WO2011104040A1 - Vorrichtung und verfahren zum kalibrieren eines streulichtmessgerätes - Google Patents

Vorrichtung und verfahren zum kalibrieren eines streulichtmessgerätes Download PDF

Info

Publication number
WO2011104040A1
WO2011104040A1 PCT/EP2011/050032 EP2011050032W WO2011104040A1 WO 2011104040 A1 WO2011104040 A1 WO 2011104040A1 EP 2011050032 W EP2011050032 W EP 2011050032W WO 2011104040 A1 WO2011104040 A1 WO 2011104040A1
Authority
WO
WIPO (PCT)
Prior art keywords
scattered light
scattering body
light
scattering
calibration
Prior art date
Application number
PCT/EP2011/050032
Other languages
English (en)
French (fr)
Inventor
Karl Stengel
Gerhard Haaga
Michael Neuendorf
Raymond Sieg
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US13/581,271 priority Critical patent/US8937718B2/en
Priority to BR112012021290A priority patent/BR112012021290A2/pt
Priority to EP11701770A priority patent/EP2539690A1/de
Priority to CN2011800111333A priority patent/CN102762974A/zh
Publication of WO2011104040A1 publication Critical patent/WO2011104040A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4785Standardising light scatter apparatus; Standards therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke

Definitions

  • the invention relates to a device and a method for calibrating a scattered light measuring device, as used for measuring particle concentrations in automotive exhaust gases.
  • a bright light source such as a laser used, the light radiates into a measuring chamber through which the colloid to be measured is passed. At least one light sensor is present which detects light scattered from particles present in the colloid. In order to check the correct functioning of such a scattered light measuring device and to calibrate the device, it is necessary to set a defined state in the measuring chamber, in which the incident light is scattered in a defined and known manner. Stray light gauges used for official measurements are subject to mandatory calibration, which further increases the need for accurate measurement results with high reliability.
  • a calibration device according to the invention for calibrating a scattered light measuring device which is designed to measure a particle concentration in motor vehicle exhaust gases, has at least one scattering body.
  • the scattering body is a number of scattering centers, which are arranged such that the scattering body at a defined irradiation with light emits a scattered light pattern with a predetermined intensity and distribution by the scattering body.
  • a scattering body having such a defined arrangement of scattering centers With a scattering body having such a defined arrangement of scattering centers, a defined scattered light pattern can be generated easily and quickly in the measuring chamber. In comparison to the use of a calibration gas or conventional calibration devices, e.g. Having reflective planes, such a scattering body is easier to handle, better produced with reproducible properties and the required accuracy. Also, such a scattering body is subject to neither consumption nor wear during calibration.
  • the invention also includes a scattered light measuring device for measuring a particle concentration in motor vehicle exhaust gases with a scattered light measuring chamber, at least one light source and at least one scattered light sensor, wherein the measuring chamber has at least one receiving device, which is designed to receive a calibration device according to the invention.
  • a scattered light measuring device for measuring a particle concentration in motor vehicle exhaust gases with a scattered light measuring chamber, at least one light source and at least one scattered light sensor, wherein the measuring chamber has at least one receiving device, which is designed to receive a calibration device according to the invention.
  • the invention also includes a method for calibrating a scattered light measuring device for measuring the particle concentration in motor vehicle exhaust gases with a scattered light measuring chamber, at least one light source and at least one scattered light sensor, wherein the method comprises, to introduce a calibration device according to the invention in a defined position in the scattered light measuring chamber, the calibration device with light the light source to illuminate, scattered by the calibration device scattered light (scattered light) with the light sensor and to compare the signal output from the light sensor with a predetermined reference value.
  • Such a method makes it possible to calibrate a scattered light meter in a particularly simple and reliable manner with high accuracy.
  • the use of special calibration gases, which can be laborious to store and handle are and in which the particle concentration of external parameters, such as the pressure and / or the temperature is dependent omitted.
  • the scattering body has a transparent carrier material, in which the scattering centers are arranged in the transparent carrier material.
  • the scattering centers can be arranged particularly well in a defined structure in order to generate a defined scattered light pattern upon irradiation with light.
  • the scattering centers can be formed, for example, as crystallites within the carrier material.
  • the scattering centers have a defined size and / or are arranged at defined mutual distances within the scattering body. In one embodiment, the scattering centers within the scattering body are arranged in an ordered structure, for example in a regular grid structure. A scattering body, in which the scattering centers are arranged in an ordered structure, has a particularly well-defined scattering behavior.
  • the carrier material contains a glass ceramic.
  • Glass-ceramic is a particularly suitable carrier material because it has high transparency, high strength and low thermal expansion. With a high transparency of the carrier material, the calibration can be carried out even at low light intensities. By a high strength and a low thermal expansion, a change in the intensity distribution of the scattered light pattern by external influences, in particular mechanical influences and / or temperature changes, avoided or at least reduced, so that the calibration can always be performed independently of external influences with high accuracy.
  • the scattering body has a tinted layer or an additional gray glass filter on at least one surface.
  • a tinted layer arranged on a surface or the gray glass filter, the intensity of the scattered light can be adjusted as required.
  • the calibration can be carried out at different light intensities. As a result, the calibration can be carried out over a wide intensity range, so that the measuring device can be operated over a wide intensity range with high accuracy.
  • the calibration device has at least one holder for receiving the scattering body. By a holder, the scattering body can be attached to the calibration device in a particularly simple and possibly replaceable manner.
  • the receiving device is designed such that the scattering body is arranged in a defined position within the measuring chamber when a calibration device is received in the receiving device.
  • a recording device ensures that the calibration device is located in a defined position within the measuring chamber during the calibration and generates a defined scattered light distribution when irradiated by a light source. Calibration can be done easily and with high accuracy. The position of the calibration device does not have to be laboriously adjusted before each calibration procedure, and errors in the calibration which can be caused by an incorrectly arranged scattering element are avoided.
  • the calibration device can be locked in the receiving device. Locking ensures that the calibration device retains its defined position during calibration and emits scattered light with a defined intensity distribution when irradiated. A faulty calibration caused by a misplaced calibration device can thus be reliably avoided.
  • the invention also encompasses the use of a scattering body which contains a number of scattering centers with a defined size and a defined mutual distance, so that the scattering body emits scattered light with a predetermined intensity and distribution at a defined irradiation by a light source, for calibration of a scattered light measuring apparatus, which is designed to measure a particle concentration in automotive exhaust gases or other colloids.
  • Figure 1 shows schematically the structure of a scattered light measuring device
  • FIG. 2 schematically shows the structure of a calibration device according to the invention
  • FIG. 3 schematically shows the construction and the function of a scattering body according to a first exemplary embodiment
  • Figure 4 schematically shows the structure and the function of a scattering body according to a second embodiment.
  • Figure 5 schematically shows the structure and function of a scattering body according to a variant of the second embodiment.
  • Figure 1 shows schematically the structure of a scattered light meter for measuring a particle concentration in automotive exhaust gases or other colloids.
  • Such a scattered light measuring device has a scattered light measuring chamber 12 through which exhaust gas from a motor vehicle is guided via inlets and outlets, not shown in FIG.
  • the exhaust gas can be guided by the pressure generated by the engine of the motor vehicle, so-called exhaust back pressure, through the measuring chamber.
  • a pump not shown in FIG. 1, may additionally be provided in order to support the flow of exhaust gas through the measuring chamber 12.
