ ID NO: 80 shows a PNA clamping probe for mutant detection of the present invention.
E21CS— 21-1의염기서열이다. E21CS—Based on 21-1.
[199] 서열목록 81은본발명의돌연변이검출을위한 PNA클램핑프로브[199] SEQ ID NO: 81 is a PNA clamping probe for mutant detection of the present invention.
E21CS-22-2의염기서열이다. The base sequence of E21CS-22-2.
[200] 서열목록 82는본발명의돌연변이검출을위한 PNA클램핑프로브[200] SEQ ID NO: 82 is a PNA clamping probe for mutant detection of the present invention.
E21CS-20-1의염기서열이다. The base sequence of E21CS-20-1.
[201] 서열목록 83은본발명의돌연변이검출을위한 PNA클램핑프로브[201] SEQ ID NO: 83 shows a PNA clamping probe for detecting a mutation of the present invention.
E21CS-20-2의염기서열이다. The base sequence of E21CS-20-2.
[202] 서열목록 84는본발명의돌연변이검출을위한 PNA클램핑프로브[202] SEQ ID NO: 84 shows a PNA clamping probe for mutant detection of the present invention.
E21CAS-22-1의염기서열이다. The base sequence of E21CAS-22-1.
[203] 서열목록 85는본발명의돌연변이검출을위한 PNA클램핑프로브[203] SEQ ID NO: 85 is a PNA clamping probe for mutant detection of the present invention.
E21CAS-21-1의염기서열이다. The base sequence of E21CAS-21-1.
[204] 서열목록 86은본발명의돌연변이검출을위한 PNA클램핑프로브[204] SEQ ID NO: 86 shows a PNA clamping probe for detecting a mutation of the present invention.
E21CAS-22-2의염기서열이다. The base sequence of E21CAS-22-2.
[205] 서열목록 87은본발명의돌연변이검출을위한 PNA클램핑프로브[205] SEQ ID NO: 87 is a PNA clamping probe for mutant detection of the present invention.
E21CAS-20-1의염기서열이다. The base sequence of E21CAS-20-1.
[206] 서열목록 88은본발명의돌연변이검출을위한 PNA클램핑프로브[206] SEQ ID NO: 88 shows a PNA clamping probe for mutant detection of the present invention.
E21CAS-20-2의염기서열이다. The base sequence of E21CAS-20-2.
[207] 서열목록 89는본발명의돌연변이검출을위한 PNA클램핑프로브[207] SEQ ID NO: 89 shows a PNA clamping probe for mutant detection of the present invention.
E21CAS-19-1의염기서열이다. The base sequence of E21CAS-19-1.
[208] 서열목록 90은본발명의돌연변이검출을위한 PNA클램핑프로브 E21CAS-19-2의 염기서 열이다. [208] SEQ ID NO: 90 shows a PNA clamping probe for detecting mutations of the present invention. Nucleotide sequence of E21CAS-19-2.
[209] 서 열목록 91은 본 발명의 돌연변이 검출을 위 한 PNA 클램핑 프로브 [209] SEQ ID NO: 91 shows PNA clamping probe for detecting mutations of the present invention.
E21CAS-19-3의 염 기서 열이다.  The base sequence of E21CAS-19-3.
[210] 서 열목록 92는 본 발명에 따른 비교예 1의 E19-patent의 염 기서 열이다. SEQ ID NO: 92 is a base sequence of E19-patent of Comparative Example 1 according to the present invention.
[211] 서열목록 93은 본 발명에 따른 비교예 1의 T790M-patent의 염기서 열이다. SEQ ID NO: 93 is a nucleotide sequence of T790M-patent of Comparative Example 1 according to the present invention.
[212] 서 열목록 94는 본 발명에 따른 비교예 1의 L858R-patent의 염기서 열이다. SEQ ID NO: 94 is the base sequence of L858R-patent of Comparative Example 1 according to the present invention.
