WO2011105270A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2011105270A1
WO2011105270A1 PCT/JP2011/053332 JP2011053332W WO2011105270A1 WO 2011105270 A1 WO2011105270 A1 WO 2011105270A1 JP 2011053332 W JP2011053332 W JP 2011053332W WO 2011105270 A1 WO2011105270 A1 WO 2011105270A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
bypass
expansion valve
pipe
Prior art date
Application number
PCT/JP2011/053332
Other languages
English (en)
French (fr)
Inventor
和広 遠藤
厚 大塚
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Publication of WO2011105270A1 publication Critical patent/WO2011105270A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the present invention relates to a refrigeration cycle apparatus that improves energy efficiency.
  • Patent Document 1 (FIG. 11) describes an example of an air conditioner that reduces pressure loss in order to improve energy efficiency.
  • a refrigeration cycle apparatus is configured by connecting a compressor, a condenser, a first pressure reducer (main expansion valve), and an evaporator with piping.
  • a bypass branching off the pipe between the condenser and the first pressure reducer (main expansion valve) and joining the refrigerant again through the evaporator at the suction portion of the compressor via the second pressure reducer (bypass refrigerant expansion valve) Provide a circuit.
  • an auxiliary heat exchanger that exchanges heat between the refrigerant between the condenser and the first pressure reducer (main expansion valve) and the refrigerant that has passed through the second pressure reducer (bypass refrigerant expansion valve).
  • a part of the refrigerant condensed and liquefied by the condenser becomes a low-temperature and low-pressure two-phase state by the second decompressor (bypass refrigerant expansion valve).
  • the refrigerant at the inlet of the first decompressor main expansion valve
  • the refrigerant introduced into the evaporator is in a two-phase state with a low dryness. Therefore, the enthalpy at the inlet and outlet of the evaporator The difference increases.
  • Non-Patent Document 1 (page 6) describes a system that uses an internal heat exchanger in a car air conditioner to improve the performance of HFO1234yf.
  • the internal heat exchanger exchanges heat between the high-temperature side liquid refrigerant at the condenser outlet and the low-temperature side gas refrigerant at the evaporator outlet, superheats the low-temperature side refrigerant, and supercools the high-temperature side refrigerant.
  • Patent Document 2 in addition to the bypass circuit including the second pressure reducer (bypass refrigerant expansion valve) and the auxiliary heat exchanger (bypass heat exchanger) described in Patent Document 1, Non-Patent Document 1 A refrigeration cycle apparatus including an internal heat exchanger described in (page 6) is described.
  • HFO1234yf is a main candidate refrigerant.
  • Non-Patent Document 1 page 21
  • HFO1234yf is expected to be significantly lower density / low pressure refrigerant than R410A, which is currently used refrigerant, in order to obtain the same cooling / heating capacity.
  • the required volume flow causes significant pressure loss and the efficiency drop cannot be ignored.
  • Patent Documents 1 and 2 describe an example of a refrigeration cycle apparatus equipped with an internal heat exchanger and a bypass circuit having a bypass refrigerant expansion valve for reducing pressure loss and a bypass heat exchanger. No consideration is given to the form of mounting the exchanger and the internal heat exchanger.
  • both the refrigerant after passing through the evaporator in the main circuit (hereinafter referred to as “gas refrigerant”) and the refrigerant after passing through the bypass refrigerant expansion valve in the bypass circuit (hereinafter referred to as “bypass refrigerant”) pass through the condenser in the main circuit.
  • Heat exchange with the later refrigerant (hereinafter referred to as “liquid refrigerant”). By performing heat exchange, the temperature of the liquid refrigerant decreases, the temperature difference between the liquid refrigerant, the gas refrigerant, and the bypass refrigerant gradually narrows, and the amount of heat exchange per unit length of the refrigerant pipe decreases.
  • the heat exchange between the gas refrigerant, the bypass refrigerant, and the liquid refrigerant until the temperatures of the refrigerant sufficiently approach each other is an outdoor unit. It is difficult in that the space is limited.
  • the object of the present invention is to shorten the length of the internal heat exchanger and the bypass heat exchanger by increasing the heat exchange area in the internal heat exchanger and the bypass heat exchanger per unit length. And to reduce the space of the actual refrigeration cycle apparatus equipped with a bypass circuit. Another object is to increase the heat exchange area of the internal heat exchanger and the bypass heat exchanger in a finite space of the actual machine.
  • the refrigeration cycle apparatus of the present invention that achieves the above object includes a main circuit that sequentially connects a compressor, a condenser, a main expansion valve, and an evaporator via a refrigerant pipe, and a branch from the main circuit between the condenser and the main expansion valve.
  • the internal heat exchanger that exchanges heat with the refrigerant pipe between the compressors, the refrigerant pipe between the condenser and the main expansion valve, and the refrigerant pipe in the bypass circuit after passing through the bypass refrigerant expansion valve exchange heat with each other.
  • An auxiliary heat exchanger having a bypass heat exchanger, a refrigerant pipe between the condenser and the main expansion valve in the internal heat exchanger, and a refrigerant pipe between the condenser and the main expansion valve in the bypass heat exchanger. At least some overlap.
  • the heat exchange area in the internal heat exchanger and the bypass heat exchanger per unit length is increased, the lengths of the internal heat exchanger and the bypass heat exchanger are shortened, the internal heat exchanger and the bypass An increase in the space of the outdoor unit due to the mounting of the circuit can be suppressed.
  • FIG. 1 is a system diagram of a refrigeration cycle apparatus according to a first embodiment of the present invention.
  • Sectional drawing of the triple tube heat exchanger which is an example of the auxiliary heat exchanger of FIG.
  • the external appearance front view of the triple tube heat exchanger which is an example of the auxiliary heat exchanger of FIG.
  • the system diagram of the refrigerating-cycle apparatus which made the internal heat exchanger and the bypass heat exchanger separate.
  • (A) is sectional drawing of the bypass heat exchanger of FIG. 4
  • (b) is sectional drawing of the internal heat exchanger of FIG.
  • the systematic diagram of the refrigerating-cycle apparatus which concerns on the 2nd Example of this invention.
  • the systematic diagram of the refrigerating-cycle apparatus which concerns on the 3rd Example of this invention.
  • FIG. 1 is a system diagram of the refrigeration cycle apparatus 100.
  • the refrigeration cycle apparatus 100 includes a compressor 1 that compresses refrigerant to form a high-temperature refrigerant, a condenser 2 that condenses and liquefies the refrigerant, and a liquid refrigerant flow path 3a of an auxiliary heat exchanger 3 that performs heat exchange between the refrigerants.
  • the main circuit 200 is configured by sequentially connecting the main expansion valve 4 that depressurizes the refrigerant to low temperature and low pressure, the evaporator 5 that evaporates and evaporates the refrigerant, and the gas refrigerant flow path 3b of the auxiliary heat exchanger 3 by piping. Is provided.
  • the refrigeration cycle apparatus 100 is branched by a pipe between the condenser 2 and the liquid refrigerant flow path 3a of the auxiliary heat exchanger 3, and between the evaporator 5 and the gas refrigerant flow path 3b of the auxiliary heat exchanger 3.
  • a bypass circuit 201 is provided for merging with the pipe.
  • the bypass circuit 201 includes a bypass refrigerant expansion valve 6 that depressurizes the bypassed refrigerant to make the temperature low and low, and a bypass refrigerant flow path 3 c of the auxiliary heat exchanger 3.
  • the auxiliary heat exchanger 3 in this embodiment includes a liquid refrigerant channel 3a, a gas refrigerant channel 3b, and a bypass refrigerant channel 3c, and the liquid refrigerant channel 3a and the gas refrigerant channel 3b are heated in a counterflow.
  • the liquid refrigerant flow path 3a and the bypass refrigerant flow path 3c are configured to be exchangeable and to be able to exchange heat with each other. That is, the auxiliary heat exchanger 3 heats the liquid refrigerant flow path 3a and the gas refrigerant flow path 3b as a function of the internal heat exchanger 8 that exchanges heat between the liquid refrigerant flow path 3a and the gas refrigerant flow path 3b. At least a part of the liquid refrigerant flow path 3a that functions as the bypass heat exchanger 7 and functions as the internal heat exchanger 8 and the liquid refrigerant flow path 3a that functions as the bypass heat exchanger 7 overlap.
  • the liquid refrigerant flow path 3a is a refrigerant pipe between the condenser 2 and the main expansion valve 4
  • the gas refrigerant flow path 3b is a refrigerant pipe between the evaporator 5 and the compressor 1
  • the bypass refrigerant flow path 3c is passed through the bypass refrigerant expansion valve 6.
