KR101825121B1 - Methods and kits for the PIK3CA mutant detection using PNA mediated Real-time PCR clamping - Google Patents

Methods and kits for the PIK3CA mutant detection using PNA mediated Real-time PCR clamping Download PDF

Info

Publication number
KR101825121B1
KR101825121B1 KR1020100078144A KR20100078144A KR101825121B1 KR 101825121 B1 KR101825121 B1 KR 101825121B1 KR 1020100078144 A KR1020100078144 A KR 1020100078144A KR 20100078144 A KR20100078144 A KR 20100078144A KR 101825121 B1 KR101825121 B1 KR 101825121B1
Authority
KR
South Korea
Prior art keywords
gene
pik3ca
pna
exon
seq
Prior art date
Application number
KR1020100078144A
Other languages
Korean (ko)
Other versions
KR20120021691A (en
Inventor
박희경
최재진
김현선
Original Assignee
주식회사 파나진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파나진 filed Critical 주식회사 파나진
Priority to KR1020100078144A priority Critical patent/KR101825121B1/en
Priority to PCT/KR2011/005787 priority patent/WO2012020965A2/en
Publication of KR20120021691A publication Critical patent/KR20120021691A/en
Application granted granted Critical
Publication of KR101825121B1 publication Critical patent/KR101825121B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/107Modifications characterised by incorporating a peptide nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 PIK3CA 유전자 엑손 9 또는 20의 야생형과 특이적으로 결합하는 PNA(Peptide Nucleic Acid) 프로브를 이용하여 야생형의 증폭을 억제함으로써 돌연변이만을 선택적으로 검출하는 방법 및 상기 방법에 사용하기 위한 키트에 관한 것이다.The present invention relates to a method for selectively detecting mutations by inhibiting amplification of wild type using a PNA (Peptide Nucleic Acid) probe that specifically binds to the wild type of PIK3CA gene exon 9 or 20, and a kit for use in the method will be.

Description

PNA 기반의 실시간 PCR 클램핑을 이용한 PIK3CA 돌연변이 검출 방법 및 키트{Methods and kits for the PIK3CA mutant detection using PNA mediated Real-time PCR clamping}Methods and kits for PIK3CA mutation detection using real-time PCR clamping based on PNA [

본 발명은 펩티드 핵산(Peptide Nucleic Acid, 이하 'PNA'라 함) 프로브를 이용한 PIK3CA(Phosphatidylinositol 3-kinase, catalytic, alpha polypeptide) 유전자의 돌연변이 검출에 관한 것으로서, 보다 상세하게는, PIK3CA 유전자의 엑손 9 또는 20의 돌연변이 검출을 위하여 야생형에 특이적으로 결합하는 PNA 프로브가 야생형의 증폭을 억제함으로써 소량의 돌연변이형만을 높은 민감도로 검출하는 방법 및 상기 방법에 사용하기 위한 키트에 관한 것이다.The present invention relates to the detection of mutations in a PIK3CA (Phosphatidylinositol 3-kinase, catalytic, alpha polypeptide) gene using a peptide nucleic acid probe (hereinafter referred to as 'PNA' Or 20, wherein the PNA probe specifically binding to the wild type inhibits the amplification of the wild type, thereby detecting only a small amount of the mutant type with high sensitivity, and a kit for use in the method.

암의 발생에 암유전자(oncogene) 및 종양억제유전자(tumor suppressor gene)의 돌연변이가 관여한다는 사실이 알려지면서 여러 암유전자 및 종양억제유전자의 돌연변이를 검출하는 연구가 다양하게 진행되고 있다. 이에 따라, 암의 발생 및 약물의 예후판단에 관여하는 많은 돌연변이가 발견되고 있다. 이 중 PIK3CA 유전자의 돌연변이는 PI3K(Phosphatidylinositol 3-kinase) 단백질의 활성화를 가져오고 PI3K는 타이로신 키나제 수용체의 신호전달 체계를 활성화한다. 활성화된 타이로신 키나제는 세포의 생존과 분열을 억제하는 단백질의 기능과 대사촉진을 방해하며 세포 성장을 돕는 단백질의 기능을 활성화시킴으로써 발암과정에 관여한다(Serena Di et al., Clin Cancer Res. 2009 August 15;15(16), 5017-5019). PIK3CA 유전자변이의 75%가 PI3K 단백질의 헬리컬(helical) 부위로 번역되는 엑손 9번과 키나제 부위로 번역되는 엑손 20번 위치에서 점 돌연변이(point mutation)로 발견되며, 그 외 매우 다양한 위치에서 산발적으로 나타난다(Ligresti G et al., Cell cycle 2009 May 1;8:9, 1352-1358). 이러한 PIK3CA 유전자 변이는 매우 다양한 암에서 발견되며, 특히 대장암, 위암, 폐암, 췌장암, 두부 편평상피세포암, 교모세포종, 자궁내막암, 난소암, 유방암 등에서 25 내지 40% 비율로 나타난다고 보고되어 있다(Ligresti G et al., Cell cycle 2009 May 1;8:9, 1352-1358, Barbi S et al., J Exp Clin Cancer Res. 2010 Apr 16;29, 32, Kalinsky K et al., Clin Cancer Res. 2009 August 15;15(16), 5049-5059, Gallia GL et al., Mol Cancer Res. 2006 Oct;4(10):709-14, Ogino S et al., J Clin Oncol. 2009 Mar 20;27(9):1477-84, Oda K et al. Cancer Res. 2005 Dec 1;65(23):10669-73). PIK3CA 유전자 돌연변이는 암 진행 속도를 빠르게 하고 전이 빈도를 증가시켜 환자의 예후를 악화시킨다. 또한 인간 표피성장인자류(Human Epidermal Growth Factor, HER family)의 하류부분(downstream)의 신호전달 체계에 속하여 HER 패밀리의 표적 치료제들의 내성에 관여하는 것으로 알려져 있다(Wee S et al., Cancer Res. 2009 May 15;69(10):4286-93, Guo XN et al., Cancer Res. 2007 Jun 15;67(12):5851-8, Ogino S et al., J Clin Oncol. 2009 Mar 20;27(9):1477-84). 최근 보고된 논문에 의하면, HER2 유전자가 증폭된 유방암에 티로신 키나제 일종인 허셉틴(Herceptin)이라는 약제의 처방이 치료예후를 좋게 하는 것으로 알려져 있지만, HER2 유전자의 증폭과 더불어 PIK3CA 유전자의 돌연변이를 가질 경우 허셉틴에 대한 내성을 가진다고 보고되어 있다(O'Brien NA et al., Mol Cancer Ther. 2010 Jun;9(6):1489-502). PI3K는 이를 표적으로 하는 치료제의 개발에 중요한 요소로 그 중요성이 증가되고 있다. 따라서 PIK3CA 돌연변이 검출은 인간 표피성장인자를 표적으로 치료하는 방법에 있어 치료효과를 예측할 수 있는 중요한 지표이며 좋은 예후에 결정적인 역할을 할 수 있다.There have been various studies to detect mutations of various cancer genes and tumor suppressor genes, as the mutation of oncogene and tumor suppressor gene is involved in the development of cancer. Accordingly, many mutations involved in cancer development and drug prognosis determination have been found. Among them, the mutation of the PIK3CA gene leads to the activation of the PI3K (phosphatidylinositol 3-kinase) protein and the PI3K activates the signal transduction system of the tyrosine kinase receptor. Activated tyrosine kinases are involved in the carcinogenesis process by interfering with the function of the protein that inhibits cell survival and cleavage and by promoting the metabolism and activating the function of proteins that help cell growth (Serena Di et al., 2009 Cancer Res. 2009 August 15: 15 (16), 5017-5019). 75% of the PIK3CA gene mutations are found as exons 9, which translate into the helical region of the PI3K protein, and as point mutations, at exon 20, which translates into the kinase region, and sporadically at many other locations (Ligresti G et al., Cell cycle 2009 May 1; 8: 9, 1352-1358). Such PIK3CA gene mutations are found in a wide variety of cancers and have been reported to occur at a rate of 25 to 40% in colon cancer, stomach cancer, lung cancer, pancreatic cancer, head squamous cell carcinoma, glioblastoma, endometrial cancer, ovarian cancer and breast cancer (Exp. Clin. Cancer Res. 2010 Apr 16; 29, 32, Kalinsky K et al., Clin Cancer 2009 Oct; 4 (10): 709-14, Ogino S et al., J Clin Oncol. 2009 Mar 20 ; 27 (9): 1477-84, Oda K et al. Cancer Res., Dec 1, 65 (23): 10669-73). PIK3CA gene mutations accelerate cancer progression and increase the frequency of metastasis, worsening the patient's prognosis. It is also involved in the signal transduction system downstream of the Human Epidermal Growth Factor (HER family) and is known to be involved in the resistance of target therapies of the HER family (Wee S et al., Cancer Res. 2009 Jun 15; 67 (12): 5851-8, Ogino S et al., J Clin Oncol. 2009 Mar 20; 27 (10): 4286-93, Guo XN et al. (9): 1477-84). According to a recent report, the prescription of Herceptin, a type of tyrosine kinase in breast cancer, which amplifies the HER2 gene, is known to improve the prognosis. However, when the mutation of PIK3CA gene is accompanied by the amplification of HER2 gene, Herceptin (O'Brien NA et al., Mol Cancer Ther. 2010 Jun; 9 (6): 1489-502). PI3K is an important factor in the development of therapeutic drugs targeting this disease, and its importance is increasing. Thus, PIK3CA mutation detection is an important predictor of therapeutic efficacy in the target treatment of human epidermal growth factor and may play a decisive role in good prognosis.

PIK3CA 돌연변이의 검출 방법으로는 중합효소연쇄반응(polymerase chain reaction, PCR) 후 염기서열분석을 통한 변이 검출 방법, 야생형과 돌연변이 유전자의 3차원적인 구조(conformation) 차이에 따른 전기영동상 이동 거리의 변화를 통해 검출하는 방법인 중합효소연쇄반응-단일쇄 형태구조 다형성(Polymerase chain reaction-single strand conformational polymorphism; PCR-SSCP) 방법(EI-Habr EA et al., Clin Neuropathol. 2010 Jul-Aug;29(4):239-45) 등이 사용되어 왔다. 그러나 상기 방법들은 PCR 이후 제한효소로 절단하는 과정 및 전기영동의 과정, 염기서열분석의 단계를 거쳐 돌연변이를 검출하는 방법이므로 반응시간이 오래 소요되고 번거로우며 많은 비용이 소요된다. 또한 임상 시료는 돌연변이가 야생형에 비해 아주 극소량 존재하는 경우가 많기 때문에, 소량의 돌연변이를 검출하는 것이 매우 중요함에도 불구하고, 상기의 방법은 낮은 검출 민감도를 가지므로 극소량의 돌연변이의 검출이 어렵다.The detection methods of PIK3CA mutation include polymerase chain reaction (PCR) followed by sequencing of nucleotide sequences, variation of electrophoretic shift distance according to the difference in three-dimensional conformation of wild type and mutant gene Polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) method (EI-Habr EA et al., Clin Neuropathol. 2010 Jul-Aug; 29 ): 239-45) have been used. However, since the above methods are a method of detecting mutations through PCR, digestion with restriction enzymes, electrophoresis, and sequence analysis, reaction time is long and troublesome and costly. Despite the fact that it is very important for clinical samples to detect small mutations, it is difficult to detect very small mutations because of the low detection sensitivity, since mutations are often very small compared to wild type.

민감도를 증가시키기 위해 야생형과 돌연변이간의 용융온도 차이를 이용하여 돌연변이만을 선택적으로 검출하는 고감도 용융온도분석(high-resolution melting curve analysis, HRMA) 방법, 스코피언(scorpion) 프로브를 이용하여 돌연변이를 선택적으로 검출하는 스코피언 실시간 대립형질 특이적 PCR(scorpion Real-time allele specific PCR)(DxS' scorpions® and ARMS®) 방법 등이 사용되고 있다(Simi L et al., Am J Clin Pathol. 2008 Aug;130(2):247-53, Board RE et al., Clin Chem. 2008 Apr;54(4):757-60). 이러한 기술은 쉽고 빠르게 다양한 진단에 적용이 가능하며, 암 관련 유전자의 변이 진단 및 분석을 위해 좋은 기술이 되고 있다(Bernard et al., Clin Chem. 2002 Aug;48(8):1178-85). 그러나 상기한 방법은 돌연변이를 검출하기 위하여 돌연변이가 발생하는 부위에 각각 프로브나 프라이머를 모두 사용해야 하기 때문에 하나의 돌연변이를 검출하기 위하여 여러 반응이 요구되는 번거로움이 있다(Simi L et al., Am J Clin Pathol. 2008 Aug;130(2):247-53, Board RE et al., Clin Chem. 2008 Apr;54(4):757-60).In order to increase the sensitivity, a high-resolution melting temperature analysis is used to selectively detect mutations using the melting temperature difference between wild type and mutation scorpion Real-time allele specific PCR (DxS 'scorpions® and ARMS®) method, which selectively detects mutations using a scorpion probe, (1994), 54 (4): 757-60). In this study, we have used a single-stranded RNA polymerase from a single cell line (Simi L et al., Am J Clin Pathol. 2008 Aug; 130 (2): 247-53, Board RE et al. This technique can be easily and quickly applied to various diagnoses and is a good technique for diagnosing and analyzing the mutation of cancer-related genes (Bernard et al., Clin Chem 2002 Aug; 48 (8): 1178-85). However, the method described above requires the use of both probes and primers at the sites where mutations occur in order to detect mutations, so that it is troublesome that multiple reactions are required to detect one mutation (Simi L et al., Am J Clin Pathol. 2008 Aug; 130 (2): 247-53, Board RE et al., Clin Chem. 2008 Apr; 54 (4): 757-60).