[213] 서 열목록 95는 본 발명의 EGFR 유전자 클램핑 프라이머 [213] SEQ ID NO: 95 shows the EGFR gene clamping primer of the present invention.
EGFR-exonl8/19-F-l의 염기서 열이다.  Nucleotide sequence of EGFR-exonl8 / 19-F-1.
[214] 서 열목록 96은 본 발명의 EGFR 유전자 클램핑 프라이머 EGFR-exonl8/19-R의 염기서 열이 다ᅳ  [214] Sequence Listing 96 differs from the sequencing sequence of the EGFR gene clamping primer EGFR-exonl8 / 19-R of the present invention.
[215] 서 열목록 97은 본 발명의 EGFR 유전자 클램핑 프라이머 EGFR-exon20-F의 염기서 열이다.  SEQ ID NO: 97 is the nucleotide sequence of the EGFR gene clamping primer EGFR-exon20-F of the present invention.
[216] 서 열목록 98은 본 발명의 EGFR 유전자 클램핑 프라이머 EGFR-exon20-R의 염 기서 열이 다ᅳ  [216] Sequence Listing 98 differs from the base sequence of the EGFR gene clamping primer EGFR-exon20-R of the present invention.
[217] 서 열목록 99는 본 발명의 EGFR 유전자 클램핑 프라이머 EGFR-exon21-F의 염기서 열이다.  SEQ ID NO: 99 is the nucleotide sequence of the EGFR gene clamping primer EGFR-exon21-F of the present invention.
[218] 서 열목록 100은 본 발명의 EGFR 유전자 클램핑 프라이머 EGFR-exon21-R의 염 기서 열이다.  SEQ ID NO: 100 is the base sequence of the EGFR gene clamping primer EGFR-exon21-R of the present invention.
[219] 서 열목록 1이은 본 발명의 EGFR 유전자 클램핑 프라이머 E18-B-F의  [219] SEQ ID NO: 1 shows the EGFR gene clamping primer E18-B-F of the present invention.
염기서 열이다.  Sequence.
[220] 서 열목록 102는 본 발명의 EGFR 유전자 클램핑 프라이머 E18-B-R의  SEQ ID NO: 102 shows the sequence of the EGFR gene clamping primer E18-B-R of the present invention.
염기서 열이다.  Sequence.
[221] 서 열목록 103은 본 발명의 EGFR 유전자 클램핑 프라이머 E18 damping 의 염 기서 열이다.  SEQ ID NO: 103 is the base sequence of the EGFR gene clamping primer E18 damping of the present invention.
[222] 서 열목록 104는 본 발명의 EGFR 유전자 클램핑 프라이머 E19-B-F의  [222] SEQ ID NO: 104 of the EGFR gene clamping primer E19-B-F of the present invention.
염기서 열이다.  Sequence.
[223] 서 열목록 105는 본 발명의 EGFR 유전자 클램핑 프라이머 E19-B-R의  SEQ ID NO: 105 shows the sequence of the EGFR gene clamping primer E19-B-R of the present invention.
염기서 열이다.  Sequence.
[224] 서 열목록 106은 본 발명 의 EGFR 유전자 클램핑 프라이머 E19 clamping F'의 염기서 열이다.  SEQ ID NO: 106 is the base sequence of the EGFR gene clamping primer E19 clamping F ′ of the present invention.
[225] 서 열목록 107은 본 발명의 EGFR 유전자 클램핑 프라이머 E19 clamping F-1의 염 기서 열이다.  SEQ ID NO: 107 is a base sequence of the EGFR gene clamping primer E19 clamping F-1 of the present invention.
[226] 서 열목록 108은 본 발명의 EGFR 유전자 클램핑 프라이머 E19 clamping F-2의 염 기서 열이다.  SEQ ID NO: 108 is the base sequence of the EGFR gene clamping primer E19 clamping F-2 of the present invention.
[227] 서 열목록 109는 본 발명의 EGFR 유전자 클램핑 프라이머 E19 clamping F-3의 염 기서 열이다.  SEQ ID NO: 109 is the base sequence of the EGFR gene clamping primer E19 clamping F-3 of the present invention.