  • the scattered light measuring device has at least one light source 10, which is formed, for example, as a laser.
  • the light source 10 generates in the on state, a light beam 1 1 with a defined intensity and direction within the measuring chamber 12th
  • two light sensors 8a, 8b are provided in the measuring chamber 12, which light from the light source 10, which scattered by particles which are present in the guided through the measuring chamber 12 exhaust gas stream has been detect.
  • the light source 10 and the Light sensors 8a, 8b shown for the sake of clarity outside the measuring chamber 12, although in reality they are at least partially disposed within or directly on the scattered light measuring chamber 12.
  • the light sensors 8a, 8b are preferably arranged at different angles with respect to the direction of the irradiated light beam 11, so that they detect stray light scattered at different angles.
  • the electrical signals output by the scattered light sensors 8a, 8b are supplied to one or more electronic amplifier and evaluation devices 14a, 14b, which evaluate the signals and determine and output the concentration of particles in the gas flow conducted through the measuring chamber 12.
  • the measuring chamber 12 has at least one receiving device 16 for receiving a calibration device according to the invention.
  • the receiving device 16 is formed as an opening through which a calibration device according to the invention, as described below, is inserted into the measuring chamber 12.
  • the opening of the receiving device 16 is closed by a cover 18 in order to prevent the penetration of particles and / or light from the environment into the measuring chamber 12 and a falsification of the measurement results caused thereby.
  • the calibration device 1 can be introduced into the measuring chamber 12 through one of the openings, not shown in FIG. 1, which is provided for supplying or discharging the vehicle exhaust gases. This is possible because no exhaust gases are passed through the measuring chamber 12 during the calibration process.
  • FIG. 2 shows a schematic representation of the structure of a calibration device 1 according to the invention.
  • a calibration device 1 according to the invention has a holder 3 which is designed, for example, as a cylindrical pin or (sheet) strip and to which a scattering body 2 according to the invention is attached.
  • the scattering body 2 may be glued, for example, on the holder 3, so that the position of the scattering body 2 on the holder 3 is fixed. This ensures that the scattering body 2 is always in the desired, defined position during calibration.
  • a holder not shown in FIG. 2 can be provided on the holder 3, which holder receives and fixes the scattering body 2 in a defined position.
  • the holder may be formed so that the scattering body 2 is replaceable.
  • a single holder 3 can be used with different scattering bodies 2.
  • the calibration device 1 is designed such that it can be introduced into the measuring chamber 12 formed in the opening of the receiving device 16 and locked there. If the calibration device 1 is inserted into the measuring chamber 12 and locked there, the measuring body 2 has a defined position within the measuring chamber 12 and generates a defined scattered light pattern upon irradiation with light 1 1 from the light source 10.
  • a seal not shown in FIG. 2 may be provided to seal the opening of the receiving device 16 light-tight when the calibration device 1 is arranged in the receiving device 16. This prevents the calibration from being distorted by ambient light which enters the measuring chamber 12 through the opening 16.
  • FIG. 3 shows the schematic representation of a scattering body 2 according to a first exemplary embodiment, as used in a calibration device 1 according to the invention.
  • a scattering body 2 according to the invention has a transparent carrier material 4 which preferably comprises a material with a particularly low thermal expansion. tion, such as B. is a glass ceramic material.
  • a number of scattering centers 6 is arranged, wherein the scattering centers 6 have a defined size and a defined mutual distance from each other.
  • the scattering centers 6 are arranged within the carrier material 4 in a regular grid structure, as shown schematically in FIG.
  • the scattering centers 6 may be formed in the substrate crystallites.
  • a scattering body 2 constructed in this way has defined scattering properties that are constant over a long period of time, so that it emits scattered light 20 with an intensity and spatial distribution defined by the scattering body 2 upon irradiation with light 1 1 from the light source 10.
  • the scattered light 20 generated by the scattering body 2 strikes and is detected by the scattered light sensors 8a and 8b, as shown schematically in FIG.
  • a calibration device 1 which has a scattering body 2, as shown in FIG. 3, is brought into a defined position within the measuring chamber 12 through the opening of the receiving device 16.
  • the light 1 1 generated by the light source 10 is scattered by the scattering body 2 in a defined, predetermined spatial intensity distribution and the scattered light (scattered light) 20 is detected by the scattered light sensors 8a, 8b and converted into electrical signals.
  • the electrical signals are converted by one or more evaluation devices 14a, 14b into a particle concentration.
  • the particle concentration determined by the evaluation devices 14a, 14b is compared with a defined particle concentration, which is assigned to the respective scattering body 2. If the particle concentration determined by the evaluation devices 14a, 14b deviates from the predetermined particle concentration assigned to the scattering body 2, the evaluation devices 14a, 14b are readjusted until the particle concentration determined by the evaluation devices 14a, 14b falls within the predetermined accuracy of the predetermined, the scattering body 2 corresponding particle concentration corresponds.
  • the comparison of the calculated particle concentration with the predetermined particle concentration and the adjustment of the evaluation devices 14a, 14b can be automatic or manual.
  • the calibration of the scattered light measuring instrument at different operating points can be carried out easily. As a result, a particularly accurate calibration of the scattered light measuring device can be achieved over a wide measuring range.
  • the carrier material 4 of the scattering body 2 has a particularly low thermal expansion, so that the scattering behavior of the scattering body 2 is independent of the ambient temperature in a wide temperature range.
  • the calibration can then be performed with high accuracy unlike the use of a reference gas regardless of the ambient temperature.
  • Figure 4 shows an alternative embodiment of an inventive
  • the scattering body 2 a has a carrier material 4 into which a number of scattering centers 6 are embedded.
  • the structure of the scattering body 2a corresponds to the structure of the first embodiment, as shown in FIG.
  • the scattering body 2 a has at least one tinted layer 12 or an additional gray glass filter 12 which is applied to at least one surface of the scattering body 2 a and the light passing through the coated surface of the scattering body 2 a or through the Gray glass filter enters the diffuser 2a or emerges from it, attenuates or dampens.
  • the tinted layer 12 or through the gray glass filter 12 is arranged in such a way that the scattered light 20 which emerges from the scattering body 2a is attenuated.
  • no tinted layer 12 and no gray glass filter 12 are provided on the surface of the diffuser 2a through which the light beam 1 1 enters the diffuser 2a from the light source 10.
  • the tinted layer 5b or the gray glass filter 5b is additionally also formed on the surface of the diffuser 2a, through which the light beam 1 1 enters the diffuser 2a from the light source 10.
  • the tinted layer 5b or the gray glass filter 5b may be formed exclusively on the surface of the diffuser 2a, through which the light beam 1 1 from the light source 10 enters the diffuser 2a.
  • the intensity of the entering into the scattering body 2a light 1 1 from the light source 10 and / or the intensity of the scattering body 2a emerging stray light 20 are deliberately weakened.
  • the intensity of the light source 10 is too large, such a tinted layer 5a, 5b or a gray glass filter 5a, 5b, an override or damage to the scattered light sensors 8a, 8b and / or the evaluation devices 14a, 14b avoided.
  • different intensity levels of the scattered light 20 can be set in a targeted manner, so that the calibration can be carried out at different scattered light intensities.
  • scattered light intensities can be set by scattering elements 2 a to 5 b with differently strongly tinted layers 5 a or 5 b differently tinted gray glass filters 5 a, 5 b.
  • the scattered light meter can be calibrated in a wide intensity range, so that it delivers over a wide intensity range measurement results with very high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Eine erfindungsgemäße Kalibriervorrichtung zur Kalibrierung eines Streulichtmessgerätes, das zur Messung einer Partikelkonzentration in Kraftfahrzeugabgasen ausgebildet ist, weist wenigstens einen Streukörper (2) auf, der eine Anzahl von Streuzentren (6) mit einer definierten Größe und einem definierten gegenseitigen Abstand hat. Die Streuzentren (6) sind derart angeordnet, dass der Streukörper (2) bei einer Bestrahlung mit Licht (11) aus einer Lichtquelle (10) Streulicht (20) mit einer durch den Streukörper (2) vorgegebenen Intensität und Verteilung abgibt.

