WO2011104399A1 - Método y aparato para detección continua de ocupación de asientos por uso conjunto de sensores de peso, capacitivos y térmicos - Google Patents

Método y aparato para detección continua de ocupación de asientos por uso conjunto de sensores de peso, capacitivos y térmicos Download PDF

Info

Publication number
WO2011104399A1
WO2011104399A1 PCT/ES2011/000045 ES2011000045W WO2011104399A1 WO 2011104399 A1 WO2011104399 A1 WO 2011104399A1 ES 2011000045 W ES2011000045 W ES 2011000045W WO 2011104399 A1 WO2011104399 A1 WO 2011104399A1
Authority
WO
WIPO (PCT)
Prior art keywords
seat
sensors
weight
continuous detection
temperature
Prior art date
Application number
PCT/ES2011/000045
Other languages
English (en)
French (fr)
Inventor
Ramon PALLÀS ARENY
Jaime Óscar CASAS PIEDRAFITA
Manuel Gasulla Fomer
Carles Aliau Bonet
Jorge GAITÁN PITRE
Original Assignee
Universitat Politècnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De Catalunya filed Critical Universitat Politècnica De Catalunya
Publication of WO2011104399A1 publication Critical patent/WO2011104399A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/01516Passenger detection systems using force or pressure sensing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/002Seats provided with an occupancy detection means mounted therein or thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/0153Passenger detection systems using field detection presence sensors
    • B60R21/01532Passenger detection systems using field detection presence sensors using electric or capacitive field sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/40Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight
    • G01G19/413Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means
    • G01G19/414Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means using electronic computing means only
    • G01G19/4142Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means using electronic computing means only for controlling activation of safety devices, e.g. airbag systems

