WO2010061624A1 - 冷凍システム - Google Patents

冷凍システム Download PDF

Info

Publication number
WO2010061624A1
WO2010061624A1 PCT/JP2009/006424 JP2009006424W WO2010061624A1 WO 2010061624 A1 WO2010061624 A1 WO 2010061624A1 JP 2009006424 W JP2009006424 W JP 2009006424W WO 2010061624 A1 WO2010061624 A1 WO 2010061624A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
gas
expander
compressor
liquid
Prior art date
Application number
PCT/JP2009/006424
Other languages
English (en)
French (fr)
Inventor
大出宏
橋本俊一
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2010061624A1 publication Critical patent/WO2010061624A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present invention relates to a refrigeration system, and more particularly to a technique for realizing high efficiency in a refrigeration cycle that uses a refrigerant in a supercritical state.
  • a refrigeration cycle is configured such that a compressor, a radiator (condenser), an expander, and an evaporator (heat absorber) are connected to each other by pipes, and refrigerant flows through the pipes while changing phase. . That is, the refrigeration cycle is configured such that the refrigerant compressed by the compressor dissipates heat and liquefies through the radiator, and the refrigerant expanded by the expander absorbs heat through the evaporator and is vaporized.
  • various refrigerants in consideration of the environment have been used in place of Freon, which has been frequently used in the past, and for example, carbon dioxide (CO 2 ) is known as such a refrigerant.
  • the refrigerant including CO 2 has a property that when the outside air temperature is high, a part of the refrigerant that should have been liquefied through the radiator is vaporized before reaching the expander, and so-called flash gas is easily generated. Have. If flash gas is easily generated in this way, the amount of liquid refrigerant that effectively acts in the evaporator decreases or the pressure loss increases, resulting in poor endothermic efficiency, resulting in poor coefficient of performance (COP) and, consequently, refrigeration capacity. It is not preferable.
  • the first and second two expanders are provided between the radiator and the evaporator, and the gas-liquid separator is provided between the two expanders, and the gaseous state separated by the gas-liquid separator is provided.
  • a gas injection cycle economizer cycle in which a refrigerant is supplied to a compressor while a liquid refrigerant is supplied to a second expander (see, for example, Patent Documents 1 and 2).
  • an internal heat exchanger is provided between the radiator and the first expander in order to supercool the refrigerant supplied from the radiator to the first expander.
  • the refrigerant supplied to the first expander is cooled by the gaseous refrigerant that has passed through the liquid separator.
  • an internal heat exchanger is provided between the gas-liquid separator and the second expander so as to supercool the refrigerant supplied from the gas-liquid separator to the second expander.
  • another second gas-liquid separator is provided between the evaporator and the internal heat exchanger, and the second gas-liquid refrigerant exits the evaporator and passes through the second gas-liquid separator. The refrigerant supplied to the expander is cooled.
  • the refrigerant between the radiator and the first expander is cooled by the internal heat exchanger, but in such a configuration, the refrigerant is separated into gas and liquid.
  • the flash gas may still be generated from the vessel to the second expander, which is not preferable.
  • the superheat degree of the refrigerant after the evaporator is ideally zero. In reality, however, liquid refrigerant always flows out of the evaporator due to changes in environmental conditions.
  • the second gas-liquid separator functions as an accumulator, so that the circulation of liquid refrigerant to the compressor is prevented.
  • the present invention has been made to solve the above-described problems, and the object of the present invention is to sufficiently cool the refrigerant supplied to the expander even in a refrigeration cycle that uses a refrigerant in a supercritical state.
  • An object of the present invention is to provide a refrigeration system that can be made liquid and can improve the coefficient of performance (COP) and thus the refrigeration capacity.
  • a refrigeration system includes a compressor for compressing a refrigerant, a radiator for cooling the refrigerant pressurized by the compressor, and decompressing and expanding the refrigerant cooled by the radiator.
  • an evaporator for evaporating the refrigerant decompressed by the expander in order by piping, the piping between the radiator and the expander, the evaporator, and the evaporator
  • An internal heat exchange element that is provided across the piping between the compressor and performs heat exchange between the refrigerant from the radiator toward the expander and the refrigerant from the evaporator toward the compressor;
  • An accumulator is provided which is interposed in a pipe between an internal heat exchange element and the compressor and stores a liquid refrigerant.
  • the compressor in the first or second refrigeration system, includes a first compressor and a second compressor connected in series on the downstream side of the first compressor, and the expander is A first expander and a second expander connected in series downstream of the first expander, interposed between the first expander and the second expander, and a gas-liquid refrigerant
  • a gas-liquid separator that performs separation and supplies a liquid refrigerant to the second expander; and the gas-liquid separator and a pipe line between the first compressor and the second compressor are connected to each other.
  • a gas injection pipe for supplying the gaseous refrigerant separated by the gas-liquid separator to the second compressor as an injection gas, and the internal heat exchange element includes the gas-liquid separator and the second It is characterized by being interposed between the inflator.
  • a refrigeration system is the refrigeration system according to the first or second aspect, wherein the number of the compressors is one, and the compressor is interposed between the first expander and the second expander to perform gas-liquid separation of the refrigerant.
  • the gas-liquid separator that supplies liquid refrigerant to the second expander, and the gas-liquid separator and the compression intermediate pressure portion of the compressor are provided in communication with each other and separated by the gas-liquid separator.
  • a gas injection conduit for supplying a gaseous refrigerant as an injection gas to the compression intermediate pressure portion of the compressor, and the internal heat exchange element is interposed between the gas-liquid separator and the second expander. It is equipped with.
  • a refrigeration system is the refrigeration system according to the third or fourth aspect, further comprising a liquid receiver that temporarily stores the liquid refrigerant from the gas-liquid separator, and the liquid receiver is integrated with the gas-liquid separator. It is provided in.
  • the refrigeration system according to claim 6 is the refrigeration system according to claim 1 or 2, wherein the evaporator includes a plurality of the expanders and the expander includes a plurality of the internal heat exchange elements through the expander and the evaporator and the internal heat again.
  • the pipelines toward the exchange element are branched and joined into a plurality of branch pipelines, and the plurality of evaporators are arranged in the branch pipelines so as to be parallel to each other, and the plurality of expanders are respectively
  • the branch pipe is arranged in series with the evaporator.
  • the evaporator includes a plurality and the second expander includes a plurality, and the second heat expander and the evaporation from the internal heat exchange element.
  • the plurality of second expanders are respectively disposed in the branch pipes in series with the evaporator.
  • the refrigeration system according to claim 8 is the refrigeration system according to claim 6 or 7, wherein the number of branch pipes is three or more, and there are two or more branch parts of the branch pipes, and the internal heat exchange element includes a plurality of parts. It is characterized by being arranged in front of these branch parts.
  • a refrigeration system according to a ninth aspect is characterized in that, in any one of the first to eighth aspects, the internal heat exchange element is configured to bring pipes into contact with each other.
  • the accumulator is provided integrally with the internal heat exchange element.
  • the internal heat exchange element is provided across the piping between the radiator and the expander and the piping between the evaporator and the compressor,
  • the refrigerant going to the expander is cooled by the refrigerant that has passed through the evaporator. That is, in a system that uses a refrigerant in a supercritical state, for example, as shown in FIG. 2, the refrigerant reaching the expander is a liquid refrigerant on a saturated liquid line (shown by a broken line).
  • the accumulator storing the liquid refrigerant is internally heated. Since it is provided closer to the compressor than the replacement element, the refrigerant going from the radiator to the expander is sufficiently subcooled not only by sensible heat but also by latent heat by the liquid refrigerant together with the gaseous refrigerant flowing out of the evaporator. State.