Description

Beschreibung
Titel
Vorrichtung und Verfahren zum Kalibrieren eines Streulichtmessgerätes Stand der Technik
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Kalibrieren eines Streulichtmessgerätes, wie es zur Messung von Partikelkonzentrationen in Kraftfahrzeugabgasen verwendet wird.
Die Verwendung von Streulichtverfahren zur Messung der Konzentration von Partikeln in Abgasen und anderen Kolloiden ist im Stand der Technik bekannt.
Dabei wird üblicherweise eine lichtstarke Lichtquelle, wie z. B. ein Laser, eingesetzt, die Licht in eine Messkammer strahlt durch die das zu messende Kolloid geleitet wird. Es ist wenigstens ein Lichtsensor vorhanden, der Licht, das von im Kolloid vorhandenen Partikeln gestreut worden ist, detektiert. Um die ordnungsgemäße Funktion eines solches Streulichtmessgerätes zu überprüfen und das Gerät zu kalibrieren, ist es erforderlich, in der Messkammer einen definierten Zustand einzustellen, bei dem das eingestrahlte Licht in einer definierten und bekannten Art und Weise gestreut wird. Streulichtmessgeräte, die für amtliche Messungen verwendet werden, fallen unter die Eichpflicht, wodurch sich die Notwendigkeit, mit hoher Zuverlässigkeit genaue Messergebnisse zu liefern, noch weiter erhöht.
Offenbarung der Erfindung
Es ist eine Aufgabe der Erfindung, eine Vorrichtung bereitzustellen, die ein einfaches, zuverlässiges und genaues Überprüfen und Kalibrieren eines Streulichtmessgerätes ermöglicht.
Diese Aufgabe wird durch eine erfindungsgemäße Kalibriervorrichtung nach dem unabhängigen Patentanspruch 1 , ein Streulichtmessgerät nach dem unabhängigen Anspruch 6 und ein erfindungsgemäßes Verfahren nach dem Patentanspruch 9 gelöst. Eine erfindungsgemäße Kalibriervorrichtung zum Kalibrieren eines Streulichtmessgerätes, das zur Messung einer Partikelkonzentration in Kraftfahrzeugabgasen ausgebildet ist, weist wenigstens einen Streukörper auf. In dem Streukörper ist eine Anzahl von Streuzentren, die derart angeordnet sind, dass der Streukörper bei einer definierten Bestrahlung mit Licht ein Streulichtmuster mit einer durch den Streukörper vorgegebenen Intensität und Verteilung abgibt.
Mit einem Streukörper, der eine derart definierte Anordnung an Streuzentren aufweist, kann in der Messkammer einfach und schnell ein definiertes Streulichtmuster erzeugt werden. Im Vergleich zur Verwendung eines Eichgases oder herkömmlichen Kalibriervorrichtungen, die z.B. reflektierende Ebenen aufweisen, ist ein solcher Streukörper einfacher zu handhaben, besser mit reproduzierbaren Eigenschaften und der erforderlichen Genauigkeit herstellbar. Auch unterliegt ein solcher Streukörper während der Kalibrierung weder Verbrauch noch Verschleiß.
Die Erfindung umfasst auch ein Streulichtmessgerät zur Messung einer Partikelkonzentration in Kraftfahrzeugabgasen mit einer Streulichtmesskammer, wenigstens einer Lichtquelle und wenigstens einem Streulichtsensor, wobei die Messkammer wenigstens eine Aufnahmevorrichtung hat, die zur Aufnahme einer erfindungsgemäßen Kalibriervorrichtung ausgebildet ist. Ein derartiges Streulichtmessgerät ist besonders gut kalibrierbar, da die Kalibriervorrichtung besonders einfach in die Messkammer einbringbar ist.
Die Erfindung umfasst auch ein Verfahren zum Kalibrieren eines Streulichtmessgerätes zur Messung der Partikelkonzentration in Kraftfahrzeugabgasen mit einer Streulichtmesskammer, wenigstens einer Lichtquelle und wenigstens einem Streulichtsensor, wobei das Verfahren umfasst, eine erfindungsgemäße Kalibriervorrichtung in eine definierte Position in die Streulichtmesskammer einzubringen, die Kalibriervorrichtung mit Licht aus der Lichtquelle zu beleuchten, von der Kalibriervorrichtung gestreutes Licht (Streulicht) mit dem Lichtsensor aufzunehmen und das von dem Lichtsensor ausgegebene Signal mit einem vorgegebenen Referenzwert zu vergleichen.
Ein solches Verfahren ermöglicht es, ein Streulichtmessgerät besonders einfach und zuverlässig mit hoher Genauigkeit zu kalibrieren. Insbesondere kann auf die Verwendung spezieller Eichgase, die aufwändig zu lagern und zu handhaben sind und bei denen die Partikelkonzentration von äußeren Parametern, wie beispielsweise dem Druck und/oder der Temperatur abhängig ist, verzichtet werden.
In einer Ausführungsform weist der Streukörper ein transparentes Trägermaterial auf, bei dem die Streuzentren in dem transparenten Trägermaterial angeordnet sind. In einem transparenten Trägermaterial lassen sich die Streuzentren besonders gut in einer definierten Struktur anordnen, um bei Bestrahlung mit Licht ein definiertes Streulichtmuster zu erzeugen. Die Streuzentren können beispielsweise als Kristallite innerhalb des Trägermaterials ausgebildet sein.
In einer Ausführungsform haben die Streuzentren eine definierten Größe und/ oder sind in definierten gegenseitigen Abständen innerhalb des Streukörpers angeordnet. In einer Ausführungsform sind die Streuzentren innerhalb des Streukörpers in einer geordneten Struktur, beispielsweise in einer regelmäßigen Git- terstruktur, angeordnet. Ein Streukörper, in dem die Streuzentren in einer geordneten Struktur angeordnet sind, hat ein besonders gut definiertes Streuverhalten.
