WO2011102394A1 - 植物内容成分の調節因子、およびその利用 - Google Patents
植物内容成分の調節因子、およびその利用 Download PDFInfo
- Publication number
- WO2011102394A1 WO2011102394A1 PCT/JP2011/053297 JP2011053297W WO2011102394A1 WO 2011102394 A1 WO2011102394 A1 WO 2011102394A1 JP 2011053297 W JP2011053297 W JP 2011053297W WO 2011102394 A1 WO2011102394 A1 WO 2011102394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- plant
- ttf
- polynucleotide
- seq
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B13/00—Tobacco for pipes, for cigars, e.g. cigar inserts, or for cigarettes; Chewing tobacco; Snuff
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/10—Chemical features of tobacco products or tobacco substitutes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8286—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- the present invention relates to a regulator of a plant content component, and more particularly to a base sequence and amino acid sequence of a gene that regulates the content component, a genetically modified plant thereof, and a method for producing the genetically modified plant.
- Tobacco products are usually made from raw materials blended with various types of leaf tobacco. Blending is generally performed not only in tobacco products but also in various foods such as coffee, tea, rice, and flour. Since leaf tobacco is an agricultural product, the amount of content varies from year to year due to the influence of the weather, but by appropriately blending a wide variety of leaf tobacco, it is possible to reproduce raw materials with the desired quality, and products with stable quality. Can be provided. Moreover, if conventional leaf tobacco can develop leaf tobacco having different contents or quantity, the range of tastes and aromas that can be created by blending is expanded, and various new products can be developed. Currently, the diversity of leaf tobacco is produced by combinations of varieties, cultivation methods, drying methods, storage / fermentation methods, production areas, leaf placement positions, etc. In order to further expand the possibilities of such blending technologies, Development of new leaf cigarettes whose content components, for example, content components related to savory taste, are quantitatively or qualitatively different from existing leaf tobacco is expected.
- content components for example, content components related to savory taste
- Examples of content components related to the flavor of tobacco leaves include sugars, amino acids, organic acids, phenolic compounds, terpenoids, and alkaloids (nicotine).
- Non-Patent Document 1 The reason for the large difference in the nicotine content in tobacco leaves is due to genetic factors of the varieties, environmental factors such as meteorological factors and soil factors, and cultivation factors such as fertilization method, core removal method and harvesting method. It has a big influence.
- Sato et al. Have reported a transformed plant (Nicotiana sylvestris) that suppresses the expression of the putrescine methyl transferase (PMT) gene or overexpresses the PMT gene, and decreases or increases the amount of nicotine in the leaves, respectively ( Non-patent document 2).
- Xie et al. Have reported a transformed plant in which the expression of quinolate phosphoribosyltransferase (QPT) gene is suppressed and the amount of nicotine in the leaf is reduced (Non-patent Document 3).
- QPT quinolate phosphoribosyltransferase
- Transformed tobacco hairy roots (variety K326) that overexpressed both A622 gene, NBB1 gene, or both A622 and NBB1 genes and increased nicotine content, and PMT gene, QPT gene, or PMT and QPT gene.
- a transgenic tobacco (variety K326) in which both of these were overexpressed and the nicotine content in the leaf increased was reported (Patent Document 1).
- Hashimoto et al. Increased the nicotine content by overexpressing the MPO gene and transformed tobacco hairy roots (variety SR-1) in which the expression of N-methylputrescineoxidase (MPO) gene was suppressed and the nicotine content was decreased.
- a transformed tobacco cell (BY-2) has been reported (Patent Document 2).
- Non-Patent Document 5 Transformed transgenic tobacco cells (BY-2) that overexpressed MAP2, MC126, or MT401 genes and increased nicotine content, and transformed tobacco hairy roots that overexpressed C127 gene and increased nicotine content (BY2). Variety BY-2) has been reported (Non-Patent Document 5).
- Shoji et al. Reported a transformed tobacco in which COI1 gene expression was suppressed and the amount of nicotine in the leaf was reduced (Non-patent Document 6).
- Wang et al. Have reported a transformed plant in which the expression of the JAR4 and JAR6 genes is simultaneously suppressed in Nicotiana athenata and the amount of nicotine in the leaf is reduced (Non-patent Document 7). Bailey et al.