최근에는 돌연변이형을 선택적으로 검출하는 기술로 상기한 방법과는 달리 야생형에 특이적으로 결합하는 PNA 프로브를 이용하여 다량 존재하는 야생형의 증폭을 억제하는 방법으로 돌연변이를 선택적으로 검출하는 PNA 클램핑(clamping) 기술이 개발되었다. PNA는 핵산염기가 인산 결합이 아니라 펩티드 결합으로 연결된 유사 DNA로 1991년에 처음 보고되었다(Nielsen PE et al., Science 1991 Dec 6;254(5037):1497-500). PNA는 화학적인 방법으로 합성되고 자연계에서는 발견되지 않는다. PNA는 상보적인 염기 서열의 천연 핵산과 혼성화(hybridization) 반응을 일으켜서 겹가닥을 형성한다. 핵산 염기의 수가 같은 경우 PNA/DNA 겹가닥은 DNA/DNA 겹가닥보다, PNA/RNA 겹가닥은 DNA/RNA 겹가닥보다 안정하다. PNA의 기본 골격으로는 N-(2-아미노에틸)글리신이 아미드 결합에 의해 반복적으로 연결된 것이 가장 흔히 쓰이고, 이 경우 펩티드 핵산의 기본 골격(backbone)은 음전하를 띠는 천연 핵산의 기본 골격과 달리 전기적으로 중성이다. PNA에 존재하는 4개의 핵산 염기(nucleobase)는 DNA의 핵산 염기와 비슷한 공간을 차지하고 핵산 염기 사이의 거리도 천연 핵산의 경우와 거의 같다. PNA는 화학적으로 천연 핵산보다 안정할 뿐 아니라 핵산분해효소(Nuclease)나 단백질분해효소(protease)에 의해 분해되지 않아 생물학적으로도 안정하다. PNA는 또한 전기적으로 중성이기 때문에 PNA/DNA, PNA/RNA 겹가닥의 안정성은 염 농도에 영향을 받지 않는다. 이러한 성질 때문에 PNA는 상보적인 핵산 염기 서열을 천연 핵산보다 더 잘 인식할 수 있어서 진단 또는 다른 생물학적, 의학적 목적으로 응용된다. PNA 클램핑 기술은 상기한 PNA의 장점을 이용하여 PNA 프로브가 완벽하게 결합되면 효소 등이 인지하지 못하여 증폭반응이 일어나지 않고, 점 돌연변이가 있는 경우에는 PNA 프로브가 완벽하게 결합하지 못하기 때문에 증폭반응이 일어나게 되는 원리를 이용하는 방법으로, 야생형에 비해 극소량 존재하는 돌연변이를 빠르고 정확하게 검출할 수 있어 많이 이용되고 있다.Recently, a technique for selectively detecting a mutant type, which is different from the above method, is a method of suppressing amplification of a wild-type wild-type using a PNA probe that specifically binds to a wild type, and a PNA clamping ) Technology was developed. PNA was first reported in 1991 as a pseudo-DNA in which the nucleic acid base is linked to the peptide bond rather than the phosphate bond (Nielsen PE et al., Science 1991 Dec 6; 254 (5037): 1497-500). PNAs are synthesized by chemical methods and are not found in nature. PNA forms a double strand by causing a hybridization reaction with a natural nucleic acid of a complementary base sequence. When the number of nucleic acid bases is the same, the PNA / DNA double strand is more stable than the DNA / DNA double strand, and the PNA / RNA double strand is more stable than the DNA / RNA double strand. The basic backbone of peptide nucleic acids is most often used in the case of N- (2-aminoethyl) glycine repeatedly linked by amide bonds as a basic skeleton of PNA. Unlike the basic structure of a negatively charged natural nucleic acid It is electrically neutral. The four nucleobases present in the PNA occupy a space similar to that of the DNA and the distance between the nucleotides is almost the same as that of the native nucleic acid. PNA is chemically more stable than natural nucleic acid and biologically stable because it is not degraded by nucleases or proteases. Since PNA is also electrically neutral, the stability of PNA / DNA, PNA / RNA double strands is not affected by salt concentration. Because of this property, PNAs are better able to recognize complementary nucleic acid sequences than natural nucleic acids and are therefore applicable for diagnostic or other biological and medical purposes. The PNA clamping technology utilizes the advantages of the PNA described above, so that when the PNA probe is perfectly coupled, the enzyme does not recognize the amplification reaction, and when the point mutation is present, the PNA probe does not bind perfectly, It is a method that uses the principle that occurs, and it is widely used because it can detect a mutation which exists in a very small amount compared to a wild type, quickly and accurately.

미국공개특허 제2008/0176226호는 표적핵산의 선택된 부위를 증폭하는 프라이머 세트와 야생형의 상기 선택된 부위와 완벽하게 결합하는 PNA 프로브 존재 하에 PCR을 수행하고, 얻어진 PCR 산물에 대해 용융곡선 분석을 수행하여 표적핵산의 돌연변이를 검출하는 방법 및 키트를 개시하고 있다. 그러나 상기 방법은 증폭반응의 사이클 수가 아닌 용융곡선의 차이로 돌연변이형을 구별하게 되는데, PNA 클램핑 프로브 이외에 용융곡선을 측정하기 위한 형광을 검출할 수 있는 공여체 형광물질(donor fluorophore)과 수용체(acceptor)가 부착되어 있는 프로브를 필요로 한다. 이와 같이 형광이 표지된 프로브를 다량 포함하여 검출을 하게 되므로 분석을 위한 비용이 높아지는 문제점이 발생한다. 또한, 상기 미국공개특허는 K-ras 돌연변이를 검출하기 위하여 N-말단에 플루오레세인으로 표지된 17mer PNA(센서 프로브)와 3'-말단에 LC-Red 640으로 표지된 44mer DNA(앵커 프로브)를 이용한 예만을 구체적으로 개시하고 있을 뿐, PIK3CA 유전자의 돌연변이 검출에 대해서는 어떠한 교시나 암시도 하지 않았다.U.S. Published Patent Application No. 2008/0176226 discloses a method of performing PCR in the presence of a primer set amplifying a selected region of a target nucleic acid and a PNA probe that completely binds to the selected region of the wild type and performing a melting curve analysis on the obtained PCR product Methods and kits for detecting mutations in a target nucleic acid are disclosed. However, the method distinguishes the mutation type by the difference in the melting curve, not the cycle number of the amplification reaction. In addition to the PNA clamping probe, a donor fluorophore and an acceptor capable of detecting fluorescence for measuring the melting curve, A probe having a probe attached thereto is required. As described above, since a large number of fluorescence-labeled probes are detected, the cost for analysis is increased. In addition, the US patent discloses a 17 mer PNA (sensor probe) labeled with fluorescein at the N-terminus and a 44 mer DNA (anchor probe) labeled with LC-Red 640 at the 3'-terminus to detect K- . However, no teaching or suggestion was made for the mutation detection of the PIK3CA gene.

본 발명자들은 PIK3A 유전자에 대하여, 비교적 길이가 긴(예: 15mer 이상) PNA 클램핑 프로브를 이용하여 야생형과의 증폭 사이클 차이만으로 변이형을 검출함으로써 용융곡선의 차이를 이용한 변이형 검출 기술보다 간편할 뿐만 아니라, 다량의 야생형의 증폭을 완벽하게 저해하여 변이형의 검출 민감도를 향상시킴으로써 극소량 섞여있는 돌연변이를 높은 민감도로 신속 정확하게 검출할 수 있는, PNA 기반의 실시간 PCR 클램핑을 이용한 PIK3CA 돌연변이 검출 기술을 완성하였다.The present inventors have found that by detecting a mutation type only by the amplification cycle difference with the wild type using the PNA clamping probe having a comparatively long length (for example, 15mer or more) with respect to the PIK3A gene, it is easier than the mutation type detection technique using the difference in the melting curve However, PIK3CA mutation detection technology using real-time PCR clamping based on PNA was completed, which enables rapid detection of very small amount of mutations with high sensitivity, by completely inhibiting amplification of a large number of wild-type and improving detection sensitivity of mutant type .

본 발명의 목적은 PNA 기반의 실시간 PCR 클램핑을 이용한 PIK3CA 돌연변이 검출 방법을 제공하기 위한 것이다.It is an object of the present invention to provide a PIK3CA mutation detection method using PNA-based real-time PCR clamping.

본 발명의 다른 목적은 PNA 기반의 실시간 PCR 클램핑을 이용한 PIK3CA 돌연변이 검출 키트를 제공하기 위한 것이다.Another object of the present invention is to provide a PIK3CA mutation detection kit using PNA-based real-time PCR clamping.

본 발명의 일 면은One aspect of the present invention is

PIK3CA 유전자의 엑손 9 또는 엑손 20 부위를 증폭시키는 PIK3CA 유전자 클램핑 프라이머 세트와, PIK3CA 유전자의 엑손 9 또는 엑손 20의 야생형과 완전하게 결합하는 PNA(Peptide Nucleic Acid) 클램핑 프로브의 존재 하에, PIK3CA 유전자에 대해 실시간 PCR(real-time Polymerase Chain Reaction)을 수행하고;In the presence of a PIK3CA gene clamping primer set amplifying the exon 9 or exon 20 region of the PIK3CA gene and a PNA (Peptide Nucleic Acid) clamping probe completely binding the exon 9 of the PIK3CA gene or the exon 20 of the exon 20, Real-time polymerase chain reaction (PCR);

상기 실시간 PCR에 의한 유전자 증폭을 분석하여 PIK3CA 유전자의 돌연변이 유무 또는 농도를 결정하는:The gene amplification by real-time PCR is analyzed to determine the presence or concentration of mutations in the PIK3CA gene:

단계를 포함하는, PIK3CA 유전자의 돌연변이 검출 방법에 관한 것이다.To a method for detecting a mutation of the PIK3CA gene.

본 발명의 바람직한 태양에서는, 실시간 PCR의 Ct(cycle threshold)값을 측정하여 PIK3CA 유전자의 돌연변이 유무 또는 농도를 결정한다.In a preferred embodiment of the invention, the C t (cycle threshold) value of the real-time PCR is measured to determine the presence or concentration of the PIK3CA gene mutation or its concentration.

본 발명에 사용되는 PNA 클램핑 프로브는 바람직하게는 15 내지 30mer, 보다 바람직하게는 17 내지 24mer 길이의 염기서열로 이루어지는 것일 수 있으며, 예를 들어, 서열번호 1 내지 31의 염기서열 중 어느 하나로 이루어지는 것일 수 있다.The PNA clamping probe used in the present invention preferably has a base sequence of 15 to 30 mer, more preferably 17 to 24 mer, and may comprise, for example, any one of the nucleotide sequences of SEQ ID NOS: 1 to 31 .

본 발명에 사용되는 PIK3CA 유전자 클램핑 프라이머 세트는 PIK3CA 유전자 엑손 9 야생형 코돈 542, 545 또는 546, 또는 엑손 20 야생형 코돈 1047의 상류부분에 특이적으로 결합하는 정방향 프라이머와, 그의 하류부분에 특이적으로 결합하는 역방향 프라이머를 포함하는 것일 수 있으며, 예를 들어, 정방향 프라이머는 서열번호 36, 37, 41 및 42 중 어느 하나로 이루어지는 것이고, 역방향 프라이머는 서열번호 33, 35, 및 38 내지 40 중 어느 하나로 이루어지는 것일 수 있다.The PIK3CA gene clamping primer set used in the present invention includes a forward primer that specifically binds to the upstream portion of the PIK3CA gene exon 9 wild type codon 542, 545 or 546, or the exon 20 wild type codon 1047, and a specific primer For example, the forward primer is composed of any one of SEQ ID NOS: 36, 37, 41 and 42, and the reverse primer is composed of any one of SEQ ID NOS: 33, 35 and 38 to 40 .