[228] 서 열목록 110은 본 발명의 EGFR 유전자 클램핑 프라이머 E19 clamping R의 염기서 열이다. [229] 서 열목록 111은 본 발명의 EGFR 유전자 클램핑 프라이머 E19 clamping F의 염 기서 열이다. SEQ ID NO: 110 is a nucleotide sequence of the EGFR gene clamping primer E19 clamping R of the present invention. SEQ ID NO: 111 is the base sequence of the EGFR gene clamping primer E19 clamping F of the present invention.
[230] 서 열목록 112는 본 발명의 EGFR 유전자 클램핑 프라이머 E20-B-F의  SEQ ID NO: 112 shows the sequence of the EGFR gene clamping primer E20-B-F of the present invention.
염 기서 열이다.  It is fever.
[231] 서 열목록 113은 본 발명의 EGFR 유전자 클램핑 프라이머 E20-B-R의  [231] SEQ ID NO: 113 is a fragment of the EGFR gene clamping primer E20-B-R of the present invention.
염기서 열이다.  Sequence.
[232] 서 열목록 114는 본 발명의 EGFR 유전자 클램핑 프라이머 E20 clamping F의 염기서 열이다.  SEQ ID NO: 114 is a nucleotide sequence of the EGFR gene clamping primer E20 clamping F of the present invention.
[233] 서 열목록 115는 본 발명의 EGFR 유전자 클램핑 프라이머 E20 clamping F-1의 염기서 열이다.  SEQ ID NO: 115 is a nucleotide sequence of the EGFR gene clamping primer E20 clamping F-1 of the present invention.
[234] 서 열목록 116은 본 발명의 EGFR 유전자 클램핑 프라이머 E2016 clamping F의 염기서 열이다.  SEQ ID NO: 116 is a nucleotide sequence of the EGFR gene clamping primer E2016 clamping F of the present invention.
[235] 서 열목록 117은 본 발명의 EGFR 유전자 클램핑 프라이머 E2016 clamping F-1의 염 기서 열이다.  SEQ ID NO: 117 is a base sequence of the EGFR gene clamping primer E2016 clamping F-1 of the present invention.
[236] 서 열목록 118은 본 발명의 EGFR 유전자 클램핑 프라이머 T79()M clamping F의 염기서 열이 다ᅳ  [236] Sequence Listing 118 differs from the sequencing sequence of the EGFR gene clamping primer T79 () M clamping F of the present invention.
[237] 서 열목록 119는 본 발명의 EGFR 유전자 클램핑 프라이머 E2016 clamping F-2의 염기서 열이다.  SEQ ID NO: 119 is a nucleotide sequence of the EGFR gene clamping primer E2016 clamping F-2 of the present invention.
[238] 서 열목록 120은 본 발명의 EGFR 유전자 클램핑 프라이머 E2017 clamping F의 염기서 열이다.  SEQ ID NO: 120 is a nucleotide sequence of the EGFR gene clamping primer E2017 clamping F of the present invention.
[239] 서 열목록 121은 본 발명의 EGFR 유전자 클램핑 프라이머 E21-B-R의  [239] SEQ ID NO: 121 shows the sequence of the EGFR gene clamping primer E21-B-R of the present invention.
염기서 열이다.  Sequence.
[240] 서 열목록 122는 본 발명의 EGFR 유전자 클램핑 프라이머 E21 clamping F의 염 기서 열이다.  SEQ ID NO: 122 is the base sequence of the EGFR gene clamping primer E21 clamping F of the present invention.
[241] 서 열목록 123은 본 발명의 EGFR 유전자 클램핑 프라이머 E21 clamping F-1의 염 기서 열이 다ᅳ  [241] Sequence Listing 123 is based on the base sequence of the EGFR gene clamping primer E21 clamping F-1 of the present invention.