- Patent Document 4 has reported a transformed tobacco in which the VHb gene is overexpressed and the nicotine content is increased.
- Patent Document 5 Page and Todd overexpressed NbTF1 gene, NbTF4 gene or NbTF5 gene, transgenic plants (Nicotiana benthamiana) that suppressed the expression of NbTF1 gene, NbTF4 gene, or NbTF5 gene encoding transcriptional regulators and reduced nicotine content
- a transformed plant (Nicotiana benthamiana) with increased nicotine content has been reported (Patent Document 6).
- Non-Patent Document 13 Non-Patent Document 13
- Imanishi et al. Non-Patent Document 14
- Goossens et al. Non-Patent Document 15
- jasmonic acid positively controls the biosynthesis or accumulation of nicotine
- Shoji et al. Non-patent Document 16
- Kahl et al. Non-patent Document 17
- Non-patent Document 18 Non-patent Document 18
- COI1, JAR4, JAR6, MAP3, NbTF1, NbTF4, and NbTF5 genes are not genes encoding nicotine biosynthetic enzymes but signal transduction Alternatively, it may be a gene involved in transcriptional regulation.
- Plant hormones act in many ways on various life phenomena. For example, plant growth, morphology control, secondary metabolic system control, and response to biological / abiotic stress. Therefore, genes that affect leaf nicotine content through plant hormone signaling or transcriptional regulation may fluctuate not only nicotine but also other content components. Genes having such functions are important in expanding the diversity of leaf tobacco described above, and research is continuing to identify new genes, not limited to known ones.
- an object of the present invention is to provide a new regulator of biosynthesis or accumulation of plant metabolites that can be used to expand the diversity of leaf tobacco.
- the present inventors have found that plant metabolites are present in the gene group whose expression is changed in the plant body by treatment with plant hormones from the outside or treatment to change the amount of endogenous plant hormones. A new regulator of synthesis or accumulation has been found and the present invention has been completed. In addition, the present inventors have succeeded in producing a plant in which the content of plant metabolites in leaves is controlled using the control factor, and have completed the present invention.
- the polynucleotide according to the present invention is a polynucleotide having a function of adjusting the content of a plant metabolite in order to solve the above-described problem, and is described in the following (a), (b), or (c): Is characterized by the polynucleotide: (A) a polynucleotide comprising the base sequence represented by SEQ ID NOs: 1 to 17; (B) a polynucleotide comprising a base sequence in which one or several bases have been deleted, inserted, substituted or added in the base sequences shown in SEQ ID NOs: 1 to 17; (C) a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a base sequence complementary to the polynucleotide of (a) above.
- the polynucleotide according to the present invention is a polynucleotide encoding a polypeptide having a function of regulating the content of plant metabolites, and the polypeptide comprises the following (d) or (e A polynucleotide, which is a polypeptide according to: (D) a polypeptide consisting of the amino acid sequence shown in SEQ ID NOs: 18 to 32; (E) A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added in the amino acid sequence shown in SEQ ID NOs: 18 to 32.
- the polypeptide according to the present invention is a polypeptide having a function of regulating the content of plant metabolites, and is the polypeptide described in the following (d) or (e) Features: (D) a polypeptide consisting of the amino acid sequence shown in SEQ ID NOs: 18 to 32; (E) A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added in the amino acid sequence shown in SEQ ID NOs: 18 to 32.
- the vector according to the present invention is characterized by containing the above-mentioned polynucleotide.
- the method for producing a transformed plant according to the present invention is a method for producing a transformed plant in which the content of plant metabolites is controlled, including the step of transforming plant cells using the above-mentioned vector.
- the transformed plant according to the present invention is a transformed plant produced using the above-mentioned vector and having a controlled content of plant metabolites.
- the tobacco product according to the present invention is manufactured using the plant body of the above-mentioned transformed plant, and the plant body is Nicotiana tabacum or Nicotiana rustica, in which the plant metabolite content of the leaf is regulated. It is said.
- the amount of the plant metabolite in the plant can be adjusted, a plant in which the amount of the plant metabolite is adjusted can be obtained.