  • This is a refrigerant pipe in the later bypass circuit 201. That is, at least a part of the refrigerant pipe between the condenser 2 that exchanges heat with the refrigerant pipe between the evaporator 5 and the compressor 1 and the main expansion valve 4 is in the bypass circuit 201 after passing through the bypass refrigerant expansion valve 6. Exchange heat with refrigerant pipe.
  • liquid refrigerant flow path 3a and the gas refrigerant flow path 3b are configured to be able to exchange heat in a counterflow.
  • the temperature difference between the liquid refrigerant and the gas refrigerant in the auxiliary heat exchanger 3 becomes equal compared to the parallel flow and the cross flow, so that the heat exchange amount of the auxiliary heat exchanger 3 increases.
  • both the liquid refrigerant flow path 3a and the bypass refrigerant flow path 3c are configured to be able to exchange heat in a counter flow.
  • FIGS. 2 and 3 are cross-sectional views of a triple tube heat exchanger that is an example of the auxiliary heat exchanger 3
  • FIG. 3 is a front view of the triple tube heat exchanger that is an example of the auxiliary heat exchanger 3.
  • the auxiliary heat exchanger 3 in FIGS. 2 and 3 is a triple pipe, and includes a gas refrigerant channel 3b on the inside, a liquid refrigerant channel 3a on the middle, and a bypass refrigerant channel 3c on the outside.
  • the same channel cross-sectional area the smaller the channel wall area, the greater the distance between the fluid and the wall surface, the smaller the effect of the channel wall surface that affects pressure loss. Therefore, the pressure loss is small.
  • the gas refrigerant flow path 3b that increases the mass flow rate and the volume flow rate is provided inside.
  • the relationship among the flow rates of the liquid refrigerant channel 3a, the gas refrigerant channel 3b, and the bypass channel 3c will be described later.
  • the inner side is the bypass refrigerant flow path 3c and the outer side is the gas refrigerant flow path 3b, as long as the middle is the liquid refrigerant flow path 3a, it can function as a triple pipe heat exchanger.
  • the gas refrigerant is a refrigerant after passing through the evaporator 5 in the main circuit 200.
  • the bypass refrigerant is a refrigerant after passing through the bypass refrigerant expansion valve 6 in the bypass circuit 201.
  • the liquid refrigerant is a refrigerant after passing through the condenser 2 in the main circuit 200.
  • FIG. 1 the flow direction of the refrigerant is indicated by solid arrows.
  • the gas refrigerant that has been compressed by the compressor 1 and has become high temperature and pressure is cooled and condensed in the condenser 2 and liquefied.
  • the high-pressure liquid refrigerant is divided into two, the liquid refrigerant of the main circuit 200 flows into the liquid refrigerant flow path 3a of the auxiliary heat exchanger 3, and the low-temperature gas refrigerant flowing through the gas refrigerant flow path 3b described later, and Supercooled by the low-temperature gas-liquid two-phase refrigerant flowing through the bypass refrigerant flow path 3c.
  • the supercooled liquid refrigerant is decompressed by the main expansion valve 4 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and is heated and evaporated in the evaporator 5 to become a low-pressure gas refrigerant.
  • the liquid refrigerant in the bypass circuit 201 among the two divided liquid refrigerants is decompressed by the bypass refrigerant expansion valve 6 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and the bypass refrigerant flow path 3c of the auxiliary heat exchanger 3. Flow into.
  • the low-temperature gas-liquid two-phase refrigerant in the bypass refrigerant flow path 3c is heated and evaporated by the high-temperature liquid refrigerant flowing through the liquid refrigerant flow path 3a described above to become a low-pressure gas refrigerant.
  • the latent heat of the low-temperature gas-liquid two-phase refrigerant in the bypass refrigerant channel 3c is given to the high-temperature liquid refrigerant flowing in the liquid refrigerant channel 3a, and the refrigerant at the outlet of the bypass refrigerant channel 3c becomes a gas refrigerant that does not contribute to refrigeration. Therefore, when the gas refrigerant that does not contribute to refrigeration bypasses the evaporator 5, the refrigerant flow rate in the low-pressure channel including the evaporator 5 is reduced, and the pressure loss can be reduced.
  • the refrigeration cycle apparatus 100 can improve energy efficiency by reducing pressure loss.
  • the refrigerant gasified by the evaporator 5 and the refrigerant gasified by the bypass refrigerant flow path 3 c of the auxiliary heat exchanger 3 merge, and the gas refrigerant flow of the auxiliary heat exchanger 3 It flows into the path 3b.
  • the low-temperature gas refrigerant in the gas refrigerant flow path 3b is heated by the high-temperature liquid refrigerant flowing in the liquid refrigerant flow path 3a described above, becomes superheated gas refrigerant, and returns to the compressor 1 again.
  • the liquid refrigerant flow path 3a and the gas refrigerant flow path 3b of the auxiliary heat exchanger 3 have the same configuration as the internal heat exchanger 8 described above, and prevent the liquid return to the compressor 1 as described above, By increasing the amount of supercooling of the liquid refrigerant, the refrigerant circulation amount of the evaporator 5 can be reduced, the pressure loss can be reduced, and the energy efficiency of the refrigeration cycle apparatus 100 can be improved.
  • a Mollier diagram equipped with the internal heat exchanger 8 is shown in FIG.
  • the cycle ABCD is a reference refrigeration cycle without the internal heat exchanger 8
  • the cycle A'B'C'D ' is a refrigeration cycle with the internal heat exchanger 8
  • C ⁇ C' is the high temperature side of the internal heat exchanger 8.
  • a ⁇ A ′ represents the low temperature side heat exchange process of the internal heat exchanger 8. Therefore, the following relationship holds between the enthalpy difference ⁇ h (C) ⁇ h (C ′) ⁇ and ⁇ h (A ′) ⁇ h (A) ⁇ .
  • the Mollier diagram of the refrigeration cycle apparatus provided with the bypass circuit 201 is shown in FIG.
  • the cycle ABCD is a reference refrigeration cycle apparatus configured by sequentially connecting a compressor 1, a condenser 2, a main expansion valve 4, and an evaporator 5 with piping, and includes a cycle A ′′ B ′′ C ′′ D ′′ and a path CE ′′.
  • A is a refrigeration cycle apparatus provided with a bypass circuit 201.
  • a path A "B" indicates a compression process in the compressor 1
  • a path B "C indicates a heat dissipation, condensation, and liquefaction process in the condenser 2, and a path CC".
  • the path C “D” is the depressurization process in the main expansion valve 4, and the path D “A is the evaporation and vaporization process in the evaporator 5.
  • the path AA ′′ is the overheating process in the gas refrigerant flow path 3b of the auxiliary heat exchanger 3
  • the path CE ′′ is the pressure reducing process in the bypass refrigerant expansion valve 6
  • the path E ′′ A is the bypass of the auxiliary heat exchanger 3.
  • the evaporation and vaporization processes in the refrigerant flow path 3c are respectively shown.
  • the refrigerant flow rate in the condenser 2 is G and the refrigerant flow rate ratio on the bypass side is x, the following relationship is established from the heat balance relationship in the auxiliary heat exchanger 3.
  • the refrigerant flow rate ratio of the bypass circuit 201 is adjusted according to the load condition, and an operation is performed in which the energy efficiency of the entire refrigeration cycle is increased.
  • the refrigerant flow rate ratio of the bypass circuit 201 can be adjusted by opening / closing control of the bypass refrigerant expansion valve 6.
  • FIG. 4 shows a heat exchanger composed of the liquid refrigerant flow path 3a and the gas refrigerant flow path 3b of the auxiliary heat exchanger 3 of FIG. 1, and the liquid refrigerant flow path 3a and the bypass refrigerant flow path of the auxiliary heat exchanger 3.
  • the bypass heat exchanger 7 includes a liquid refrigerant flow path 7a and a gas refrigerant flow path 7b, and the liquid refrigerant flow path 7a and the gas refrigerant flow path 7b are configured to be capable of exchanging heat in a counterflow.
  • the internal heat exchanger 8 includes a liquid refrigerant channel 8a and a gas refrigerant channel 8b, and the liquid refrigerant channel 8a and the gas refrigerant channel 8b are configured to be capable of exchanging heat with each other.
  • FIG. 5 shows a sectional view as an example of the bypass heat exchanger 7 and the internal heat exchanger 8.
  • the bypass heat exchanger 7 is a double pipe, and a gas refrigerant flow path 7b is disposed inside and a liquid refrigerant flow path 7a is disposed outside.
  • the internal heat exchanger 8 is also a double pipe, and a gas refrigerant channel 8b is arranged on the inner side and a liquid refrigerant channel 8a is arranged on the outer side. Since the operation is the same as that in FIG.