Claims

청구범위 Claim
(1) EGFR(Epidermal Growth Factor Receptor) 유전자의 엑손 18 야생형 코돈 719,엑손 19 야생형 코돈 746 내지 749, 엑손 20 야생형 코돈 767 내지 771, 액손 20 야생형 코돈 768, 엑손 20 야생형 코돈 790,액손 21 야생형 코돈 858 또는 861의  (1) Exon 18 wild type codon 719, exon 19 wild type codons 746 to 749, exon 20 wild type codons 767 to 771, axon 20 wild type codon 768, exon 20 wild type codon 790, axon 21 wild type codon 858 or 861
뉴클레오티드를 포함하는 부위를 증폭시키는 클램핑 프라이머 세트와, 상기 각각의 코돈 부위에 상웅하는 야생형 유전자와 완전하게 결합하는 15 내지 30mer의 길이를 갖는 PNA(Peptide Nucleic Acid) 클램핑 프로브의 존재 하에, EGFR 유전자에 대해 실시간 PCR(real-time Polymerase Chain Reaction)을 수행하고;In the presence of a set of clamping primers to amplify a site containing nucleotides and a PNA (Peptide Nucleic Acid) clamping probe having a length of 15 to 30mer that completely binds to the wild-type gene floating on each codon site. Performing real-time polymerase chain reaction (PCR) on the cells;
(2) 상기 실시간 PCR에 의 한 유전자 증폭을 분석하여 EGFR 유전자의 돌연변이 유무 또는 농도를 결정하는; (2) analyzing gene amplification by real-time PCR to determine the presence or absence of mutation or concentration of EGFR gene;
단계를 포함하는, EGFR 유전자의 키나제 도메인 돌연변이 검출 방법 . A kinase domain mutation detection method of the EGFR gene, comprising the step.
제 1항에 있어서, The method of claim 1,
상기 EGFR 유전자의 돌연변이 검출은 실시간 PCR의 Q(cycle threshold)값을 측정하여 EGFR 유전자의 돌연변이 유무 또는 농도를 결정하는 것을 특징으로 하는 EGFR 유전자의 키나제 도메인 돌연변이 검출 방법 . The mutation detection of the EGFR gene is a kinase domain mutation detection method of the EGFR gene, characterized in that the determination of the presence or concentration of the EGFR gene mutation by measuring the Q (cycle threshold) value of real-time PCR.
제 1항 또는 제 2항에 있어서 , The method of claim 1 or 2,
상기 EGFR 유전자의 키나제 도메인 돌연변이는 액손 18 G719X의 치환; 액손 19의 결손 또는 결손 및 치환; 액손 20의 삽입 , S768I 또는 T790M의 치환; 액손 21 L858R 또는 L861Q의 치환;으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 EGFR 유전자의 키나제 도메인 돌연변이 검출 방법 . Kinase domain mutations in the EGFR gene include substitution of axon 18 G719X; Deletion or deletion and substitution of axon 19; Insertion of axon 20, substitution of S768I or T790M; Axon 21 L858R or L861Q substitution; kinase domain mutation detection method of the EGFR gene, characterized in that at least one selected from.
제 1항 또는 제 2항에 있어서 , - 상기 (1) 단계의 PNA 클램핑 프로브는 16 내지 27mer의 길이의 염기서 열로 이루어지는 것을 특징으로 하는 EGFR 유전자의 키나제 도메인 돌연변이 검출 방법 . The kinase domain mutation detection method according to claim 1 or 2, wherein the PNA clamping probe of step (1) consists of a sequence of 16 to 27mer in length.
제 4항에 있어서, The method of claim 4,
상기 0) 단계의 PNA 클램핑 프로브는 서 열번호 1 내지 91로부터 선택되는 어느 하나인 것을 특징으로 하는 EGFR 유전자의 키 나제 도메인 돌연변이 검출 방법 . The PNA clamping probe of step 0) is any one selected from SEQ ID NOs: 1 to 91. Kinase domain mutation detection method of the EGFR gene.
제 1항 또는 제 2항에 있어서, The method according to claim 1 or 2,
상기 (1) 단계의 EGFR 유전자 클램핑 프라이머 세트는 EGFR 유전자 엑손 18 야생형 코돈 719,액손 19 야생형 코돈 746 내지 749, 엑손 20 야생형 코돈 767 내지 771, 엑손 20 야생형 코돈 768, 엑손 20 야생형 코돈 790,엑손 21 야생형 코돈 858 또는 861 The EGFR gene clamping primer set of step (1) is EGFR gene exon 18 wild type codon 719, axon 19 wild type codon 746 to 749, exon 20 wild type codon 767 to 771, exon 20 wild type codon 768, Exon 20 wild type codon 790, exon 21 wild type codon 858 or 861