- FIG. 1 is a graph showing changes in nicotine content when the expression level of an endogenous gene is changed using the gene of the present invention.
- FIG. 2 is a diagram showing the results of an E. coli complementation test of the gene of the present invention.
- the present invention provides an isolated polynucleotide having a function of regulating the content of plant metabolites.
- polynucleotide according to the present invention include a polynucleotide encoding an amino acid sequence shown in SEQ ID NOs: 18 to 32 or a variant thereof, or a polynucleotide consisting of a base sequence shown in SEQ ID NOs: 1 to 17 Or a variant thereof.
- the polynucleotide shown in SEQ ID NO: 1 is shown in TTF_ # 20 gene
- the polynucleotide shown in SEQ ID NO: 2 is shown in TTF_ # 53 gene
- the polynucleotide shown in SEQ ID NO: 3 is shown in TTF_ # 54 gene
- SEQ ID NO: 4 SEQ ID NO: 4.
- the polynucleotide is TTF_ # 55 gene
- the polynucleotide shown in SEQ ID NO: 5 is TTF_ # 56 gene
- the polynucleotide shown in SEQ ID NO: 6 is TTF_ # 80 gene
- the polynucleotide shown in SEQ ID NO: 7 is TTF_ # 84 gene
- the polynucleotide shown in SEQ ID NO: 8 is the TTF_r20 gene
- the polynucleotide shown in SEQ ID NO: 9 is the TTF_r25 gene
- the polynucleotide shown in SEQ ID NO: 10 is the TTF_r33 gene
- the polynucleotide shown in SEQ ID NO: 11 is the TTF_r35 gene
- the polynucleotide shown in SEQ ID NO: 12 is the TTF_r40 gene
- the polynucleotide shown in SEQ ID NO: 13 is the TTF_r48 gene
- polynucleotide having the function of regulating plant metabolite content refers to an endogenous gene that is naturally present in plant cells and is involved in regulation of metabolite content. Or a polynucleotide from which it has been isolated.
- the above-mentioned “function” may be possessed by a polypeptide which is a translation product of a polynucleotide, or by a polynucleotide itself such as a functional RNA that does not encode a polypeptide. Also good.
- functional RNA Xist RNA (Non-patent literature: Plath K et al., 2002.
- nucleic acid sequence As used herein, the term “polynucleotide” is used interchangeably with “gene”, “nucleic acid” or “nucleic acid molecule” and is intended to be a polymer of nucleotides.
- base sequence is used interchangeably with “nucleic acid sequence” or “nucleotide sequence” and refers to the sequence of deoxyribonucleotides (abbreviated A, G, C, and T). As shown.
- the polynucleotide according to the present invention may exist in the form of RNA (for example, mRNA) or in the form of DNA (for example, cDNA or genomic DNA).
- DNA can be double-stranded or single-stranded.
- Single-stranded DNA or RNA can be the coding strand (also known as the sense strand) or it can be the non-coding strand (also known as the antisense strand).
- the term “variant” means that one or several bases are deleted, inserted, substituted or added in the base sequences shown in SEQ ID NOs: 1 to 17.
- severeal bases means, for example, 2 to 30 bases, more preferably 2 to 10 bases, and further preferably 2 to 6 bases.
- Hybridization under stringent conditions refers to hybridization only when there is at least 90% identity, preferably at least 95% identity, particularly preferably at least 97% identity between sequences. Means what happens.
- Specific examples of “stringent conditions” include, for example, a hybridization solution (50% formamide, 5 ⁇ SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6)). 5 ⁇ Denhart's solution, 10% dextran sulfate, and 20 ⁇ g / ml denatured sheared salmon sperm DNA), followed by overnight incubation at 42 ° C. and then filtering the filter in 0.1 ⁇ SSC at about 65 ° C.
- Hybridization can be performed by a conventionally known method, such as the method described in J. Sambrook et al. Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor ⁇ Laboratory (1989). Is not to be done. Generally, the higher the temperature and the lower the salt concentration, the higher the stringency (that is, the more difficult it is to hybridize).