  • the case where the container 8 is a separate body will be compared.
  • the auxiliary heat exchanger 3 shown in FIG. 2 has the same configuration as that of the internal heat exchanger 8 shown in FIG. 5, and is bypassed further outside the double pipe having a gas refrigerant flow path 8b on the inner side and a liquid refrigerant flow path 8a on the outer side. It is a triple pipe provided with a refrigerant flow path. Thereby, in addition to heat exchange between the liquid refrigerant and the gas refrigerant, heat exchange between the liquid refrigerant and the bypass refrigerant can be performed at a time.
  • the outer pipe of the double pipe of the internal heat exchanger 8 in FIG. 5 does not contribute to heat transfer, but by using a triple pipe, the outer pipe of the double pipe also contributes to heat transfer.
  • a triple tube for the heat exchanger 3 all surfaces in the liquid refrigerant flow path can be utilized as heat transfer surfaces. That is, the heat transfer area of the liquid refrigerant channel is approximately doubled, and the heat exchange amount of the liquid refrigerant channel per unit length can be increased.
  • the length of the internal heat exchanger 8 and the bypass heat exchanger 7 can be shortened, and an increase in the space of the outdoor unit due to the mounting of the internal heat exchanger 8 and the bypass circuit 201 can be suppressed.
  • the ratio of the refrigerant circulating through the bypass circuit 201 is determined by adjusting the refrigerant circulating through the bypass circuit 201 to become saturated vapor after passing through the bypass heat exchanger 7. Since the length of the refrigerant pipe between the condenser 2 and the main expansion valve 4 that can be used as the bypass heat exchanger 7 is limited by the volume of the outdoor unit, the heat transfer area per unit length of the bypass heat exchanger 7 The increase in the pressure leads to an increase in the ratio of the refrigerant circulating in the bypass circuit 201, and the pressure loss in the evaporator 5 can be reduced.
  • one tube can be saved, and compactness and cost reduction can be achieved.
  • FIG. 8 shows a cross-sectional view of a heat exchanger as the auxiliary heat exchanger 3 by bringing the refrigerant tubes into contact with each other.
  • the auxiliary heat exchanger 3 in FIG. 8 is a heat exchanger that includes a liquid refrigerant flow path 3a at the center and a gas refrigerant flow path 3b and a bypass refrigerant flow path 3c arranged on both sides of the liquid refrigerant flow path 3a. Since the auxiliary heat exchanger 3 in FIG. 8 can be configured by bringing the refrigerant tubes into contact with each other by welding or the like, the manufacturing cost can be reduced.
  • FIG. 9 shows a cross-sectional view of the heat exchanger that is the auxiliary heat exchanger 3 by bringing the refrigerant tubes into contact with each other.
  • the liquid refrigerant flow path 3a, the gas refrigerant flow path 3b, and the bypass refrigerant flow path 3c are brought into contact with each other and surrounded by the conductor 14, thereby heat exchange between the refrigerant pipes per unit length as compared with the embodiment of FIG.
  • the area can be increased.
  • HFO1234yf is a main candidate refrigerant.
  • FIG. 13 is a relationship diagram of the exchange heat quantity ratio (internal heat exchange quantity / capacity), the theoretical performance coefficient (capability / input), and the theoretical capacity.
  • the theoretical coefficient of performance and theoretical capacity are made dimensionless with values at a heat exchange rate of 0% (no internal heat exchanger 8).
  • the result of R410A is also shown.
  • Non-Patent Document 1 it is understood that reduction of pressure loss is important for improving the performance of a stationary air conditioner using HFO1234yf. Therefore, in order to improve the performance of the refrigeration cycle apparatus using HFO1234yf, the internal heat exchanger 8 and the bypass refrigerant expansion valve 6 for reducing pressure loss and the bypass circuit 201 including the bypass heat exchanger 7 are provided. It is an effective means.
  • HFO1234yf was used as the refrigerant, but other hydrofluoroolefin-based refrigerants can obtain the same effect because the molecular structure is close to that of HFO1234yf. Moreover, the same effect can be acquired also with the mixed refrigerant containing these.
  • FIG. 1 branches the bypass circuit 201 from the refrigerant pipe between the condenser 2 and the liquid refrigerant flow path 3a of the auxiliary heat exchanger 3
  • the refrigeration cycle apparatus shown in FIG. 102 differs in that the bypass circuit 201 is branched from the refrigerant pipe between the liquid refrigerant flow path 3 a of the auxiliary heat exchanger 3 and the main expansion valve 4.
  • Equivalent parts are denoted by the same reference numerals and description thereof is omitted.
  • the second embodiment also increases the space of the outdoor unit by shortening the lengths of the internal heat exchanger 8 and the bypass heat exchanger 7 and mounting the internal heat exchanger 8 and the bypass circuit 201. Can be suppressed.
  • the configuration in which the refrigerant circulating in the bypass circuit 201 passes through the liquid refrigerant flow path 3a of the auxiliary heat exchanger 3 before the bypass circuit 201 branches from the main circuit 200 is increased compared to the first embodiment. Therefore, the refrigerant flow rate of the liquid refrigerant flow path 3a of the auxiliary heat exchanger 3 is the same as that of the first embodiment because the liquid refrigerant circulating in the bypass circuit 201 does not pass through the liquid refrigerant flow path 3a of the auxiliary heat exchanger 3 as compared with the second embodiment.
  • the pressure loss of the refrigerant in the liquid refrigerant flow path 3a of the auxiliary heat exchanger 3 can be reduced.
  • FIG. 7 Compared with the refrigeration cycle apparatus 100 shown in FIG. 1, the refrigeration cycle apparatus 103 shown in FIG. 7 joins the bypass circuit 201 to the refrigerant pipe between the gas refrigerant flow path 3 b of the auxiliary heat exchanger 3 and the compressor 1. It is different in letting it be done. Equivalent parts are denoted by the same reference numerals and description thereof is omitted.
  • the third embodiment is less than the first embodiment in that the refrigerant circulating through the bypass circuit 201 is less configured to pass through the gas refrigerant flow path 3b of the auxiliary heat exchanger 3 after the bypass circuit 201 merges with the main circuit 200. Therefore, the refrigerant flow rate in the gas refrigerant channel 3b of the auxiliary heat exchanger 3 is reduced by the amount of liquid refrigerant circulating through the bypass circuit 201, and the pressure loss of the refrigerant in the gas refrigerant channel 3b of the auxiliary heat exchanger 3 is reduced. Decrease. Therefore, the refrigeration cycle apparatus 103 according to the third embodiment has a lower refrigerant pressure loss and higher energy efficiency than the first and second embodiments.
  • FIG. 10 The refrigeration cycle apparatus 104 shown in FIG. 10 is characterized in that cooling and heating can be switched. Equivalent parts are denoted by the same reference numerals and description thereof is omitted.
  • the refrigeration cycle apparatus 104 is a four-way valve 10 that switches between cooling and heating, acts as a condenser during cooling, an outdoor heat exchanger 11 that acts as an evaporator during heating, acts as an evaporator during cooling, and acts as a condenser during heating.
  • a check valve 13a, 13b, 13c, 13d that regulates the flow direction of the refrigerant.
  • the check valves 13a, 13b, 13c, and 13d are arranged so that the refrigerant flow directions of the auxiliary heat exchanger 3, the main expansion valve 4, and the bypass refrigerant expansion valve 6 are always in the same direction regardless of cooling or heating. .
  • the flow direction of the refrigerant during cooling is indicated by a solid line arrow, and the flow direction of the refrigerant during heating is indicated by a broken line arrow.
  • the operation during cooling will be described.
  • the gas refrigerant compressed to high temperature and high pressure by the compressor 1 is cooled, condensed and liquefied in the condenser (outdoor heat exchanger 11).
  • the high-pressure liquid refrigerant is divided into two after passing through the check valve 13a, but the liquid refrigerant in the main circuit 200 flows into the liquid refrigerant flow path 3a of the auxiliary heat exchanger 3 and flows through a gas refrigerant flow path 3b described later. It is supercooled by a low-temperature gas refrigerant and a low-temperature gas-liquid two-phase refrigerant flowing in a bypass refrigerant flow path 3c described later.
  • the supercooled liquid refrigerant is depressurized by the main expansion valve 4 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, passes through the check valve 13c, is heated and evaporated in the evaporator (indoor heat exchanger 12), and has a low pressure. It becomes a gas refrigerant.
  • the liquid refrigerant in the bypass circuit 201 among the two divided liquid refrigerants is decompressed by the bypass refrigerant expansion valve 6 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and the bypass refrigerant flow path 3c of the auxiliary heat exchanger 3. Flow into.