본 발명에서는, DNA 인터컬레이팅(intercalating) 형광물질을 사용하여 유전자 증폭을 분석하는바, 예를 들어 SYBR 그린 I, 에버그린, 에티디움브로마이드(EtBr), BEBO, YO-PRO-1, TO-PRO-3, LC 그린, SYTO-9, SYTO-13, SYTO-16, SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO-3 및 SYTOX 오렌지로 구성된 그룹으로부터 선택되는 하나 이상을 사용할 수 있다. DNA 인터컬레이션(intercalation)이 가능한 형광물질은 어느 것이라도 사용가능하며 특별한 제한은 없다.In the present invention, SYBR Green I, Evergreen, Ethidium Bromide (EtBr), BEBO, YO-PRO-1, TO-PRO -3, LC green, SYTO-9, SYTO-13, SYTO-16, SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO- One or more selected from the group can be used. Any fluorescent material capable of DNA intercalation can be used, and there is no particular limitation.

본 발명에 따른 방법은 대장암, 위암, 폐암, 췌장암, 두부 편평상피세포암, 교모세포종, 자궁내막암, 난소암 또는 유방암의 치료를 결정하거나 진단하는데 사용할 수 있다.The method according to the present invention can be used to determine or diagnose the treatment of colorectal cancer, stomach cancer, lung cancer, pancreatic cancer, head squamous cell carcinoma, glioblastoma, endometrial cancer, ovarian cancer or breast cancer.

본 발명의 다른 면은Another aspect of the present invention is

서열번호 1 내지 31 중 어느 하나의 PNA 클램핑 프로브:A PNA clamping probe according to any one of SEQ ID NOS: 1 to 31:

를 포함하는, 본 발명에 따른 PIK3CA 유전자의 돌연변이 검출방법에 사용하기 위한 키트에 관한 것이다.To a kit for use in a method for detecting a mutation of a PIK3CA gene according to the present invention.

본 발명에 따르면, 암 발생, 예후 및 약제내성에 관여하는 것으로 예상되는 PIK3CA 유전자의 돌연변이를 단시간 내에 우수한 민감도 및 특이도로 극소량 포함되어 있는 돌연변이까지 검출할 수 있다. 또한 프로브로 이용된 PNA 자체가 생물학적 효소 및 물리적인 요소에 매우 안정하고 검출하는 방법이 매우 간단하며 단시간 내에 검출이 이루어지므로 대량 분석 및 임상에서 사용하기에 매우 용이할 것으로 기대된다.According to the present invention, it is possible to detect a mutation of the PIK3CA gene, which is expected to be involved in cancer development, prognosis and drug resistance, to a mutation containing a very small amount of excellent sensitivity and specificity in a short time. In addition, the PNA itself used as a probe is very stable to biological enzymes and physical elements and is very simple to detect and is expected to be very easy to use in mass analysis and clinical use because it is detected within a short time.

도 1은 PNA 기반의 PCR 클램핑 원리를 나타내는 모식도이고;
도 2는 본 발명에서 고안된 서열번호 7 내지 11의 PNA 프로브를 이용하여 PIK3CA 엑손 9 코돈 542 돌연변이를 검출하는 프로브를 선별하기 위하여 프로브에 따른 검출 민감도(ΔCt)를 비교한 그래프이며;
도 3은 본 발명에서 고안된 서열번호 12, 13, 14, 16 및 17의 PNA 프로브를 이용하여 PIK3CA 엑손 9 코돈 545 돌연변이를 검출하는 프로브를 선별하기 위하여 프로브에 따른 검출 민감도(ΔCt)를 비교한 그래프이고;
도 4는 본 발명에서 고안된 서열번호 1 내지 6의 PNA 프로브를 이용하여 PIK3CA 엑손 20 코돈 1047 돌연변이를 검출하는 프로브를 선별하기 위하여 프로브에 따른 검출 민감도(ΔCt)를 비교한 그래프이며;
도 5는 PIK3CA 엑손 9 코돈 545 돌연변이를 가진 세포주를 대상으로 본 발명에서 고안된 서열번호 12 및 13의 PNA 프로브를 이용하여 샘플적용 양에 따른 검출 민감도(ΔCt)를 비교한 그래프이고;
도 6은 PIK3CA 엑손 20 코돈 1047 돌연변이를 가진 세포주를 대상으로 본 발명에서 고안된 서열번호 4의 PNA 프로브를 이용하여 돌연변이 포함 농도에 따른 검출 민감도(ΔCt)를 비교한 그래프이다.
1 is a schematic diagram illustrating a PNA-based PCR clamping principle;
FIG. 2 is a graph comparing detection sensitivities (? C t ) according to probes to select probes detecting PIK3CA exon 9 codon 542 mutations using the PNA probes of SEQ ID NOS: 7 to 11 designed in the present invention;
Figure 3 compares the detection sensitivity ([Delta] Ct ) according to the probes to select probes that detect the PIK3CA exon 9 codon 545 mutation using the PNA probes of SEQ ID NOS: 12, 13, 14, 16 and 17 designed in the present invention Graph;
FIG. 4 is a graph comparing detection sensitivities (? C t ) according to probes to select probes that detect PIK3CA exon 20 codon 1047 mutation using the PNA probes of SEQ ID NOS: 1 to 6 designed in the present invention;
5 is a graph comparing detection sensitivities (ΔC t ) according to sample application amounts using the PNA probes of SEQ ID NOs: 12 and 13 designed in the present invention for cell lines with a PIK3CA exon 9 codon 545 mutation;
FIG. 6 is a graph comparing detection sensitivities (ΔC t ) according to the mutation-containing concentration using the PNA probe of SEQ ID NO: 4 designed for the cell line having the PIK3CA exon 20 codon 1047 mutation.

본 발명은 PIK3CA 유전자의 엑손 9 또는 20의 돌연변이 검출을 위하여 야생형에 특이적으로 결합하는 PNA 프로브가 야생형의 증폭을 억제함으로써 소량의 돌연변이형만을 높은 민감도로 검출하는 방법 및 상기 방법에 사용하기 위한 키트에 관한 것이다. 도 1에 본 발명에 따른 방법의 원리를 모식적으로 나타내었다. 구체적으로, 본 발명은 아래 표 1에 열거된 PIK3CA 유전자의 엑손 9 또는 20의 돌연변이 검출을 위한 것이다.The present invention relates to a method for detecting only a small amount of mutant type at a high sensitivity by inhibiting amplification of a wild-type PNA probe that specifically binds to a wild type for mutation detection of exon 9 or 20 of PIK3CA gene and a kit for use in the method . Fig. 1 schematically shows the principle of the method according to the present invention. Specifically, the present invention is for mutation detection of exon 9 or 20 of the PIK3CA gene listed in Table 1 below.

엑손Exon 단백질protein 아미노산amino acid 염기서열Base sequence Exon9Exon9 HelicalHelical Gly542LysGly542Lys 16241624 Exon9Exon9 HelicalHelical Gly545LysGly545Lys 16331633 Exon9Exon9 HelicalHelical Gly545GlyGly545Gly 16341634 Exon9Exon9 HelicalHelical Gly545AspGly545Asp 16351635 Exon9Exon9 HelicalHelical Gln546Gly, Gln546LysGln546Gly, Gln546Lys 16361636 Exon9Exon9 HelicalHelical Gln546Pro, Gln546ArgGln546Pro, Gln546Arg 16371637 Exon20Exon20 KinaseKinase His1047TyrHis1047Tyr 31393139 Exon20Exon20 KinaseKinase His1047Leu, His1047ArgHis1047Leu, His1047Arg 31403140

1. One. PNAPNA 클램핑Clamping 프로브의Of the probe 설계 및 제작 Design and production

본 발명의 PNA 프로브는 PIK3CA 엑손 9 및 20의 돌연변이(치환 포함)가 발생하는 부분의 야생형 유전자 서열에 완벽하게 결합할 수 있는(perfectly matched) 것으로서, 15개 이상, 바람직하게는 15~30개, 보다 바람직하게는 17~27개, 가장 바람직하게는 17~24개의 염기서열로 구성되는 것을 특징으로 한다. 본 발명의 PNA 프로브는 PIK3CA 엑손 9 및 20의 돌연변이(치환 포함)가 발생하는 부분의 야생형 유전자 부위가 프로브의 가운데에 위치하도록 고안된 것이 바람직하다. 예를 들어, 본 발명의 PNA 프로브는 아래 표 2에 기재한 서열번호 1 내지 31 중 어느 하나의 염기서열로 구성될 수 있다. 상기 염기서열로부터 당업자가 통상의 지식을 이용하여 용이하게 변형할 수 있는 범위 내의 PNA 프로브 서열들은 모두 본 발명의 범위 내에 속하는 것으로 보아야 할 것인바, 본 발명에 따른 PNA 기반의 실시간 PCR 클램핑을 이용하여 증폭 사이클 차이만으로 PIK3CA 유전자 엑손 9 및 20의 돌연변이를 효과적으로 검출할 수 있는 것인 한, 본 발명의 범위 내에 포함되는 것이다.The PNA probes of the present invention are perfectly matched to the wild-type sequence of the region where mutations (including substitution) of PIK3CA exons 9 and 20 occur, and are more than 15, preferably 15 to 30, More preferably 17 to 27 nucleotides, and most preferably 17 to 24 nucleotides. It is preferable that the PNA probe of the present invention is designed such that the wild-type gene region of the portion where the mutation (including substitution) of PIK3CA exons 9 and 20 occurs is located at the center of the probe. For example, the PNA probe of the present invention may comprise a nucleotide sequence of any one of SEQ ID NOS: 1 to 31 shown in Table 2 below. All of the PNA probe sequences within the range that can be easily modified by those skilled in the art from the above base sequence will be considered to be within the scope of the present invention. Using PNA-based real-time PCR clamping according to the present invention Are included within the scope of the present invention as long as the mutation of the PIK3CA gene exons 9 and 20 can be effectively detected only by the amplification cycle difference.

구체적으로는, 서열번호 7 내지 11은 PIK3CA 엑손 9의 코돈 542의 야생형과 완벽하게 결합하여 야생형의 증폭을 저해하고 돌연변이를 검출하기 위한 프로브이다. 코돈 542에서의 치환은, 뉴클레오티드 1624의 구아닌이 아데닌으로 치환되어 코돈 542의 야생형 글루탐산이 라이신으로 치환되어 PI3K 단백질의 헬리컬(helical) 구조 부분에 변이를 준다. 서열번호 7 내지 11은 PIK3CA 엑손 9의 코돈 542를 포함하는 1624번째 염기에 특이적으로 혼성화되도록 고안되었다. 서열번호 9 내지 31은 PIK3CA 엑손 9의 코돈 545 부분의 야생형과 완벽하게 결합하여 야생형의 증폭을 저해하고 돌연변이를 검출하기 위한 프로브이다. 코돈 545에서의 치환은, 뉴클레오티드 1633의 구아닌이 아데닌으로 치환되어 코돈 545의 야생형 글구탐산이 라이신으로 치환되는 것, 뉴클레오티드 1634의 아데닌이 구아닌으로 치환되어 코돈 545의 야생형 글루탐산이 글리신 으로 치환되는 것, 뉴클레오티드 1635의 구아닌이 티민으로 치환되어 코돈 545의 야생형 글루탐산이 아스파라긴산으로 치환되는 것을 포함한다. 서열번호 1 내지 6은 엑손 20의 코돈 1047를 포함하는 3140번째 염기에 특이적으로 혼성화 되도록 고안되었다. 서열번호 1 내지 6은 PIK3CA 엑손 20의 코돈 1047의 야생형과 완벽하게 결합하여 야생형의 증폭을 저해하고 돌연변이를 검출하기 위한 프로브이다. 코돈 1047에서의 치환은, 뉴클레오티드 3140의 아데닌이 구아닌 또는 티민으로 치환되어 코돈 1047의 야생형 히스티딘이 아르기닌 또는 류신으로 치환되어 PI3K 단백질의 키나제 부분에 변이를 준다.Specifically, SEQ ID NOS: 7 to 11 are probes for inhibiting wild-type amplification and detecting mutations by perfectly binding with the wild type of codon 542 of PIK3CA exon 9. Substitution at codon 542 replaces the guanine at nucleotide 1624 with adenine, displacing the wild-type glutamate at codon 542 with lysine, resulting in a mutation in the helical structural part of the PI3K protein. SEQ ID NOS: 7-11 are designed to specifically hybridize to the 1624th base comprising codon 542 of PIK3CA exon 9. SEQ ID NOS: 9 to 31 are probes for inhibiting wild-type amplification and detecting mutations by perfectly binding with the wild type of codon 545 portion of PIK3CA exon 9. The substitution at codon 545 is such that the guanine at nucleotide 1633 is replaced with adenine, so that the wild-type glutamate at codon 545 is replaced by lysine, the adenine at nucleotide 1634 is replaced by guanine, and the wild-type glutamate at codon 545 is replaced by glycine, And that the guanine of nucleotide 1635 is substituted with thymine to replace the wild-type glutamic acid of codon 545 with aspartic acid. SEQ ID NOS: 1 to 6 are designed to specifically hybridize to the 3140th base containing codon 1047 of exon 20. SEQ ID NOS: 1 to 6 are probes for inhibiting the amplification of the wild-type and detecting the mutation by perfectly binding with the wild type of codon 1047 of PIK3CA exon 20. Substitution at codon 1047 is such that the adenine of nucleotide 3140 is replaced by guanine or thymine and the wild-type histidine at codon 1047 is replaced by arginine or leucine to mutate the kinase portion of the PI3K protein.