In einer Ausführungsform enthält das Trägermaterial eine Glaskeramik. Glaskeramik ist ein besonders geeignetes Trägermaterial, da es eine hohe Transpa- renz, eine hohe Festigkeit und eine geringe Wärmeausdehnung aufweist. Bei einer hohen Transparenz des Trägermaterials kann die Kalibrierung auch bei kleinen Lichtintensitäten durchgeführt werden. Durch eine hohe Festigkeit und eine geringe Wärmeausdehnung wird eine Veränderung der Intensitätsverteilung des Streulichtmusters durch äußere Einflüsse, insbesondere mechanische Einflüsse und/oder Temperaturänderungen, vermieden oder zumindest reduziert, so dass die Kalibrierung unabhängig von äußeren Einflüssen stets mit hoher Genauigkeit durchgeführt werden kann.
In einer Ausführungsform weist der Streukörper auf wenigstens einer Oberfläche eine getönte Schicht oder ein zusätzliches Grauglasfilter auf. Durch eine auf einer Oberfläche angeordnete getönte Schicht oder das Grauglasfilter kann die Intensität des gestreuten Lichts bedarfsgemäß eingestellt werden. Durch die Verwendung verschiedener Streukörper mit unterschiedlich getönten Schichten bzw. Grauglasfiltern kann die Kalibrierung bei verschiedenen Lichtintensitäten durch- geführt werden. Dadurch kann die Kalibrierung über einen weiten Intensitätsbereich durchgeführt werden, so dass das Messgerät über einen breiten Intensitätsbereich mit hoher Genauigkeit betreibbar ist. In einer Ausführungsform weist die Kalibriervorrichtung wenigstens eine Halterung zur Aufnahme des Streukörpers auf. Durch eine Halterung kann der Streukörper besonders einfach und ggf. auswechselbar an der Kalibriervorrichtung angebracht werden.
In einer Ausführungsform ist die Aufnahmevorrichtung so ausgebildet, dass der Streukörper in einer definierten Position innerhalb der Messkammer angeordnet ist, wenn eine Kalibriervorrichtung in der Aufnahmevorrichtung aufgenommen ist. Durch eine solche Aufnahmevorrichtung ist sichergestellt, dass sich die Kalibriervorrichtung während der Kalibrierung in einer definierten Position innerhalb der Messkammer befindet und bei Bestrahlung durch eine Lichtquelle eine definierte Streulichtverteilung erzeugt. Die Kalibrierung kann einfach und mit hoher Genauigkeit vorgenommen werden. Die Position der Kalibriervorrichtung muss nicht vor jedem Kalibriervorgang aufwändig justiert werden und Fehler bei der Kalibrierung, die durch einen fehlerhaft angeordneten Streukörper verursacht werden können, werden vermieden.
In einer Ausführungsform ist die Kalibriervorrichtung in der Aufnahmevorrichtung arretierbar. Durch eine Arretierung wird sichergestellt, dass die Kalibriervorrichtung während der Kalibrierung ihre definierte Position beibehält und bei Bestrahlung Streulicht mit einer definierten Intensitätsverteilung abgibt. Eine fehlerhafte Kalibrierung, die durch eine fehlerhaft platzierte Kalibriervorrichtung verursacht wird, kann so zuverlässig vermieden werden.
Die Erfindung umfasst auch die Verwendung eines Streukörpers, der eine Anzahl von Streuzentren mit einer definierten Größe und einem definierten gegenseitigen Abstand enthält, so dass der Streukörper bei einer definierten Bestrahlung durch eine Lichtquelle Streulicht mit einer vorgegebenen Intensität und Verteilung abgibt, zur Kalibrierung eines Streulichtmessgerätes, das zur Messung einer Partikelkonzentration in Kraftfahrzeugabgasen oder anderen Kolloiden ausgebildet ist. Ausführungsbeispiele der Erfindung werden im Folgenden anhand der beigefügten Zeichnungen näher beschrieben. Dabei zeigt:
Figur 1 schematisch den Aufbau eines Streulichtmessgerätes;
Figur 2 schematisch den Aufbau einer erfindungsgemäßen Kalibriervorrichtung;
Figur 3 schematisch den Aufbau und die Funktion eines Streukörpers gemäß einem ersten Ausführungsbeispiel; und
Figur 4 schematisch den Aufbau und die Funktion eines Streukörpers gemäß einem zweiten Ausführungsbeispiel.
Figur 5 schematisch den Aufbau und die Funktion eines Streukörpers gemäß einer Variante des zweiten Ausführungsbeispiels.
Figur 1 zeigt schematisch den Aufbau eines Streulichtmessgerätes zur Messung einer Partikelkonzentration in Kraftfahrzeugabgasen oder anderen Kolloiden.
Ein derartiges Streulichtmessgerät weist eine Streulichtmesskammer 12 auf, durch die über in der Figur 1 nicht gezeigte Zu- und Ableitungen Abgas aus einem Kraftfahrzeug geführt wird. Dabei kann das Abgas durch den vom Motor des Kraftfahrzeugs erzeugten Druck, sogenannten Abgasgegendruck, durch die Messkammer geführt werden. Optional kann zusätzlich eine in der Figur 1 nicht gezeigte Pumpe vorgesehen sein, um die Abgasströmung durch die Messkammer 12 zu unterstützen.
Das Streulichtmessgerät hat wenigstens eine Lichtquelle 10, die bspw. als Laser ausgebildet ist. Die Lichtquelle 10 erzeugt im eingeschalteten Zustand einen Lichtstrahl 1 1 mit einer definierten Intensität und Richtung innerhalb der Messkammer 12.