  • the low-temperature gas-liquid two-phase refrigerant in the bypass refrigerant flow path 3c is heated and evaporated by the high-temperature liquid refrigerant flowing through the liquid refrigerant flow path 3a described above to become a low-pressure gas refrigerant.
  • the latent heat of the low-temperature gas-liquid two-phase refrigerant in the bypass refrigerant channel 3c is given to the high-temperature liquid refrigerant flowing in the liquid refrigerant channel 3a, and the refrigerant at the outlet of the bypass refrigerant channel 3c becomes a gas refrigerant that does not contribute to refrigeration.
  • the gas refrigerant compressed to high temperature and high pressure by the compressor 1 passes through the four-way valve 10 and is then cooled and condensed in the condenser (indoor heat exchanger 12) to be liquefied.
  • the high-pressure liquid refrigerant is divided into two after passing through the check valve 13b, but the liquid refrigerant in the main circuit 200 flows into the liquid refrigerant flow path 3a of the auxiliary heat exchanger 3 and flows through the gas refrigerant flow path 3b described later. It is supercooled by a low-temperature gas refrigerant and a low-temperature gas-liquid two-phase refrigerant flowing in a bypass refrigerant flow path 3c described later.
  • the supercooled liquid refrigerant is depressurized by the main expansion valve 4, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, passes through the check valve 13d, is heated and evaporated in the evaporator (outdoor heat exchanger 11), and has a low pressure. It becomes a gas refrigerant.
  • the liquid refrigerant in the bypass circuit 201 among the two divided liquid refrigerants is decompressed by the bypass refrigerant expansion valve 6 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and the bypass refrigerant flow path 3c of the auxiliary heat exchanger 3. Flow into.
  • the low-temperature gas-liquid two-phase refrigerant in the bypass refrigerant flow path 3c is heated and evaporated by the high-temperature liquid refrigerant flowing through the liquid refrigerant flow path 3a described above to become a low-pressure gas refrigerant.
  • the latent heat of the low-temperature gas-liquid two-phase refrigerant in the bypass refrigerant channel 3c is given to the high-temperature liquid refrigerant flowing in the liquid refrigerant channel 3a, and the refrigerant at the outlet of the bypass refrigerant channel 3c becomes a gas refrigerant that does not contribute to refrigeration.
  • the energy efficiency can be improved in the same manner as in the first embodiment.
  • the refrigerant flow rate of the bypass circuit can be adjusted so that the approximate energy efficiency is maximized according to the load condition.

Abstract

 圧縮機(1)、凝縮器(2)、主膨張弁(4)および蒸発器(5)を、冷媒管を介して順次連通する主回路(200)と、バイパス冷媒用膨張弁(6)を有し凝縮器(2)と主膨張弁(4)間で主回路(200)から分岐して蒸発器(5)と圧縮機(1)間で主回路(200)に合流するバイパス回路(201)と、を備え、凝縮器(2)と主膨張弁(4)間の冷媒管と蒸発器(5)と圧縮機(1)間の冷媒管とを熱交換する内部熱交換器(3)と、凝縮器(2)と主膨張弁(4)間の冷媒管とバイパス冷媒用膨張弁(6)通過後のバイパス回路(201)における冷媒管とを熱交換するバイパス熱交換器(7)とを有する補助熱交換器(3)を備え、内部熱交換器(8)における凝縮器(2)と主膨張弁(4)との間の冷媒管とバイパス熱交換器(7)における凝縮器(2)と主膨張弁(4)との間の冷媒管との少なくとも一部が重複する冷凍サイクル装置。

Description

冷凍サイクル装置
 本発明は、エネルギ効率の向上を図った冷凍サイクル装置に関する。
 近年、地球温暖化ガスである二酸化炭素の排出量削減がより一層求められている。空気調和機、給湯機、冷蔵庫などに応用される冷凍サイクル装置のエネルギ効率の向上により、二酸化炭素による地球温暖化への影響低減に寄与することができる。
 特許文献1(図11)には、エネルギ効率の向上のために圧力損失低減を図る空気調和機の例が記載されている。圧縮機、凝縮器、第一減圧器(主膨張弁)、蒸発器を配管で接続することにより冷凍サイクル装置を構成する。凝縮器と第一減圧器(主膨張弁)との間の配管を分岐して第二減圧器(バイパス冷媒用膨張弁)を経て圧縮機の吸入部で再び蒸発器を経た冷媒と合流するバイパス回路を備える。また、凝縮器と第一減圧器(主膨張弁)との間の冷媒と第二減圧器(バイパス冷媒用膨張弁)を経た冷媒とを熱交換させる補助熱交換器(バイパス熱交換器)を備える。
 凝縮器で凝縮液化した冷媒の一部は、第二減圧器(バイパス冷媒用膨張弁)で低温低圧の二相状態となる。そして、補助熱交換器(バイパス熱交換器)で第一減圧器(主膨張弁)の入口部の冷媒を過冷却することにより蒸発して、圧縮機の吸入部において蒸発器で蒸発した冷媒と合流して圧縮機に吸入される。
 第一減圧器(主膨張弁)入口部の冷媒は過冷却されることにより、蒸発器に導入される冷媒は乾き度が小さい二相状態となるため、蒸発器の入口と出口とでのエンタルピ差が増大する。そのため、凝縮器を出た冷媒の一部を第二減圧器(バイパス冷媒用膨張弁)へとパイパスさせて蒸発器を流れる冷媒流量が減少しても同等の蒸発器能力を確保でき、且つ、蒸発器を流れる冷媒流量が減少することにより第一減圧器(主膨張弁)から蒸発器を通過し圧縮機に吸入するまでの圧力損失を低減できるので、エネルギ効率を向上できる。
 非特許文献1(6頁)には、カーエアコンにおいて、HFO1234yfの性能改善のために、内部熱交換器を使用したシステムが記載されている。内部熱交換器は、凝縮器出口の高温側液冷媒と蒸発器出口の低温側ガス冷媒とを熱交換させて、低温側冷媒を過熱し、高温側冷媒を過冷却する。
 内部熱交換器を備えることにより、圧縮機への液戻りが生じることを防止すると同時に過冷却量の増加を図ることで、蒸発器の冷媒循環量を減らし、圧力損失を低減させ、エネルギ効率を向上できる。