서열번호SEQ ID NO: 이름name 서열( 5' → 3' )The sequence (5 '- > 3') 길이Length 1One H1047-1H1047-1 AATTATGCACATCATGGTGGCAATTATGCACATCATGGTGGC 2121 22 H1047-2H1047-2 AATTATGCACATCATGGTGGCTAATTATGCACATCATGGTGGCT 2222 33 H1047-3H1047-3 GATTCACATCATGGTGGCGATTCACATCATGGTGGC 1818 44 H1047-4H1047-4 ATTATGCACATCATGGTGGCATTATGCACATCATGGTGGC 2020 55 H1047-5H1047-5 TTATGCACATCATGGTGTTATGCACATCATGGTG 1717 66 H1047-6H1047-6 ATTCACATCATGGTGGCATTCACATCATGGTGGC 1717 77 E542-1E542-1 ATCCTCTCTCTGAAATCACTGAATCCTCTCTCTGAAATCACTGA 2222 88 E542-2E542-2 TCTCTGAAATCACTGAGCAGTCTCTGAAATCACTGAGCAG 2020 99 E542_E545-1E542_E545-1 CCTCTCTCTGAAATCACTCCTCTCTCTGAAATCACT 1818 1010 E542_E545-2E542_E545-2 GATCCTCTCTCTGAAATCACTGATCCTCTCTCTTGAAATCACT 2121 1111 E542_E545-3E542_E545-3 ATCCTCTCTCTGAAATCACTGATCCTCTCTCTGAAATCACTG 2121 1212 E545·546-1-asE545 / 546-1-as TCTTTCTCCTGCTCAGTSATTTTCTTTCTCCTGCTCAGTSATTT 2222 1313 E545·546-2-asE545 / 546-2-as TCTTTCTCCTGCTCAGTSATTTAGTCTTTCTCCTGCTCAGTSATTTAG 2424 1414 E545·546-3-asE545 / 546-3-as TTTCTCCTGCTCAGTSATTTTTTCTCCTGCTCAGTSATTT 2020 1515 E545·546-4-sE545 / 546-4-s CTTAAATCACTGAGCAGGACTTAAATCACTGAGCAGGA 1919 1616 E545·546-5-sE545 / 546-5-s AATCACTGAGCASSAGA AATCACTGAGCASSAGA 1717 1717 E545·546-6-sE545 / 546-6-s TCTTAAATCACTGAGCAGGTCTTAAATCACTGAGCAGG 1919 1818 E545·546-7-sE545 / 546-7-s AAATCACTGAGCAGGAGAAAAAATCACTGAGCAGGAGAAA 2020 1919 E545·546-8-sE545 / 546-8-s AAATCATTGAGCAGGAGAAAAAATCATTGAGCAGGAGAAA 2020 2020 E545·546-9-sE545 / 546-9-s AAATCACTGASCAGGAGAAAAAATCACTGASCAGGAGAAA 2020 2121 E545·546-10-sE545 / 546-10-s AAATCACTGASCAGSAGAAAAAATCACTGASCAGSAGAAA 2020 2222 E545·546-11-asE545 / 546-11-as TTCTCCTGCTCAGTGATTTTTCTCCTGCTCAGTGATTT 1919 2323 E545·546-12-asE545 / 546-12-as TTTCTCCTGCTCAGTGATTTTAGTTTCTCCTGCTCAGTGATTTTAG 2323 2424 E545·546-13-asE545 / 546-13-as CTTTCTCCTGCTCAGTGATTTCTTTCTCCTGCTCAGTGATTT 2121 2525 E545·546-14-asE545 / 546-14-as TCTTTCTCCTGCTCATTGATTTTCTTTCTCCTGCTCATTGATTT 2222 2626 E545·546-15-asE545 · 546-15-as AATCTTTCTCCTGCTCATTGATTTAATCTTTCTCCTGCTCATTGATTT 2424 2727 E545·546-16-asE545 / 546-16-as TCTTTCTCCTGCTCAGTGATTTTCTTTCTCCTGCTCAGTGATTT 2222 2828 E545·546-17-sE545 / 546-17-s AAATCACTGAGCAGGAGAAAGAAAATCACTGAGCAGGAGAAAGA 2222 2929 E545-1-asE545-1-as TTCTCCTGCGCAGTGATTTTTCTCCTGCGCAGTGATTT 1919 3030 E545-2-asE545-2-as TTTCTCCTGCGCAGTGATTTTAGTTTCTCCTGCGCAGTGATTTTAG 2323 3131 E545-3-asE545-3-as CTTTCTCCTGCGCAGTGATTTCTTTCTCCTGCGCAGTGATTT 2121

본 발명의 PNA 프로브는 반응효율 및 용해도를 증가시키기 위하여 N-말단(N-terminal) 또는 C-말단(C-terminal)에 친수성 기능기를 포함할 수 있으며, 예를 들어 N-말단 또는 C-말단에 친수성 링커나 아미노산, 또는 아민기를 1개 내지 여러 개 포함할 수 있다[Shakeel et al., J. Chem. Technol. Biotechnol., 2006, 81, 892-899; Gildea et al., Tetrahedron Lett., 1998, 39, 7255-7258; Demidov et al., PNAS, 2002, 99, 5953-5958; Wang et al., Anal. Chem., 1997, 69, 5200-5202]. 구체적으로, 본 발명에서는 N-말단에 라이신(lysine)이 1개 부착되거나, N-말단과 C-말단에 라이신(lysine)이 1개씩 부착된 프로브를 사용하였다.The PNA probes of the present invention may comprise hydrophilic functional groups at the N-terminal or C-terminal to increase the reaction efficiency and solubility, for example, at the N-terminal or C-terminal May include one or more hydrophilic linkers, amino acids, or amine groups [Shakeel et al., J. Chem. Technol. Biotechnol., 2006, 81, 892-899; Gildea et al., Tetrahedron Lett., 1998, 39, 7255-7258; Demidov et al., PNAS, 2002, 99, 5953-5958; Wang et al., Anal. Chem., 1997, 69, 5200-5202]. Specifically, in the present invention, a probe having one lysine at the N-terminus or one lysine at the N-terminus and the C-terminus was used.

본 발명에서 사용되는 PNA 올리고머는 한국등록특허 제464,261호의 방법에 따라 Bts(Benzothiazolesulfonyl)기로 보호된 PNA 단량체, 또는 공지의 Fmoc(9-flourenylmethloxycarbonyl) 또는 t-Boc(t-butoxycarbonyl)으로 보호된 PNA 단량체를 이용하여 합성될 수 있다(Dueholm et al., J Org chem. 59(19): 5767-5773, 1994; Christensen J peptide Sci 1(3): 175-183, 1995; Thomson et al., Tetrahedron 51(22): 6179-6194, 1995).
The PNA oligomer used in the present invention is a PNA monomer protected with a Bts (Benzothiazolesulfonyl) group according to the method of Korean Patent No. 464,261 or a PNA monomer protected with a known Fmoc (9-flourenylmethloxycarbonyl) or t-Boc (t-butoxycarbonyl) (2005), Thomson et al., Tetrahedron 51 (19): 5767-5773, 1994; Christensen J peptide Sci 1 (22): 6179-6194, 1995).

2. 2. PIK3CAPIK3CA 유전자  gene 클램핑Clamping 프라이머의Primer 설계 및 제작 Design and production

본 발명에서 "PIK3CA 유전자 클램핑 프라이머"라 함은 PNA 프로브와 완벽하게 결합되어 있는 야생형 유전자의 증폭은 억제하고 PNA 프로브와 완벽하게 결합되어 있지 않는(즉, 불일치 서열이 존재하는) 돌연변이 유전자를 증폭시키는 PCR 프라이머를 가리킨다. 본 발명의 클램핑 프라이머는 특별히 제한되는 것은 아니나, 보다 높은 민감도 및 특이도로 돌연변이를 검출하기 위해서는 PNA 클램핑 프로브를 기준으로 하여 한 방향으로는 PNA 프로브와 일부분이 겹쳐지도록 하며 다른 한 방향으로는 검출하고자 하는 부위를 포함하되 PCR 증폭산물의 크기를 고려하여 고안하는 것이 바람직하다. 또한 PNA 프로브와의 Tm을 고려하고, 길이는 17mer에서 30mer 사이이며, PNA 프로브의 Tm 보다 낮게 설계하는 것이 바람직하다. 진단 민감도 및 특이도를 극대화할 수 있도록, 야생형과 상보적으로 결합하는 PNA 클램핑 프로브 서열 중 돌연변이가 일어나는 염기 바로 앞부분을 포함하도록 설계하는 것이 바람직하다. 구체적인 예에 따르면, 서열번호 1 내지 31의 PNA 프로브와 5 내지 12개의 염기서열이 중첩되도록 클램핑 프라이머를 설계하였다. 본 발명에서 예시된 서열번호 36의 정방향 프라이머는 서열번호 7 내지 11의 PIK3CA 유전자 엑손 9의 코돈 542의 상류 부분 염기를 특이적으로 인식하도록 고안되었다. 본 발명에서 예시된 서열번호 36의 정방향 프라이머와 조합되는 서열번호 33의 역방향 프라이머는 PIK3CA 유전자 인트론 9 부위의 61~80번째 염기를 특이적으로 인식하도록 고안되었다. 서열번호 39 및 40의 역방향 프라이머는 서열번호 9 내지 31의 PIK3CA 유전자 엑손 9의 코돈 545 및 546의 하류부분 염기를 특이적으로 인식하도록 고안되었다. 본 발명에서 예시된 서열번호 39 및 40의 역방향 프라이머와 조합되는 서열번호 37의 정방향 프라이머는 PIK3CA 유전자 엑손 9의 32~59번째 염기를 특이적으로 인식하도록 고안되었다. 서열번호 41 및 42의 정방향 프라이머는 서열번호 1 내지 6의 PIK3CA 유전자 엑손 20의 코돈 1047의 상류 부분 염기를 특이적으로 인식하도록 고안되었다. 본 발명에서 예시된 서열번호 41 및 42의 정방향 프라이머와 조합되는 서열번호 35의 역방향 프라이머는 PIK3CA 유전자 인트론 21 부위의 9~29번째 염기를 특이적으로 인식하도록 고안되었다. 프라이머의 길이는 20mer에서 28mer 사이로 각각 프라이머 조합의 증폭산물의 크기가 50bp 내지 500bp가 되도록 고안되었다.In the present invention, the term "PIK3CA gene clamping primer" refers to a primer for amplifying a mutant gene which suppresses the amplification of a wild-type gene perfectly bound to a PNA probe and is not perfectly bound to a PNA probe (that is, PCR primer. The clamping primer of the present invention is not particularly limited, but in order to detect a mutation with higher sensitivity and specificity, a PNA probe is partially overlapped with the PNA probe in one direction with respect to the PNA clamping probe, But it is desirable to devise the PCR amplification product considering the size of the PCR amplification product. Also, considering the T m with the PNA probe, the length is between 17mer and 30mer, preferably lower than the T m of the PNA probe. To maximize diagnostic sensitivity and specificity, it is desirable to design the PNA clamping probe sequence that combines complementarily with the wild type to include the immediate front of the nucleotide at which the mutation occurs. According to a specific example, a clamping primer was designed such that the PNA probes of SEQ ID NOS: 1 to 31 and 5 to 12 nucleotide sequences overlap. The forward primer of SEQ ID NO: 36 exemplified in the present invention is designed to specifically recognize the upstream partial base of codon 542 of PIK3CA gene exon 9 of SEQ ID NOS: 7-11. The reverse primer of SEQ ID NO: 33 in combination with the forward primer of SEQ ID NO: 36 exemplified in the present invention was designed to specifically recognize the 61 to 80 bases of the PIK3CA gene intron 9 region. The reverse primers of SEQ ID NOS: 39 and 40 were designed to specifically recognize the downstream partial bases of codons 545 and 546 of the PIK3CA gene exon 9 of SEQ ID NOS: 9-31. The forward primer of SEQ ID NO: 37 in combination with the reverse primers of SEQ ID NOs: 39 and 40 exemplified in the present invention was designed to specifically recognize the 32 to 59 bases of the PIK3CA gene exon 9. The forward primers of SEQ ID NOS: 41 and 42 were designed to specifically recognize upstream bases of codon 1047 of PIK3CA gene exon 20 of SEQ ID NOS: 1-6. The reverse primer of SEQ ID NO: 35 in combination with the forward primers of SEQ ID NOS: 41 and 42 exemplified in the present invention was designed to specifically recognize the 9th to 29th bases of the PIK3CA gene intron 21 region. The length of primers ranged from 20mer to 28mer so that the amplification product of the primer combination was 50bp to 500bp in size.