Definitions

  • the present invention relates in general to the apparatus for the physical determination of the conditions existing in a seat, applicable for example in motor vehicles, and more particularly, to an apparatus and a method of continuous detection of seat occupancy at through the joint measurement of a change in weight, a change in the electric field and the evolution of the temperature in the seat.
  • the object of the present invention is to develop a combination of different instruments for the continuous detection of the occupation of any type of seat, applicable in motor vehicles, based on the instruments of measurement of weight change, electrical capacity or change in the field electric, and evolution of the seat temperature; conceiving said apparatus as a combination of a finite number of high impedance weight sensors; a finite number of temperature sensors; and two or more strips of conductive material or metal elements, which may or may not be part of the seat structure, as well as its location in the seat structure, under its upholstery, or in a cover or cushion arranged on the seat.
  • a second object is to develop an apparatus based on said combination of different instruments of weight change, electrical capacity or change in the electric field, and temperature evolution that implements, with maximum autonomy and minimum cost, said three sensor systems and process your measurements, recording, displaying and / or transmitting the information to other digital systems.
  • a third object of the present invention is to develop, based on said previous apparatus, a method of continuous detection of the occupation of any type of seat, capable of operating in different operating variants for the measurement of said three parameters of weight, electrical capacity and temperatures.
  • Capacitive sensors based on the measurement of the electric field changes caused by the presence of a person. Numerous electrode dimensions and configurations have been studied to detect the presence of a person and also to discriminate between adults and children (B. George, H. Zangl, T. Bretterk Kunststoffer, G. Brasseur, "Seat occupancy detection based on capacitive sensing "IEEE Transactions on Instrumentation and Measurement, Vol. 58, pp. 1487-1494, 2009), and even determine the position of the person in the seat. Its main limitation is that large objects with water or other conductive elements may be detected as if they were a person.
  • a new device and method have been developed to continuously detect seat occupancy through the joint use of three sensor systems: weight, capacitive and thermal.
  • Their joint use solves the limitations inherent in the current methods in the state of technique when using each of them separately.
  • its use is totally viable in current vehicles due to the simplicity of its conception and reliability of the results.
  • the developed device is based on a digital controller to which said three weight, capacitive and thermal sensor systems are connected, by means of the corresponding electronic interfaces, a transceiver or modem communication circuit, and a power system that supplies power to the different subsystems .
  • both the controller and the transceiver / modem are normally in the waiting state, with very low consumption, until the first sensor system detects the presence of a person or object.
  • Said first sensor system is based on the detection of a change in weight, for example by means of a plurality of piezoresistive sensors.
  • Some of these sensors are based on conductive polymers that have a very high electrical resistance in vacuum, and their value is reduced by several orders of magnitude when subjected to a mechanical load, that is, the weight of a passenger.
  • conductive polymers that have a very high electrical resistance in vacuum, and their value is reduced by several orders of magnitude when subjected to a mechanical load, that is, the weight of a passenger.
  • the sensors can be placed anywhere in the seat structure where a force is exerted when sitting, or in any external element suitable for decorating, protecting or obtaining greater comfort (cover or cushion), which makes them very versatile and suitable For application in motor vehicles.
  • the controller starts the other two sensor systems: capacitive and thermal, to assess whether the weight is due to a person or another type of object.
  • the detection threshold for the weight can be adjusted according to the intended use for the seat, for example even for child car seats.
  • the second sensor used is capacitive.
  • two conductive elements such as two metal strips under the seat upholstery or in an external cover or cushion, a volumetric electric field is created whose value will change with the presence of a person. These changes can allow differentiation between adults and children, and are large enough not to depend excessively on the different positions that a person can take when sitting.
  • large objects that contain conductive elements can cause changes in the electric field similar to those due to a person. For example, a large container of water on the seat, although such situations are easily predictable. Hence its use demands the complementary use of other sensors.
  • a third sensor system is used based on measuring the temporal evolution of the temperature of the seat surface.
  • the temporal evolution of the seat temperature also depends on the person's clothing and on a possible heating system incorporated in the seat; but by means of a threshold of differentiation with respect to a reference temperature and the study of the slope of the temporal evolution, it is possible to identify the presence of a seated person.
  • the long response time of this thermal evolution makes it difficult to use it as a single sensor to detect seat occupancy.
  • the information of the detection system which can be transmitted by cable or wireless to another digital system, can be complemented with the data acquired by other vehicle measurement systems. For example, if three people are detected in a car that runs at a certain speed, the only fact that could occur while the gear is being maintained is that people change seats, so the global number of people can only change again after the vehicle has stopped. The incorporation of this data in the global system allows to reduce the number or frequency of the measurements and therefore the energy consumption of the system.
  • Fig. 1 shows the architecture of the apparatus for the continuous detection of seat occupancy.
  • Fig. 2 shows the plurality of weight measurement sensors 101 based on a finite number (n) of high impedance piezoresistive force sensors.
  • Fig. 3 shows different possible positions of the piezoresistive force sensors.
  • Fig. 4 shows Rs values as a function of the position of the piezoresistive force sensor.
  • Fig. 5 shows different shapes and positions in which two metal strips that form the capacitive sensors 102 can be located in the seat.
  • Fig. 6 shows positions in which two metal strips that make up the capacitive sensor 102 can be placed on the seat platform.
  • Fig. 7 shows positions in which the capacitive sensor 102 can be placed in external elements such as a seat cover.
  • Fig. 8 shows positions in which the capacitive sensor 102 can be placed in a simple cushion.
  • Fig. 9 shows an example of a possible arrangement of temperature sensors 103 using seven sensors, one reference (1) and six for measuring the surface temperature of the seat (2) to (7).