Weiterhin ist/sind in der Messkammer 12 wenigstens ein, in dem in der Figur 1 gezeigten Ausführungsbeispiel zwei Lichtsensoren 8a, 8b vorgesehen, welche Licht aus der Lichtquelle 10, das von Partikeln, die in dem durch die Messkammer 12 geleiteten Abgasstrom vorhanden sind, gestreut worden ist, detektieren. In der schematischen Darstellung der Figur 1 sind die Lichtquelle 10 und die Lichtsensoren 8a, 8b aus Gründen der besseren Übersichtlichkeit außerhalb der Messkammer 12 dargestellt, obwohl sie in der Realität zumindest teilweise innerhalb oder unmittelbar an der Streulichtmesskammer 12 angeordnet sind. Die Lichtsensoren 8a, 8b sind vorzugsweise in verschiedenen Winkeln in Bezug auf die Richtung des eingestrahlten Lichtstrahls 1 1 angeordnet, so dass sie in verschiedenen Winkeln gestreutes Streulicht 20 detektieren. Die von den Streulichtsensoren 8a, 8b ausgegebenen elektrischen Signale werden einer oder mehreren elektronischen Verstärker- und Auswerteinrichtungen 14a, 14b zugeführt, welche die Signale auswerten und die Konzentration von Partikeln in der durch die Messkammer 12 geleiteten Gasströmung ermitteln und ausgeben.
Um Messergebnisse mit hoher Genauigkeit, die beispielsweise hohen gesetzlichen Anforderungen entsprechen, zu erhalten, muss ein Streulichtmessgerät re- gelmäßig kalibriert werden. Dazu wird in der Messkammer 12 Streulicht erzeugt, welches einer vorgegebenen, bekannten Partikelkonzentration entspricht, und die Auswerteinrichtungen 14a, 14b werden so justiert, dass sie die vorgegebene, bekannte Partikelkonzentration als Ergebnis der Messung ausgeben. Erfindungsgemäß weist die Messkammer 12 wenigstens eine Aufnahmevorrichtung 16 zur Aufnahme einer erfindungsgemäßen Kalibriervorrichtung auf. Im gezeigten Ausführungsbeispiel ist die Aufnahmevorrichtung 16 als Öffnung ausgebildet, durch die eine erfindungsgemäße Kalibriervorrichtung, wie sie im Folgenden beschrieben wird, in die Messkammer 12 einführbar ist.
Wenn keine Kalibriervorrichtung in die Messkammer 12 eingeführt ist, ist die Öffnung der Aufnahmevorrichtung 16 durch einen Deckel 18 verschlossen, um das Eindringen von Partikeln und/oder Licht aus der Umgebung in die Messkammer 12 und eine dadurch bewirkte Verfälschung der Messergebnisse zu verhindern.
In einem nicht gezeigten alternativen Ausführungsbeispiel kann die Kalibriervorrichtung 1 durch eine der in der Figur 1 nicht gezeigten Öffnungen, die zum Zuführen oder Abführen der Kraftfahrzeugabgase vorgesehen ist, in die Messkammer 12 eingeführt werden. Dies ist möglich, da während des Kalibriervorgangs keine Abgase durch die Messkammer 12 geleitet werden. Figur 2 zeigt in einer schematischen Darstellung den Aufbau einer erfindungsgemäße Kalibriervorrichtung 1.
Eine erfindungsgemäße Kalibriervorrichtung 1 hat einen Halter 3, der beispielsweise als Zylinderstift oder (Blech-)Streifen ausgebildet ist und an dem ein erfindungsgemäßer Streukörper 2 befestigt ist.
Der Streukörper 2 kann beispielsweise auf den Halter 3 geklebt sein, so dass die Position des Streukörpers 2 auf dem Halter 3 fix ist. Dadurch ist sichergestellt, dass sich der Streukörper 2 während der Kalibrierung stets in der gewünschten, definierten Position befindet.
Alternativ kann an dem Halter 3 eine in der Figur 2 nicht gezeigte Halterung vorgesehen sein, welche den Streukörper 2 in einer definierten Position aufnimmt und fixiert. Dabei kann die Halterung so ausgebildet sein, dass der Streukörper 2 auswechselbar ist. So kann ein einziger Halter 3 mit verschiedenen Streukörpern 2 eingesetzt werden.
Die Kalibriervorrichtung 1 ist derart ausgebildet, dass sie in die in der Messkammer 12 ausgebildete Öffnung der Aufnahmevorrichtung 16 einführbar und dort arretierbar ist. Ist die Kalibriervorrichtung 1 in die Messkammer 12 eingeführt und dort arretiert, hat der Messkörper 2 eine definierte Position innerhalb der Messkammer 12 und erzeugt bei Bestrahlung mit Licht 1 1 aus der Lichtquelle 10 ein definiertes Streulichtmuster.
An dem Halter 3 kann eine in der Fig. 2 nicht gezeigte Dichtung vorgesehen sein, um die Öffnung der Aufnahmevorrichtung 16 lichtdicht abzudichten, wenn die Kalibriervorrichtung 1 in der Aufnahmevorrichtung 16 angeordnet ist. So wird verhindert, dass die Kalibrierung durch Umgebungslicht, welches durch die Öffnung 16 in die Messkammer 12 eindringt, verfälscht wird.
Figur 3 zeigt die schematische Darstellung eines Streukörpers 2 gemäß einem ersten Ausführungsbeispiel, wie er in einer erfindungsgemäßen Kalibriervorrichtung 1 verwendet wird.
Ein erfindungsgemäßer Streukörper 2 weist ein transparentes Trägermaterial 4 auf, das vorzugsweise ein Material mit einer besonders geringen Wärmeausdeh- nung, wie z. B. ein Glaskeramikmaterial ist. In dem Trägermaterial 4 ist eine Anzahl von Streuzentren 6 angeordnet, wobei die Streuzentren 6 eine definierte Größe und einen definierten gegenseitigen Abstand voneinander haben. Vorzugsweise sind die Streuzentren 6 innerhalb des Trägermaterials 4 in einer regelmäßigen Gitterstruktur angeordnet, wie schematisch in der Figur 3 gezeigt. Die Streuzentren 6 können in dem Trägermaterial ausgebildete Kristallite sein.
Ein derart aufgebauter Streukörper 2 hat definierte, über einen langen Zeitraum konstante Streueigenschaften, so dass er bei Bestrahlung mit Licht 1 1 aus der Lichtquelle 10 Streulicht 20 mit einer durch den Streukörper 2 definierten Intensität und räumlichen Verteilung abgibt. Das von dem Streukörper 2 erzeugte Streulicht 20 trifft auf die Streulichtsensoren 8a und 8b und wird von diesen detektiert, wie in der Figur 3 schematisch gezeigt.