- the polynucleotide according to the present invention may be a polynucleotide encoding the polypeptide according to the present invention. That is, the polynucleotide according to the present invention is a polynucleotide comprising a base sequence encoding the amino acid sequence shown in SEQ ID NOs: 18 to 32, or one or several amino acids in the amino acid sequence shown in SEQ ID NOs: 18 to 32 May be a polynucleotide comprising a base sequence encoding an amino acid sequence deleted, inserted, substituted or added.
- “several amino acids” means, for example, 2 to 30 amino acids, more preferably 2 to 10 amino acids, and still more preferably 2 to 5 amino acids.
- the polypeptide according to the present invention has a function of regulating the content of metabolites in plants.
- polypeptide is used interchangeably with “peptide” or “protein”.
- the polypeptides according to the invention may also be isolated from natural sources or chemically synthesized.
- Plant metabolite is used interchangeably with “metabolite” or “content component”.
- Plant metabolites are divided into primary metabolites, which are substances essential for maintaining a living body, such as sugars, organic acids, amino acids, and lipids, and other secondary metabolites.
- Plant secondary metabolites are derived from the primary metabolic system and are thought to be involved in defense against external enemies, stress tolerance, and insect attraction. Specific examples of plant secondary metabolites are terpenoids, alkaloids and phenolic compounds, and derivatives thereof.
- Terpenoids are those that are biosynthesized by combining multiple isoprene units in principle.
- Alkaloids refer to basic nitrogen-containing organic compounds derived from plants.
- a phenolic compound refers to an organic compound having a phenol ring, such as phenylpropanoid and flavonoid.
- the alkaloid for example, tropane alkaloid, pyrrolidine alkaloid, pyrrolizidine alkaloid, piperidine alkaloid, phenylethylamines, isoquinoline alkaloid, quinoline alkaloid, pyridine alkaloid, indole alkaloid, imidazole alkaloid, purine alkaloid, And benzylisoquinoline-based alkaloids.
- the tropane-based alkaloid is an alkaloid containing a tropane skeleton in its structure, and examples thereof include atropine.
- the pyridine alkaloid is an alkaloid containing a pyridine ring in its structure, and examples thereof include nicotine.
- Nicotine is the main alkaloid in tobacco genus plants together with nornicotine.
- Examples of nicotine-related alkaloids contained in tobacco plants include nornicotine, anatabine, anabasine, myosmin, N-methylmyosmin, cotinine, nicotiline, nornicotilin, nicotine N-oxide, and 2,3′-bipyridyl-metanicotine It is done.
- plant metabolite content is intended to mean the amount of a specific plant metabolite contained in a plant.
- alkaloid content is intended to mean the amount of a particular alkaloid contained in a plant.
- the analysis of the plant metabolite content can be performed by a conventionally known method such as a gas chromatograph.
- the content of plant metabolites can be expressed by the weight relative to the dry weight of the plant or the weight relative to the raw weight of the plant.
- “having a function of regulating the content of plant metabolites” broadly intends to be involved in the content of plant metabolites. Therefore, in addition to those that directly control the biosynthesis of plant metabolites, those that have the function of indirectly changing the content of plant metabolites, that is, the biosynthetic pathway of plant metabolites It is also contemplated that it is not included and results in a change in the content of plant metabolites.
- “regulate” means to reduce or increase the content of a specific plant metabolite.
- the term “isolated” refers to a specific polynucleotide only from a state in which it naturally exists in a plant cell as in the “method for obtaining a polynucleotide” described below.
- the entire polynucleotide may be synthesized by chemical synthesis, or may be synthesized by linking a plurality of chemically synthesized polynucleotides.
- the method for obtaining the polynucleotide according to the present invention is not particularly limited, and a general method is adopted.
- it may be excised from a genomic DNA or cDNA library of an organism having the gene of the present invention with an appropriate restriction enzyme and purified.
- the genomic DNA of the gene of the present invention is obtained by, for example, extracting genomic DNA from a plant cell or tissue to prepare a genomic library, and from this library, SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, Obtained by colony hybridization or plaque hybridization using a probe or primer designed based on the base sequence shown in 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17. it can.
- it can also be obtained by PCR using cDNA or genomic DNA of this gene as a template.