상류부분에 특이 적으로 결합하는 정방향 프라이머를 포함하는 것을 특징으로 하는 EGFR 유전자의 키나제 도메인 돌연변이 검출 방법 .  A method for detecting a kinase domain mutation of an EGFR gene, comprising a forward primer that specifically binds to an upstream portion.
[청구항 7] 제 6항에 있어서,  7. The method of claim 6,
상기 EGFR 유전자 클램핑 프라이머 세트는 정방향 프라이머로서 서 열번호 103, 106 내지 109, 114 내지 120, 122 및 123로부터 선택되는 어느 하나 이상의 프라이머를 포함하는 것을 특징으로 하는 EGFR 유전자의 키나제 도메인 돌연변이 검출 방법 .  The EGFR gene clamping primer set includes a kinase domain mutation detection method of the EGFR gene, characterized in that it comprises any one or more primers selected from SEQ ID NO: 103, 106 to 109, 114 to 120, 122 and 123 as a forward primer.
[청구항 8] 제 7항에 있어서 ,  8. The method of claim 7, wherein
상기 EGFR 유전자 클램핑 프라이머 세트는 역방향 프라이머로서 서 열번호 110의 프라이머를 포함하는 것을 특징으로 하는 EGFR 유전자의 키나제 도메인 돌연변이 검출 방법 .  The EGFR gene clamping primer set comprises a primer of SEQ ID NO: 110 as a reverse primer kinase domain mutation detection method of the EGFR gene.
[청구항 9] 제 1항 또는 제 2항에 있어서,  [Claim 9] The method according to claim 1 or 2,
상기 EGFR 유전자의 돌연변이 검출은 DNA 삽입 (intercalating) 형 광물질을 사용하여 유전자 증폭을 분석하는 것올 특징으로 하는 EGFR 유전자의 키나제 도메인 돌연변이 검출 방법 .  The method of detecting kinase domain mutation of EGFR gene, characterized in that the mutation detection of the EGFR gene is characterized by analyzing gene amplification using an intercalating fluorescent material.
[청구항 10] 제 9항에 있어서,  10. The method of claim 9,
상기 DNA 삽입 (intercalating) 형광물질은 사이버 그린 I,에버그린, 에티디움브로마이드 (EtBr), BEBO, YO-PRO-1, TO-PRO-3, LC 그린, SYTO-9, SYTO-13, SYTO-16, SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO-3 및 SYTOX 오렌지로 구성된 그룹으로부터 선택되는 하나 이상의 것을 특징으로 하는 EGFR 유전자의 키나제 도메인 돌연변이 검출 방법 .  The DNA intercalating fluorescent material is Cyber Green I, Evergreen, Ethidium Bromide (EtBr), BEBO, YO-PRO-1, TO-PRO-3, LC Green, SYTO-9, SYTO-13, SYTO-16 Detection of kinase domain mutations in EGFR genes, characterized by one or more selected from the group consisting of SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO-3 and SYTOX Orange Way .
[청구항 11] 제 1항 또는 제 2항에 있어서,  [Claim 11] The method according to claim 1 or 2,
상기 EGFR 유전자의 돌연변이 검출은 전립선암,유방암, 결장암, 이자암,난소암,지라암,고환암,흉선암 및 폐암으로부터 선택되는 1종 이상의 암의 치료 또는 진단하는데 사용하기 위한 것을 특징으로 하는 EGFR 유전자의 키나제 도메인 돌연변이 검출 방법 .  The detection of mutations in the EGFR gene is for use in the treatment or diagnosis of one or more cancers selected from prostate cancer, breast cancer, colon cancer, pancreatic cancer, ovarian cancer, spleen cancer, testicular cancer, thymic cancer and lung cancer. Method for Detecting Kinase Domain Mutations in.
[청구항 12] 서 열번호 1 내지 91로부터 선택되는 어느 하나의 PNA 클램핑  [Claim 12] Any one PNA clamping selected from SEQ ID NOs: 1 to 91
프로브를 포함하는, 제 5항에 따른 EGFR 유전자의 키나제 도메인 돌연변이 검출방법 에 사용하기 위한 키트.  A kit for use in a kinase domain mutation detection method of the EGFR gene according to claim 5 comprising a probe.
PCT/KR2011/001157 2010-02-26 2011-02-22 Method and kit for detecting egfr mutation by using pna-based real-time pcr clamping WO2011105732A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0018070 2010-02-26
KR1020100018070A KR101819938B1 (en) 2010-02-26 2010-02-26 Methods and kits for the EGFR mutant detection using PNA mediated Real-time PCR clamping