Zur Durchführung einer erfindungsgemäßen Kalibrierung wird eine erfindungsgemäße Kalibriervorrichtung 1 , die einen Streukörper 2, wie er in der Figur 3 gezeigt ist, aufweist, durch die Öffnung der Aufnahmevorrichtung 16 in eine definierte Position innerhalb der Messkammer 12 gebracht. Das durch die Lichtquelle 10 erzeugte Licht 1 1 wird von dem Streukörper 2 in einer definierten, vorgegebenen räumlichen Intensitätsverteilung gestreut und das gestreute Licht (Streulicht) 20 wird von den Streulichtsensoren 8a, 8b erfasst und in elektrische Signale umgewandelt. Die elektrischen Signale werden von einer oder mehrerer Auswerteinrichtungen 14a, 14b in eine Partikelkonzentration umgerechnet.
Die von den Auswerteinrichtungen 14a, 14b ermittelte Partikelkonzentration wird mit einer definierten Partikelkonzentration, die den jeweiligen Streukörper 2 zugeordnet ist, verglichen. Weicht die von den Auswerteinrichtungen 14a, 14b ermittelte Partikelkonzentration von der vorgegebenen, dem Streukörper 2 zugeordneten Partikelkonzentration ab, so werden die Auswerteinrichtungen 14a, 14b nachjustiert, bis die von den Auswerteinrichtungen 14a, 14b ermittelte Partikelkonzentration innerhalb der vorgegebenen Genauigkeit der vorgegebenen, dem Streukörper 2 zugeordneten Partikelkonzentration entspricht.
Das Vergleichen der berechneten Partikelkonzentration mit der vorgegebenen Partikelkonzentration und das Justieren der Auswerteinrichtungen 14a, 14b kann automatisch oder manuell erfolgen. Durch den Einsatz verschiedener Streukörper 2, deren Streuverhalten dem Streuverhalten von Abgasen mit unterschiedlichen Partikelkonzentrationen entspricht, kann die Kalibrierung des Streulichtmessgeräts an verschiedenen Betriebspunkten einfach durchgeführt werden. Dadurch kann eine besonders ge- naue Kalibrierung des Streulichtmessgerätes über einen weiten Messbereich erreicht werden.
Vorteilhafterweise weist das Trägermaterial 4 des Streukörpers 2 eine besonders geringe Wärmeausdehnung auf, so dass das Streuverhalten des Streukörpers 2 in einem weiten Temperaturbereich unabhängig von der Umgebungstemperatur ist. Die Kalibrierung kann dann anders als bei der Verwendung eines Referenzgases unabhängig von der Umgebungstemperatur mit hoher Genauigkeit durchgeführt werden. Figur 4 zeigt ein alternatives Ausführungsbeispiel eines erfindungsgemäßen
Streukörpers 2a.
Auch in diesem Ausführungsbeispiel weist der Streukörper 2a ein Trägermaterial 4 auf, in das eine Anzahl von Streuzentren 6 eingebettet ist. Insofern entspricht der Aufbau des Streukörpers 2a dem Aufbau des ersten Ausführungsbeispiels, wie es in der Figur 2 gezeigt ist.
Zusätzlich weist der Streukörper 2a gemäß dem zweiten Ausführungsbeispiel wenigstens eine getönte Schicht 12 oder ein zusätzliches Grauglasfilter 12 auf, welche(s) auf wenigstens eine Oberfläche des Streukörpers 2a aufgebracht ist und das Licht, welches durch die beschichtete Oberfläche des Streukörpers 2a bzw. durch das Grauglasfilter in den Streukörper 2a eintritt oder aus diesem heraustritt, abschwächt bzw. dämpft. In dem in der Figur 4 gezeigten Ausführungsbeispiel ist die getönte Schicht 12 bzw. durch das Grauglasfilter 12 derart angeordnet, dass das Streulicht 20, welches aus dem Streukörper 2a austritt, abgeschwächt wird. Dagegen ist auf der Oberfläche des Streukörpers 2a, durch die der Lichtstrahl 1 1 aus der Lichtquelle 10 in den Streukörper 2a eintritt, keine getönte Schicht 12 und kein Grauglasfilter 12 vorgesehen. In einem alternativen, in der Figur 5 gezeigten Ausführungsbeispiel ist die getönte Schicht 5b bzw. das Grauglasfilter 5b zusätzlich auch auf der Oberfläche des Streukörpers 2a ausgebildet sein, durch die der Lichtstrahl 1 1 aus der Lichtquelle 10 in den Streukörper 2a eintritt. Alternativ kann die getönte Schicht 5b bzw. das Grauglasfilter 5b ausschließlich auch auf der Oberfläche des Streukörpers 2a ausgebildet sein, durch die der Lichtstrahl 1 1 aus der Lichtquelle 10 in den Streukörper 2a eintritt.
Durch das Aufbringen wenigstens einer getönten Schicht 5a, 5b bzw. eines Grauglasfilters 5a, 5b auf wenigstens eine Oberfläche des Streukörpers 2a kann die Intensität des in den Streukörper 2a eintretenden Lichts 1 1 aus der Lichtquelle 10 und/oder die Intensität des aus dem Streukörper 2a austretenden Streulichts 20 gezielt geschwächt werden.
Beispielsweise kann, falls die Intensität der Lichtquelle 10 zu groß ist, durch eine solche getönte Schicht 5a, 5b bzw. ein Grauglasfilter 5a, 5b eine Übersteuerung bzw. Beschädigung der Streulichtsensoren 8a, 8b und/oder der Auswerteinrichtungen 14a, 14b vermieden werden.
Auch können gezielt verschiedene Intensitätslevel des Streulichts 20 eingestellt werden, sodass die Kalibrierung bei unterschiedlichen Streulichtintensitäten durchführbar ist. Insbesondere können durch Streukörper 2a mit unterschiedlich stark getönten Schichten 5a, 5b bzw. unterschiedlich stark getönten Grauglasfiltern 5a, 5b prozentual unterschiedliche Streulichtintensitäten eingestellt werden.
Durch eine Kalibrierung, die bei unterschiedlichen Streulichtintensitäten durchgeführt wird, kann das Streulichtmessgerät in einem breiten Intensitätsbereich kalibriert werden, so dass es über einen breiten Intensitätsbereich Messergebnisse mit besonders hoher Genauigkeit liefert.