  • the refrigerant from the radiator to the expander can be maintained in a good liquid state, and it is possible to prevent so-called flash gas from being generated by the evaporation of the refrigerant before reaching the expander.
  • the endothermic performance of the evaporator can be improved, and the coefficient of performance (COP) in the refrigeration cycle and thus the refrigeration capacity can be improved.
  • the amount of the liquid refrigerant stored in the accumulator can be reduced, and the accumulator can be downsized. You can also.
  • the refrigerant is supercritical, for example, carbon dioxide, the refrigerant from the radiator to the expander can be well maintained in a liquid state until the expander is reached. It is possible to prevent flash gas from being generated.
  • the liquid refrigerant flowing from the gas-liquid separator to the second expander is cooled by the refrigerant passing through the evaporator. Therefore, even when a refrigerant such as carbon dioxide used in a supercritical state in a refrigeration system having a gas injection cycle is used, the refrigerant directed from the gas-liquid separator to the second expander can be reliably maintained in a liquid state, It is possible to suitably prevent the flash gas from being generated before reaching the second expander.
  • the heat absorption performance of an evaporator can be improved and the further improvement of the refrigerating capacity in a refrigerating cycle can be aimed at.
  • the refrigeration system of claim 5 by providing the liquid receiver integrally with the gas-liquid separator, the refrigerant from the radiator to the expander can be reliably supplied while simplifying and reducing the cost of the refrigeration system. It can be maintained in a liquid state, and flash gas can be prevented from being generated before reaching the expander.
  • a plurality of evaporators are arranged in the branch pipes so as to be parallel to each other, and the plurality of expanders or the second expanders are respectively connected to the branch pipes. Therefore, the refrigerant from the radiator to the expander or the second expander is surely maintained in the liquid state, and the refrigerant maintained in the liquid state is supplied to each expander or the second expander.
  • Each of the two expanders can be divided equally and in a balanced manner.
  • each evaporator can be improved without variation, and the refrigeration capacity in the refrigeration cycle can be further improved.
  • the refrigeration system of claim 8 there are three or more branch pipes, and there are two or more branch parts of the branch pipes, and the internal heat exchange elements are respectively arranged in front of these branch parts.
  • the refrigerant can be maintained in a liquid state in each branch pipe, and the liquid refrigerant can be supplied to each expander or the second expander more reliably.
  • the heat absorption performance of each evaporator can be further enhanced, and the refrigeration capacity in the refrigeration cycle can be further improved.
  • the refrigerant is directed from the radiator to the expander or the second expander with a simple configuration. Can be maintained in a liquid state, and flash gas can be prevented from being generated before reaching the expander or the second expander.
  • the refrigerant directed from the radiator to the expander is surely liquefied while simplifying and reducing the cost of the refrigeration system. It is possible to prevent the flash gas from being generated before reaching the expander.
  • FIG. 1 is a schematic configuration diagram of a refrigeration system according to a first embodiment of the present invention.
  • FIG. 2 is a ph diagram of the refrigeration system according to the present invention.
  • FIG. 3 is a schematic configuration diagram of a refrigeration system according to a second embodiment of the present invention.
  • FIG. 4 is a schematic configuration diagram of a refrigeration system according to a third embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram of a refrigeration system according to another embodiment of the present invention.
  • FIG. 6 is a part of a schematic configuration diagram of a refrigeration system according to still another embodiment of the present invention.
  • FIG. 1 shows a schematic configuration diagram of a refrigeration system according to a first embodiment of the present invention.
  • the refrigeration system according to the present invention is applied to various refrigeration / air conditioning cycles such as a refrigeration apparatus, an air conditioner, a heat pump, a water heater, and a heater.
  • carbon dioxide CO 2
  • a second compressor 12 for further boosting the refrigerant whose pressure has been increased to a pressure
  • a gas cooler (heat radiator) 13 for cooling the boosted refrigerant
  • a gas cooler positioned downstream of the gas cooler 13
  • a first expansion valve (first expander) 14 that decompresses and expands the refrigerant cooled in 13 is connected to the pipe in order.
  • the first compressor 10 and the second compressor 12 are, for example, scroll-type and swash plate-type compressors.
  • a gas-liquid separator 15 that performs gas-liquid separation of the refrigerant is provided downstream of the first expansion valve 14.
  • the gas outlet side of the gas-liquid separator 15 and the suction of the second compressor 12 are provided.
  • the so-called gas injection cycle is configured by connecting the sides to each other by a connecting pipe (gas injection pipe line) 16. That is, the gas refrigerant is supplied as the injection gas from the gas-liquid separator 15 to the second compressor 12 by the gas injection cycle.
  • the connecting pipe 16 is provided with a check valve 16a to prevent the backflow of the injection gas.
  • a liquid receiver 17 that temporarily stores liquid refrigerant is provided on the liquid outlet side of the gas-liquid separator 15, and a second expansion valve (second expander) 18 is further provided downstream of the liquid receiver 17.
  • the evaporator (heat absorber) 20 is connected by piping, and the evaporator 20 is connected by piping to the first compressor 10. And as shown in the figure, straddling the pipe between the liquid receiver 17 and the second expansion valve 18 that have passed through the gas-liquid separator 15 and the pipe between the evaporator 20 and the first compressor 10.
  • An internal heat exchanger (internal heat exchange element) 30 is provided.
  • the internal heat exchanger 30 is connected between the refrigerant from the gas cooler 13 through the gas-liquid separator 15 and the liquid receiver 17 toward the second expansion valve 18 and the refrigerant from the evaporator 20 toward the first compressor 10. It has a function to perform heat exchange.
  • an accumulator 40 is interposed between the internal heat exchanger 30 and the first compressor 10 among the evaporator 20 and the first compressor 10.
  • the accumulator 40 has a gas-liquid separation function and a liquid receiving function similar to those of the gas-liquid separator, and is configured to store the liquid refrigerant in the pipe and supply only the gas refrigerant to the first compressor 10.
  • a bypass pipe 52 is provided by branching and joining from the connecting pipe 16, and the gas heat exchanger 50 straddles the pipe between the gas cooler 13 and the first expansion valve 14 and the bypass pipe 52. Is provided.
  • the gas heat exchanger 50 has a function of exchanging heat between the refrigerant from the gas cooler 13 toward the first expansion valve 14 and the injection gas.
  • a flow rate adjusting valve 54 is provided at a branching portion of the bypass pipe line 52 with the connecting pipe 16, and the amount of the injection gas that flows from the connecting pipe 16 and flows into the bypass pipe line 52 is appropriately determined by the flow rate adjusting valve 54. Adjusted.
  • FIG. 2 there is shown a ph diagram (Mollier diagram) of the refrigeration cycle, which will be described with reference to the ph diagram.
  • the refrigerant compressed by the first compressor 10 is compressed by the second compressor 12 together with the injection gas from the gas-liquid separator 15, and the refrigerant made of CO 2 becomes a high-temperature and high-pressure supercritical refrigerant and gas-cooled. It flows into the vessel 13 and is radiated by the gas cooler 13 to be cooled.
  • the refrigerant leaving the gas cooler 13 is expanded from a high pressure to an intermediate pressure by the first expansion valve 14. Since the refrigerant exiting the first expansion valve 14 is in a gas-liquid two-phase state, it flows into the gas-liquid separator 15 and is separated into a gas refrigerant and a liquid refrigerant. As described above, the gas refrigerant is injected as an injection gas. While flowing into the two compressors 12, the liquid refrigerant is further expanded to a low pressure in the second expansion valve 18 through the liquid receiver 17 and the internal heat exchanger 30, and then flows into the evaporator 20.
  • the liquid refrigerant is vaporized by heat absorption from the outside air to become a gas refrigerant.
  • the refrigerant exiting the evaporator 20 is in a gas-liquid two-phase state including liquid refrigerant without being completely vaporized, and reaches the accumulator 40 through the internal heat exchanger 30 while maintaining the gas-liquid two-phase state.