 特許文献2(図4)には、特許文献1に記載された第二減圧器(バイパス冷媒用膨張弁)と補助熱交換器(バイパス熱交換器)を含むバイパス回路に加え、非特許文献1(6頁)に記載された内部熱交換器を備えた冷凍サイクル装置が記載されている。
 ところで、2011年以降、EUで販売される新型車に搭載されるエアコンは、GWP値150以下の冷媒充填が義務付けられている。主たる候補冷媒としてHFO1234yfがある。
 非特許文献1(21頁)には、HFO1234yfの定置式エアコンへの適用において、現行使用冷媒であるR410Aに比べHFO1234yfは著しく低密度・低圧冷媒と予想され、同一冷房/暖房能力を得るために必要な体積流量は著しい圧力損失を生じて、効率低下が無視できない。
特開平10-318614号公報 特開2007-78318号公報
「最近の冷媒動向と展望」(社)日本冷凍空調学会、平成21年6月5日発行、P6,21
 特許文献1及び2には内部熱交換器及び、圧力損失低減のためのバイパス冷媒用膨張弁とバイパス熱交換器を有するバイパス回路を搭載した冷凍サイクル装置の例が記載されているが、バイパス熱交換器と内部熱交換器を搭載する形態について考慮されていない。
 主回路における蒸発器通過後の冷媒(以下「ガス冷媒」という。)及び、バイパス回路におけるバイパス冷媒用膨張弁通過後の冷媒(以下「バイパス冷媒」という。)は両方とも主回路における凝縮器通過後の冷媒(以下「液冷媒」という。)と熱交換する。熱交換することにより液冷媒の温度は低下し、液冷媒とガス冷媒及びバイパス冷媒との温度差が徐々に狭まっていき、冷媒管の単位長さあたりの熱交換量は減少する。
 熱交換することにより温度差が徐々に狭まっていくため、内部熱交換器及びバイパス熱交換器において、ガス冷媒及びバイパス冷媒と液冷媒との温度が十分近づくまで熱交換し合うことは、室外機のスペースが有限である点で難しい。
 本発明の目的は、単位長さあたりの内部熱交換器とバイパス熱交換器における熱交換面積を増加させることにより、内部熱交換器とバイパス熱交換器の長さを短くし、内部熱交換器とバイパス回路を搭載した冷凍サイクル装置の実機のスペースを抑制することにある。また、実機の有限のスペースの中で、内部熱交換器及びバイパス熱交換器の熱交換面積の増大を図ることにある。
 上記目的を達成する本発明の冷凍サイクル装置は、圧縮機,凝縮器,主膨張弁および蒸発器を冷媒管を介して順次連通する主回路と、凝縮器と主膨張弁間で主回路から分岐して、蒸発器と圧縮機間で主回路に合流するバイパス回路と、を備え、バイパス回路は、バイパス冷媒用膨張弁を有し、凝縮器と主膨張弁間の冷媒管と、蒸発器と圧縮機間の冷媒管と、を互いに熱交換する内部熱交換器と、凝縮器と主膨張弁間の冷媒管と前記バイパス冷媒用膨張弁通過後のバイパス回路における冷媒管とを互いに熱交換するバイパス熱交換器と、を有する補助熱交換器を構成し、内部熱交換器における凝縮器と主膨張弁間の冷媒管と、バイパス熱交換器における凝縮器と主膨張弁間の冷媒管との少なくとも一部が重複する。
 本発明によれば、単位長さあたりの内部熱交換器とバイパス熱交換器における熱交換面積を増加させ、内部熱交換器とバイパス熱交換器の長さを短くし、内部熱交換器とバイパス回路を搭載することによる室外機のスペースの増大を抑制することができる。
本発明の第1の実施例に係る冷凍サイクル装置の系統図。 図1の補助熱交換器の一例である三重管熱交換器の断面図。 図1の補助熱交換器の一例である三重管熱交換器の外観正面図。 内部熱交換器とバイパス熱交換器を別体とした冷凍サイクル装置の系統図。 (a)は図4のバイパス熱交換器の断面図であり、(b)は図4の内部熱交換器の断面図である。 本発明の第2の実施例に係る冷凍サイクル装置の系統図。 本発明の第3の実施例に係る冷凍サイクル装置の系統図。 図1の補助熱交換器の外観正面図の一例。 図1の補助熱交換器の外観正面図の一例。 本発明の第4の実施例に係る冷凍サイクル装置の系統図。 内部熱交換器を搭載した冷凍サイクル装置のモリエル線図。 バイパス熱交換器を搭載した冷凍サイクル装置のモリエル線図。 (a)は熱交換量比率(内部熱交換量/能力)と理論COP(能力/入力)との関係図であり、(b)は熱交換量比率と理論能力との関係図である。
 以下、図面を用いて本発明に係る実施例について説明する。
 以下、本発明に係る冷凍サイクル装置の一実施例を、図面に基づいて説明する。図1は、冷凍サイクル装置100の系統図である。
 冷凍サイクル装置100は、冷媒を圧縮して高温の冷媒とする圧縮機1と、冷媒を凝縮液化する凝縮器2と、冷媒同士の熱交換を行う補助熱交換器3の液冷媒流路3aと、冷媒を減圧し低温低圧とする主膨張弁4と、冷媒を蒸発気化する蒸発器5と、補助熱交換器3のガス冷媒流路3bとを順次配管で接続して構成される主回路200を備える。また、冷凍サイクル装置100は、凝縮器2と補助熱交換器3の液冷媒流路3aとの間の配管で分岐させ、蒸発器5と補助熱交換器3のガス冷媒流路3bとの間の配管で合流させるバイパス回路201を備える。バイパス回路201はバイパスした冷媒を減圧し低温低圧とするバイパス冷媒用膨張弁6と補助熱交換器3のバイパス冷媒流路3cとを有する。
 本実施例における補助熱交換器3は、液冷媒流路3a,ガス冷媒流路3b,及びバイパス冷媒流路3cを有し、液冷媒流路3aとガス冷媒流路3bとが対向流で熱交換可能に構成され、且つ、液冷媒流路3aとバイパス冷媒流路3cとが対向流で熱交換可能に構成される。つまり、補助熱交換器3は、液冷媒流路3aとガス冷媒流路3bとを熱交換する、内部熱交換器8としての機能と、液冷媒流路3aとバイパス冷媒流路3cとを熱交換するバイパス熱交換器7としての機能を有し、内部熱交換器8として機能する液冷媒流路3aとバイパス熱交換器7として機能する液冷媒流路3aの少なくとも一部が重複する。
 液冷媒流路3aは凝縮器2と主膨張弁4間の冷媒管、ガス冷媒流路3bは蒸発器5と圧縮機1間の冷媒管、バイパス冷媒流路3cはバイパス冷媒用膨張弁6通過後のバイパス回路201における冷媒管である。つまり、蒸発器5と圧縮機1間の冷媒管と熱交換する凝縮器2と主膨張弁4との間の冷媒管の少なくとも一部が、バイパス冷媒用膨張弁6通過後のバイパス回路201における冷媒管と熱交換する。
 さらに、液冷媒流路3aとガス冷媒流路3bとが対向流で熱交換可能に構成される。対向流で構成することにより、並流や直交流に比べて補助熱交換器3における液冷媒とガス冷媒の温度差が均等になるため、補助熱交換器3の熱交換量が増大する。また、液冷媒流路3aとバイパス冷媒流路3cとも対向流で熱交換可能に構成される。
 図2に補助熱交換器3の一例である三重管熱交換器の断面図、図3に補助熱交換器3の一例である三重管熱交換器の正面図を示す。図2,図3の補助熱交換器3は三重管であり、内側にガス冷媒流路3b、中間に液冷媒流路3a、外側にバイパス冷媒流路3cを備える。三重管では、同一流路断面積の場合、内側の流路ほど、流路壁面の面積が小さく、また、流体と壁面の距離が大きいため、圧力損失に影響を与える流路壁面の影響が小さくなるため、圧力損失が小さい。したがって、質量流量および体積流量が大きくなるガス冷媒流路3bを内側に設けた。なお、液冷媒流路3aと、ガス冷媒流路3bと、バイパス流路3cとの流量の関係は後述する。ここで、内側がバイパス冷媒流路3cで、外側がガス冷媒流路3bであっても、中間が液冷媒流路3aであれば、三重管熱交換器として機能させることができる。
 ここで、ガス冷媒は、主回路200における蒸発器5通過後の冷媒である。バイパス冷媒は、バイパス回路201におけるバイパス冷媒用膨張弁6通過後の冷媒である。液冷媒は、主回路200における凝縮器2通過後の冷媒である。
 以上の構成における動作について説明する。図1において、冷媒の流れ方向を実線矢印で示す。圧縮機1で圧縮され高温高圧となったガス冷媒は、凝縮器2において冷却され凝縮し、液化する。高圧の液冷媒は二つに分かれるが、主回路200の液冷媒は補助熱交換器3の液冷媒流路3aに流入し、後述のガス冷媒流路3bを流れる低温のガス冷媒と、後述のバイパス冷媒流路3cを流れる低温の気液二相冷媒とにより過冷却される。過冷却された液冷媒は主膨張弁4で減圧され、低温低圧の気液二相冷媒となり、蒸発器5において加熱され蒸発し、低圧のガス冷媒となる。
 一方、二つに分かれた液冷媒のうちバイパス回路201の液冷媒は、バイパス冷媒用膨張弁6で減圧され、低温低圧の気液二相冷媒となり、補助熱交換器3のバイパス冷媒流路3cに流入する。バイパス冷媒流路3cの低温の気液二相冷媒は、前述の液冷媒流路3aを流れる高温の液冷媒により加熱され蒸発し、低圧のガス冷媒となる。
 バイパス冷媒流路3cの低温の気液二相冷媒の潜熱は液冷媒流路3aを流れる高温の液冷媒に与えられ、バイパス冷媒流路3c出口の冷媒は冷凍に寄与しないガス冷媒となる。したがって、冷凍に寄与しないガス冷媒が蒸発器5をバイパスすることにより、蒸発器5を含む低圧側流路の冷媒流量が減少し、圧力損失を低減できる。一方、バイパスした冷媒の潜熱を受け取り、過冷却された液冷媒流路3aの液冷媒は、バイパス冷媒分の冷媒流量が減少するが、過冷却された分の蒸発器5における入口と出口とのエンタルピ差が増大し、パイパス回路を設けない場合と同等の冷凍能力を得ることができる。したがって、冷凍サイクル装置100は圧力損失低減により、エネルギ効率を向上できる。
 次に、蒸発器5の出口において、蒸発器5でガス化した冷媒と、補助熱交換器3のバイパス冷媒流路3cでガス化した冷媒とが合流し、補助熱交換器3のガス冷媒流路3bに流入する。ガス冷媒流路3bの低温のガス冷媒は、前述の液冷媒流路3aを流れる高温の液冷媒により加熱され、過熱ガス冷媒となり、再び圧縮機1に戻る。