한편, PIK3CA 유전자의 엑손 9의 염기서열분석을 통한 유전자 확인을 위하여 본 발명에서 제공되는 서열번호 32의 정방향 프라이머는 PIK3CA 유전자 인트론 8 부위의 -63~-44 번째 염기를 특이적으로 인식하도록 고안되었고, 상기 프라이머와 조합되는 역방향 프라이머는 서열번호 33으로 PIK3CA 유전자 인트론 9 부위의 61~80번째 염기를 특이적으로 인식하도록 고안되었다. 이들 프라이머는 조합되어 증폭산물의 크기가 269 bp가 되도록 고안되었다. PIK3CA 유전자의 엑손 20의 염기서열분석을 통한 유전자 확인을 위하여, 본 발명에서 제공되는 서열번호 34의 정방향 프라이머는 PIK3CA 유전자 엑손 20 부위의 69~88 번째 염기를 특이적으로 인식하도록 고안되었고, 상기 프라이머와 조합되는 역방향 프라이머는 서열번호 35로 PIK3CA 유전자 인트론 21 부위의 9~29번째 염기를 특이적으로 인식하도록 고안되었다. 이들 프라이머는 조합되어 증폭산물의 크기가 202 bp가 되도록 고안되었다. 각각의 프라이머의 특성은 아래 표 3에 정리되어 있다.Meanwhile, the forward primer of SEQ ID NO: 32 provided in the present invention was designed to specifically recognize the -63 to -44 base of the PIK3CA gene intron 8 region in order to identify the gene by sequencing the exon 9 of the PIK3CA gene , And the reverse primer combined with the primer is SEQ ID NO: 33, which is designed to specifically recognize 61 to 80 bases of the PIK3CA gene intron 9 site. These primers were designed to combine to give an amplified product size of 269 bp. In order to identify the gene through sequence analysis of exon 20 of PIK3CA gene, the forward primer of SEQ ID NO: 34 provided in the present invention was designed to specifically recognize the 69th to 88th bases of PIK3CA gene exon 20 region, Is SEQ ID NO: 35 and is designed to specifically recognize the 9th to 29th bases of the PIK3CA gene intron 21 region. These primers were designed to combine to give a size of amplified product of 202 bp. The properties of each primer are summarized in Table 3 below.

서열order
번호number
부위part 위치location 이름name 방향direction 서열(5' → 3')The sequence (5 '- > 3') 길이Length
3232 인트론 8Intron 8 -63 ~ -44-63 to -44 E542·545-FE542 / 545-F 정방향Forward CTGTGAATCCAGAGGGGAAACTGTGAATCCAGAGGGGAAA 2020 3333 인트론 9Intron 9 61 ~ 8061 to 80 E542·545-RE542, 545-R 역방향Reverse ACATGCTGAGATCAGCCAAAACATGCTGAGATCAGCCAAA 2020 3434 엑손 20Exxon 20 69 ~ 8869 to 88 H1047-FH1047-F 정방향Forward CTCAATGATGCTTGGCTCTGCTCAATGATGCTTGGCTCTG 2020 3535 인트론 21Intron 21 9 ~ 299-29 H1047-RH1047-R 역방향Reverse TCAGTTCAATGCATGCTGTTTTCAGTTCAATGCATGCTGTTT 2121 3636 엑손 9Exon 9 59 ~ 7359 to 73 E542K clamp-FE542K clamp-F 정방향Forward CAATTTCTACACGAGATCCTCTCTCCAATTTCTACACGAGATCCTCTCTC 2525 3737 엑손 9Exon 9 32 ~ 5932 ~ 59 E545F2E545F2 정방향Forward GGGAAAATGACAAAGAACAGCTCAAAGCGGGAAAATGACAAAGAACAGCTCAAAGC 2828 3838 엑손 9Exon 9 86 ~ 10986 ~ 109 E542 clamp-R2E542 clamp-R2 역방향Reverse AATCTTTCTCCTGCTCAGTGATTTAATCTTTCTCCTGCTCAGTGATTT 2424 3939 엑손 9Exon 9 97 ~ 12097-120 E545 clamp-R3E545 clamp-R3 역방향Reverse ACTCCATAGAAAATCTTTCTCCTGACTCCATAGAAAATCTTTCTCCTG 2424 4040 엑손 9Exon 9 99 ~ 12299 ~ 122 E546 clamp-R4E546 clamp-R4 역방향Reverse TGACTCCATAGAAAATCTTTCTCCTGACTCCATAGAAAATCTTTCTCC 2424 4141 엑손 20Exxon 20 240 ~ 262240 ~ 262 H1047RL clamp-FH1047RL clamp-F 정방향Forward CATGAAACAAATGAATGATGCACCATGAAACAAATGAATGATGCAC 2323 4242 엑손 20Exxon 20 240 ~ 261240 ~ 261 H1047YRL clamp-FH1047YRL clamp-F 정방향Forward CATGAAACAAATGAATGATGCACATGAAACAAATGAATGATGCA 2222

3. 3. PNAPNA 기반의 실시간  Based real-time PCRPCR 클램핑을Clamping 이용한  Used PIK3CAPIK3CA 돌연변이 검출 Mutation detection

본 발명에 따른 PIK3CA 유전자 돌연변이 검출방법은The PIK3CA gene mutation detection method according to the present invention

(a) PIK3CA 유전자 클램핑 프라이머 세트와 PNA 클램핑 프로브의 존재 하에, PIK3CA 유전자에 대해 실시간 PCR을 수행하는 단계; 및(a) performing a real-time PCR on the PIK3CA gene in the presence of a PIK3CA gene clamping primer set and a PNA clamping probe; And

(b) 상기 실시간 PCR에 의한 유전자 증폭을 분석하여 PIK3CA 유전자의 돌연변이 유무 또는 농도를 결정하는 단계:(b) analyzing gene amplification by the real-time PCR to determine the presence or the concentration of mutation of PIK3CA gene;

를 포함한다..

단계 (a)에서 사용되는 PIK3CA 유전자는 대상 검체로부터 추출하여 준비된다. 본 발명에서는 핵산추출에 특별한 제한이 없으며, 일반적으로 사용하는 모든 핵산 추출방법을 사용할 수 있으며, 시판중인 핵산 추출키트 등을 사용하여 환자의 혈액 또는 종양 표본으로부터 DNA를 추출하여 준비된다.The PIK3CA gene used in step (a) is prepared by extraction from the subject sample. In the present invention, there is no particular limitation on nucleic acid extraction. Any nucleic acid extraction method generally used can be used. DNA is extracted from a patient's blood or tumor sample using a commercially available nucleic acid extraction kit or the like.

단계 (a)에서는, 실시간 PCR 방법을 이용하여 PIK3CA 유전자의 돌연변이를 검출한다. 실시간 PCR 방법은 지수적인 증폭이 일어나는 초기 시료의 양을 형광물질의 지수적 증가가 탐지되기 시작하는 사이클의 수(Cycle threshold, 이하 'Ct'라고 칭한다)로 나타내므로 보다 정확한 정량분석이 가능하며 반응을 실시간으로 분석할 수 있다. 이 방법은 전기영동하여 영상분석기로 강도를 측정하는 단계가 생략되고 증폭산물의 증폭정도를 자동화, 수치화시켜 빠르고 간편하게 진단할 수 있는 방법이다.In step (a), a mutation of the PIK3CA gene is detected using a real-time PCR method. Real-time PCR method can provide more accurate quantitative analysis it is indicated in an exponential amplification takes place can the amount of the initial sample of the cycles for the exponential increase in the fluorescent material starts to be detected (hereinafter referred to as Cycle threshold, less than 'C t'), and The reaction can be analyzed in real time. This method is a method to quickly and easily diagnose the amplification product by omitting the step of measuring the intensity with the image analyzer by electrophoresis and automating and quantifying the amplification degree of the amplification product.

본 발명에서 실시간 PCR 클램핑의 반응물 중 PNA 클램핑 프로브는 1 내지 1000nM의 최종농도를 갖는 것이 바람직하다.It is preferred in the present invention that the PNA clamping probe among the reagents of the real-time PCR clamping has a final concentration of 1 to 1000 nM.

본 발명에서는 인터컬레이팅(intercalating)법을 이용하여 형광을 검출하는데, 이 방법은 증폭된 이중가닥 DNA에 형광표지가 인터컬레이션(intercalation)되어 형광을 발하게 되는데 이 때의 형광 강도를 측정함으로써 증폭산물의 생성량을 측정하게 된다. 이로써 어느 PCR 기기에나 적용할 수 있고 프라이머를 따로 제작하지 않아도 높은 민감도 및 특이도로 PIK3CA 유전자의 돌연변이를 검출할 수 있다.In the present invention, fluorescence is detected using an intercalating method. In this method, a fluorescence label is intercalated into amplified double-stranded DNA and fluorescence is emitted. By measuring the fluorescence intensity at this time, And the amount of product produced is measured. This allows detection of mutations in the PIK3CA gene with high sensitivity and specificity without application of any primers to any PCR instrument.

본 발명에서는 유전자 증폭산물을 확인하기 위한 형광물질로서 실시간 유전자 검출방법에 사용되는 DNA-결합 형광물질(DNA-binding fluorophore)을 사용하며 그 종류에 특별한 제한은 없다. 예를 들어, SYBR 그린 I 외에 에버그린, 에티디움브로마이드(EtBr), BEBO, YO-PRO-1, TO-PRO-3, LC 그린, SYTO-9, SYTO-13, SYTO-16, SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO-3, SYTOX 오렌지 등을 사용할 수 있다(Gudnason et al., Nucleic Acids Res. 2007;35(19):e127, Bengtsson et al., Nucleic Acids Res. 2003;31(8):e45; Wittwer et al., Clinical Chemistry 49(6):853-860).In the present invention, a DNA-binding fluorophore used in a real-time gene detection method is used as a fluorescent substance for identifying a gene amplification product, and there is no particular limitation on its kind. For example, in addition to SYBR Green I, Evergreen, Ethidium Bromide (EtBr), BEBO, YO-PRO-1, TO-PRO-3, LC Green, SYTO-9, SYTO-13, SYTO- (Gudnason et al., Nucleic Acids Res. 2007; 35 (19): e127, 2004) can be used, such as SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO- Bengtsson et al., Nucleic Acids Res 2003; 31 (8): e45; Wittwer et al., Clinical Chemistry 49 (6): 853-860).

단계 (b)에서는, 단계 (a)의 실시간 PCR에 의한 유전자 증폭을 분석하여 PIK3CA 유전자의 돌연변이 유무 또는 농도를 결정하는바, 증폭된 Ct값을 비교하여 PIK3CA 유전자의 돌연변이 유무를 확인할 수 있다. 야생형 유전자와 혼성화되도록 고안된 PNA 프로브가 PIK3CA 돌연변이 코돈 유전자 부위에 혼성화되어 증폭을 저해하게 되면 증폭이 저해되어 Ct값이 높게 나타난다. 반면 PIK3CA 돌연변이 코돈 부위에 돌연변이가 발생한 경우 PNA 프로브와 혼성화되지 못하고 증폭되어 Ct값이 낮게 나타나게 된다. 양성 대조 시료로부터 얻어진 Ct값에서 미지의 시료로부터 얻어진 Ct값을 빼어 얻어진 △Ct의 값을 확인하여 각 코돈의 돌연변이 유무를 확인한다(하기 수학식 1 참조).In step (b), the presence or absence of mutation or the concentration of PIK3CA gene is analyzed by analyzing gene amplification by real-time PCR in step (a), and the presence or absence of mutation of PIK3CA gene can be confirmed by comparing amplified C t values. When a PNA probe designed to hybridize with a wild-type gene hybridizes to the PIK3CA mutant codon gene region and inhibits amplification, the amplification is inhibited and the C t value is high. On the other hand, mutations in the PIK3CA mutation codon region are not hybridized with the PNA probe and amplified, resulting in a lower C t value. In C t values obtained from a positive control sample to determine the value of C t obtained by subtracting △ C t values obtained from a sample of the unknown to verify the presence of each mutant codon (see equation 1).