Publications (2)

Publication Number Publication Date
WO2011105732A2 true WO2011105732A2 (en) 2011-09-01
WO2011105732A3 WO2011105732A3 (en) 2012-01-12

Family

ID=44507359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001157 WO2011105732A2 (en) 2010-02-26 2011-02-22 Method and kit for detecting egfr mutation by using pna-based real-time pcr clamping

Country Status (2)

Country Link
KR (1) KR101819938B1 (en)
WO (1) WO2011105732A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9523118B2 (en) 2013-07-23 2016-12-20 Samsung Electronics Co., Ltd. Method of detecting nucleic acids containing a genetic variation
CN106520931A (en) * 2016-10-17 2017-03-22 上海赛安生物医药科技有限公司 EGFR gene mutation detection primer probe and kit thereof
EP3173488A4 (en) * 2014-07-25 2018-04-25 Panagene Inc. Use of multiple target nucleic acid detection method using clamping probe and detection probe
CN110438206A (en) * 2019-08-23 2019-11-12 杭州迪安医学检验中心有限公司 Primer, probe and the kit of one group of 19 Exon deletion of detection EGFR gene mutation
CN111662986A (en) * 2020-07-24 2020-09-15 珠海圣美生物诊断技术有限公司 Method and probe for detecting cis-trans mutation configurations of EGFR-T790M and EGFR-C797S
CN114277142A (en) * 2021-12-28 2022-04-05 普瑞斯新(上海)生物医疗科技有限公司 EGFR gene mutation multiplex detection primer probe and kit thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101388702B1 (en) * 2012-09-11 2014-04-24 주식회사 디앤피바이오텍 Multiplex PCR primer set for detecting EGFR mutant and kit comprising the same
WO2017131493A1 (en) * 2016-01-29 2017-08-03 이화여자대학교 산학협력단 Microfluidic device for detecting target mutant gene and method for improving detection efficiency of microfluidic device for detecting target gene
WO2018128286A1 (en) * 2017-01-06 2018-07-12 배진현 Method for rapidly detecting nucleic acid, and method for rapidly diagnosing disease using same
KR20200104575A (en) 2019-02-27 2020-09-04 (주)인실리코젠 Compositions for diagnosing lung cancer comprising peptide nucleic acid probe complementary to lung cancer related mutations

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1881079A1 (en) 2006-07-20 2008-01-23 Pangaea Biotech, S.A. Method for the detection of EGFR mutations in blood samples