 補助熱交換器3の液冷媒流路3aとガス冷媒流路3bは前述の内部熱交換器8と同じ構成であり、前述したように圧縮機1への液戻りが生じることを防止するとともに、液冷媒の過冷却量の増加を図ることで、蒸発器5の冷媒循環量を低減し、圧力損失を低減させ、冷凍サイクル装置100のエネルギ効率を向上できる。
 内部熱交換器8又はバイパス熱交換器7を搭載することによる特徴を詳しく説明する。内部熱交換器8を搭載したモリエル線図を図11に示す。サイクルABCDは内部熱交換器8なしの基準冷凍サイクルで、サイクルA′B′C′D′は内部熱交換器8ありの冷凍サイクルであり、C→C′は内部熱交換器8の高温側熱交換過程を、A→A′は内部熱交換器8の低温側熱交換過程を示す。したがって、エンタルピ差{h(C)-h(C′)}と{h(A′)-h(A)}は以下の関係が成り立つ。
  {h(C)-h(C′)}={h(A′)-h(A)}   …(1)
 内部熱交換量が増加すると、冷凍効果を表す熱交換器の入口と出口とのエンタルピ差(冷房時は{h(A)-h(D′)}、暖房時は{h(B′)-h(C)})が増加するとともに、断熱圧縮動力{h(B′)-h(A′)}も増加する。理論成績係数は冷凍効果と断熱圧縮動力との比率であるから、冷媒毎の内部熱交換量の増加に依存する。冷凍効果の増加率と断熱圧縮動力の増加率との大小関係により、冷媒により理論成績係数が低下する場合もあれば、向上する場合もある。
 バイパス回路201を備えた冷凍サイクル装置のモリエル線図を図12に示す。サイクルABCDは圧縮機1,凝縮器2,主膨張弁4,蒸発器5を順次配管で接続して構成される基準冷凍サイクル装置であり、サイクルA″B″C″D″、および経路CE″Aはバイパス回路201を備えた冷凍サイクル装置である。経路A″B″は圧縮機1での圧縮過程を、経路B″Cは凝縮器2での放熱,凝縮,液化過程を、経路CC″は補助熱交換器3の液冷媒流路3aでの過冷却過程を、経路C″D″は主膨張弁4での減圧過程を、経路D″Aは蒸発器5での蒸発,気化過程を、経路AA″は補助熱交換器3のガス冷媒流路3bでの過熱過程を、経路CE″はバイパス冷媒用膨張弁6での減圧過程を、経路E″Aは補助熱交換器3のバイパス冷媒流路3cでの蒸発,気化過程をそれぞれ表す。
 また、凝縮器2の冷媒流量をG、バイパス側の冷媒流量比率をxとおくと、補助熱交換器3での熱収支の関係より、以下の関係が成り立つ。
  G・(1-x)・{h(C)-h(C″)}=G・x・{h(A)-h(E″)}+G・{h(A″)-h(A)}          …(2)
 上式で、Gを約すと、
  (1-x)・{h(C)-h(C″)}=x・{h(A)-h(E″)}+{h(A″)-h(A)}                …(3)
 (2)式でx=0、言い換えると、バイパス側の冷媒流量比率をゼロとおくと、前述の式(1)と同等の式となり、内部熱交換器8のみの効果となる。バイパス側の冷媒流量比率を増加させると、内部熱交換器8による効果は減少し、バイパス熱交換器7による効果は増加する。すなわち、内部熱交換器8による効果とバイパス熱交換器7による効果はトレードオフの関係にある。
 冷凍負荷が大きい場合は、蒸発器5の圧力損失のエネルギ効率への影響が大きいので、バイパス熱交換器7による効果が大きくなる。ここでは、バイパス回路201の冷媒流量比率を増加させる運転を行う。
 逆に、冷凍負荷が小さい場合は、蒸発器5の圧力損失のエネルギ効率への影響が小さいので、バイパス熱交換器7による効果が小さくなる。ここでは、バイパス回路201の冷媒流量比率を減少させる運転を行う。
 すなわち、負荷条件により、バイパス回路201の冷媒流量比率を調節し、冷凍サイクル全体としてのエネルギ効率が高くなる運転を行う。なお、バイパス回路201の冷媒流量比率の調整はバイパス冷媒用膨張弁6の開閉制御で可能である。
 次に、内部熱交換器8とバイパス熱交換器7を別体に設けた冷凍サイクル装置101を説明する。図4は、図1の補助熱交換器3の液冷媒流路3aとガス冷媒流路3bとで熱交換器を構成し、且つ補助熱交換器3の液冷媒流路3aとバイパス冷媒流路3cとで熱交換器を構成した場合の冷凍サイクル装置101の系統図である。図1と同等部分には同一符号を付し、説明は省略する。なお、図4の主な構成は、特許文献2の図4と同じである。
 バイパス熱交換器7は液冷媒流路7aとガス冷媒流路7bとを有し、液冷媒流路7aとガス冷媒流路7bとが対向流で熱交換可能に構成される。また、内部熱交換器8は液冷媒流路8aとガス冷媒流路8bとを有し、液冷媒流路8aとガス冷媒流路8bとが対向流で熱交換可能に構成される。
 図5にバイパス熱交換器7及び内部熱交換器8の一例としての断面図を示す。バイパス熱交換器7は二重管であり、内側にガス冷媒流路7b、外側に液冷媒流路7aを配置する。また、内部熱交換器8も二重管であり、内側にガス冷媒流路8b、外側に液冷媒流路8aを配置する。動作については図1と同様のため、説明を省略する。
 図1,図2,図3に示したバイパス熱交換器7と内部熱交換器8を一体化した補助熱交換器3と、図4,図5に示したバイパス熱交換器7と内部熱交換器8とが別体である場合と、を比較する。図2の補助熱交換器3は、図5の内部熱交換器8と同一の構成である内側にガス冷媒流路8b、外側に液冷媒流路8aを構成した二重管のさらに外側にバイパス冷媒流路を備えた三重管である。これにより、一度に、液冷媒とガス冷媒との熱交換の他に、液冷媒とバイパス冷媒との熱交換も可能となる。
 図5の内部熱交換器8の二重管の外管は伝熱には寄与しないが、三重管にすることにより、二重管の外管も伝熱に寄与する構成にすることで、補助熱交換器3に三重管を用いることで、液冷媒流路におけるすべての面を伝熱面として活用することができる。すなわち、液冷媒流路の伝熱面積が約2倍となり、単位長さあたりの液冷媒流路の熱交換量を増加させることができる。
 結果として、内部熱交換器8とバイパス熱交換器7の長さを短くし、内部熱交換器8とバイパス回路201を搭載することによる室外機のスペースの増大を抑制することができる。
 また、バイパス回路201を循環する冷媒がバイパス熱交換器7通過後に飽和蒸気になるよう調節することで、バイパス回路201を循環する冷媒の割合が定まる。バイパス熱交換器7として活用できる凝縮器2と主膨張弁4の間の冷媒管の長さには室外機の容積による制限があるため、バイパス熱交換器7の単位長さあたりの伝熱面積が増えることが、バイパス回路201を循環する冷媒の割合の増加につながり、蒸発器5における圧力損失を低減させることができる。
 また、二重管2本から、三重管1本にすることができ、管を一本分節約でき、コンパクト化及び低コスト化を図ることができる。
 図8に冷媒管同士を接触させることにより、補助熱交換器3とした熱交換器の断面図を示す。図8の補助熱交換器3は、中心に液冷媒流路3aを備え、液冷媒流路3aの両側にガス冷媒流路3bとバイパス冷媒流路3cとを配置した熱交換器である。図8の補助熱交換器3は、冷媒管同士を溶接などにより接触させることで構成することができるため、製造コストの低減を図ることができる。
 図9に冷媒管同士を接触させることにより、補助熱交換器3とした熱交換器の断面図を示す。液冷媒流路3a,ガス冷媒流路3b及びバイパス冷媒流路3cを互いに接触させ、回りを伝導体14で囲うことにより、図8の形態に比べ、単位長さあたりの冷媒管同士の熱交換面積を増大させることができる。
 ところで、2011年以降、EUで販売される新型車の搭載エアコンは、GWP値150以下の冷媒充填が義務付けられている。主たる候補冷媒としてHFO1234yfがある。
 推定したHFO1234yfの熱力学特性を用いて、内部熱交換器8の効果を試算した結果を示す。図13は交換熱量比率(内部熱交換量/能力)と理論成績係数(能力/入力)および理論能力との関係図である。理論成績係数及び理論能力は交換熱量比率0%(内部熱交換器8なし)での値で無次元化している。比較のため、R410Aの結果も示す。
 理論成績係数は、R410Aでは、交換熱量比率が増加するほど低下するが、HFO1234yfでは、交換熱量比率が増加するほど向上することがわかる。また、同一圧縮機容量での理論能力も同様の傾向を示す。以上より、HFO1234yf特有の熱力学特性から内部熱交換器8を使用することにより性能が向上する。
 また、非特許文献1より、HFO1234yfを用いた定置式エアコンの性能向上のためには圧力損失の低減が重要であることがわかる。よって、HFO1234yfを用いた冷凍サイクル装置の性能向上のためには、内部熱交換器8及び圧力損失低減のためのバイパス冷媒用膨張弁6とバイパス熱交換器7を含むバイパス回路201を備えることが有効な手段である。
 本実施例では、冷媒としてHFO1234yfを用いたが、他のハイドロフルオロオレフィン系冷媒でも分子構造がHFO1234yfに近いため、同様の効果を得ることができる。また、これらを含む混合冷媒でも同様の効果を得ることができる。
 本発明の他の実施例を図6を参照して説明する。図1に示す冷凍サイクル装置100は凝縮器2と補助熱交換器3の液冷媒流路3aとの間の冷媒管からバイパス回路201を分岐させているのに対し、図6に示す冷凍サイクル装置102は補助熱交換器3の液冷媒流路3aと主膨張弁4との間の冷媒管からバイパス回路201を分岐させている点が異なる。同等部分には同一符号を付し、説明は省略する。