[수학식 1][Equation 1]

△Ct = 양성대조 시료로부터 얻어진 Ct값 - 미지의 시료로부터 얻어진 CtC t = C t value obtained from the positive control sample - C t value obtained from the unknown sample

[양성대조 시료: 야생형 유전자 시료][Positive control sample: wild-type gene sample]

돌연변이형 유전자가 다량 포함되어 있을수록 Ct값이 낮게 나타나게 되므로 △Ct 차이가 클수록 돌연변이가 다량 포함되어 있음을 판단할 수 있다.The larger the amount of the mutant gene is, the lower the C t value is. Therefore, it can be judged that the larger the difference ΔC t , the larger the mutation is contained.

본 발명의 PNA 기반의 실시간 PCR 클램핑을 이용한 PIK3CA 돌연변이 검출 방법은 대장암을 비롯하여 위암, 폐암, 췌장암, 두부 편평상피세포암, 교모세포종, 자궁내막암, 난소암, 유방암 등의 종양을 검사하는데 이용할 수 있으며, 종양 연구뿐만 아니라 PIK3CA 신호 전달 체계에 관여하는 기작을 연구하는 데에도 매우 유용하게 사용될 수 있다. 또한 개체군-기초 연구와 같이 다량의 시료 분석을 요구하는 연구에도 효과적으로 적용될 수 있다.
The PIK3CA mutation detection method using the PNA-based real-time PCR clamping of the present invention is useful for the screening of tumors such as gastric cancer, lung cancer, pancreatic cancer, squamous cell carcinoma, glioblastoma, endometrial cancer, ovarian cancer and breast cancer including colon cancer And can be very useful in studying not only tumor studies but also mechanisms involved in the PIK3CA signaling pathway. It can also be effectively applied to studies that require large amounts of sample analysis, such as population-based studies.

이하, 본 발명을 실시예에 의해 보다 구체적으로 설명하나, 이는 본 발명의 이해를 돕기 위한 것일 뿐 본 발명의 범위를 어떤 식으로든 제한하고자 하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not intended to limit the scope of the present invention in any way.

실시예 1: PIK3CA 엑손 9 및 20에 존재하는 코돈 542, 545 및 1047 야생형의 증폭을 억제하기 위한 PNA 프로브 합성Example 1: Synthesis of PNA probes to suppress amplification of codons 542, 545 and 1047 wild-type present in PIK3CA exons 9 and 20

PIK3CA 유전자의 엑손 9 코돈 542, 545 및 엑손 20 코돈 1047의 야생형과 완벽하게 결합하는 28개의 PNA 프로브를 상기 표 2에 나타낸 바와 같이 제작하였다. 각 코돈의 야생형과 완벽하게 결합하는 프로브는 돌연변이와의 효과적인 분리를 위하여 돌연변이가 일어나는 염기서열이 프로브의 중간에 위치하도록 고안하였다. 한국등록특허 제464,261호에 기재된 방법에 따라, PNA 프로브를 합성하였다(Lee H et al., Org Lett. 2007 Aug 16;9(17):3291-3.).
Exon 9 of the PIK3CA gene Twenty-eight PNA probes were prepared as shown in Table 2, which perfectly bind to the wild type of codons 542 and 545 and exon 20 codon 1047, respectively. Probes that are perfectly bound to the wild type of each codon are designed so that the base sequence in which the mutation occurs is located in the middle of the probe for effective isolation from the mutation. PNA probes were synthesized according to the method described in Korean Patent No. 464,261 (Lee H et al., Org Lett 2007 Aug 16; 9 (17): 3291-3).

실시예 2: PIK3CA 엑손 9 및 20의 표적핵산 증폭 및 클램핑 PCR을 위한 프라이머 합성Example 2: Primer synthesis for target nucleic acid amplification and clamping PCR of PIK3CA exons 9 and 20

PIK3CA 엑손 9 및 20의 표적핵산의 증폭 및 클램핑 PCR을 위하여 PIK3CA 유전자의 엑손 9 및 20 부위를 분석하여 프라이머를 제작하였다. PIK3CA 엑손 9의 야생형 및 돌연변이 유전자를 확인하기 위한 서열번호 32 및 33으로 이루어진 프라이머 세트와 PIK3CA 엑손 9 코돈 542의 클램핑 프라이머로 서열번호 36의 프라이머를 합성하였다. 엑손 9 코돈 542의 클램핑에 사용된 역방향 프라이머는 PIK3CA 엑손 9의 유전자를 확인하기 위하여 고안된 서열번호 33의 역방향 프라이머를 동일하게 사용하였다. PIK3CA 엑손 9 코돈 545의 클램핑 프라이머로 서열번호 39 및 40을 합성하였으며, 엑손 9 코돈 545의 클램핑에 사용된 정방향 프라이머로는 서열번호 37의 프라이머를 사용하였다. PIK3CA 엑손 20의 야생형 및 돌연변이 유전자를 확인하기 위한 서열번호 34 및 35로 이루어진 프라이머 세트와 엑손 20 코돈 1047의 클램핑 프라이머로 서열번호 41 및 42의 프라이머를 합성하였다. 엑손 20 코돈 1047의 클램핑에 사용된 역방향 프라이머는 PIK3CA 엑손 20의 유전자를 확인하기 위하여 고안된 서열번호 35의 역방향 프라이머를 동일하게 사용하였다. 사용한 프라이머의 서열은 상기 표 3에 나타낸 바와 같다. 프라이머는 ㈜바이오니아(한국)에 의뢰하여 합성하였다.
For amplification and clamping PCR of the target nucleic acids of PIK3CA exons 9 and 20, exons 9 and 20 of the PIK3CA gene were analyzed to prepare primers. Primers set forth in SEQ ID NOS: 32 and 33 for identifying wild type and mutant genes of PIK3CA exon 9, and primers set forth in SEQ ID NO: 36 were synthesized as clamping primers for PIK3CA exon 9 codon 542. The reverse primer used in the clamping of exon 9 codon 542 was the same as the reverse primer of SEQ ID NO: 33 designed to identify the gene of PIK3CA exon 9. SEQ ID NOS: 39 and 40 were synthesized as clamping primers of PIK3CA exon 9 codon 545 and primers of SEQ ID NO: 37 were used as the forward primer used for clamping Exon 9 codon 545. Primers set forth in SEQ ID NOS: 34 and 35 for identifying wild-type and mutant genes of PIK3CA exon 20 and primers set forth in SEQ ID NOS: 41 and 42 were synthesized as clamping primers for exon 20 codon 1047, respectively. The reverse primer used in the clamping of exon 20 codon 1047 was the same as the reverse primer of SEQ ID NO: 35 designed to identify the gene of PIK3CA exon 20. The sequences of primers used are shown in Table 3 above. The primer was synthesized by asking Bioneer (Korea).

실시예 3: PIK3CA 엑손 9 및 20의 표적핵산을 제조하기 위한 돌연변이유발 및 클론제조Example 3: Mutagenesis and cloning to produce target nucleic acids of PIK3CA exons 9 and 20

인간의 전체 DNA를 이용하여 서열번호 32 및 33의 프라이머 세트와 서열번호 34 및 35의 프라이머 세트를 사용하여 PIK3CA 엑손 9 및 20 부분의 유전자를 증폭하였다. 증폭된 핵산을 pGEM-T 이지 벡터(Promega, USA)에 결찰하고 E. coli JM 109 세포에 형질전환하여 DNA를 대량 확보하였다. 변이 유전자를 가진 클론을 확보하기 위해 상기한 방법으로 제조된 정상 클론을 이용하여 돌연변이용 프라이머를 제작하고 부위특이적 돌연변이유발 키트 (Stratagene, USA)를 사용하여 변이 유전자를 가진 클론을 확보하였다. 확보된 클론은 염기서열 분석으로 그 변이 여부를 확인하였다.
Using the whole human DNA, the primer set of SEQ ID NOS: 32 and 33 and the primer sets of SEQ ID NOs: 34 and 35 were used to amplify the PIK3CA exon 9 and 20 part gene. The amplified nucleic acid was ligated to a pGEM-T isotype vector (Promega, USA) and transformed into E. coli JM 109 cells to obtain a large amount of DNA. To obtain a clone having a mutation gene, a mutagenic primer was prepared using a normal clone prepared by the above method, and a clone having a mutant gene was obtained using a site-specific mutagenesis kit (Stratagene, USA). The obtained clones were identified by sequencing.

실시예 4: PIK3CA 엑손 9 및 20의 야생형 및 돌연변이 세포주(cell line)로부터의 핵산 추출Example 4: Nucleic acid extraction from wild-type and mutant cell lines of PIK3CA exons 9 and 20

PIK3CA 엑손 9 및 20의 야생형 및 돌연변이의 표적핵산을 확보하기 위하여, 한국세포주은행으로부터 세포주를 분양받았다. 야생형 세포주로 HT29(genomic DNA) 인간 대장암 세포주[KCLB30038, 한국세포주은행(KCLB), 서울, 한국]를 분양 받았다. 하기 표 4에 나타낸 돌연변이 세포주들도 한국세포주은행으로부터 분양 받았다.To obtain the wild type and mutant target nucleic acids of PIK3CA exon 9 and 20, cell lines were distributed from Korean cell line bank. HT29 (genomic DNA) human colon cancer cell line [KCLB30038, Korea Cell Line Bank (KCLB), Seoul, Korea] was distributed as a wild type cell line. The mutant cell lines shown in Table 4 below were also sold from the Korean Cell Line Bank.

KCLBKCLB NoNo .. 돌연변이Mutation 엑손Exon 세포주명Cell name 기원origin 3003830038 야생형Wild type HT29HT29 대장암Colon cancer 000601000601 E542KE542K 엑손 9Exon 9 SNU601SNU601 위궤양성 종양Gastric cancer 3002230022 E545KE545K 엑손 9Exon 9 MCF7MCF7 유방암Breast cancer 1024710247 H1047RH1047R 엑손 20Exxon 20 HCT116HCT116 대장암Colon cancer

분양 받은 세포주는 RPMI1640(Hyclone, Thermo scientific, USA) 또는 MEM(WelGENE, 한국)에 10% 열-불활성화 우태아혈청(FBS, Hyclone, Thermo scientific, USA)과 1X 페니실린-스트렙토마이신(WelGENE, 한국)이 첨가된 배지를 사용하여 37℃, 5% 이산화탄소(CO2)가 유지되는 배양기에서 배양하였다. 배양된 세포주는 고순도 PCR 주형 제조 키트(High Pure PCR Template Preparation Kit)(Roche, USA)를 사용하여 키트에서 제공한 매뉴얼에 의거하여 DNA를 추출하여 표적핵산을 확보하였다. 확보된 핵산은 나노드롭 스펙트로포토미터(ND 2000C, Thermo Scientific, USA)를 사용하여 정량하고 -20℃에 보관하여 사용하였다. 인간 세포주로부터 각각 분리한 전체 DNA를 상기 표 3에 기재되어 있는 서열번호 32 및 33의 프라이머 세트와 서열번호 34 및 35의 프라이머 세트를 적용하여 PIK3CA 엑손 9 및 20 부분의 유전자를 증폭하였다. 증폭된 PCR 산물을 Labopass™ PCR 정제 키트(코스모진텍, 한국)를 사용하여 정제한 후 염기서열분석하여 유전자형을 확인하였다. 유전자형이 확인된 야생형 및 변이형 세포주는 본 발명의 PNA 프로브를 이용한 실시간 PCR 방법의 검체로 사용하였다.
The cells were washed twice with 10% heat-inactivated fetal bovine serum (FBS, Hyclone, Thermo scientific, USA) and 1 × penicillin-streptomycin (WelGENE, Korea) in RPMI1640 (Hyclone, Thermo scientific, USA) ) Was added to the culture medium in an incubator maintained at 37 ° C and 5% carbon dioxide (CO 2 ). The cultured cell line was extracted with a High Pure PCR Template Preparation Kit (Roche, USA) according to the manual provided in the kit to obtain a target nucleic acid. The obtained nucleic acid was quantified using a nano-drop spectrophotometer (ND 2000C, Thermo Scientific, USA) and stored at -20 ° C. The whole DNA separated from the human cell line was amplified by applying the primer sets of SEQ ID NOs: 32 and 33 and the primer sets of SEQ ID NOS: 34 and 35 described in Table 3 above to the PIK3CA exon 9 and 20 portion gene. The amplified PCR product was purified using Labopass ™ PCR purification kit (Kosomjin Tech, Korea) and sequenced to confirm the genotype. The wild-type and mutant cell lines identified as genotypes were used as a sample of a real-time PCR method using the PNA probe of the present invention .