  • Fig. 10 shows results of the capacities measured for different arrangements of the electrodes that make up the capacitive sensor 102, in the absence or presence of a person sitting in a folding seat.
  • Fig. 11 shows variations of electrical capacities measured with the user's movement in the seat or the use of communication devices that could create interference.
  • Fig. 12 shows a temporary evolution of the temperature change in the surface of the seat due to its occupation by a person.
  • Fig. 13 shows changes in the temporal evolution of the temperature measured by the sensors placed in the positions indicated in Fig. 9.
  • Fig. 14 shows the temporal evolution of the temperature before the intermittent occupation of a seat.
  • Figure 1 shows the proposed system architecture consisting of the weight measurement sensors 101, capacitive sensors 102 and temperature sensors 103, which are connected to the microcontroller 105 through the conditioning circuits 104.
  • the microcontroller 105 transmits the information directly to a display system 106, or to another external digital element through the communication systems with i / or wireless cable 107.
  • the power system 108 is connected to the microcontroller 105, to the communication systems 107 and to the sensor systems 101, 102 and 103, and their conditioning circuits 104. If the autonomy of the system requires it, the sensors 101, 102 and 103, and their conditioning circuits 104, can be fed directly from a digital port of the microcontroller 105. For greater efficiency energy, both the microcontroller and communication systems 107 and capacitive sensor systems 102 and thermal 103 will, by default, be in a state of low consumption. Only the 101 weight sensor system will be activated.
  • Figure 2 shows the system of weight measurement sensors 101 which is based on the use of a plurality, a finite number (n) of force sensors high impedance piezoresistives, placed under the seat upholstery, on its support, in a cover or on a cushion, and connected in parallel in a voltage divider circuit. The output of this circuit is connected to an analog input of the microcontroller 105 i / o to the interrupt circuit of a digital port (not shown).
  • Said plurality of weight sensors consists of one or several piezoresistive sensors 101 whose interface circuit is a voltage divider, where the resistor Rs is chosen to adjust the weight detection threshold ( Figure 2).
  • the value of Rs is high (1 ⁇ ) so that when the piezoresistive sensor has a low value, the system consumption does not increase too much.
  • the output of the voltage divider is connected to an external interrupt input of the microcontroller 105 and to the input of a digital analog converter (not shown). A change in the signal of the external interruption will activate the other two measurement sensor systems.
  • the analog input allows to obtain a first estimate of the weight of the object that occupies the seat. If more than one piezoresistive sensor 101 is generally used, these are connected in parallel, so that one of them detects a weight large enough for the microcontroller to activate the capacitive sensor and the thermal sensor.
  • FIG. 3 shows the positions where the piezoresistive force sensors can be located.
  • Figure 4 shows the results obtained from Rs values with a piezoresistive sensor, type FlexiForce A201-100, in three different positions. In all of them it can be seen that a seated person produces a significant change in the resistance of the sensor, greater than a factor of 2.6. The use of several sensors connected in parallel increases the magnitude of these changes.
  • the capacitive sensor systems 102 and thermal sensors 103 are activated.
  • the capacitive sensors 102 are two conductive adhesive tapes, which can be arranged in different shapes and positions, as shown in Figure 5, also on the seat platform, as well as on the material covering it, see Figure 6, or external elements such as a seat cover, Figure 7, or a simple cushion, Figure 8.
  • the temperature sensors 103 can also be placed at different points of the seat base or external elements.
  • a first thermal sensor is located outside the contact area between the object / person and the seat, and measures the temperature at which the seat is at all times, which will be taken as a reference measure with respect to which they will be studied temperature changes
  • the rest of the measuring thermal sensors 103 one or generally more sensors, are arranged in different positions of the seat, in positions close to the surface that come into contact with a person when sitting.
  • Figure 9 shows an example of a possible arrangement using seven sensors, one reference (1) and six measuring the temperature of the seat surface (2) to (7).
  • a possible conditioning circuit 104 for capacitive sensors is a direct interface (F. Reverter, R. Pallas-Areny, Direct sensor-to-microcontroller interface circuits, Editorial Marcombo, Barcelona, 2005), or also a transfer circuit of load (J. Gaitán-Pitré, M. Gasulla, R. Pallás-Areny, "Analysis of a direct interface circuit for capacitive sensors". IEEE Transactions on Instrumentation and Measurement, Vol. 58, pp. 2931-2937, 2009).
  • Figure 10 the results of the electrical capacities measured for different arrangements of the two electrodes that form the capacitive sensor 102 are shown, in the absence or presence of a person sitting in a folding seat.
  • Figures 12 and 13 show the temperature changes caused by a person sitting in the seat:
  • Figure 12 shows the increase in the signal of a temperature measuring sensor S2 103, with respect to the reference sensor S1; it is evident that after 15-20 minutes almost a peak is reached in the temperature increase, from which the signal falls sharply when the passenger gets up from the seat.
  • Fig. 13 the changes in the temporal evolution of the temperature measured by the sensors placed in the positions indicated in Fig. 9 are observed.
  • a different signal sensitivity is observed depending on the position occupied by the sensors, being the more sensitive is the one in position S2, upper left position that shows the passenger's movement to this side. It is also evident that after 5-20 minutes almost a peak is reached in the temperature increase, from which the signal falls sharply when the passenger gets up from the seat.
  • Figure 14 shows the temporal evolution of the temperature before the intermittent occupation of a seat for one of the most sensitive detectors S4.
  • the lack of sensitivity of the temperature sensor 103 is evidenced when there is an intermittent occupation due to the inertia caused by the residual heat after the passenger gets up.
  • the sensors 103 used have been type J thermocouples, but any other type of sensor could be used.
  • the use, for example, of resistive sensors such as RTDs or thermistors would allow direct interface circuits between sensor 103 and microcontroller 105 to be applied, simplifying the conditioning circuit 104.
  • the temporal evolution depends on the volume of the person, the clothes he wears, the sensor position 103 and ambient temperature. For an ambient temperature of 20 ° C there are temperature increases of more than 5 ° C depending on the measurement position. The temperature measured in points of the seat under the body takes up to 20 minutes to stabilize, so this method is not practical to be used independently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Seats For Vehicles (AREA)
  • Chair Legs, Seat Parts, And Backrests (AREA)