- the gene according to the present invention is a virus-induced gene silencing (VIGS) virus selected from 149 tobacco genes selected from responsiveness to plant hormones or some relationship with transcriptional regulatory factors. ) It was discovered as a gene that affects the nicotine content of leaves of tobacco plants through analysis using the system.
- VIPGS virus-induced gene silencing
- the VIGS system is a method for clarifying the function of a gene using a post-transcriptional gene silencing (PTGS) mechanism.
- tobacco stem virus (TRV) vector (Ratcliff F. et al., 2001, Plant Journal, 25,237-245, and US Pat. No. 7,229,829) is used as the VIGS system.
- TRV tobacco stem virus
- a partial length cDNA of tobacco was used as a polynucleotide to be inserted into the vector
- Nicotiana benthamiana was used as a plant into which the vector was introduced.
- the new function of the gene according to the present invention thus obtained can be found using a precise mass spectrometer such as liquid chromatography-time-of-flight mass spectrometer (LC-TOF / MS). it can.
- a precise mass spectrometer such as liquid chromatography-time-of-flight mass spectrometer (LC-TOF / MS). it can.
- a plant transformed to overexpress the gene according to the present invention or a descendant plant thereof, or a plant transformed to suppress the expression of the gene according to the present invention or a plant descendant thereof By analyzing a metabolite using a precise mass spectrometer such as LC-TOF / MS, it is possible to widely clarify the influence of the gene according to the present invention on plant metabolites.
- LC-TOF / MS is a device that combines liquid chromatography (LC), which is a separation / analysis method of hardly volatile or thermally unstable compounds, with a time-of-flight mass spectrometer (TOF / MS) as a detector. is there.
- electrospray ionization method ESI; ElectroSpray Ionization
- these ions are caused to fly using electromagnetic force, and are detected based on a difference in flight time based on a mass difference.
- LC-TOF / MS a variety of metabolites can be analyzed simultaneously using plant leaf extracts. Specifically, analysis of plant metabolites by LC-TOF / MS can be performed as follows.
- the sample collected from the transformed plant, its descendant plant, or wild type plant is dried and pulverized, and 50% acetonitrile is added thereto for extraction.
- the extract is centrifuged, and the supernatant is ultrafiltered and subjected to LC-TOF / MS analysis.
- LC-TOF / MS analysis using LC-TOF / MS, for example, when tobacco leaves are used as a sample, simultaneous analysis of several hundred or more metabolites becomes possible.
- the influence of the gene according to the present invention on plant metabolites can be widely clarified by using gene expression analysis methods such as microarray analysis. For example, by clarifying a gene whose expression level is recognized to be different between the above-mentioned transformed plant or a plant that is a descendant thereof and a wild-type plant, the expression of other genes affected by the gene according to the present invention and Metabolic system can be revealed.
- transcriptional regulator refers to other transcriptional regulators that interact with basic transcription factors to bind to DNA, particularly to the promoter region of DNA, or bind to DNA. It refers to a protein having a function of increasing or decreasing transcription of a specific gene by acting in combination with.
- Arabidopsis research reveals that higher plants have a greater variety of transcriptional regulator genes than animals and yeast, and control at the transcriptional level plays an important role in plant life activities. It is suggested that The majority of these plant transcriptional regulators have not yet been clarified in function, but are related to the control of individual development and differentiation, responses to environmental stresses such as heat and drought, and responses to pest damage and injury Is known so far.
- the gene whose function has been clarified in this way is a polynucleotide according to the present invention having the nucleotide sequence shown in SEQ ID NOs: 1 to 17.
- TTF_ # 20 gene TTF_ # 53 gene, TTF_ # 54 gene, TTF_ # 55 gene, TTF_ # 56 gene, TTF_ # 80 gene, TTF_ # 84 gene, TTF_r20 gene, TTF_r25 gene, TTF_r33 gene
- TTF_r35 gene, TTF_r40 gene, TTF_r48 gene, TTF_r49 gene, TTF_r66 gene, TTF_r84 gene or TTF_r86 gene the nicotine content can be reduced or increased compared to non-silenced plants. it can.
- nucleotide sequences of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 are shown. It can be said that the gene is a regulator of “leaf nicotine content” in tobacco plants.