  • the gas and liquid are separated in the accumulator 40.
  • only the gas refrigerant is circulated in the cycle toward the first compressor 10.
  • the liquid refrigerant is stored in the accumulator 40.
  • the refrigerant stored in the accumulator 40 has a refrigerant buffer function in the cycle, whereby the refrigerant phase balance is maintained in the cycle.
  • the internal heat exchanger 30 is provided between the pipe between the liquid receiver 17 and the second expansion valve 18 and the pipe between the evaporator 20 and the accumulator 40.
  • the liquid refrigerant from the liquid receiver 17 toward the second expansion valve 18 is cooled by the gas-liquid two-phase refrigerant that has exited the evaporator 20. That is, as described above, in the system that uses the refrigerant in a supercritical state, the refrigerant reaching the second expansion valve 18 is a liquid refrigerant on the saturated liquid line (shown by a broken line in FIG.
  • the refrigerant exiting the evaporator 20 before reaching the accumulator 40 is in a gas-liquid two-phase state, gas refrigerant and liquid refrigerant are mixed, and the liquid receiver 17 and the second expansion valve 18 are mixed.
  • the refrigerant flowing through the pipe between the two is cooled not only to the gas refrigerant exiting the evaporator 20 but also to the supercooled state well by the liquid refrigerant. That is, the refrigerant from the liquid receiver 17 toward the second expansion valve 18 is sufficiently cooled and held in a liquid state not only by using sensible heat but also by using latent heat of the liquid refrigerant, and only for heat exchange by using sensible heat of the gas refrigerant. Compared to the case, the generation of flash gas is suppressed even better.
  • COP coefficient of performance
  • a gas heat exchanger 50 is provided between the pipe between the gas cooler 13 and the first expansion valve 14 and the bypass line 52, and the gas cooling is performed by adjusting the flow rate adjusting valve 54.
  • the refrigerant from the vessel 13 toward the first expansion valve 14 is also cooled by the injection gas from the gas-liquid separator 15 toward the second compressor 12.
  • coolant which goes to the evaporator 20 through the 2nd expansion valve 18 from the gas cooler 13 can be increased, and improvement of COP and a refrigerating capacity can be aimed at.
  • the accumulator 40 is interposed between the internal heat exchanger 30 and the first compressor 10, thereby accumulating the accumulator.
  • the liquid refrigerant stored in 40 can be reduced, and the accumulator 40 can be reduced in size.
  • FIG. 3 shows a schematic configuration diagram of a refrigeration system according to a second embodiment of the present invention.
  • the refrigeration system according to the second embodiment is different from the first embodiment in that it has a plurality of evaporators 20a and 20b.
  • the description of the same parts as the first embodiment is omitted. The description will focus on the differences from the first embodiment.
  • the piping from the internal heat exchanger 30 to the internal heat exchanger 30 is branched into a plurality of branch pipes 21 and 22 and merged, and each branch pipe 21 and 22 is evaporated.
  • the containers 20a and 20b are arranged in parallel with each other. Such a configuration is frequently used when a plurality of refrigeration apparatuses are provided in, for example, a convenience store.
  • the branch pipes 21 and 22 are provided with second expansion valves 18a and 18b, respectively, which are positioned in series upstream of the evaporators 20a and 20b.
  • each branch If flash gas is generated before reaching the branch portions of the pipelines 21 and 22, it becomes difficult to evenly distribute the refrigerant to each of the evaporators 20a and 20b, and the endothermic performance varies between the evaporators 20a and 20b. May occur.
  • the plurality of evaporators 20a and 20b are provided in parallel with each other, it is possible to distribute the refrigerant equally and in a balanced manner to each of the second expansion valves 18a and 18b while maintaining the refrigerant in a liquid state. . That is, by providing the second expansion valves 18a and 18b in the branch pipes 21 and 22, respectively, the refrigerant can be surely and equally divided into the branch pipes 21 and 22 while maintaining the liquid state. It is possible to improve the endothermic performance of the containers 20a and 20b more evenly and further improve the refrigeration capacity in the refrigeration cycle.
  • the second expansion valves 18a and 18b are provided in the branch pipelines 21 and 22, respectively.
  • the evaporators 20a and 20b are provided in the branch pipelines 21 and 22, respectively. It is also possible to dispose only one second expansion valve 18 similar to the example. Even with such a configuration, the refrigerant directed to the second expansion valve 18 is better maintained in liquid form than in the case where the internal heat exchanger 30 is not provided, so that the refrigerant can be supplied stably. .
  • FIG. 4 shows a schematic configuration diagram of a refrigeration system according to a third embodiment of the present invention.
  • the pipe from the internal heat exchanger 30 to the internal heat exchanger 30 is branched into three or more (here, three) branch pipes 21, 22, and 23.
  • the first and second embodiments described above have a plurality of internal heat exchangers (internal heat exchange elements) 30a, 30b together with a plurality of evaporators 20a, 20b, 20c and second expansion valves 18a, 18b, 18c.
  • internal heat exchangers internal heat exchange elements
  • the refrigerant can be favorably liquefied in the branch pipes 21, 22, and 23.
  • a liquid refrigerant can be reliably supplied toward the second expansion valves 18a, 18b, and 18c.
  • the present invention is not limited to the above embodiment.
  • heat exchange is performed using the internal heat exchanger 30 or the internal heat exchangers 30a and 30b.
  • the internal heat exchange elements are pipes. It may be such that they are tangled and brought into contact. That is, referring to FIG. 5, as another embodiment of the present invention, a configuration in which pipes are tangled and contacted instead of the internal heat exchangers 30 a and 30 b of the third embodiment is schematically illustrated. In this way, the internal heat exchange element may be configured to simply bring the pipes into contact with each other. In this way, it is possible to suitably prevent the generation of flash gas with a simple configuration.
  • the gas injection cycle includes a single compressor 10 ', and the gas outlet side of the gas-liquid separator 15 and the compression intermediate pressure portion of the compressor 10' are connected by piping. 16 may be connected. Even in this case, the injection gas is supplied to the compression intermediate pressure portion of the compressor 10 ′, and the same effect as described above can be obtained with respect to the gas injection cycle.
  • the internal heat exchanger 30 or internal heat exchanger 30a, 30b and the accumulator 40 are each provided separately, you may make these integrate. In this manner, generation of flash gas can be suitably prevented while simplifying and reducing the cost of the refrigeration system.
  • the liquid receiver 17 is separately provided in the liquid outlet side of the gas-liquid separator 15, you may make these integrate. In this way, generation of flash gas can be suitably prevented while also simplifying and reducing the cost of the refrigeration system.
  • the refrigeration system having the gas injection cycle has been described.
  • the gas injection cycle is not necessarily provided. That is, although not shown, the first compressor 10 and the second compressor 12 are one compressor, the first expansion valve 14 and the second expansion valve 18 are one expansion valve (expander), and a gas-liquid separator. 15.
  • the internal heat exchanger 30 or the internal heat exchangers 30a and 30b are provided in the pipe between the gas cooler 13 and the expansion valve. Also good. Thus, even if it is the structure which does not have a gas injection cycle, the effect of this invention can be acquired.
  • the gas heat exchanger 50 is provided.
  • the gas heat exchanger 50 is not necessarily provided. That is, although not shown, the effect of the present invention can be obtained only by providing the internal heat exchanger 30 or the internal heat exchangers 30a and 30b without providing the gas heat exchanger 50.
  • carbon dioxide (CO 2 ) is used as the refrigerant.
  • the refrigerant is not limited to carbon dioxide used in a supercritical state, and whether or not the refrigerant is used in a supercritical state. Regardless of the type of refrigerant, the present invention can be preferably applied.
  • An internal heat exchange element is provided across the pipe between the radiator and the expander and the pipe between the evaporator and the compressor, and the refrigerant from the radiator to the expander is cooled by the refrigerant that has passed through the evaporator.
  • the heat absorption performance of the evaporator is improved by being in a liquid state well in the cooled state, and the coefficient of performance (COP) in the refrigeration cycle and thus the refrigeration capacity needs to be improved. Applicable to various refrigeration and air conditioning cycles.