실시예Example 5:  5: PIK3CAPIK3CA 엑손 9 코돈 542에 대한  Exon 9 for codon 542 PNAPNA 프로브를The probe 이용한 실시간  Real time PCRPCR 클램핑 방법 확립 Clamping method establishment

실시예 3에서의 클론으로부터 추출된 플라스미드 DNA와 실시예 4에서의 세포주로부터 추출된 DNA를 이용하여 하기 조건으로 RT-PCR 클램핑을 수행하여 PIK3CA 유전자의 돌연변이를 검색하는 PNA 프로브들을 만들어 차이점을 비교해 보고 분석함으로써 최적의 PNA 프로브를 찾고자 하였다. 클론에서 추출된 플라스미드 DNA 용액 1 ㎕ 또는 세포주에서 추출된 주형 DNA 용액(50 ng/㎕) 1 ㎕, 표 3에 나타난 1개의 클램핑 센스 프라이머(10 pmole/㎕) 1 ㎕, 안티센스 프라이머(10 pmole/㎕) 1 ㎕, 표 2에 나타낸 프로브 중 1개의 클램핑 프로브(100nM) 1 ㎕, 2X IQ Sybr 그린 슈퍼믹스(Bio-Rad, USA) 10 ㎕, 증류수 6 ㎕를 가하고 실시간 DNA 증폭기(Real-time PCR machine, CFX96TM Real-Time PCR System, Bio-RAD사 제품)를 이용하여 95℃에서 3분 동안 반응시킨 후 95℃ 30초 그리고 PNA가 혼성화될 수 있는 70℃에서 20초 반응을 추가하고, 63℃ 30초, 72℃ 30초 반응과정을 40회 반복하였다. 형광은 72℃ 중합반응 단계에서 측정하였다.Using the plasmid DNA extracted from the clone in Example 3 and the DNA extracted from the cell line in Example 4, RT-PCR clamping was performed under the following conditions to make PNA probes for mutation of the PIK3CA gene to compare the differences To find an optimal PNA probe. 1 μl of the plasmid DNA solution extracted from the clone or 1 μl of the template DNA solution (50 ng / μl) extracted from the cell line, 1 μl of 1 clamping sense primer (10 pmole / μl) shown in Table 3, 10 μl of the antisense primer 1 μl of the probe shown in Table 2, 1 μl of 1 clamping probe (100 nM) of the probes shown in Table 2, 10 μl of 2 × IQ Sybr Green Super Mix (Bio-Rad, USA) and 6 μl of distilled water were added, The reaction was carried out at 95 ° C for 3 minutes using a CFX96 ™ Real-Time PCR System (Bio-RAD), followed by a 30 second reaction at 95 ° C and a 20 second reaction at 70 ° C where PNA could be hybridized. 30 sec, and 72 < 0 > C for 30 sec were repeated 40 times. Fluorescence was measured at the 72 ° C polymerization stage.

상기 프로브들 중 서열번호 7 내지 11의 프로브를 적용하여 엑손 9의 코돈 542 야생형의 증폭을 저해하고 돌연변이를 검출하는 효과를 두 세트의 프라이머(서열번호 33과 36, 및 서열번호 37와 38)로 확인한 결과를 도 2에 나타내었다. 도 2에 나타난 바와 같이, 서열번호 33과 서열번호 36을 이용한 정방향 클램핑에서는 서열번호 7이 모두 매우 우수한 효과를 나타냈으며, 서열번호 37와 38를 이용한 역방향 클램핑에서는 서열번호 8 내지 10의 프로브가 우수한 효과를 나타내는 것으로 확인되었다.The effect of inhibiting the amplification of the codon 542 wild-type of exon 9 and detecting the mutation was confirmed by applying two sets of primers (SEQ ID NOS: 33 and 36, and SEQ ID NOS: 37 and 38) The results are shown in Fig. As shown in FIG. 2, all of SEQ ID NO: 7 showed excellent effects in forward clamping using SEQ ID NO: 33 and SEQ ID NO: 36, and the probes of SEQ ID NO: 8 to 10 were superior in reverse clamping using SEQ ID NOS: 37 and 38 Effect.

서열번호 9 내지 31의 프로브 중 대표적으로 서열번호 12, 13, 14, 16 및 17을 적용하여 엑손 9의 코돈 545 야생형의 증폭을 저해하고 돌연변이를 검출하는 효과를 확인한 결과를 도 3에 나타내었다. 도 3에 나타난 바와 같이. 적용한 모든 프로브가 우수한 효과를 나타내며, 특히 서열번호 12 및 13의 프로브가 다양한 돌연변이를 검출하는데 보다 우수한 효과를 나타내는 것으로 확인되었다.Among the probes of SEQ ID NOS: 9 to 31, SEQ ID NOS: 12, 13, 14, 16 and 17 were applied to inhibit the amplification of the codon 545 wild-type of exon 9 and the mutation was detected. As shown in FIG. All of the applied probes exhibit excellent effects, and in particular, the probes of SEQ ID NOs: 12 and 13 have been found to exhibit superior effects in detecting various mutations.

서열번호 1 내지 6의 프로브를 적용하여 엑손 20의 코돈 1047 야생형의 증폭을 저해하고 돌연변이를 검출하는 효과를 확인한 결과를 도 4에 나타내었다. 도 4에 나타난 바와 같이, 서열번호 1, 2 및 4의 프로브가 우수한 효과를 나타내며, 특히 서열번호 4의 프로브가 보다 우수한 효과를 나타내는 것으로 확인되었다.
The effect of inhibiting the amplification of the codon 1047 wild-type of exon 20 and detecting the mutation was confirmed by applying the probes of SEQ ID NOs: 1 to 6 in FIG. As shown in Fig. 4, the probes of SEQ ID NOS: 1, 2 and 4 showed excellent effects, and in particular, the probes of SEQ ID NO: 4 showed more excellent effects.

실시예 6: PNA 프로브를 이용한 실시간 PCR 클램핑 방법을 통한 PIK3CA 유전자의 돌연변이 검색Example 6: Mutation detection of PIK3CA gene by real-time PCR clamping method using PNA probe

실시예 5에서 확립된 실시간 PCR을 이용한 방법을 사용하여 야생형 유전자에 돌연변이 유전자를 각각 10ng, 5ng, 2.5ng, 1ng, 0.1ng, 0.05ng, 0.01ng이 포함하도록 제작하여 돌연변이 유전자의 농도에 따른 Ct값 사이의 상관관계를 분석하여, 돌연변이형의 검출한계를 확인하였다.5 ng, 2.5 ng, 1 ng, 0.1 ng, 0.05 ng and 0.01 ng of the mutant gene were prepared in the wild type gene using the real-time PCR method established in Example 5, The correlation between t values was analyzed and the detection limit of the mutant type was confirmed.

도 5에 PIK3CA 엑손 9 코돈 545 돌연변이를 가진 세포주를 대상으로 서열번호 12 및 13의 PNA 프로브를 이용하여 샘플적용 양에 따른 검출 민감도(ΔCt)를 비교한 결과를 나타내었다. 도 5에 나타난 바와 같이, 돌연변이 유전자의 양이 증가할수록 형광이 역치값에 도달하는 반응횟수를 나타내는 Ct값이 일정하게 감소(즉 ΔCt값이 증가)하여, 돌연변이 유전자의 양과 Ct값 사이에 상관관계가 있는 것으로 나타났다.FIG. 5 shows the results of comparing detection sensitivities (ΔC t ) according to the application amounts of the PNA probes of SEQ ID NOs: 12 and 13 in a cell line having a PIK3CA exon 9 codon 545 mutation. As shown in FIG. 5, as the amount of the mutant gene increases, the C t value indicating the number of times the fluorescence reaches the threshold value is constantly decreased (that is, the C t value is increased), and the amount of the mutant gene and the C t value And the correlation between the two.

도 6에 PIK3CA 엑손 20 코돈 1047 돌연변이를 가진 세포주를 대상으로 서열번호 4의 PNA 프로브를 이용하여 돌연변이 포함 농도에 따른 검출 민감도(ΔCt)를 비교한 결과를 나타내었다. 도 6에 나타난 바와 같이, 돌연변이 유전자의 상대적 농도가 증가할수록 Ct값이 일정하게 감소(즉 ΔCt값이 증가)하여, 돌연변이 유전자의 상대적 농도와 Ct값 사이에 상관관계가 있는 것으로 나타났다. 또한, 본 발명의 방법 사용 시 0.1%로 존재하는 돌연변이의 유무도 검출할 수 있음을 확인하였다.FIG. 6 shows the results of comparing the detection sensitivity (ΔC t ) according to mutation-containing concentration using a PNA probe of SEQ ID NO: 4 in a cell line having a PIK3CA exon 20 codon 1047 mutation. As shown in FIG. 6, there was a correlation between the relative concentration of the mutant gene and the C t value, as the relative concentration of the mutant gene increased, resulting in a constant decrease in the C t value (i.e., an increase in the ΔC t value). In addition, it was confirmed that the presence or absence of a mutation present at 0.1% can be detected using the method of the present invention.

<110> Panagene, Inc. <120> Methods and kits for the PIK3CA mutant detection using PNA-mediated Real-time PCR clamping <160> 42 <170> KopatentIn 1.71 <210> 1 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 1 aattatgcac atcatggtgg c 21 <210> 2 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 2 aattatgcac atcatggtgg ct 22 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 3 gattcacatc atggtggc 18 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 4 attatgcaca tcatggtggc 20 <210> 5 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 5 ttatgcacat catggtg 17 <210> 6 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 6 attcacatca tggtggc 17 <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 7 atcctctctc tgaaatcact ga 22 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 8 tctctgaaat cactgagcag 20 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 9 cctctctctg aaatcact 18 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 10 gatcctctct ctgaaatcac t 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 11 atcctctctc tgaaatcact g 21 <210> 12 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 12 tctttctcct gctcagtsat tt 22 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 13 tctttctcct gctcagtsat ttag 24 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 14 tttctcctgc tcagtsattt 20 <210> 15 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 15 cttaaatcac tgagcagga 19 <210> 16 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 16 aatcactgag cassaga 17 <210> 17 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 17 tcttaaatca ctgagcagg 19 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 18 aaatcactga gcaggagaaa 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 19 aaatcattga gcaggagaaa 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 20 aaatcactga scaggagaaa 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 21 aaatcactga scagsagaaa 20 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 22 ttctcctgct cagtgattt 19 <210> 23 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 23 tttctcctgc tcagtgattt tag 23 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 24 ctttctcctg ctcagtgatt t 21 <210> 25 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 25 tctttctcct gctcattgat tt 22 <210> 26 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 26 aatctttctc ctgctcattg attt 24 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 27 tctttctcct gctcagtgat tt 22 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 28 aaatcactga gcaggagaaa ga 22 <210> 29 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 29 ttctcctgcg cagtgattt 19 <210> 30 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 30 tttctcctgc gcagtgattt tag 23 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 31 ctttctcctg cgcagtgatt t 21 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 32 ctgtgaatcc agaggggaaa 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 33 acatgctgag atcagccaaa 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34 ctcaatgatg cttggctctg 20 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 35 tcagttcaat gcatgctgtt t 21 <210> 36 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 36 caatttctac acgagatcct ctctc 25 <210> 37 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 37 gggaaaatga caaagaacag ctcaaagc 28 <210> 38 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 38 aatctttctc ctgctcagtg attt 24 <210> 39 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 39 actccataga aaatctttct cctg 24 <210> 40 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 40 tgactccata gaaaatcttt ctcc 24 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 41 catgaaacaa atgaatgatg cac 23 <210> 42 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 42 catgaaacaa atgaatgatg ca 22 <110> Panagene, Inc. <120> Methods and kits for the PIK3CA mutant detection using          PNA-mediated Real-time PCR clamping <160> 42 <170> Kopatentin 1.71 <210> 1 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 1 aattatgcac atcatggtgg c 21 <210> 2 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 2 aattatgcac atcatggtgg ct 22 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 3 gattcacatc atggtggc 18 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 4 attatgcaca tcatggtggc 20 <210> 5 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 5 ttatgcacat catggtg 17 <210> 6 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 6 attcacatca tggtggc 17 <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 7 atcctctctc tgaaatcact ga 22 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 8 tctctgaaat cactgagcag 20 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 9 cctctctctg aaatcact 18 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 10 gatcctctct ctgaaatcac t 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 11 atcctctctc tgaaatcact g 21 <210> 12 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 12 tctttctcct gctcagtsat tt 22 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 13 tctttctcct gctcagtsat ttag 24 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 14 tttctcctgc tcagtsattt 20 <210> 15 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 15 cttaaatcac tgagcagga 19 <210> 16 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 16 aatcactgag cassaga 17 <210> 17 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 17 tcttaaatca ctgagcagg 19 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 18 aaatcactga gcaggagaaa 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 19 aaatcattga gcaggagaaa 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 20 aaatcactga scaggagaaa 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 21 aaatcactga scagsagaaa 20 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 22 ttctcctgct cagtgattt 19 <210> 23 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 23 tttctcctgc tcagtgattt tag 23 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 24 ctttctcctg ctcagtgatt t 21 <210> 25 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 25 tctttctcct gctcattgat tt 22 <210> 26 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 26 aatctttctc ctgctcattg attt 24 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 27 tctttctcct gctcagtgat tt 22 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 28 aaatcactga gcaggagaaa ga 22 <210> 29 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 29 ttctcctgcg cagtgattt 19 <210> 30 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 30 tttctcctgc gcagtgattt tag 23 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 31 ctttctcctg cgcagtgatt t 21 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 32 ctgtgaatcc agaggggaaa 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 33 acatgctgag atcagccaaa 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34 ctcaatgatg cttggctctg 20 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 35 tcagttcaat gcatgctgtt t 21 <210> 36 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 36 caatttctac acgagatcct ctctc 25 <210> 37 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 37 gggaaaatga caaagaacag ctcaaagc 28 <210> 38 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 38 aatctttctc ctgctcagtg attt 24 <210> 39 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 39 actccataga aaatctttct cctg 24 <210> 40 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 40 tgactccata gaaaatcttt ctcc 24 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 41 catgaaacaa atgaatgatg cac 23 <210> 42 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 42 catgaaacaa atgaatgatg ca 22