 実施例1と同様に、実施例2も内部熱交換器8とバイパス熱交換器7の長さを短くし、内部熱交換器8とバイパス回路201を搭載することによる室外機のスペースの増大を抑制することができる。
 実施例2は実施例1に対して、バイパス回路201を循環する冷媒にとってはバイパス回路201が主回路200から分岐する前に補助熱交換器3の液冷媒流路3aを通過する構成が増える。そのため、実施例1は実施例2よりもバイパス回路201を循環する液冷媒が補助熱交換器3の液冷媒流路3aを通過しない分、補助熱交換器3の液冷媒流路3aの冷媒流量が減り、補助熱交換器3の液冷媒流路3aにおける冷媒の圧力損失を減少させることができる。
 本発明の他の実施例を図7を参照して説明する。図7に示す冷凍サイクル装置103は、図1に示す冷凍サイクル装置100と比較して、バイパス回路201を補助熱交換器3のガス冷媒流路3bと圧縮機1との間の冷媒管へ合流させている点が異なる。同等部分には同一符号を付し、説明は省略する。
 実施例3は実施例1に対して、バイパス回路201を循環する冷媒にとってはバイパス回路201が主回路200に合流した後に補助熱交換器3のガス冷媒流路3bを通過する構成が減る。そのため、バイパス回路201を循環する液冷媒が通過しない分、補助熱交換器3のガス冷媒流路3bの冷媒流量が減少し、補助熱交換器3のガス冷媒流路3bにおける冷媒の圧力損失が減少する。よって、実施例3の冷凍サイクル装置103は、実施例1や実施例2に比べ、冷媒の圧力損失が少なくエネルギ効率が高い。
 本発明の他の実施例を図10を参照して説明する。図10に示す冷凍サイクル装置104は、冷房と暖房が切り替え可能であることを特徴とする。同等部分には同一符号を付し、説明は省略する。
 冷凍サイクル装置104は、冷房と暖房を切り替える四方弁10、冷房時には凝縮器として作用し、暖房時には蒸発器として作用する室外熱交換器11、冷房時には蒸発器として作用し、暖房時には凝縮器として作用する室内熱交換器12、冷媒の流れ方向を規定する逆止弁13a,13b,13c,13dを備える。逆止弁13a,13b,13c,13dは、補助熱交換器3,主膨張弁4,バイパス冷媒用膨張弁6の冷媒流れ方向が冷房暖房に関わらず、常に同じ方向となるように配置される。冷房時の冷媒の流れ方向を実線矢印で、暖房時の冷媒の流れ方向を破線矢印で示す。
 冷房時の動作について説明する。圧縮機1で圧縮され高温高圧となったガス冷媒は、凝縮器(室外熱交換器11)において冷却され凝縮し、液化する。高圧の液冷媒は逆止弁13aを通過した後に二つに分かれるが、主回路200の液冷媒は補助熱交換器3の液冷媒流路3aに流入し、後述のガス冷媒流路3bを流れる低温のガス冷媒と、後述のバイパス冷媒流路3cを流れる低温の気液二相冷媒とにより過冷却される。過冷却された液冷媒は主膨張弁4で減圧され、低温低圧の気液二相冷媒となり、逆止弁13cを通過し、蒸発器(室内熱交換器12)において加熱され蒸発して低圧のガス冷媒となる。
 一方、二つに分かれた液冷媒のうちバイパス回路201の液冷媒は、バイパス冷媒用膨張弁6で減圧され、低温低圧の気液二相冷媒となり、補助熱交換器3のバイパス冷媒流路3cに流入する。バイパス冷媒流路3cの低温の気液二相冷媒は、前述の液冷媒流路3aを流れる高温の液冷媒により加熱され蒸発し、低圧のガス冷媒となる。
 バイパス冷媒流路3cの低温の気液二相冷媒の潜熱は液冷媒流路3aを流れる高温の液冷媒に与えられ、バイパス冷媒流路3c出口の冷媒は冷凍に寄与しないガス冷媒となる。
 次に、暖房時の動作について説明する。圧縮機1で圧縮され高温高圧となったガス冷媒は、四方弁10を通過した後に凝縮器(室内熱交換器12)において冷却され凝縮し、液化する。高圧の液冷媒は逆止弁13bを通過した後に二つに分かれるが、主回路200の液冷媒は補助熱交換器3の液冷媒流路3aに流入し、後述のガス冷媒流路3bを流れる低温のガス冷媒と、後述のバイパス冷媒流路3cを流れる低温の気液二相冷媒とにより過冷却される。過冷却された液冷媒は主膨張弁4で減圧され、低温低圧の気液二相冷媒となり、逆止弁13dを通過し、蒸発器(室外熱交換器11)において加熱され蒸発して低圧のガス冷媒となる。
 一方、二つに分かれた液冷媒のうちバイパス回路201の液冷媒は、バイパス冷媒用膨張弁6で減圧され、低温低圧の気液二相冷媒となり、補助熱交換器3のバイパス冷媒流路3cに流入する。バイパス冷媒流路3cの低温の気液二相冷媒は、前述の液冷媒流路3aを流れる高温の液冷媒により加熱され蒸発し、低圧のガス冷媒となる。
 バイパス冷媒流路3cの低温の気液二相冷媒の潜熱は液冷媒流路3aを流れる高温の液冷媒に与えられ、バイパス冷媒流路3c出口の冷媒は冷凍に寄与しないガス冷媒となる。
 以上の構成により、冷房と暖房が切り替え可能な冷凍サイクル装置104においても、実施例1と同様に、エネルギ効率の向上を図ることができる。尚、上記各実施例において、負荷条件により、概略エネルギ効率が最高となるようにバイパス回路の冷媒流量を調節することができる。
1 圧縮機
2 凝縮器
3 補助熱交換器
3a,7a,8a 液冷媒流路
3b,7b,8b ガス冷媒流路
3c バイパス冷媒流路
4 主膨張弁
5 蒸発器
6 バイパス冷媒用膨張弁
7 バイパス熱交換器
8 内部熱交換器
10 四方弁
11 室外熱交換器
12 室内熱交換器
13a,13b,13c,13d 逆止弁
14 伝導体
100,101,102,103,104 冷凍サイクル装置

Claims (8)

  1.  圧縮機、凝縮器、主膨張弁および蒸発器を、冷媒管を介して順次連通する主回路と、
     バイパス冷媒用膨張弁を有し、前記凝縮器と前記主膨張弁間で前記主回路から分岐して、前記蒸発器と前記圧縮機間で前記主回路に合流するバイパス回路と、を備えた冷凍サイクル装置であって、
     前記凝縮器と前記主膨張弁間の第一冷媒管と、前記蒸発器と前記圧縮機間の第二冷媒管との間で熱交換する内部熱交換器と、
     前記第一冷媒管と、前記バイパス冷媒用膨張弁通過後のバイパス回路における第三冷媒管との間で熱交換するバイパス熱交換器と、を有する補助熱交換器を備え、
     前記内部熱交換器における前記第一冷媒管と、前記バイパス熱交換器における前記第一冷媒管との少なくとも一部が重複する冷凍サイクル装置。
  2.  請求の範囲第1項において、前記バイパス回路は、前記凝縮器と前記バイパス熱交換器との間で前記主回路から分岐して、
     前記内部熱交換器と前記圧縮機との間で前記主回路に合流する冷凍サイクル装置。
  3.  請求の範囲第1項において、前記内部熱交換器と前記バイパス熱交換器との重複部分が三重管で構成され、前記三重管の中間の配管を前記第一冷媒管とする冷凍サイクル装置。
  4.  請求の範囲第3項において、前記三重管の内側の配管を前記第二冷媒管、前記三重管の外側の配管を前記第三冷媒管とする冷凍サイクル装置。
  5.  請求の範囲第1項乃至第4項のいずれかにおいて、前記冷凍サイクル装置を循環する冷媒はハイドロフルオロオレフィン系の単一冷媒または混合冷媒である冷凍サイクル装置。
  6.  請求の範囲第5項において、前記ハイドロフルオロオレフィン系冷媒はHFO1234yfである冷凍サイクル装置。
  7.  圧縮機、凝縮器、主膨張弁および蒸発器を冷媒管を介して順次連通する主回路と、
     バイパス冷媒用膨張弁を有し、前記凝縮器と前記主膨張弁間で前記主回路から分岐して、前記蒸発器と前記圧縮機間で前記主回路に合流するバイパス回路と、を備えた冷凍サイクル装置であって、
     前記蒸発器と前記圧縮機間の冷媒管と熱交換する前記凝縮器と前記主膨張弁との間の冷媒管の少なくとも一部が、前記バイパス冷媒用膨張弁通過後のバイパス回路における冷媒管と熱交換する冷凍サイクル装置。
  8.  請求の範囲第1項乃至第4項および第7項のいずれかにおいて、負荷条件により、概略エネルギ効率が最高となるようにバイパス回路の冷媒流量を調節することを特徴とする冷凍サイクル装置。
PCT/JP2011/053332 2010-02-26 2011-02-17 冷凍サイクル装置 WO2011105270A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-041244 2010-02-26
JP2010041244A JP2011179689A (ja) 2010-02-26 2010-02-26 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2011105270A1 true WO2011105270A1 (ja) 2011-09-01

Family

ID=44506683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053332 WO2011105270A1 (ja) 2010-02-26 2011-02-17 冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP2011179689A (ja)
WO (1) WO2011105270A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595115A (zh) * 2015-10-19 2017-04-26 艾力股份公司-卡皮贾尼集团 用于热处理的热力学系统以及包含该系统的用于制作流体和半流体产品的机器
CN108019904A (zh) * 2016-11-01 2018-05-11 伟思环境技术有限公司 测试室