Abstract

【課題】超臨界で冷媒を使用する冷凍サイクルであっても、膨張器に供給される冷媒を十分に冷却して液状にでき、成績係数(COP)ひいては冷凍能力の向上を図ることの可能な冷凍システムを提供する。 【解決手段】放熱器(13)と膨張器(18)との間の配管と蒸発器(20)と圧縮機(10)との間の配管とを跨いで内部熱交換要素(30)を設け、アキュムレータ(40)を内部熱交換要素(30)より下流側の内部熱交換要素(30)と圧縮機(10)との間の配管に介装するようにした。

Description

冷凍システム
 本発明は、冷凍システムに係り、詳しくは超臨界で冷媒を使用する冷凍サイクルにおいて高効率を実現する技術に関する。
 一般に、冷凍サイクルは、圧縮機、放熱器(凝縮器)、膨張器、蒸発器(吸熱器)がそれぞれ管路で連結され、管路内を冷媒が相変化しながら流れるように構成されている。即ち、冷凍サイクルは、圧縮機で圧縮された冷媒が放熱器を経て放熱して液化し、膨張器で膨張させられた冷媒が蒸発器を経て吸熱して気化するよう構成されている。
 また、近年では、従来多用されていたフロンに代えて環境を配慮した種々の冷媒が使用されており、このような冷媒として例えば二酸化炭素(CO)等が公知である。
 ところで、上記COを含め、冷媒は、外気温が高いと放熱器を経て液化したはずの冷媒の一部が膨張器に至るまでの間に気化し、所謂フラッシュガスを発生し易いという性質を有している。このようにフラッシュガスが発生し易いと、蒸発器において有効に作用する液状の冷媒量が減少したり圧損が増大したりして吸熱効率が悪くなり、成績係数(COP)ひいては冷凍能力が悪化し好ましいことではない。
 そこで、例えば放熱器と蒸発器との間に第1及び第2の二つの膨張器を備えるとともにこれら二つの膨張器間に気液分離器を備え、気液分離器で分離された気体状の冷媒を圧縮機に供給する一方、液状の冷媒を第2の膨張器に供給するように図ったガスインジェクションサイクル(エコノマイザーサイクル)が知られている(例えば、特許文献1、2参照)。
 そして、特許文献1に開示の技術では、放熱器から第1の膨張器に供給される冷媒を過冷却させるべく、放熱器と第1の膨張器との間に内部熱交換器を設け、気液分離器を経た気体状の冷媒で第1の膨張器に供給される冷媒を冷却するようにしている。
 また、特許文献2に開示の技術では、気液分離器から第2の膨張器に供給される冷媒を過冷却させるべく、気液分離器と第2の膨張器との間に内部熱交換器を設けるとともに蒸発器と当該内部熱交換器との間に別の第2の気液分離器を設け、蒸発器を出て当該第2の気液分離器を経た気体状の冷媒で第2の膨張器に供給される冷媒を冷却するようにしている。
特開平11-63694号公報 特開2001-116376号公報
 しかしながら、上記特許文献1に開示の技術においては、放熱器と第1の膨張器との間の冷媒を内部熱交換器で冷却するようにしているものの、このような構成では冷媒が気液分離器から第2の膨張器に至るまでに依然としてフラッシュガスを発生し兼ねず、好ましいとは言い難い。
 一方、効率よく冷媒のエネルギを活用するためには、蒸発器後の冷媒は過熱度ゼロが理想であるところ、現実には環境条件の変動等により必ずや液状の冷媒が蒸発器から流出するもので、特許文献2によれば第2の気液分離器がアキュムレータとして機能することで液状の冷媒の圧縮機への循環が防止されている。
 ところが、このような特許文献2の構成では、内部熱交換器において第2の気液分離器を経た気体状の冷媒(ガス冷媒)のみによって熱交換を行うため、顕熱利用となり、液状の冷媒が全く活用されず、内部熱交換器において潜熱利用ができないという問題がある。このように顕熱利用だけであると、冷媒を十分に過冷却できず、やはり冷媒が第2の膨張器に至るまでにフラッシュガスを発生し兼ねず、好ましいことではない。
 また、上記特許文献1、2では、蒸発器が一つである場合についてのみ開示されているが、蒸発器を並列に複数設けた場合、分岐部に至るまでにフラッシュガスが発生してしまうと冷媒を各蒸発器に均等に分流させることが困難となり、分流のバランスが崩れ、各蒸発器間で吸熱性能にばらつきが生じるという問題もある。
 本発明は、上記の課題を解決するためになされたもので、その目的とするところは、超臨界で冷媒を使用する冷凍サイクルであっても、膨張器に供給される冷媒を十分に冷却して液状にでき、成績係数(COP)ひいては冷凍能力の向上を図ることの可能な冷凍システムを提供することにある。
 上記の目的を達成するべく、請求項1の冷凍システムは、冷媒を圧縮する圧縮機と、該圧縮機で昇圧された冷媒を冷却する放熱器と、該放熱器で冷却された冷媒を減圧膨張させる膨張器と、該膨張器で減圧された冷媒を蒸発させる蒸発器とを順次配管接続してなる冷凍システムであって、前記放熱器と前記膨張器との間の配管と前記蒸発器と前記圧縮機との間の配管とに跨いで設けられ、前記放熱器から前記膨張器に向かう冷媒と前記蒸発器から前記圧縮機に向かう冷媒との間で熱交換を行う内部熱交換要素と、前記内部熱交換要素と前記圧縮機との間の配管に介装され、液状の冷媒を貯留するアキュムレータとを備えたことを特徴とする。
 請求項2の冷凍システムでは、請求項1において、前記冷媒は超臨界で使用するものであることを特徴とする。
 請求項3の冷凍システムでは、請求項1または2において、前記圧縮機は第1圧縮機と該第1圧縮機の下流側に直列に接続された第2圧縮機とからなるとともに前記膨張器は第1膨張器と該第1膨張器の下流側に直列に接続された第2膨張器とからなり、前記第1膨張器と前記第2膨張器との間に介装され、冷媒の気液分離を行って液状の冷媒を前記第2膨張器に供給する気液分離器と、該気液分離器と前記第1圧縮機及び前記第2圧縮機間の管路とを連結して設けられ、前記気液分離器で分離された気体状の冷媒をインジェクションガスとして前記第2圧縮機に供給するガスインジェクション管路とを備え、前記内部熱交換要素は、前記気液分離器と前記第2膨張器との間に介装されていることを特徴とする。
 請求項4の冷凍システムでは、請求項1または2において、前記圧縮機は一つであり、前記第1膨張器と前記第2膨張器との間に介装され、冷媒の気液分離を行って液状の冷媒を前記第2膨張器に供給する気液分離器と、該気液分離器と前記圧縮機の圧縮中間圧部とを連通して設けられ、前記気液分離器で分離された気体状の冷媒をインジェクションガスとして前記圧縮機の圧縮中間圧部に供給するガスインジェクション管路とを備え、前記内部熱交換要素は、前記気液分離器と前記第2膨張器との間に介装されていることを特徴とする。
 請求項5の冷凍システムでは、請求項3または4において、前記気液分離器からの液状の冷媒を一時的に貯留する受液器を備え、該受液器は、前記気液分離器と一体に設けられていることを特徴とする。
 請求項6の冷凍システムでは、請求項1または2において、前記蒸発器は複数からなるとともに前記膨張器は複数からなり、前記内部熱交換要素から前記膨張器及び前記蒸発器を経て再び前記内部熱交換要素に向かう管路は複数の分岐管路に分岐し合流しており、前記複数の蒸発器は、互いに並列となるよう各々前記分岐管路に配設され、前記複数の膨張器は、各々前記分岐管路に前記蒸発器と直列に配設されていることを特徴とする。
 請求項7の冷凍システムでは、請求項3乃至5のいずれかにおいて、前記蒸発器は複数からなるとともに前記第2膨張器は複数からなり、前記内部熱交換要素から前記第2膨張器及び前記蒸発器を経て再び前記内部熱交換要素に向かう管路は複数の分岐管路に分岐し合流しており、前記複数の蒸発器は、互いに並列となるよう各々前記分岐管路に配設され、前記複数の第2膨張器は、各々前記分岐管路に前記蒸発器と直列に配設されていることを特徴とする。
 請求項8の冷凍システムでは、請求項6または7において、前記分岐管路は3本以上であって該分岐管路の分岐部は2箇所以上あり、前記内部熱交換要素は、複数からなり、これら分岐部の手前にそれぞれ配設されていることを特徴とする。
 請求項9の冷凍システムでは、請求項1乃至8のいずれかにおいて、前記内部熱交換要素は配管同士を接触させるよう構成されることを特徴とする。
 請求項10の冷凍システムでは、請求項1乃至7のいずれかにおいて、前記アキュムレータは、前記内部熱交換要素と一体に設けられていることを特徴とする。
 請求項1の冷凍システムによれば、放熱器と膨張器との間の配管と蒸発器と圧縮機との間の配管とを跨いで内部熱交換要素を設けるようにしているので、放熱器から膨張器に向かう冷媒が蒸発器を経た冷媒によって冷却される。即ち、冷媒を例えば超臨界で使用するシステムでは、図2に示すように、膨張器に至る冷媒は飽和液線上の液冷媒であることから(破線で示す)、外気温が高いとフラッシュガスが発生して気体状の冷媒と液状の冷媒とが混在した状態になり易いのであるが、このような場合であっても膨張器に至る冷媒は過冷却状態とされ、良好に液状とされる(実線で示す)。
 そして、この際、上述したように環境条件の変動等により現実には蒸発器からは気体状の冷媒のみならず液状の冷媒も流出するところ、本発明では液状の冷媒を貯留するアキュムレータを内部熱交換要素よりも圧縮機側に設けているので、放熱器から膨張器に向かう冷媒は蒸発器から流出する気体状の冷媒とともにかかる液状の冷媒によって顕熱利用のみならず潜熱利用によって十分に過冷却状態とされる。
 従って、冷凍サイクルにおいて、放熱器から膨張器に向かう冷媒を良好に液状に維持でき、膨張器に至るまでに冷媒が気化して所謂フラッシュガスが発生してしまうことを防止することができる。
 これにより、蒸発器の吸熱性能を高め、冷凍サイクルにおける成績係数(COP)ひいては冷凍能力の向上を図ることができる。