Claims

Patentansprüche
1 . Kalibriervorrichtung (1 ) zur Kalibrierung eines Streulichtmessgerätes, das zur Messung einer Partikelkonzentration in Kraftfahrzeugabgasen ausgebil- det ist, wobei die Kalibriervorrichtung (1 ) wenigstens einen Streukörper (2) aufweist, der eine Anzahl von Streuzentren (6) hat, die derart angeordnet sind, dass der Streukörper (2) bei Bestrahlung mit Licht (1 1 ) Streulicht (20) mit einer durch den Streukörper (2) definierten Intensität und Verteilung abgibt.
2. Kalibriervorrichtung (1 ) nach Anspruch 1 , wobei die Streuzentren (6) eine definierte Größe und/oder einen definierten gegenseitigen Abstand innerhalb des Streukörpers (2) haben und vozugsweise in einer geordneten Struktur innerhalb des Streukörpers (2) angeordnet sind.
3. Kalibriervorrichtung (1 ) nach Anspruch 1 oder 2, wobei der Streukörper
(2) ein transparentes Trägermaterial (4) aufweist, welches eine Glaskeramik enthält.
4. Kalibriervorrichtung (1 ) einem der vorangehenden Ansprüche, wobei der Streukörper (2) wenigstens eine getönte Schicht (5a; 5b) aufweist.
5. Kalibriervorrichtung (1 ) einem der vorangehenden Ansprüche, wobei die Kalibriervorrichtung (1 ) wenigstens eine Halterung (3) zur Aufnahme des Streukörpers (2) aufweist.
6. Messgerät zur Messung einer Partikelkonzentration in Kraftfahrzeugabgasen mit einer Streulichtmesskammer (12), wenigstens einer Lichtquelle (10) und wenigstens einem Streulichtsensor (8a, 8b), wobei die Streulichtmesskammer (12) wenigstens eine Aufnahmevorrichtung (16) hat, die zur Aufnahme einer Kalibriervorrichtung (1 ) nach einem der Ansprüche 1 bis 5 ausgebildet ist.
7. Messgerät nach Anspruch 6, wobei die Aufnahmevorrichtung (16) so ausgebildet ist, dass der Streukörper (2) in einer definierten Position innerhalb des Messkammer (12) angeordnet ist, wenn eine Kalibriervorrichtung (1 ) in der Aufnahmevorrichtung (16) angeordnet ist.
8. Messgerät nach Anspruch 6 oder 7, wobei die Kalibriervorrichtung (1 ) in der Aufnahmevorrichtung (16) fixierbar ist.
9. Verfahren zur Kalibrierung eines Streulichtmessgeräts, das zur Messung der Partikelkonzentration in Kraftfahrzeugabgasen ausgebildet ist und eine Streulichtmesskammer (12), wenigstens eine Lichtquelle (10) und wenigstens einen Streulichtsensor (8a, 8b) aufweist, wobei das Verfahren umfasst, eine Kalibriervorrichtung (1 ) nach einem der Ansprüche 1 bis 5 in eine definierte Position in die Streulichtmesskammer (12) einzubringen, die Kalibriervorrichtung (1 ) mit Licht (1 1 ) aus der Lichtquelle (10) zu beleuchten, von der Kalibriervorrichtung (1 ) gestreutes Licht (20) mit dem wenigstens einen Lichtsensor (8a, 8b) aufzunehmen und das von dem Lichtsensor (8a, 8b) ausgegebene Signal mit einem vorgegebenen Referenzwert zu vergleichen.
10. Verwendung eines Streukörpers (2), der eine Anzahl von Streuzentren (6) mit einer definierten Größe und einem definierten gegenseitigen Abstand enthält, so dass der Streukörper (2) bei einer definierten Bestrahlung mit Licht (1 1 ) aus einer Lichtquelle (10) Streulicht (20) mit einer vorgegebenen Intensität und Verteilung abgibt, zur Kalibrierung eines Streulichtmessgerätes, welches zur Messung einer Partikelkonzentration in Kraftfahrzeug-Abgasen oder anderen Kolloiden ausgebildet ist.
PCT/EP2011/050032 2010-02-26 2011-01-03 Vorrichtung und verfahren zum kalibrieren eines streulichtmessgerätes WO2011104040A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/581,271 US8937718B2 (en) 2010-02-26 2011-01-03 Device and method for calibrating a scattered light meter
BR112012021290A BR112012021290A2 (pt) 2010-02-26 2011-01-03 dispositivo e processo para calibrar um aparelho medidor de luz difusa.
EP11701770A EP2539690A1 (de) 2010-02-26 2011-01-03 Vorrichtung und verfahren zum kalibrieren eines streulichtmessgerätes
CN2011800111333A CN102762974A (zh) 2010-02-26 2011-01-03 用于校准散射光测量设备的装置和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010002423 DE102010002423A1 (de) 2010-02-26 2010-02-26 Vorrichtung und Verfahren zum Kalibrieren eines Streulichtmessgerätes
DE102010002423.6 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011104040A1 true WO2011104040A1 (de) 2011-09-01

Family

ID=43899649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/050032 WO2011104040A1 (de) 2010-02-26 2011-01-03 Vorrichtung und verfahren zum kalibrieren eines streulichtmessgerätes

Country Status (6)

Country Link
US (1) US8937718B2 (de)
EP (1) EP2539690A1 (de)
CN (1) CN102762974A (de)
BR (1) BR112012021290A2 (de)
DE (1) DE102010002423A1 (de)
WO (1) WO2011104040A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT12313U3 (de) * 2011-11-30 2013-01-15 Ditest Fahrzeugdiagnose Gmbh Kalibrierelement und verfahren zum kalibrieren eines streulichtmessgeräts

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011002421A1 (de) 2011-01-04 2012-07-05 Robert Bosch Gmbh Messgerät zur Messung von Partikelkonzentrationen mittels Streulicht und Verfahren zur Überwachung des Messgerätes
DE102012200739A1 (de) 2012-01-19 2013-07-25 Robert Bosch Gmbh Vorrichtung zum Kalibrieren eines Streulichtmessgerätes
EP2790006A1 (de) 2013-04-11 2014-10-15 SAXON Junkalor GmbH Verfahren und Kalibriereinheit zur Kalibrierung von streulichtbasierten Partikelmessgeräten
DE102013207166A1 (de) 2013-04-19 2014-10-23 Robert Bosch Gmbh Prüfvorrichtung für ein Streulichtmessgerät, Herstellungsverfahren für eine Prüfvorrichtung für ein Streulichtmessgerät und Verfahren zum Überprüfen eines Streulichtmessgeräts
CN103234972B (zh) * 2013-04-28 2015-06-17 北京市计量检测科学研究院 汽车尾气遥测仪专用检定装置
CN103439231A (zh) * 2013-08-20 2013-12-11 北京市环境保护科学研究院 车辆扬尘颗粒物排放因子测量系统及测量方法
AT513186B1 (de) 2013-09-06 2015-01-15 Ditest Fahrzeugdiagnose Gmbh Kalibrierelement und Verfahren zur Herstellung eines solchen Kalibrierelements
AT513185B1 (de) 2013-11-13 2015-12-15 Ditest Fahrzeugdiagnose Gmbh Kalibrierelement
DE102014100774A1 (de) * 2014-01-23 2015-07-23 Byk-Gardner Gmbh Vorrichtung zum Kalibrieren von optischen Messgeräten
DE102014212015A1 (de) 2014-06-23 2015-12-24 Robert Bosch Gmbh Vorrichtung und Verfahren zum Kalibrieren eines Streulichtmessgerätes
DE102015204693A1 (de) 2015-03-16 2016-09-22 Robert Bosch Gmbh Messgerät und Verfahren zur Bestimmung von Partikelkonzentrationen in einem Fluid oder Aerosol, insbesondere in Abgasen
CN107314958B (zh) * 2017-06-02 2023-10-03 宁波爱立德汽车部件有限公司 一种带自定标装置的激光粉尘浓度测量装置及方法
WO2020123290A1 (en) 2018-12-11 2020-06-18 Carrier Corporation Calibration of an optical detector
WO2020123155A1 (en) 2018-12-11 2020-06-18 Carrier Corporation Calibration of an optical detector
US11879840B2 (en) 2018-12-11 2024-01-23 Carrier Corporation Calibration of an optical detector using a micro-flow chamber
EP3757546B1 (de) * 2019-06-28 2022-11-30 ABB Schweiz AG Trübungskalibrierstandard, verfahren zur herstellung eines trübungskalibrierstandards und verwendung
TWI826848B (zh) * 2020-12-21 2023-12-21 日商斯庫林集團股份有限公司 光照射裝置
JP2023021574A (ja) * 2021-08-02 2023-02-14 株式会社Screenホールディングス 光照射装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234846A (en) * 1959-11-18 1966-02-15 Standard Oil Co Continuously recording turbidity meter
US4291981A (en) * 1978-04-05 1981-09-29 Kabushiki Kaisha Kyoto Daiichi Kagaku Reference scatter for use in the correction of scattering photometers
US5059811A (en) * 1990-08-30 1991-10-22 Great Lakes Instruments, Inc. Turbidimeter having a baffle assembly for removing entrained gas
JPH10239237A (ja) * 1997-02-28 1998-09-11 Ngk Insulators Ltd ダスト濃度測定方法およびその装置
US5999257A (en) * 1996-12-06 1999-12-07 United Sciences, Inc. Method and apparatus for monitoring particulates using back-scattered laser with steerable detection optics
US20040008343A1 (en) * 2001-12-19 2004-01-15 Cme Telemetrix, Inc. Electromagnetic radiation attenuating and scattering member with improved thermal stability