EP4040077A1 (en) * 2021-02-09 2022-08-10 Trane International Inc. Reversible heat pump
EP4006446A4 (en) * 2019-07-22 2022-08-31 Mitsubishi Electric Corporation AIR CONDITIONING UNIT AND OUTDOOR UNIT
EP3933306B1 (en) * 2020-03-10 2023-09-13 ATS Japan Co., Ltd. Refrigerant control system and refrigeration system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237518A (ja) * 2011-05-12 2012-12-06 Fujitsu General Ltd 空気調和機
JP5787102B2 (ja) * 2013-01-11 2015-09-30 ダイキン工業株式会社 分離型空気調和装置
KR102086378B1 (ko) * 2013-03-11 2020-03-10 주식회사 두원공조 차량용 냉방시스템
KR102074695B1 (ko) * 2013-07-22 2020-02-10 주식회사 두원공조 차량용 냉방시스템
AU2014410881B2 (en) * 2014-11-04 2018-01-18 Mitsubishi Electric Corporation Air-conditioning apparatus
KR101579117B1 (ko) * 2015-03-13 2015-12-21 주식회사 라템 핫가스 제상과 히트펌프를 병행한 시스템
JP6463464B2 (ja) * 2015-04-15 2019-02-06 三菱電機株式会社 冷凍サイクル装置
DE102015214705A1 (de) 2015-07-31 2017-02-02 Technische Universität Dresden Vorrichtung und Verfahren zum Durchführen eines Kaltdampfprozesses
CN106642792B (zh) * 2017-01-20 2022-04-19 珠海格力电器股份有限公司 喷气增焓空调机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223368A (ja) * 1991-11-04 1993-08-31 General Electric Co <Ge> 冷蔵庫
JPH102627A (ja) * 1996-06-17 1998-01-06 Sanyo Electric Co Ltd 冷却装置
JP2009162410A (ja) * 2007-12-28 2009-07-23 Daikin Ind Ltd 空気調和装置及び冷媒量判定方法
JP2009270727A (ja) * 2008-04-30 2009-11-19 Sanden Corp 冷凍回路
JP2009281610A (ja) * 2008-05-20 2009-12-03 Sanden Corp 冷凍サイクル
JP2010014351A (ja) * 2008-07-04 2010-01-21 Fujitsu General Ltd 冷凍空調装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223368A (ja) * 1991-11-04 1993-08-31 General Electric Co <Ge> 冷蔵庫
JPH102627A (ja) * 1996-06-17 1998-01-06 Sanyo Electric Co Ltd 冷却装置
JP2009162410A (ja) * 2007-12-28 2009-07-23 Daikin Ind Ltd 空気調和装置及び冷媒量判定方法
JP2009270727A (ja) * 2008-04-30 2009-11-19 Sanden Corp 冷凍回路
JP2009281610A (ja) * 2008-05-20 2009-12-03 Sanden Corp 冷凍サイクル
JP2010014351A (ja) * 2008-07-04 2010-01-21 Fujitsu General Ltd 冷凍空調装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595115A (zh) * 2015-10-19 2017-04-26 艾力股份公司-卡皮贾尼集团 用于热处理的热力学系统以及包含该系统的用于制作流体和半流体产品的机器
EP3159632A1 (en) * 2015-10-19 2017-04-26 Carpigiani Group - ALI S.p.A. Thermodynamic system for thermal treatment and machine comprising the system, for making liquid and semi-liquid products
JP2017110900A (ja) * 2015-10-19 2017-06-22 エイエルアイ エス.ピイ.エイ. カルピジャーニ グループALI S.p.A. CARPIGIANI GROUP 熱処理用熱力学システム、および、そのシステムを備え、液状製品および半液状製品を製造するための装置
US10251410B2 (en) 2015-10-19 2019-04-09 Ali Group S.R.L.—Carpigiani Thermodynamic system for thermal treatment and machine comprising the system, for making liquid and semi-liquid products
CN106595115B (zh) * 2015-10-19 2021-07-23 艾力集团有限责任公司-卡皮贾尼 用于热处理的热力学系统以及包含该系统的用于制作流体和半流体产品的机器
CN108019904A (zh) * 2016-11-01 2018-05-11 伟思环境技术有限公司 测试室
EP4006446A4 (en) * 2019-07-22 2022-08-31 Mitsubishi Electric Corporation AIR CONDITIONING UNIT AND OUTDOOR UNIT
EP3933306B1 (en) * 2020-03-10 2023-09-13 ATS Japan Co., Ltd. Refrigerant control system and refrigeration system
EP4040077A1 (en) * 2021-02-09 2022-08-10 Trane International Inc. Reversible heat pump
US11953240B2 (en) 2021-02-09 2024-04-09 Trane International Inc. Reversible heat pump

Also Published As

Publication number Publication date
JP2011179689A (ja) 2011-09-15

Similar Documents

Publication Publication Date Title
WO2011105270A1 (ja) 冷凍サイクル装置
JP5318099B2 (ja) 冷凍サイクル装置、並びにその制御方法
JP5611353B2 (ja) ヒートポンプ
US9103571B2 (en) Refrigeration apparatus
WO2012104893A1 (ja) 空気調和装置
WO2011052031A1 (ja) ヒートポンプ
WO2010061624A1 (ja) 冷凍システム
JPWO2008117408A1 (ja) ヒートポンプ装置
JPWO2013080244A1 (ja) 冷凍空調装置
AU2012303446A1 (en) Refrigeration apparatus
US10174975B2 (en) Two-phase refrigeration system
JP2008096095A (ja) 冷凍装置
WO2015063846A1 (ja) 空気調和装置
JP2011214753A (ja) 冷凍装置
JPH0875290A (ja) ヒートポンプ式空調装置
JP5812997B2 (ja) 冷凍サイクル及び過冷却部付き凝縮器
JP4442237B2 (ja) 空気調和装置
WO2013146415A1 (ja) ヒートポンプ式加熱装置
US11353249B2 (en) Two-pipe enhanced-vapor-injection outdoor unit and multi-split system
CN113339909B (zh) 热泵空调系统
JP5659908B2 (ja) ヒートポンプ装置
JP6242289B2 (ja) 冷凍サイクル装置
WO2007040031A1 (ja) 空気調和機用液ガス熱交換器
JP2009250495A (ja) 空気調和機
JP2006003023A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747234

Country of ref document: EP

Kind code of ref document: A1