- genes according to the present invention have domains specific to transcriptional regulatory factors and are considered to be transcriptional regulatory factors.
- domains specific to the transcriptional regulatory factor of the gene according to the present invention for example, TTF_ # 20 gene and TTF_ # 55 gene are WRKY domains, TTF_r20 gene, TTF_r25 gene and TTF_r33 gene are AP2 domains, TTF_r40 gene and TTF_r48 gene are The Tfy_r49 gene has an AUX / IAA domain, the TTF_ # 53 gene has a bHLH domain, and the TTF_ # 54 gene has a SANT domain.
- a domain specific to a transcriptional regulatory factor is not found in other genes according to the present invention.
- the gene of the present invention may be involved in any step of nicotine production, translocation, and accumulation in tobacco plants, and as a result, it affects the “nicotine content of leaves”. It is thought that.
- the resistance to environmental stresses such as heat and drought and the resistance to pest damage are given by increasing or decreasing the content of plant metabolites or through various signal transductions and transcriptional regulation. Is also possible.
- the vector according to the present invention can be prepared by inserting the polynucleotide according to the present invention or a part thereof into a predetermined vector by a well-known gene recombination technique.
- the vector is not limited to this, but a cloning vector can be used in addition to the recombinant expression vector described below.
- polypeptide having function of regulating plant metabolite content provides a polypeptide having a function of regulating the content of plant metabolites.
- the polypeptide according to the present invention is preferably a polypeptide consisting of the amino acid sequence shown in SEQ ID NOs: 18 to 32 or a variant thereof.
- variant is intended to mean a polypeptide that retains a specific activity possessed by the polypeptide of interest, and the amino acid sequence shown in SEQ ID NOs: 18 to 32.
- a polypeptide variant comprising: a polypeptide having the function of regulating the content of plant metabolites is intended.
- Those skilled in the art can easily mutate one or several amino acids in the amino acid sequence of a polypeptide using well-known techniques. For example, according to a known point mutation introduction method, an arbitrary base of a polynucleotide encoding a polypeptide can be mutated. In addition, a deletion mutant or an addition mutant can be prepared by designing a primer corresponding to an arbitrary site of a polynucleotide encoding a polypeptide.
- Polypeptides according to the present invention can be produced by natural purification products, products synthesized by chemical synthesis techniques, and prokaryotic or eukaryotic hosts (eg, bacterial cells, yeast cells, higher plant cells, insect cells, and mammals). Products produced by recombinant technology from animal cells). Depending on the host used in the recombinant production procedure, the polypeptides according to the invention may be glycosylated or non-glycosylated. Furthermore, the polypeptides according to the invention may in some cases contain an initial modified methionine residue as a result of a host-mediated process.
- prokaryotic or eukaryotic hosts eg, bacterial cells, yeast cells, higher plant cells, insect cells, and mammals. Products produced by recombinant technology from animal cells).
- the polypeptides according to the invention may be glycosylated or non-glycosylated.
- the polypeptides according to the invention may in some cases contain an initial modified methionine residue as a result of
- the polypeptide according to the present invention may be a polypeptide in which amino acids are peptide-bonded, but is not limited thereto, and may be a complex polypeptide including a structure other than the polypeptide.
- examples of the “structure other than the polypeptide” include sugar chains and isoprenoid groups, but are not particularly limited.
- polypeptide according to the present invention may contain an additional polypeptide.
- Additional polypeptides include, for example, epitope-tagged polypeptides such as His tags, Myc tags, and FLAG® peptides.
- the vector according to the present invention can be prepared by inserting the polynucleotide according to the present invention or a part thereof into a predetermined vector by a known gene recombination technique.
- the vector include, but are not limited to, a cloning vector in addition to a gene recombination vector for plant transformation described below.
- the gene recombination vector includes a gene expression vector and an expression suppression vector.
- the gene expression vector and the expression suppression vector may be used according to the purpose in adjusting the content of plant metabolites.
- gene recombination vectors homologous recombination, expression of dominant negative gene products (Patent Document: Japanese Patent Application Laid-Open No.