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942899A (en) * 1973-06-19 1976-03-09 Pfizer, Inc. Calibrating device for light scatter photometering instrument
US5497144A (en) * 1993-07-07 1996-03-05 Cerberus Ag Testing and adjustment of scattered-light smoke detectors
ES2550347T5 (es) * 2003-04-11 2022-04-07 Testo Se & Co Kgaa Procedimiento y dispositivo para la detección, caracterización y/o eliminación de partículas en suspensión
CN100468050C (zh) * 2005-06-28 2009-03-11 洛阳卓航测控设备有限责任公司 前向散射能见度仪校准板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234846A (en) * 1959-11-18 1966-02-15 Standard Oil Co Continuously recording turbidity meter
US4291981A (en) * 1978-04-05 1981-09-29 Kabushiki Kaisha Kyoto Daiichi Kagaku Reference scatter for use in the correction of scattering photometers
US5059811A (en) * 1990-08-30 1991-10-22 Great Lakes Instruments, Inc. Turbidimeter having a baffle assembly for removing entrained gas
US5999257A (en) * 1996-12-06 1999-12-07 United Sciences, Inc. Method and apparatus for monitoring particulates using back-scattered laser with steerable detection optics
JPH10239237A (ja) * 1997-02-28 1998-09-11 Ngk Insulators Ltd ダスト濃度測定方法およびその装置
US20040008343A1 (en) * 2001-12-19 2004-01-15 Cme Telemetrix, Inc. Electromagnetic radiation attenuating and scattering member with improved thermal stability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KARABEGOV M A: "LIQUID AND SOLID-STATE SAMPLES FOR CALIBRATING TURBIDIMETERS AND NEPHELOMETERS", MEASUREMENT TECHNIQUES, CONSULTANTS BUREAU. NEW YORK, US, vol. 40, no. 12, 1 December 1997 (1997-12-01), pages 1216 - 1220, XP000835146, ISSN: 0543-1972 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT12313U3 (de) * 2011-11-30 2013-01-15 Ditest Fahrzeugdiagnose Gmbh Kalibrierelement und verfahren zum kalibrieren eines streulichtmessgeräts
EP2600139A1 (de) * 2011-11-30 2013-06-05 DiTest Fahrzeugdiagnose GmbH Kalibrierelement und Verfahren zum Kalibrieren eines Streulichtmessgeräts

Also Published As

Publication number Publication date
US20130057860A1 (en) 2013-03-07
CN102762974A (zh) 2012-10-31
US8937718B2 (en) 2015-01-20
DE102010002423A1 (de) 2011-09-01
BR112012021290A2 (pt) 2016-10-25
EP2539690A1 (de) 2013-01-02

Similar Documents

Publication Publication Date Title
EP2539690A1 (de) Vorrichtung und verfahren zum kalibrieren eines streulichtmessgerätes
EP2661613B1 (de) Messgerät zur messung von partikelkonzentrationen mittels streulicht und verfahren zur überwachung des messgerätes
EP0658264B1 (de) Mittel zur rauchsimulation für streulichtrauchmelder, verfahren zum abgleich von deren rauchempfindlichkeit und verwendung des mittels
DE102009040642B3 (de) Verfahren und Vorrichtung zur Messung von optischen Kenngrößen transparenter, streuender Messobjekte
DE102008009189B4 (de) Nichtdispersiver Infrarot-Gasanalysator
EP2458363A1 (de) Messung der Positionen von Krümmungsmittelpunkten optischer Flächen eines mehrlinsigen optischen Systems
EP3158322B1 (de) Vorrichtung und verfahren zum kalibrieren eines streulichtmessgerätes
DE102009046279A1 (de) Messgerät zur Abgasmessung
DE102005003441A1 (de) Anordnung und Verfahren zur Kompensation der Temperaturabhängigkeit von Detektoren in Spektrometern
AT517732B1 (de) Prüfvorrichtung für einen Gasinjektor
EP2790007A1 (de) System bestehend aus einer Kalibriereinheit in Kombination mit einem streulichtbasierten Partikelmessgerät zur Messung von polydispersen Agglomeraten in gasförmigen Medien
AT513185B1 (de) Kalibrierelement
EP2601510A1 (de) Streulichtmessverfahren
AT512728B1 (de) Verfahren zur Kalibrierung eines Streulichtmessgerätes
AT515495B1 (de) Verfahren und Vorrichtung zur Bestimmung einer Partikelkonzentration eines mit Partikel geladenen Messgases
DE102018205236A1 (de) Vorrichtung und Verfahren zur Messung einer Filterkuchendicke
DE102015222769A1 (de) Verfahren zum Abgleichen eines optischen Fluidsensors
DE102014113188A1 (de) Digitales Mikroskop und Verfahren zu dessen Inbetriebnahme
DE102014017289A1 (de) Eine Spritzgießmaschine und ein Zentrierverfahren für Spritzgießmaschinen
DE102012014263B3 (de) Vorrichtung zur Kalibrierung eines optischenSensors
DE102015217166A1 (de) Verfahren zur Bestimmung von mindestens einer Oberflächeneigenschaft
EP2986969B1 (de) Prüfvorrichtung für ein streulichtmessgerät, herstellungsverfahren für eine prüfvorrichtung für ein streulichtmessgerät und verfahren zum überprüfen eines streulichtmessgeräts
DE102015204693A1 (de) Messgerät und Verfahren zur Bestimmung von Partikelkonzentrationen in einem Fluid oder Aerosol, insbesondere in Abgasen
DE102012216866A1 (de) Verfahren und Vorrichtung zum Bestimmen von Eigenschaften und/oder Inhaltsstoffen einer Suspension
DE102021110037A1 (de) Verfahren zur Bestimmung einer Dichte einer Schicht aus pulverförmigem Material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011133.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011701770

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11701770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13581271

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012021290

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012021290

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120824