 また、蒸発器から流出する液状の冷媒は内部熱交換要素で潜熱利用されて気化することになるため、アキュムレータに貯留される液状の冷媒の量を少なく抑えるようにでき、アキュムレータの小型化を図ることもできる。
 また、請求項2の冷凍システムによれば、冷媒が超臨界で使用するもの、例えば二酸化炭素であっても、放熱器から膨張器に向かう冷媒を良好に液状に維持でき、膨張器に至るまでにフラッシュガスが発生してしまうことを防止することができる。
 また、請求項3、4の冷凍システムによれば、ガスインジェクションサイクルを有した冷凍システムにおいて、気液分離器から第2膨張器に流れる液状の冷媒が蒸発器を経た冷媒によって冷却される。
 従って、ガスインジェクションサイクルを有した冷凍システムにおいて超臨界で使用する二酸化炭素のような冷媒を用いる場合であっても、気液分離器から第2膨張器に向かう冷媒を確実に液状に維持でき、第2膨張器に至るまでにフラッシュガスが発生してしまうことを好適に防止することができる。
 これにより、ガスインジェクションサイクルの作用に加え、蒸発器の吸熱性能を高め、冷凍サイクルにおける冷凍能力のさらなる向上を図ることができる。
 また、請求項5の冷凍システムによれば、受液器を気液分離器と一体に設けることで、冷凍システムの簡素化、低廉化を図りながら、放熱器から膨張器に向かう冷媒を確実に液状に維持でき、膨張器に至るまでにフラッシュガスが発生してしまうことを防止することができる。
 また、請求項6、7の冷凍システムによれば、複数の蒸発器を互いに並列となるよう各々分岐管路に配設し、複数の膨張器または第2膨張器を各々分岐管路に蒸発器と直列に配設するようにしているので、放熱器から膨張器または第2膨張器に向かう冷媒が確実に液状に維持されることになり、当該液状に維持された冷媒を各膨張器または第2膨張器に向けてそれぞれ均等にバランスよく分流させることができる。
 これにより、各蒸発器の吸熱性能をばらつきなく高め、冷凍サイクルにおける冷凍能力のさらなる向上を図ることができる。
 また、請求項8の冷凍システムによれば、分岐管路は3本以上であって該分岐管路の分岐部は2箇所以上あり、内部熱交換要素をこれら分岐部の手前にそれぞれ配設するようにしているので、各々分岐管路において冷媒を液状に維持でき、液状の冷媒をより一層確実に各膨張器または第2膨張器に向けて供給することができる。
 これにより、各蒸発器の吸熱性能をより一層高め、冷凍サイクルにおける冷凍能力のさらなる向上を図ることができる。
 また、請求項9の冷凍システムによれば、内部熱交換要素は配管同士を抱き合わせて接触させるよう構成されているので、簡単な構成にして、放熱器から膨張器または第2膨張器に向かう冷媒を良好に液状に維持でき、膨張器または第2膨張器に至るまでにフラッシュガスが発生してしまうことを防止することができる。
 また、請求項10の冷凍システムによれば、アキュムレータを内部熱交換要素と一体に設けることで、冷凍システムの簡素化、低廉化を図りながら、放熱器から膨張器に向かう冷媒を確実に液状に維持でき、膨張器に至るまでにフラッシュガスが発生してしまうことを防止することができる。
図1は本発明の第1実施例に係る冷凍システムの概略構成図である。 図2は本発明に係る冷凍システムのp-h線図である。 図3は本発明の第2実施例に係る冷凍システムの概略構成図である。 図4は本発明の第3実施例に係る冷凍システムの概略構成図である。 図5は本発明の他の実施例に係る冷凍システムの概略構成図である。 図6は本発明のさらに他の実施例に係る冷凍システムの概略構成図の一部である。
 以下、本発明の実施形態を図面を参照しながら説明する。
 先ず、第1実施例について説明する。
 図1には、本発明の第1実施例に係る冷凍システムの概略構成図が示されている。
 なお、本発明に係る冷凍システムは、冷凍装置、空調装置、ヒートポンプ、給湯器、及び暖房器等の種々の冷凍・空調サイクルに適用されるものである。
 同図に示すように、本発明の第1実施例に係る冷凍システムでは、二酸化炭素(CO)を冷媒としており、当該冷媒を圧縮する第1圧縮機10と、第1圧縮機10で中間圧力まで昇圧された冷媒をさらに昇圧する第2圧縮機12と、当該昇圧された冷媒を冷却するガス冷却器(放熱器)13と、ガス冷却器13よりも下流側に位置し、ガス冷却器13で冷却された冷媒を減圧膨張する第1膨張弁(第1膨張器)14とが順に配管接続されている。なお、第1圧縮機10及び第2圧縮機12は、例えばスクロール式、斜板式の圧縮機である。
 また、第1膨張弁14よりも下流側には、冷媒の気液分離を行う気液分離器15が設けられており、該気液分離器15のガス出口側と第2圧縮機12の吸入側とが連結配管(ガスインジェクション管路)16により接続されて所謂ガスインジェクションサイクルが構成されている。即ち、ガスインジェクションサイクルにより、気液分離器15から第2圧縮機12に向けてガス冷媒がインジェクションガスとして供給されるよう構成されている。なお、連結配管16にはインジェクションガスの逆流を防止すべく逆止弁16aが介装されている。
 一方、気液分離器15の液出口側には一旦液冷媒を貯留する受液器17が設けられ、受液器17の下流側にはさらに第2膨張弁(第2膨張器)18を介して蒸発器(吸熱器)20が配管接続されており、蒸発器20は上記第1圧縮機10に配管接続されている。
 そして、同図に示すように、気液分離器15を経た受液器17と第2膨張弁18との間の配管と蒸発器20と第1圧縮機10との間の配管とに跨いで内部熱交換器(内部熱交換要素)30が設けられている。この内部熱交換器30は、ガス冷却器13から気液分離器15、受液器17を経て第2膨張弁18に向かう冷媒と蒸発器20から第1圧縮機10に向かう冷媒との間で熱交換を行う機能を有している。
 さらに、同図に示すように、蒸発器20と第1圧縮機10間のうち内部熱交換器30と第1圧縮機10との間にはアキュムレータ40が介装されている。アキュムレータ40は気液分離器と同様の気液分離機能と受液機能とを併せ有し、配管内の液冷媒を貯留してガス冷媒のみを第1圧縮機10に供給するよう構成されている。
 また、連結配管16からは分岐合流してバイパス管路52が設けられており、ガス冷却器13と第1膨張弁14との間の配管とバイパス管路52とに跨いでガス熱交換器50が設けられている。このガス熱交換器50は、ガス冷却器13から第1膨張弁14に向かう冷媒とインジェクションガスとの間で熱交換を行う機能を有している。なお、バイパス管路52の連結配管16との分岐部には流量調整弁54が設けられており、当該流量調整弁54により連結配管16から分かれてバイパス管路52に流れるインジェクションガスの量が適宜調節される。
 以下、このように構成された本発明の第1実施例に係る冷凍システムの作用効果を説明する。ここで、図2を参照すると、当該冷凍サイクルのp-h線図(モリエル線図)が示されており、同p-h線図をも参照しながら説明する。
 第1圧縮機10によって圧縮された冷媒は、気液分離器15からのインジェクションガスとともに第2圧縮機12で圧縮され、COからなる冷媒は高温高圧の超臨界状態の冷媒となってガス冷却器13に流入し、当該ガス冷却器13にて放熱して冷却される。
 ガス冷却器13を出た冷媒は、第1膨張弁14により高圧から中間圧程度にまで膨張される。
 第1膨張弁14を出た冷媒は、気液二相状態であるため、気液分離器15に流入してガス冷媒と液冷媒とに分離され、ガス冷媒についてはインジェクションガスとして上記の如く第2圧縮機12に流入する一方、液冷媒については受液器17及び内部熱交換器30を経て第2膨張弁18においてさらに低圧まで膨張された後、蒸発器20に流入する。
 蒸発器20では液冷媒が外気からの吸熱により気化してガス冷媒となる。実際には、蒸発器20を出た冷媒は、完全には気化せずに液冷媒を含む気液二相状態であり、気液二相状態のまま内部熱交換器30を経てアキュムレータ40に至り、アキュムレータ40において気液分離される。そして、ガス冷媒のみが第1圧縮機10に向かいサイクル内を循環する。一方、液冷媒についてはアキュムレータ40に貯留される。なお、アキュムレータ40に貯留した冷媒は、サイクル内における冷媒のバッファ機能を有しており、これによりサイクル内において冷媒の相平衡が保持されている。
 ところで、上述した如く、受液器17と第2膨張弁18との間の配管と蒸発器20とアキュムレータ40との間の配管との間には内部熱交換器30が設けられている。これより、受液器17から第2膨張弁18に向かう液冷媒は、蒸発器20を出た気液二相状態の冷媒によって冷却される。
 即ち、上述した如く、冷媒を超臨界で使用するシステムでは、第2膨張弁18に至る冷媒は飽和液線上の液冷媒であることから(図2に破線で示す)、受液器17から第2膨張弁18までの間では、外気温が高いと冷媒は液化しても配管内で気化して所謂フラッシュガスを発生し、気体状の冷媒と液状の冷媒とが混在した状態になり易いのであるが、当該冷媒が蒸発器20を出た気液二相状態の冷媒との熱交換によって過冷却状態とされてかかるフラッシュガスの発生が抑制され、良好に液状とされる(図2に実線で示す)。
 この際、特に、アキュムレータ40に至る前の蒸発器20を出た冷媒は気液二相状態であるため、ガス冷媒と液冷媒とが混在しており、受液器17と第2膨張弁18との間の配管を流れる冷媒は、蒸発器20を出たガス冷媒のみならず液冷媒によって良好に過冷却状態にまで冷却される。つまり、受液器17から第2膨張弁18に向かう冷媒は、顕熱利用のみならず液冷媒の潜熱利用によって十分に冷却されて液状に保持され、ガス冷媒の顕熱利用による熱交換だけの場合に比べてフラッシュガスの発生がより一層良好に抑制される。