Claims (11)

PIK3CA(Phosphatidylinositol 3-kinase, catalytic, alpha polypeptide) 유전자의 엑손 9 또는 엑손 20 부위를 증폭시키는 PIK3CA 유전자 클램핑 프라이머 세트와, PIK3CA 유전자의 엑손 9 또는 엑손 20의 야생형과 완전하게 결합하고, 상기 프라이머 세트의 프라이머와는 한 방향으로 일부분이 겹쳐지는, 서열번호 1 내지 31의 염기서열 중 어느 하나로 이루어지는 PNA(Peptide Nucleic Acid) 클램핑 프로브의 존재 하에, PIK3CA 유전자에 대해 실시간 PCR(real-time Polymerase Chain Reaction)을 수행하고;
상기 실시간 PCR에 의한 유전자 증폭을 유전자 증폭을 분석하여 PIK3CA 유전자의 돌연변이 유무 또는 농도를 결정하는:
단계를 포함하는, PIK3CA 유전자의 돌연변이 검출 방법.
A PIK3CA gene clamping primer set that amplifies the exon 9 or exon 20 region of the PIK3CA (phosphatidylinositol 3-kinase, catalytic, alpha polypeptide) gene, and a wild type of exon 9 or exon 20 of the PIK3CA gene, Real-time polymerase chain reaction (PCR) was performed on the PIK3CA gene in the presence of a PNA (Peptide Nucleic Acid) clamping probe consisting of any one of the nucleotide sequences of SEQ ID NOS: 1 to 31, Perform;
Gene amplification by real-time PCR is performed by analyzing gene amplification to determine the presence or level of mutation of the PIK3CA gene:
RTI ID = 0.0 &gt; PIK3CA &lt; / RTI &gt; gene.
제1항에 있어서, 실시간 PCR의 Ct(cycle threshold)값을 측정하여 PIK3CA 유전자의 돌연변이 유무 또는 농도를 결정하는, PIK3CA 유전자의 돌연변이 검출 방법.The method according to claim 1, wherein the mutation detection or the concentration of the PIK3CA gene is determined by measuring the C t (cycle threshold) value of the real-time PCR. 삭제delete 삭제delete 삭제delete 제1항 또는 제2항에 있어서, PIK3CA 유전자 클램핑 프라이머 세트는 PIK3CA 유전자 엑손 9 야생형 코돈 542, 545 또는 546, 또는 엑손 20 야생형 코돈 1047의 상류부분에 특이적으로 결합하는 정방향 프라이머와, 그의 하류부분에 특이적으로 결합하는 역방향 프라이머를 포함하는 것인, PIK3CA 유전자의 돌연변이 검출 방법.3. The method according to claim 1 or 2, wherein the PIK3CA gene clamping primer set comprises a forward primer that specifically binds to an upstream portion of PIK3CA gene exon 9 wild type codon 542, 545 or 546, or exon 20 wild type codon 1047, A reverse primer that specifically binds to the PIK3CA gene. 제6항에 있어서, 정방향 프라이머는 서열번호 36, 37, 41 및 42 중 어느 하나로 이루어지는 것이고, 역방향 프라이머는 서열번호 33, 35, 및 38 내지 40 중 어느 하나로 이루어지는 것인, PIK3CA 유전자의 돌연변이 검출 방법.The mutation detection method of PIK3CA gene according to claim 6, wherein the forward primer comprises any one of SEQ ID NOS: 36, 37, 41 and 42, and the reverse primer comprises any one of SEQ ID NOS: 33, 35 and 38 to 40 . 제1항 또는 제2항에 있어서, DNA 인터컬레이팅(intercalating) 형광물질을 사용하여 유전자 증폭을 분석하는, PIK3CA 유전자의 돌연변이 검출 방법.3. The method according to claim 1 or 2, wherein gene amplification is analyzed using a DNA intercalating fluorescent substance. 제8항에 있어서, DNA 인터컬레이팅(intercalating) 형광물질은 SYBR 그린 I, 에버그린, 에티디움브로마이드(EtBr), BEBO, YO-PRO-1, TO-PRO-3, LC 그린, SYTO-9, SYTO-13, SYTO-16, SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO-3 및 SYTOX 오렌지로 구성된 그룹으로부터 선택되는 하나 이상의 것인, PIK3CA 유전자의 돌연변이 검출 방법.9. The DNA intercalating phosphor according to claim 8, wherein the DNA intercalating phosphor is selected from the group consisting of SYBR Green I, Evergreen, Ethidium Bromide (EtBr), BEBO, YO-PRO-1, TO- Which is at least one selected from the group consisting of SYTO-13, SYTO-16, SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO- Mutation detection method of gene. 제1항 또는 제2항에 있어서, 대장암, 위암, 폐암, 췌장암, 두부 편평상피세포암, 교모세포종, 자궁내막암, 난소암 또는 유방암의 치료를 결정하거나 진단하는데 사용하기 위한, PIK3CA 유전자의 돌연변이 검출 방법.Use of a PIK3CA gene for the determination or diagnosis of the treatment of colon cancer, stomach cancer, lung cancer, pancreatic cancer, head squamous cell carcinoma, glioblastoma, endometrial cancer, ovarian cancer or breast cancer. Mutation detection method. 서열번호 1 내지 31 중 어느 하나의 PNA 클램핑 프로브:
를 포함하는, 제1항에 따른 PIK3CA 유전자의 돌연변이 검출방법에 사용하기 위한 키트.
A PNA clamping probe according to any one of SEQ ID NOS: 1 to 31:
Or a mutation of the PIK3CA gene.
KR1020100078144A 2010-08-13 2010-08-13 Methods and kits for the PIK3CA mutant detection using PNA mediated Real-time PCR clamping KR101825121B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100078144A KR101825121B1 (en) 2010-08-13 2010-08-13 Methods and kits for the PIK3CA mutant detection using PNA mediated Real-time PCR clamping
PCT/KR2011/005787 WO2012020965A2 (en) 2010-08-13 2011-08-09 Pik3ca mutation detection method and kit using real-time pcr clamping of pna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100078144A KR101825121B1 (en) 2010-08-13 2010-08-13 Methods and kits for the PIK3CA mutant detection using PNA mediated Real-time PCR clamping

Publications (2)

Publication Number Publication Date
KR20120021691A KR20120021691A (en) 2012-03-09
KR101825121B1 true KR101825121B1 (en) 2018-02-06

Family

ID=45568029

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100078144A KR101825121B1 (en) 2010-08-13 2010-08-13 Methods and kits for the PIK3CA mutant detection using PNA mediated Real-time PCR clamping

Country Status (2)

Country Link
KR (1) KR101825121B1 (en)
WO (1) WO2012020965A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2691306T3 (en) * 2013-03-13 2018-11-26 F. Hoffmann-La Roche Ag Procedures and compositions for detecting mutations in the human PI3KCA (PIK3CA) gene
KR101591475B1 (en) * 2014-07-16 2016-02-03 고려대학교 산학협력단 Method for simultaneously detecting tumor-specific mutation and epigenetic changes of circulating tumor DNA(ctDNA) using Rayleigh light scattering
CN104372102A (en) * 2014-12-05 2015-02-25 武汉友芝友医疗科技有限公司 Reagent kit used for testing PIK3CA (phosphatidylinositol-4,5-bisphosphate3-kinase, catalytic subunit alpha) gene mutations
CN105713965A (en) * 2015-11-23 2016-06-29 宋现让 Kit for detecting PIK3CA gene mutation
CN111363827A (en) * 2020-04-30 2020-07-03 北京和合医学诊断技术股份有限公司 Primer group for detecting PIK3CA gene mutation and application method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7803543B2 (en) * 2007-01-19 2010-09-28 Chang Gung University Methods and kits for the detection of nucleotide mutations using peptide nucleic acid as both PCR clamp and sensor probe

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. Mol. Diagn., Vol. 10, No. 6, pp. 520-526 (2008.10.02.)*
Science, Vol. 304, No. 5670, p. 554 (2004.03.11.)*

Also Published As

Publication number Publication date
WO2012020965A3 (en) 2012-05-03
KR20120021691A (en) 2012-03-09
WO2012020965A2 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
ES2346589T3 (en) METHOD FOR DETECTION OF MUTATIONS IN EGFR IN SAGRE SAMPLES.
KR101819938B1 (en) Methods and kits for the EGFR mutant detection using PNA mediated Real-time PCR clamping
KR101830700B1 (en) Method for the detection of multiple target nucleic acids using clamping probes and detection probes
CN105331733B (en) Polymorphic detection probe, amplification primers and its application of EGFR gene
JP2009511008A (en) Method for predicting or monitoring a patient&#39;s response to an ErbB receptor drug
KR101875199B1 (en) Methods and kits for the detection of BCR-ABL fusion gene mutant using PNA mediated Real-time PCR clamping
KR20110036646A (en) Method of detecting variation and kit to be used therein
KR101825121B1 (en) Methods and kits for the PIK3CA mutant detection using PNA mediated Real-time PCR clamping
JP2013081450A (en) Probe for detecting polymorphism, method of detecting polymorphism, method of evaluating efficacy of drug, and reagent kit for detecting polymorphism
JP5917144B2 (en) Probes for detecting polymorphisms in disease-related genes and uses thereof
KR101825117B1 (en) Methods and kits for the BRAF mutant detection using PNA mediated Real-time PCR clamping
KR101819937B1 (en) Methods and kits for the K-ras mutant detection using PNA mediated Real-time PCR clamping
KR20120119571A (en) Jak2 v617f mutation detection kit using methods and kits for the mutant detection using pna mediated real-time pcr clamping
KR20130029748A (en) Method for detecting mutations at il28b(rs8099917) and itpa(rs1127354)
KR101147277B1 (en) Probe for detecting mutation in jak2 gene and use thereof
KR101927884B1 (en) Methods and kits for genotyping of MTHFR gene using PNA mediated Real-Time PCR clamping
US20240076728A1 (en) NOVEL METHOD OF COMBINED MOLECULAR CLAMPING AND ALLELE SPECIFIC qPCR TECHNOLOGY FOR KRAS G12C MUTATION DETECTION
KR101051385B1 (en) Primer set for obesity gene amplification, reagent for amplifying obesity gene comprising same and use thereof
CN111172273B (en) Primer group, kit and detection method for SMN1 gene detection
JP6153758B2 (en) Polymorph detection probe, polymorph detection method, drug efficacy determination method, and polymorph detection kit
JP5692774B2 (en) Method and reagent kit for detecting single nucleotide polymorphism
KR20130125533A (en) Methods and kits for the c-kit mutant detection using pna mediated real-time pcr clamping
KR20120127679A (en) Method and kit for detecting IDH1, IDH2 mutation using PNA mediated Real-time PCR clamping
KR102543156B1 (en) Method and Kits for Amplifying Target Nucleic Acid with High Specificity
KR102575618B1 (en) Method and Composition for Amplifying Target Nucleic Acid using Guide Probe and Clamping probe

Legal Events

Date Code Title Description
A201 Request for examination
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right