Abstract

Se trata de tres sistemas sensores distintos. Se mide sobre el asiento: cambio de peso mediante un sensor de fuerza, los cambios volumétricos del campo eléctrico mediante la medida de capacidad eléctrica; y finalmente se mide la evolución temporal de los cambios de temperatura en las superficies del asiento. La medida del cambio de peso se utiliza como evento para iniciar las otras dos medidas, lo cual permite una monitorización continua con un mínimo consumo eléctrico. Los datos de cada sensor individual pueden ser procesados en tiempo real con un microcontrolador y ser registrados, mostrados o enviados a otro procesador para ser tratados individualmente o conjuntamente con la medida de otros parámetros. El método puede ser aplicado en cualquier tipo de asiento por cuanto el aparato puede ser incorporado en la estructura del asiento, debajo de su tapicería, o puede estar incorporado en una funda protectora o un cojín externos.

Description

MÉTODO Y APARATO PARA DETECCIÓN CONTINUA DE OCUPACIÓN DE ASIENTOS POR USO CONJUNTO DE SENSORES DE PESO, CAPACITIVOS Y TÉRMICOS
SECTOR DE LA TÉCNICA
La presente invención se refiere en general a los aparatos para la determinación física de las condiciones existentes en un asiento, aplicable por ejemplo en los vehículos automotores, y más en particular, a un aparato y un método de detección continua de la ocupación de asientos a través de la medida conjunta de un cambio de peso, de un cambio en el campo eléctrico y de la evolución de la temperatura en el asiento.
OBJETO
El objeto de la presente invención es desarrollar una combinación de diferentes instrumentos para la detección continua de la ocupación de cualquier tipo de asiento, aplicable en los vehículos automotores, basado en los instrumentos de medida de cambio de peso, capacidad eléctrica o cambio en el campo eléctrico, y evolución de la temperatura del asiento; concibiendo dicho aparato como una combinación de un número finito de sensores de peso de alta impedancia; un número finito de sensores de temperatura; y dos o más tiras de material conductor o elementos metálicos, que pueden formar parte o no de la estructura del asiento, así como su situación en la estructura del asiento, bajo su tapicería, o en una funda o cojín dispuestos sobre el asiento.
Un segundo objeto es desarrollar un aparato basado en dicha combinación de diferentes instrumentos de cambio de peso, capacidad eléctrica o cambio en el campo eléctrico, y evolución de la temperatura que implemente, con una máxima autonomía y un mínimo coste, dichos tres sistemas sensores y procese sus medidas, registrando, mostrando y/o transmitiendo la información a otros sistemas digitales.
Un tercer objeto de la presente invención es desarrollar, basado en dicho aparato anterior, un método de detección continua de la ocupación de cualquier tipo de asiento, capaz de funcionar en diferentes variantes de operación para la medida de dichos tres parámetros de peso, capacidad eléctrica y temperaturas.
ANTECEDENTES DE LA INVENCIÓN
Los métodos propuestos en el estado de la técnica para detectar la ocupación de asientos son numerosos. En un primer grupo están los métodos basados en detectar la interferencia o reflexión que sufre una onda emitida hacia el asiento. Según la frecuencia a la que se trabaje, hay sistemas basados en radiación infrarroja (documento CN200997157, "Seat monitor" de Chuan Wan, Chuansheng Wu, Chenying Chi, Zuoqi Xu), infrarroja o microondas/radar (documento DE19812745, "System for identifying occupancy of seat in vehicle" de Funkier Wolfgang), y ultrasonidos (R. Seip, B. Adamcyzyk, D. Rundell "Use of ultrasound in automotive interior occupancy sensing: optimum frequency, beamwidth, and SNR from empirical data", IEEE Proceedings of the Ultrasonics Symposium, Nevada, USA, pp.749-752, octubre 1999). La imposibilidad que tienen estos sistemas de diferenciar en algunos casos entre personas y animales, o entre personas y objetos, limita mucho su uso. Una alternativa son los sistemas basados en el uso de vídeo y el posterior procesado de las imágenes capturadas (documento US2003007072, "Method and device for detecting seat occupancy by means of a video sensor system and foot room system" de Bernhard Mattes, Hans-Peter Lang, Pascal Kocher), pero por su elevado coste es un diseño difícilmente asumible en aplicaciones de bajo o medio coste. Todos estos sistemas quedan además limitados por la necesidad de ubicar un sistema de emisión y recepción fuera de la estructura del asiento y enfocado hacia él, cosa que en muchas aplicaciones o es imposible, o encarece aún más el coste del sistema.
En un segundo grupo están aquellos sistemas que pueden ser incorporados en la estructura del asiento o en un elemento auxiliar colocado sobre él (Documento US7457695 "Portable, self-contained vehicle seat occupancy alert device" de Marvin Fields and Lisha Fields). Los métodos utilizados en estos sistemas de detección son: Sensores mecánicos, basados en la medida del peso (documento EP1683677, "Détecteur d'occupation d'un siége et véhicule equipé d'un tel détecteur " de Laurent Certin, Stephane Berthet, Benedicte Sol), la presión, la fuerza o la aceleración (documento US5915281 ''Silicon forcé and displacement sensor" de Douglas Ray Sparks), que mediante medidas puntuales o distribuidas en todo el asiento detectan la presencia de un objeto encima suyo y alguna de sus características. Las medidas con estos sensores difícilmente pueden distinguir entre personas y objetos suficientemente pesados.
Sensores capacitivos, basados en la medida de los cambios de campo eléctrico ocasionados por la presencia de una persona. Se han estudiado numerosas dimensiones y configuraciones de los electrodos para detectar la presencia de una persona y también para poder discriminar entre adultos y niños (B. George, H. Zangl, T. Bretterklieber, G. Brasseur, "Seat occupancy detection based on capacitive sensing" IEEE Transactions on Instrumentation and Measurement, Vol. 58, pp. 1487-1494, 2009), e incluso determinar la posición de la persona en el asiento. Su principal limitación es que objetos grandes con agua u otros elementos conductores puede que sean detectados como si fueran una persona.