 これにより、蒸発器20の吸熱性能を高めることが可能となり、ガスインジェクションサイクルの作用に加え、冷凍サイクルにおける成績係数(COP)ひいては冷凍能力の向上を図ることができる。
 また、ここでは、ガス冷却器13と第1膨張弁14との間の配管とバイパス管路52との間にはガス熱交換器50が設けられており、流量調整弁54の調節によりガス冷却器13から第1膨張弁14に向かう冷媒は、気液分離器15から第2圧縮機12に向かうインジェクションガスによっても冷却される。
 これにより、ガス冷却器13から第2膨張弁18を経て蒸発器20に向かう冷媒のエンタルピを増加させて、COPひいては冷凍能力の向上を図ることができる。
 また、蒸発器20から流出する液冷媒は内部熱交換器30で潜熱利用されて気化するので、内部熱交換器30と第1圧縮機10との間にアキュムレータ40を介装することで、アキュムレータ40に貯留される液冷媒を少なく抑えるようにでき、アキュムレータ40の小型化を図ることも可能である。
 次に、第2実施例について説明する。
 図3には、本発明の第2実施例に係る冷凍システムの概略構成図が示されている。
 当該第2実施例に係る冷凍システムでは、複数の蒸発器20a、20bを有している点が上記第1実施例と異なっており、以下、第1実施例と同一部分については説明を省略し、第1実施例と異なる部分を中心に説明する。
 同図に示すように、内部熱交換器30から再び内部熱交換器30に向かう配管は複数の分岐管路21、22に分岐し合流しており、各分岐管路21、22にはそれぞれ蒸発器20a、20bが互いに並列となるように配設されている。このような構成は、例えばコンビニエンスストア等において複数の冷凍装置を有する場合に多用される。
 また、各分岐管路21、22には、蒸発器20a、20bの各上流に直列に位置して第2膨張弁18a、18bがそれぞれ設けられている。
 このように複数の直列をなす第2膨張弁18a、蒸発器20aと直列をなす第2膨張弁18b、20bとが互いに並列となるように設けられていると、上述したように、例えば各分岐管路21、22の分岐部に至るまでにフラッシュガスが発生してしまうと冷媒を各蒸発器20a、20bに均等に分流させることが困難となり、蒸発器20a、20b間で吸熱性能にばらつきが生じるおそれがある。
 しかしながら、このような構成であっても、受液器17と各第2膨張弁18a、18bとの間の配管と蒸発器20a、20bとアキュムレータ40との間の配管との間には内部熱交換器30が設けられていることから、受液器17から各分岐管路21、22の分岐部に向かう液冷媒は、蒸発器20a、20bを出た気液二相状態の冷媒によって良好に過冷却状態にまで冷却され、フラッシュガスの発生が抑制される。
 従って、複数の蒸発器20a、20bを互いに並列に設けた場合であっても、冷媒を確実に液状に維持したまま各第2膨張弁18a、18bに均等にバランスよく分流させることが可能となる。
 即ち、各分岐管路21、22にそれぞれ第2膨張弁18a、18bを設けることにより、冷媒を液状に維持したまま各分岐管路21、22に確実に均等に分流させることができ、各蒸発器20a、20bの吸熱性能をより一層ばらつきなく高め、冷凍サイクルにおける冷凍能力のさらなる向上を図ることが可能である。
 なお、ここでは各分岐管路21、22にそれぞれ第2膨張弁18a、18bを設けているが、各分岐管路21、22に蒸発器20a、20b、分岐前の管路に上記第1実施例と同様の第2膨張弁18を一つだけ配設することも可能である。このような構成であっても、内部熱交換器30がない場合に比べて第2膨張弁18に向かう冷媒が良好に液状に保持されるため、安定的に冷媒を供給することが可能である。
 これにより、第2膨張弁18が一つであっても、複数の蒸発器20a、20b間で吸熱性能にばらつきが生じることが低減され、各蒸発器20a、20bにおける吸熱性能を高めることができる。
 次に、第3実施例について説明する。
 図4には、本発明の第3実施例に係る冷凍システムの概略構成図が示されている。
 当該第3実施例に係る冷凍システムでは、内部熱交換器30から再び内部熱交換器30に向かう配管が3本以上の複数(ここでは3本)の分岐管路21、22、23に分岐され、複数の蒸発器20a、20b、20c及び第2膨張弁18a、18b、18cとともに複数の内部熱交換器(内部熱交換要素)30a、30bを有している点が上記第1、2実施例と異なっており、以下、第1、2実施例と同一部分については説明を省略し、第1、2実施例と異なる部分を中心に説明する。
 同図に示すように、当該第3実施例では、受液器17の下流側で配管は複数の分岐管路21、22、23に分岐し合流しており、各分岐管路21、22、23には、それぞれ蒸発器20a、20b、20cが互いに並列となるように配設され、蒸発器20a、20b、20cの各上流に直列に位置して第2膨張弁18a、18b、18cが設けられている。そして、分岐管路21、22、23の2箇所以上の分岐部(ここでは2箇所)の各上流に位置してそれぞれ内部熱交換器30a、30bが設けられている。
 このように分岐管路21、22、23の分岐部の手前にそれぞれ内部熱交換器30a、30bが設けられていると、各分岐管路21、22、23において冷媒を良好に液状にでき、液状の冷媒を確実に各第2膨張弁18a、18b、18cに向けて供給することができる。
 これにより、複数の蒸発器20a、20b、20cを設ける場合において、各蒸発器20a、20b、20cの吸熱性能を高め、冷凍サイクルにおける冷凍能力のさらなる向上を図ることが可能である。
 以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではない。
 例えば、上記実施形態では、内部熱交換器30或いは内部熱交換器30a、30bを用いて熱交換を行うようにしているが、第1乃至第3実施例において、内部熱交換要素は配管同士を抱き合わせて接触させるようなものであってもよい。即ち、図5を参照すると、本発明の他の実施例として上記第3実施例の内部熱交換器30a、30bに代えて配管同士を抱き合わせて接触させた構成が模式的に例示されているが、内部熱交換要素は、このように配管同士を単に接触させるだけの構成であってもよい。このようにすれば、簡単な構成にして、フラッシュガスの発生を好適に防止することができる。
 また、上記実施形態では、第1圧縮機10及び第2圧縮機12を設け、インジェクションガスを第2圧縮機12に供給するようにガスインジェクションサイクルを構成したが、図6に一部分を示すように、本発明のさらに他の実施例として、ガスインジェクションサイクルを一つの圧縮機10’を含んで構成し、気液分離器15のガス出口側と圧縮機10’の圧縮中間圧部とを連結配管16により接続するようにしてもよい。この場合であっても、インジェクションガスが圧縮機10’の圧縮中間圧部に供給され、ガスインジェクションサイクルに関し上記同様の作用効果を得ることができる。
 また、上記実施形態では、内部熱交換器30或いは内部熱交換器30a、30bとアキュムレータ40とをそれぞれ個別に設けるようにしているが、これらを一体にするようにしてもよい。このようにすれば、冷凍システムの簡素化、低廉化を図りながら、フラッシュガスの発生を好適に防止することができる。
 また、上記実施形態では、気液分離器15の液出口側に受液器17を別途設けるようにしているが、これらを一体にするようにしてもよい。このようにすれば、やはり冷凍システムの簡素化、低廉化を図りながら、フラッシュガスの発生を好適に防止することができる。
 また、上記実施形態では、ガスインジェクションサイクルを有した冷凍システムについて説明したが、ガスインジェクションサイクルについては必ずしも設けなくてもよい。即ち、図示しないものの、第1圧縮機10及び第2圧縮機12を一つの圧縮機とし、第1膨張弁14及び第2膨張弁18を一つの膨張弁(膨張器)とし、気液分離器15、連結配管16、受液器17を省略した通常の冷凍サイクルにおいて、ガス冷却器13と膨張弁との間の配管に内部熱交換器30或いは内部熱交換器30a、30bを設けるようにしてもよい。このようにガスインジェクションサイクルを有しない構成であっても、本発明の効果を得ることができる。
 また、上記実施形態では、ガス熱交換器50を設けるようにしているが、ガス熱交換器50については必ずしも設けなくてもよい。即ち、図示しないものの、ガス熱交換器50を設けることなく内部熱交換器30或いは内部熱交換器30a、30bを設けるだけで、本発明の効果を得ることができる。
 また、上記実施形態では、冷媒として二酸化炭素(CO)を用いるようにしているが、冷媒は超臨界で使用する二酸化炭素に限られるものではなく、冷媒を超臨界で使用するか否かに拘わらず、冷媒の種類に拘わらず、本発明を好適に適用可能である。
 放熱器と膨張器との間の配管と蒸発器と圧縮機との間の配管とを跨いで内部熱交換要素を設け、放熱器から膨張器に向かう冷媒が蒸発器を経た冷媒によって冷却され過冷却状態で良好に液状となることにより蒸発器の吸熱性能を高め、冷凍サイクルにおける成績係数(COP)ひいては冷凍能力の向上の必要な冷凍装置、空調装置、ヒートポンプ、給湯器、及び暖房器等の種々の冷凍・空調サイクルに適用できる。
 10 第1圧縮機
 10’ 圧縮機
 12 第2圧縮機
 13 ガス冷却器(放熱器)
 14 第1膨張弁(第1膨張器)
 15 気液分離器
 16 連結配管(ガスインジェクション管路)
 18、18a、18b、18c 第2膨張弁(第2膨張器、膨張器)
 20、20a、20b、20c 蒸発器
 21、22、23 分岐管路
 30、30a、30b内部熱交換器(内部熱交換要素)
 40 アキュムレータ
 50 ガス熱交換器