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAN, S. ET AL.: 'Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib' JOURNAL OF CLINICAL ONCOLOGY. vol. 23, no. 11, 14 February 2005, pages 2493 - 2501 *
KYGER,E. ET AL.: 'Detection of the hereditary hemochromatosis gene mutation by real-time fluorescence polymerase chain reaction and peptide nucleic acid clamping' ANALYTICAL BIOCHEMISSTRY. vol. 260, no. 2, 01 July 1998, pages 142 - 148 *
MIYAKE, M. ET AL.: 'Sensitive detection of FGFR3 mutations in bladder cancer and urine sediments by peptide nucleic acid-mediated real-time PCR clamping' BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. vol. 362, no. 4, 27 August 2007, pages 865 - 871 *
MIYAZAWA, H. ET AL.: 'Peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp-based detection test for gefitinib-refractory T790M epidermal growth factor receptor mutation' CANCER SCIENCE. vol. 99, no. 3, 02 January 2008, pages 595 - 600 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9523118B2 (en) 2013-07-23 2016-12-20 Samsung Electronics Co., Ltd. Method of detecting nucleic acids containing a genetic variation
EP3173488A4 (en) * 2014-07-25 2018-04-25 Panagene Inc. Use of multiple target nucleic acid detection method using clamping probe and detection probe
CN106520931A (en) * 2016-10-17 2017-03-22 上海赛安生物医药科技有限公司 EGFR gene mutation detection primer probe and kit thereof
CN110438206A (en) * 2019-08-23 2019-11-12 杭州迪安医学检验中心有限公司 Primer, probe and the kit of one group of 19 Exon deletion of detection EGFR gene mutation
CN110438206B (en) * 2019-08-23 2023-07-21 杭州迪安医学检验中心有限公司 Set of primers, probes and kit for detecting EGFR gene 19 exon deletion mutation
CN111662986A (en) * 2020-07-24 2020-09-15 珠海圣美生物诊断技术有限公司 Method and probe for detecting cis-trans mutation configurations of EGFR-T790M and EGFR-C797S
CN114277142A (en) * 2021-12-28 2022-04-05 普瑞斯新(上海)生物医疗科技有限公司 EGFR gene mutation multiplex detection primer probe and kit thereof
CN114277142B (en) * 2021-12-28 2024-03-29 普瑞斯新(上海)生物医疗科技有限公司 EGFR gene mutation multiplex detection primer probe and kit thereof

Also Published As

Publication number Publication date
WO2011105732A3 (en) 2012-01-12
KR101819938B1 (en) 2018-01-19
KR20110098440A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
WO2011105732A2 (en) Method and kit for detecting egfr mutation by using pna-based real-time pcr clamping
US8637245B2 (en) Method for the detection of EGFR mutations in blood samples
KR101548758B1 (en) Polynucleotide primers for detecting pik3ca mutations
JP2009511008A (en) Method for predicting or monitoring a patient's response to an ErbB receptor drug
JP5769952B2 (en) Highly sensitive detection method for EML4-ALK fusion gene
KR101875199B1 (en) Methods and kits for the detection of BCR-ABL fusion gene mutant using PNA mediated Real-time PCR clamping
KR101953092B1 (en) Peptide nucleic acid probe for multiplex-detecting BCR/ABL negative MPN related gene mutations, composition for multiplex-detecting gene mutation there of, gene mutation detecting multiplex kit and gene mutation detecting multiplex methods
KR101825117B1 (en) Methods and kits for the BRAF mutant detection using PNA mediated Real-time PCR clamping
JP5917144B2 (en) Probes for detecting polymorphisms in disease-related genes and uses thereof
KR101825121B1 (en) Methods and kits for the PIK3CA mutant detection using PNA mediated Real-time PCR clamping
KR101819937B1 (en) Methods and kits for the K-ras mutant detection using PNA mediated Real-time PCR clamping
KR20120119571A (en) Jak2 v617f mutation detection kit using methods and kits for the mutant detection using pna mediated real-time pcr clamping
KR101051385B1 (en) Primer set for obesity gene amplification, reagent for amplifying obesity gene comprising same and use thereof
JP6153758B2 (en) Polymorph detection probe, polymorph detection method, drug efficacy determination method, and polymorph detection kit
KR20130125533A (en) Methods and kits for the c-kit mutant detection using pna mediated real-time pcr clamping
JP6205216B2 (en) Mutation detection probe, mutation detection method, efficacy determination method, and mutation detection kit
Liu et al. One-step determination of deletion mutation based on loop-mediated isothermal amplification
KR20120127679A (en) Method and kit for detecting IDH1, IDH2 mutation using PNA mediated Real-time PCR clamping
EP4253564A1 (en) Target nucleic acid amplification method with high specificity and target nucleic acid amplifying composition using same
US9062350B2 (en) Method of mutation detection in blood cell-free DNA using primer extension (PE) and PCR
JP2006325446A (en) Method for determination of susceptibility to drug
JP2019062833A (en) Probes, kits and methods for detecting c797s(t2389a) mutation in human egfr

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747622

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747622

Country of ref document: EP

Kind code of ref document: A2