El uso de un sistema de medida de temperatura para detectar la ocupación de asientos no ha sido planteado hasta ahora. La temperatura siempre ha sido considerada una interferencia en otros sistemas de medida que debe ser corregida o compensada. Por ejemplo, en la patente FR2863704 {"Measurement signal processing method for characterizing seat occupancy state involves correcting measurement signal, from detection layer placed in seat, based on environment derivatives related to temperature and humidity" de Herve Dirand, Yann Rogard, Laurent Chabert, Bertrand Billón, Frederic Fays, Eric Rochat), se presenta el efecto de los cambios de temperatura y humedad ambiente en sensores capacitivos y diferentes métodos para compensarlos.
Una solución para solventar las limitaciones de los diferentes sistemas desarrollados para detectar la ocupación de un asiento es usar simultáneamente sensores de varios tipos distintos. En Philip W. Kithil, "Capacitive Occupant Sensing" Occupant detection and sensing for smarter air bag systems. PT-107. Society of Automotive Engineers, Inc, pp. 185-190, 2004 se recomienda el uso de un sensor capacitivo conjuntamente con un sistema de infrarrojos, ultrasonidos, radar o peso. En el documento MX9604777 ("Automotive occupant sensor system and method of operation by sensor fusión" de Anthony P. Corrado, Stephen W. Decker, Paul K. Benbow) se presenta el uso conjunto de un sistema de infrarrojos y un sistema de ultrasonidos; y en US6445988 ("System for determining the occupancy state of a seat in a vehicle and controlling a component based thereon" de David S. Bread, Willbur E. Duvall, Wendell C. Johnson, Jeffrey L. Morin, Kunhong Xu, Michael E. Kussul) se reivindica el uso de múltiples sistemas sensores: de peso, inductivos, capacitivos, de movimiento, electromagnéticos, de ultrasonidos, infrarrojos y de radar por microondas, combinados mediante un procesado basados en redes neuronales para detectar y clasificar la ocupación de asientos. Como puede apreciarse en esta última patente, aunque se presenta el uso de hasta ocho métodos sensores diferentes, no se contempla el uso de sensores de temperatura para detectar la ocupación de un asiento por una persona. Por otro lado, el empleo de un número elevado de sensores tan complejos carece de posibilidad de implementación en aplicaciones de mediano y bajo costo. De hecho, no parece haber comunicación alguna sobre el uso de sensores de temperatura para detectar la ocupación de asientos.
Menos aún, en el estado de la técnica tampoco existe información sobre aparatos y métodos sencillos y viables económicamente de instrumentos para la determinación de la ocupación de asientos en general y en vehículos automotores en particular, que proporcionen la información de una forma fiable.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Se han desarrollado un aparato y un método nuevos para detectar continuamente la ocupación de asientos mediante el uso conjunto de tres sistemas sensores: de peso, capacitivo y térmico. Su uso conjunto solventa las limitaciones inherentes a los actuales métodos existentes en el estado de la técnica al usar cada uno de ellos por separado. Más aún, su uso resulta totalmente viable en los vehículos actuales por la sencillez de su concepción y fiabilidad de los resultados.
El aparato desarrollado se basa en un controlador digital al cual están conectados dichos tres sistemas sensores de peso, capacitivo y térmico, mediante las interfaces electrónicas correspondientes, un circuito de comunicación transceptor o modem, y un sistema de alimentación que suministra energía a los diferentes subsistemas. En la presente invención, tanto el controlador como el transceptor/módem están normalmente en estado de espera, con un consumo muy bajo, hasta que el primer sistema sensor detecta la presencia de una persona u objeto.
Dicho primer sistema sensor se basa en la detección de un cambio de peso, por ejemplo mediante una pluralidad de sensores piezorresistivos. Algunos de estos sensores están basados en polímeros conductores que tienen una resistencia eléctrica en vacío muy elevada, y su valor se reduce en varios órdenes de magnitud cuando son sometidos a una carga mecánica, esto es, el peso de un pasajero. Por ejemplo, hay modelos cuya resistencia en vacío es superior a 20 ΜΩ, la cual se reduce por un factor superior a 300 al aplicarles un peso de 30 kg. Ese valor tan elevado de resistencia en vacío permite tenerlos en funcionamiento garantizando un consumo muy reducido (inferior a 1 μΑ). Los sensores se pueden situar en cualquier punto de la estructura del asiento donde se ejerza una fuerza al sentarse, o en cualquier elemento externo apto para decorar, proteger u obtener una mayor comodidad (funda o cojín), lo que los hace muy versátiles y adecuados para su aplicación en vehículos automotores. En cuanto se detecta un cambio debido a la acción de un peso sobre el asiento, el controlador pone en marcha los otros dos sistemas sensores: capacitivo y térmico, para evaluar si el peso es debido a una persona u a otro tipo de objeto. El umbral de detección para el peso se puede ajustar según el uso previsto para el asiento, por ejemplo incluso para sillas infantiles para automóviles.
El segundo sensor utilizado es de tipo capacitivo. Mediante dos elementos conductores tales como dos cintas metálicas debajo de la tapicería del asiento o en una funda o cojín externos, se crea un campo eléctrico volumétrico cuyo valor cambiará con la presencia de una persona. Estos cambios pueden permitir la diferenciación entre adultos y niños, y son suficientemente grandes para no depender excesivamente de las diferentes posiciones que puede adoptar una persona al sentarse. Sin embargo, objetos de gran tamaño que contengan elementos conductores pueden provocar cambios en el campo eléctrico similares a los debidos a una persona. Por ejemplo, un recipiente grande de agua sobre el asiento, aunque tales situaciones son fácilmente previsibles. De ahí que su uso demanda el empleo complementario de otros sensores.