Claims (10)

  1.  冷媒を圧縮する圧縮機と、該圧縮機で昇圧された冷媒を冷却する放熱器と、該放熱器で冷却された冷媒を減圧膨張させる膨張器と、該膨張器で減圧された冷媒を蒸発させる蒸発器とを順次配管接続してなる冷凍システムであって、
     前記放熱器と前記膨張器との間の配管と前記蒸発器と前記圧縮機との間の配管とに跨いで設けられ、前記放熱器から前記膨張器に向かう冷媒と前記蒸発器から前記圧縮機に向かう冷媒との間で熱交換を行う内部熱交換要素と、
     前記内部熱交換要素と前記圧縮機との間の配管に介装され、液状の冷媒を貯留するアキュムレータと、
    を備えたことを特徴とする冷凍システム。
  2.  前記冷媒は超臨界で使用するものであることを特徴とする、請求項1記載の冷凍システム。
  3.  前記圧縮機は第1圧縮機と該第1圧縮機の下流側に直列に接続された第2圧縮機とからなるとともに前記膨張器は第1膨張器と該第1膨張器の下流側に直列に接続された第2膨張器とからなり、
     前記第1膨張器と前記第2膨張器との間に介装され、冷媒の気液分離を行って液状の冷媒を前記第2膨張器に供給する気液分離器と、
     該気液分離器と前記第1圧縮機及び前記第2圧縮機間の管路とを連結して設けられ、前記気液分離器で分離された気体状の冷媒をインジェクションガスとして前記第2圧縮機に供給するガスインジェクション管路とを備え、
     前記内部熱交換要素は、前記気液分離器と前記第2膨張器との間に介装されていることを特徴とする、請求項1または2記載の冷凍システム。
  4.  前記圧縮機は一つであり、
     前記第1膨張器と前記第2膨張器との間に介装され、冷媒の気液分離を行って液状の冷媒を前記第2膨張器に供給する気液分離器と、
     該気液分離器と前記圧縮機の圧縮中間圧部とを連通して設けられ、前記気液分離器で分離された気体状の冷媒をインジェクションガスとして前記圧縮機の圧縮中間圧部に供給するガスインジェクション管路とを備え、
     前記内部熱交換要素は、前記気液分離器と前記第2膨張器との間に介装されていることを特徴とする、請求項1または2記載の冷凍システム。
  5.  前記気液分離器からの液状の冷媒を一時的に貯留する受液器を備え、
     該受液器は、前記気液分離器と一体に設けられていることを特徴とする、請求項3または4記載の冷凍システム。
  6.  前記蒸発器は複数からなるとともに前記膨張器は複数からなり、
     前記内部熱交換要素から前記膨張器及び前記蒸発器を経て再び前記内部熱交換要素に向かう管路は複数の分岐管路に分岐し合流しており、
     前記複数の蒸発器は、互いに並列となるよう各々前記分岐管路に配設され、前記複数の膨張器は、各々前記分岐管路に前記蒸発器と直列に配設されていることを特徴とする、請求項1または2記載の冷凍システム。
  7.  前記蒸発器は複数からなるとともに前記第2膨張器は複数からなり、
     前記内部熱交換要素から前記第2膨張器及び前記蒸発器を経て再び前記内部熱交換要素に向かう管路は複数の分岐管路に分岐し合流しており、
     前記複数の蒸発器は、互いに並列となるよう各々前記分岐管路に配設され、前記複数の第2膨張器は、各々前記分岐管路に前記蒸発器と直列に配設されていることを特徴とする、請求項3乃至5のいずれか記載の冷凍システム。
  8.  前記分岐管路は3本以上であって該分岐管路の分岐部は2箇所以上あり、
     前記内部熱交換要素は、複数からなり、これら分岐部の手前にそれぞれ配設されていることを特徴とする、請求項6または7記載の冷凍システム。
  9.  前記内部熱交換要素は配管同士を抱き合わせるよう構成されることを特徴とする、請求項1乃至8のいずれか記載の冷凍システム。
  10.  前記アキュムレータは、前記内部熱交換要素と一体に設けられていることを特徴とする、請求項1乃至7のいずれか記載の冷凍システム。
PCT/JP2009/006424 2008-11-28 2009-11-27 冷凍システム WO2010061624A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-304079 2008-11-28
JP2008304079A JP2010127563A (ja) 2008-11-28 2008-11-28 冷凍システム

Publications (1)

Publication Number Publication Date
WO2010061624A1 true WO2010061624A1 (ja) 2010-06-03

Family

ID=42225509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006424 WO2010061624A1 (ja) 2008-11-28 2009-11-27 冷凍システム

Country Status (2)