Para solventar este problema, y aumentar así la fiabilidad del detector, en la presente invención se usa un tercer sistema sensor basado en medir la evolución temporal de la temperatura de la superficie del asiento. Para que un objeto caliente esta superficie, debe tener una fuente de energía interna, que en el caso de las personas es su metabolismo. La evolución temporal de la temperatura del asiento depende también de la indumentaria de la persona y de un posible sistema de calefacción incorporado en el asiento; pero mediante un umbral de diferenciación respecto a una temperatura de referencia y el estudio de la pendiente de la evolución temporal, es posible identificar la presencia de una persona sentada. El dilatado tiempo de respuesta de esta evolución térmica dificulta su uso como único sensor para detectar la ocupación del asiento.
En asientos incorporados por ejemplo en vehículos, la información del sistema de detección, que puede ser transmitida por cable o sin hilos a otro sistema digital, puede complementarse con los datos adquiridos por otros sistemas de medida del vehículo. Por ejemplo, si en un coche que circula con una determinada velocidad se detectan tres personas, el único hecho que podría acaecer mientras se mantenga la marcha es que las personas cambiaran de asiento, por lo que el número global de personas sólo podrá volver a cambiar después de que el vehículo se haya detenido. La incorporación de estos datos en el sistema global permite reducir el número o la frecuencia de las medidas y por tanto el consumo de energía del sistema. BREVE DESCRIPCIÓN DE LOS DIBUJOS
Se describe a continuación una realización preferente de la invención de acuerdo con las figuras que se acompañan, en las cuales:
La Fig. 1 muestra la arquitectura del aparato para la detección continua de ocupación de asientos.
La Fig. 2 muestra la pluralidad de sensores de medida de peso 101 basada en un número finito (n) de sensores de fuerza piezorresistivos de alta impedancia.
La Fig. 3 muestra diferentes posiciones posibles de los sensores de fuerza piezorresistivos. La Fig. 4 muestra valores de Rs en función de la posición del sensor de fuerza piezorresistivo.
La Fig. 5 muestra diferentes formas y posiciones en las que pueden ubicarse en el asiento dos tiras metálicas que conformen los sensores capacitivos 102.
La Fig. 6 muestra posiciones en las que pueden colocarse en la plataforma del asiento dos tiras metálicas que conforman el sensor capacitivo 102.
La Fig. 7 muestra posiciones en las que el sensor capacitivo 102 puede colocarse en elementos externos tales como una funda de asiento.
La Fig. 8 muestra posiciones en las que el sensor capacitivo 102 puede colocarse en un simple cojín.
La Fig. 9 muestra un ejemplo de una posible disposición de sensores de temperatura 103 utilizando siete sensores, uno de referencia (1) y seis de medida de la temperatura de la superficie del asiento (2) a (7). La Fig. 10 muestra resultados de las capacidades medidas para diferentes disposiciones de los electrodos que conforman el sensor capacitivo 102, en ausencia o presencia de una persona sentada en un asiento abatible. La Fig. 11 muestra variaciones de capacidades eléctricas medidas con el movimiento del usuario en el asiento o el uso de aparatos de comunicación que pudieran crear interferencias. La Fig. 12 muestra una evolución temporal del cambio de temperatura en la superficie del asiento debido a su ocupación por una persona.
La Fig. 13 muestra cambios en la evolución temporal de la temperatura medida por los sensores colocados en las posiciones indicadas en la Fig. 9.
La Fig. 14 muestra la evolución temporal de la temperatura ante la ocupación intermitente de un asiento.
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERENTE
La Figura 1 muestra la arquitectura del sistema propuesto que consta de los sensores de medida de peso 101 , sensores capacitivos 102 y de temperatura 103, que son conectados al microcontrolador 105 a través de los circuitos de acondicionamiento 104. El microcontrolador 105 transmite la información directamente a un sistema de visualización 106, o a otro elemento digital externo a través de los sistemas de comunicación con cable i/o inalámbrica 107. El sistema de alimentación 108 está conectado al microcontrolador 105, a los sistemas de comunicación 107 y a los sistemas sensores 101 , 102 y 103, y a sus circuitos de acondicionamiento 104. Si la autonomía del sistema lo requiere, los sensores 101 , 102 y 103, y sus circuitos de acondicionamiento 104, pueden alimentarse directamente de un puerto digital del microcontrolador 105. Para obtener una mayor eficiencia energética, tanto el microcontrolador como los sistemas de comunicación 107 y los sistemas sensores capacitivos 102 y térmicos 103 se encontrarán, por defecto, en un estado de bajo consumo. Estará pues activado únicamente el sistema sensor de peso 101.
De la Figura 2 se aprecia el sistema de sensores de medida de peso 101 que se basa en el uso de una pluralidad, un número finito (n) de sensores de fuerza piezorresistivos de alta impedancia, colocados debajo de la tapicería del asiento, en su soporte, en una funda o en un cojín, y conectados en paralelo en un circuito divisor de tensión. La salida de este circuito se conecta a una entrada analógica del microcontrolador 105 i/o al circuito de interrupción de un puerto digital (no se muestra). Dicha pluralidad de sensores de peso consta de uno o varios sensores piezorresistivos 101 cuyo circuito de interfaz es un divisor de tensión, donde el resistor Rs se elige para ajustar el umbral de detección de peso (Figura 2). El valor de Rs es alto (1 ΜΩ) para que cuando el sensor piezorresistivo tenga un valor bajo, el consumo del sistema no aumente demasiado. La salida del divisor de tensión se conecta a una entrada de interrupciones externas del microcontrolador 105 y a la entrada de un convertidor analógico digital (no se muestra). Un cambio en la señal de la interrupción externa activará los otros dos sistemas sensores de medida. La entrada analógica permite obtener una primera estimación del peso del objeto que ocupa el asiento. Si se utiliza, generalmente, más de un sensor piezorresistivo 101 , éstos se conectan en paralelo, de modo que basta que uno de ellos detecte un peso lo suficientemente grande para que el microcontrolador active el sensor capacitivo y el sensor térmico.
Son diferentes las posiciones donde pueden ubicarse los sensores de fuerza piezorresistivos, véase la Figura 3: tanto encima o debajo de la espuma del asiento, así como en su estructura mecánica. La Figura 4 muestra los resultados obtenidos de valores de Rs con un sensor piezorresistivo, tipo FlexiForce A201-100, en tres posiciones diferentes. En todos ellos se aprecia que una persona sentada produce un cambio significativo en la resistencia del sensor, superior a un factor de 2,6. El uso de varios sensores conectados en paralelo aumenta la magnitud de estos cambios.
Una vez detectada la presencia de un objeto en el asiento se activan los sistemas sensores capacitivos 102 y térmicos 103.
Los sensores capacitivos 102 son dos cintas adhesivas conductoras, que pueden disponerse en formas y posiciones diferentes, como se muestran en la Figura 5, igualmente sobre la plataforma del asiento, así como sobre el material que la cubre, véase la Figura 6, o en elementos externos tales como una funda de asiento, Figura 7, o un simple cojín, Figura 8.
Los sensores de temperatura 103 también pueden colocarse en distintos puntos de la base del asiento o en elementos externos. Un primer sensor térmico se sitúa fuera de la zona de contacto entre el objeto/persona y el asiento, y mide la temperatura a la que se encuentra en todo momento el asiento, la que se tomará como medida de referencia respecto a la que se estudiarán los cambios de temperatura. El resto de sensores térmicos de medida 103, uno o generalmente más sensores, se disponen en diferentes posiciones del asiento, en posiciones próximas a la superficie que entre en contacto con una persona al sentarse. En la figura 9 se presenta un ejemplo de una posible disposición utilizando siete sensores, uno de referencia (1) y seis de medida de la temperatura de la superficie del asiento (2) a (7).
Un posible circuito de acondicionamiento 104 para los sensores capacitivos es una ¡nterfaz directa (F. Reverter, R.Pallás-Areny, Direct sensor-to- microcontroller interface circuits, Editorial Marcombo, Barcelona, 2005), o también un circuito de transferencia de carga (J. Gaitán-Pitré, M. Gasulla, R. Pallás-Areny, "Analysis of a direct interface circuit for capacitive sensors". IEEE Transactions on Instrumentation and Measurement, Vol. 58, pp. 2931-2937, 2009). En la Figura 10, se muestran los resultados de las capacidades eléctricas medidas para diferentes disposiciones de los dos electrodos que forman el sensor capacitivo 102, en ausencia o presencia de una persona sentada en un asiento abatible. Los cambios, superiores a un factor de 1 ,5, validan la capacidad de detección para distintas posturas del cuerpo. Además, estos cambios no sufren grandes variaciones con el movimiento del usuario en el asiento o el uso de aparatos de comunicación que pudieran crear interferencias, véase la Figura 11. Objetos, como ordenadores portátiles o cajas de herramientas, son también diferenciales. Sin embargo objetos mayores con alto contenido de agua podrían proporcionar detecciones positivas falsas.
Las Figuras 12 y 13 muestran los cambios de temperatura ocasionados por una persona sentada en el asiento: En la Figura 12 se aprecia el aumento de la señal de un sensor S2 de medida de temperatura 103, respecto al sensor de referencia S1 ; se evidencia que después de los 15-20 minutos se alcanza casi una cima en el aumento de temperatura, de la cual la señal cae en forma brusca cuando el pasajero se levanta del asiento.
En la Fig. 13 se aprecia los cambios en la evolución temporal de la temperatura medida por lós sensores colocados en las posiciones indicadas en la Fig. 9. Se constata una diferente sensibilidad de la señal dependiendo de la posición que ocupan los sensores, siendo el más sensible el que se encuentra en la posición S2, posición superior izquierda que evidencia el desplazamiento del pasajero hacia este lado. Igualmente se evidencia que después de los 5-20 minutos se alcanza casi una cima en el aumento de temperatura, de la cual la señal cae en forma brusca cuando el pasajero se levanta del asiento.
En la Figura 14 se expone la evolución temporal de la temperatura ante la ocupación intermitente de un asiento para uno de los detectores más sensibles S4. Se evidencia la falta de sensibilidad del sensor de temperatura 103 cuando existe una ocupación intermitente debido a la inercia causada por el calor residual luego de levantarse el pasajero.
Los sensores 103 utilizados han sido termopares de tipo J, pero podría utilizarse cualquier otro tipo de sensor. El uso, por ejemplo, de sensores resistivos como las RTD o termistores permitirían aplicar circuitos de interfaz directa entre sensor 103 y microcontrolador 105, simplificando el circuito de acondicionamiento 104. La evolución temporal depende del volumen de la persona, la ropa que lleva, la posición del sensor 103 y la temperatura ambiente. Para una temperatura ambiente de 20 °C se producen incrementos de temperatura de más de 5 °C según la posición de medida. La temperatura medida en puntos del asiento debajo del cuerpo tarda hasta 20 minutos en estabilizarse, por lo que este método no es práctico para ser utilizado de forma independiente. Además, como regla para decidir la ocupación o no de un asiento, no se puede utilizar la comparación con un umbral fijo porque situaciones tales como la ocupación intermitente del asiento podrían producir falsos positivos, según muestra la Figura 14. Un algoritmo basado en el valor instantáneo de la temperatura y su derivada permite, en cambio, detectar la ocupación, pues cuando hay una persona sentada, la derivada es positiva o nula. Una derivada negativa durante un tiempo prolongado indica que la persona se ha levantado del asiento.