Country Link
JP (1) JP2010127563A (ja)
WO (1) WO2010061624A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193897A (ja) * 2011-03-16 2012-10-11 Mitsubishi Electric Corp 冷凍サイクル装置
CN102889704A (zh) * 2011-07-19 2013-01-23 东普雷股份有限公司 气液分离型冷冻装置
CN102914108A (zh) * 2011-08-04 2013-02-06 三菱重工业株式会社 涡轮制冷机的性能评价装置及其方法
JP2014194313A (ja) * 2013-03-29 2014-10-09 Fujitsu General Ltd 冷凍サイクル装置
WO2016185243A1 (en) * 2015-05-15 2016-11-24 Carrier Corporation Staged expansion system and method
CN109654761A (zh) * 2019-01-31 2019-04-19 山东欧菲特能源科技有限公司 一种超低温变频变流量低温螺杆涡旋机组,系统及方法
EP3839377A1 (en) * 2019-12-17 2021-06-23 Heatcraft Refrigeration Products LLC Cooling system with partly flooded low side heat exchanger
WO2022209739A1 (ja) * 2021-03-30 2022-10-06 ダイキン工業株式会社 熱源ユニットおよび冷凍装置
JP2022155464A (ja) * 2021-03-30 2022-10-13 ダイキン工業株式会社 熱源ユニットおよび冷凍装置
US11761687B2 (en) 2020-11-19 2023-09-19 Rolls-Royce North American Technologies Inc. Refrigeration or two phase pump loop cooling system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241967A (ja) * 2011-05-18 2012-12-10 Mitsubishi Heavy Ind Ltd 超臨界蒸気圧縮式ヒートポンプおよび給湯機
KR101925551B1 (ko) * 2012-02-29 2018-12-05 한온시스템 주식회사 자동차용 공조장치의 냉각시스템
KR102101694B1 (ko) * 2013-06-18 2020-04-17 엘지전자 주식회사 분배기 및 이를 포함하는 공기 조화기
JP6661916B2 (ja) * 2015-07-31 2020-03-11 富士電機株式会社 スクロール圧縮機および熱サイクルシステム
CN105650919B (zh) * 2016-02-02 2018-11-30 珠海格力电器股份有限公司 空调系统及喷气过热度调节方法
CN105650921A (zh) * 2016-03-28 2016-06-08 天津商业大学 一种闪气旁通梯级冷却的双级压缩制冷循环系统
DE102017204222A1 (de) * 2017-03-14 2018-09-20 Siemens Aktiengesellschaft Wärmepumpe und Verfahren zum Betreiben einer Wärmepumpe
US10962266B2 (en) * 2018-10-24 2021-03-30 Heatcraft Refrigeration Products, Llc Cooling system
US11209199B2 (en) * 2019-02-07 2021-12-28 Heatcraft Refrigeration Products Llc Cooling system
JP2023175299A (ja) * 2022-05-30 2023-12-12 株式会社豊田自動織機 電池冷却システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179066U (ja) * 1981-05-08 1982-11-12
JP2006273049A (ja) * 2005-03-28 2006-10-12 Calsonic Kansei Corp 車両用空調装置
JP2007093105A (ja) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd 冷凍装置及び気液分離器
JP2008051373A (ja) * 2006-08-23 2008-03-06 Daikin Ind Ltd 気液分離器
JP2008089268A (ja) * 2006-10-04 2008-04-17 Sanden Corp 車両用冷房装置
JP2008512641A (ja) * 2004-09-13 2008-04-24 キャリア コーポレイション 脱負荷を有する多重温度冷却システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179066U (ja) * 1981-05-08 1982-11-12
JP2008512641A (ja) * 2004-09-13 2008-04-24 キャリア コーポレイション 脱負荷を有する多重温度冷却システム
JP2006273049A (ja) * 2005-03-28 2006-10-12 Calsonic Kansei Corp 車両用空調装置
JP2007093105A (ja) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd 冷凍装置及び気液分離器
JP2008051373A (ja) * 2006-08-23 2008-03-06 Daikin Ind Ltd 気液分離器
JP2008089268A (ja) * 2006-10-04 2008-04-17 Sanden Corp 車両用冷房装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193897A (ja) * 2011-03-16 2012-10-11 Mitsubishi Electric Corp 冷凍サイクル装置
CN102889704A (zh) * 2011-07-19 2013-01-23 东普雷股份有限公司 气液分离型冷冻装置
CN102889704B (zh) * 2011-07-19 2015-06-10 东普雷股份有限公司 气液分离型冷冻装置
CN102914108A (zh) * 2011-08-04 2013-02-06 三菱重工业株式会社 涡轮制冷机的性能评价装置及其方法
CN102914108B (zh) * 2011-08-04 2014-12-03 三菱重工业株式会社 涡轮制冷机的性能评价装置及其方法
US10378794B2 (en) 2011-08-04 2019-08-13 Mitsubishi Heavy Industries Thermal Systems, Ltd. Apparatus and method for evaluating performance of centrifugal chiller
JP2014194313A (ja) * 2013-03-29 2014-10-09 Fujitsu General Ltd 冷凍サイクル装置
US20180292116A1 (en) * 2015-05-15 2018-10-11 Carrier Corporation Staged expansion system and method
CN107624153A (zh) * 2015-05-15 2018-01-23 开利公司 分级膨胀系统和方法
WO2016185243A1 (en) * 2015-05-15 2016-11-24 Carrier Corporation Staged expansion system and method
US10473369B2 (en) 2015-05-15 2019-11-12 Carrier Corporation Staged expansion system and method
CN107624153B (zh) * 2015-05-15 2021-01-05 开利公司 分级膨胀系统和方法
CN109654761A (zh) * 2019-01-31 2019-04-19 山东欧菲特能源科技有限公司 一种超低温变频变流量低温螺杆涡旋机组,系统及方法
EP3839377A1 (en) * 2019-12-17 2021-06-23 Heatcraft Refrigeration Products LLC Cooling system with partly flooded low side heat exchanger
US11268746B2 (en) 2019-12-17 2022-03-08 Heatcraft Refrigeration Products Llc Cooling system with partly flooded low side heat exchanger
US11761687B2 (en) 2020-11-19 2023-09-19 Rolls-Royce North American Technologies Inc. Refrigeration or two phase pump loop cooling system
WO2022209739A1 (ja) * 2021-03-30 2022-10-06 ダイキン工業株式会社 熱源ユニットおよび冷凍装置
JP2022155464A (ja) * 2021-03-30 2022-10-13 ダイキン工業株式会社 熱源ユニットおよび冷凍装置
JP7168894B2 (ja) 2021-03-30 2022-11-10 ダイキン工業株式会社 熱源ユニットおよび冷凍装置

Also Published As

Publication number Publication date
JP2010127563A (ja) 2010-06-10

Similar Documents

Publication Publication Date Title
WO2010061624A1 (ja) 冷凍システム
US9989280B2 (en) Cascade cooling system with intercycle cooling or additional vapor condensation cycle
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
WO2011105270A1 (ja) 冷凍サイクル装置
US20100024470A1 (en) Refrigerant injection above critical point in a transcritical refrigerant system
WO2013080244A1 (ja) 冷凍空調装置
US20100083677A1 (en) Economized refrigerant system utilizing expander with intermediate pressure port
CN101688695A (zh) 带增强器回路的co2制冷剂系统
JP2005077088A (ja) 凝縮機
EP2592366A2 (en) Non-azeotropic mixed refrigerant cycle and refrigerator equipped therewith
JP2006522310A (ja) 冷凍サイクル用エネルギー効率改善装置
US20160245558A1 (en) Two-phase refrigeration system
JP2008249209A (ja) 冷凍装置
JP2012087978A (ja) 冷凍装置
JP2008057807A (ja) 冷凍サイクル及びそれを用いた空気調和機、冷蔵庫
JP4971877B2 (ja) 冷凍サイクル
JP2011214753A (ja) 冷凍装置
JP2006220351A (ja) 冷凍装置
WO2013146415A1 (ja) ヒートポンプ式加熱装置
EP1607696A2 (en) Refrigerating machine
JP2021011985A (ja) 二元冷凍機
JP6242289B2 (ja) 冷凍サイクル装置
JP4326004B2 (ja) 空気調和装置
CN106705478B (zh) 热气旁通喷气增焓空调系统
JP2005337577A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828874

Country of ref document: EP

Kind code of ref document: A1