Claims

REIVINDICACIONES
1. Un aparato para la detección continua de ocupación de asientos caracterizado porque consta de una pluralidad de sensores de fuerza para medir el peso (101 ), un sensor capacitivo (102), una pluralidad de sensores de temperatura (103), circuitos de acondicionamiento (104), microcontrolador (105), medio de visualización (106), un circuito de comunicación transceptor o modem (107) y un sistema de alimentación (108).
2.- El aparato para la detección continua de ocupación de asientos según la reivindicación 1 caracterizado porque dicha pluralidad de sensores de fuerza para medir el peso (101 ), dicho sensor capacitivo (102), y dicha pluralidad de sensores de temperatura (103) pueden ser incorporado a la estructura del asiento, debajo de su tapicería, o a una funda protectora o cojín externos.
3. - El aparato para la detección continua de ocupación de asientos según la reivindicación 1 caracterizado porque dicha pluralidad de sensores de fuerza para medir el peso (101 ) se basa en un número finito (n) de sensores piezorresistivos de alta impedancia, los que se pueden colocar debajo de la tapicería del asiento, en su soporte, en una funda o en un cojín, y se pueden conectar en paralelo en un circuito divisor de tensión donde el resistor Rs se elige según el umbral de detección de peso.
4. - El aparato para la detección continua de ocupación de asientos según la reivindicación 1 caracterizado porque dicho sensor capacitivo (102) detecta valores de un volumen de agua dentro de los límites de medidas de la capacidad eléctrica correspondiente a la de un cuerpo humano.
5. - El aparato para la detección continua de ocupación de asientos según la reivindicación 1 , caracterizado porque dicha pluralidad de sensores de temperatura (103) se pueden colocar en distintos puntos de la base del asiento o en elementos externos, en donde un primer sensor térmico de referencia (103) se sitúa fuera de la zona de contacto entre el objeto/persona y el asiento, y mide la temperatura de dicho asiento; y porque una pluralidad de sensores térmicos de medida (103) se disponen en diferentes posiciones próximas a la superficie en contacto con una persona sentada.
6. - Un método para la detección continua de ocupación de asientos caracterizado porque dicha pluralidad de sensores de peso (101) en una variante pone en marcha conjunta dicho sensor capacitivo (102) y dicha pluralidad de sensores de temperatura (103).
7. - El método para la detección continua de ocupación de asientos según la reivindicación 6, en el que dicha pluralidad de sensores de peso (101) en una variante alternativa pone en marcha solamente dicho sensor capacitivo (102) y mantiene inactiva dicha pluralidad de sensores de temperatura (103).
PCT/ES2011/000045 2010-02-23 2011-02-23 Método y aparato para detección continua de ocupación de asientos por uso conjunto de sensores de peso, capacitivos y térmicos WO2011104399A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201000255 2010-02-23
ES201000255A ES2387442B1 (es) 2010-02-23 2010-02-23 Metodo y aparato para deteccion continua de ocupacion de asientos por uso conjunto de sensores de peso, capacitivos y termicos

Publications (1)

Publication Number Publication Date
WO2011104399A1 true WO2011104399A1 (es) 2011-09-01

Family

ID=44506147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000045 WO2011104399A1 (es) 2010-02-23 2011-02-23 Método y aparato para detección continua de ocupación de asientos por uso conjunto de sensores de peso, capacitivos y térmicos

Country Status (2)

Country Link
ES (1) ES2387442B1 (es)
WO (1) WO2011104399A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106094A1 (fr) * 2020-01-15 2021-07-16 Faurecia Sièges d'Automobile Siege de vehicule avec systeme de surveillance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10739184B2 (en) * 2017-06-30 2020-08-11 Tesla, Inc. Vehicle occupant classification systems and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6490515B1 (en) * 1999-01-27 2002-12-03 The Furukawa Electric Co., Ltd. Passenger detecting apparatus
US20060267321A1 (en) * 2005-05-27 2006-11-30 Loadstar Sensors, Inc. On-board vehicle seat capacitive force sensing device and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6490515B1 (en) * 1999-01-27 2002-12-03 The Furukawa Electric Co., Ltd. Passenger detecting apparatus
US20060267321A1 (en) * 2005-05-27 2006-11-30 Loadstar Sensors, Inc. On-board vehicle seat capacitive force sensing device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106094A1 (fr) * 2020-01-15 2021-07-16 Faurecia Sièges d'Automobile Siege de vehicule avec systeme de surveillance

Also Published As

Publication number Publication date
ES2387442A1 (es) 2012-09-21
ES2387442B1 (es) 2013-08-08

Similar Documents

Publication Publication Date Title
JP6441813B2 (ja) シートバックセンサを備える乗員分類システム
KR100926213B1 (ko) 상대적인 임피던스 측정을 이용하는 차량 점유자 검출
JP5649660B2 (ja) 静電容量検出アセンブリー
JP5021594B2 (ja) エアバッグ展開制御のための多重センサビークル搭乗者検出システム及び方法
US9067518B2 (en) Heating system
US10053052B2 (en) Biological object detector, vehicle seat occupancy detector, and seat belt non-wearing warning system
CN109689441B (zh) 乘员检测和分类系统
US10131249B2 (en) Capacitive seat occupancy detection system operable at wet conditions
JP2013516603A5 (es)
JP2016524161A (ja) おむつ内の尿の量を測定し、存在する大便を検出するためのシステム
JP2013516347A5 (es)
WO2012113795A1 (en) Heating element operated as capacitive sensing electrode
US20130027065A1 (en) Occupant detection and classification system
US9132758B2 (en) Heater and heating system
JP6468398B2 (ja) 深部体温計
JP2016504227A (ja) 乗員検出及び分類システム
Ranjan et al. A child-left-behind warning system based on capacitive sensing principle
WO2011104399A1 (es) Método y aparato para detección continua de ocupación de asientos por uso conjunto de sensores de peso, capacitivos y térmicos
US9566927B2 (en) System and method for detecting heat emitting objects
JP2006518033A (ja) 特に車内用の容量検出システム
KR20170069423A (ko) 낙상경보기능 휠체어
US20180319365A1 (en) Optimized electrode shape for capacitive occupant classification system
ES2831499T3 (es) Sensor de presión
KR20190081322A (ko) 차량용 인체 감지 시스템
JP2004077315A (ja) 静電容量センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11746892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11746892

Country of ref document: EP

Kind code of ref document: A1