- Patent Document Japanese Patent Application Laid-Open No. 2001-510987 and Special Table 2004
- Patent Document Japanese Patent Application Laid-Open No. 2001-510987 and Special Table 2004
- non-patent literature Sullenger et al., 1991, J. Vitrol., 65, 6811-6816.
- gene expression vectors are vectors for overexpressing the gene according to the present invention in plant cells.
- the gene expression vector is a polynucleotide encoding an amino acid sequence shown in SEQ ID NOs: 18 to 32 or a variant thereof, or a polynucleotide consisting of a nucleotide sequence shown in SEQ ID NOs: 1 to 17 or a variant thereof as an appropriate vector. It is constructed by inserting.
- “overexpressing a gene” is used to mean both an increase in the amount of mRNA that is a transcription product of the gene according to the present invention and an increase in the amount of protein that is a translation product thereof.
- it is desirable that one polynucleotide is selected from the above polynucleotides and inserted into the vector, but a plurality may be selected.
- An appropriate vector is not particularly limited as long as it is a vector capable of expressing a polynucleotide inserted in the vector in plant cells.
- vectors for example, pBI, pPZP, and pSMA vectors that can introduce a target gene into plant cells via Agrobacterium are preferably used.
- a binary vector-type plasmid pBIG, pBIN19, pBI101, pBI121, pBI221, pPZP202, etc.
- a pUC vector pUC18, pUC19, etc.
- Plant virus vectors such as cauliflower mosaic virus (CaMV), kidney bean mosaic virus (BGMV), and tobacco mosaic virus (TMV) can also be used.
- “inserting a polynucleotide into a vector” means inserting the polynucleotide into a vector so that a promoter is linked 5 ′ upstream of the polynucleotide and a terminator is linked 3 ′ downstream. Point to. Further, when the polynucleotide is derived from genomic DNA and the polynucleotide contains a promoter or terminator, the polynucleotide may be inserted into a vector having no promoter and terminator.
- the term “introducing” is used interchangeably with “transforming”, “transfecting” or “transfecting”.
- the term “introduction” is used interchangeably with “transformation”, “transfection” or “transfection”.
- the term “introduction” is not limited to the case where the DNA introduced into the plant is incorporated into the genomic DNA of the host, but a plant that is not incorporated into the genomic DNA of the host. Including transient transformation of.
- the gene expression vector When a gene has an ORF, the gene expression vector only needs to contain at least the ORF region of the gene.
- the gene expression vector contains a polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 1 to 17 or a variant thereof, or a part of the polynucleotide. Also good.
- Recombinant vectors also include promoter sequences, enhancer sequences, terminator sequences, poly A addition signals, 5′-UTR sequences, selectable marker genes, reporter genes, and replication origins for amplification in Agrobacterium bacteria, etc. Can be arranged.
- the promoter is not particularly limited as long as it can function in plant cells.
- a promoter that constitutively expresses a polynucleotide in a plant cell and a promoter that is inducibly activated by an external stimulus can be suitably used.
- promoters that constitutively express a polynucleotide include a 35S promoter derived from cauliflower mosaic virus (CaMV), a promoter of nopaline synthase gene derived from Agrobacterium, a ubiquitin gene promoter derived from corn, and an actin gene derived from rice Examples include promoters.
- the inducibly activated promoter include a heat shock gene promoter.
- a promoter that activates gene expression in a tissue-specific manner can also be used.
- the root tissue-specific tomato extensin-like protein gene promoter (patent document: JP 2002-530075 A) and tobacco TobRB7 promoter (patent document: US Pat. No. 5,459,252)
- the TobRD2 gene promoter specific to cortical tissue (Patent Document: JP-T-11-510056) and the Arabidopsis phosphate transporter gene PHT1 promoter (Patent Document: JP-A-2005-046036) can be used. is there.
- enhancer sequence examples include an enhancer region that is used to increase the expression efficiency of the target gene and includes an upstream sequence in the CaMV35S promoter.
- the terminator sequence may be any sequence that can terminate mRNA synthesis of a gene transcribed by a promoter sequence, and examples thereof include a nopaline synthase (NOS) gene terminator and a CaMV35S RNA gene terminator.
- NOS nopaline synthase
- selection marker genes include ampicillin resistance gene (Amp, bla), neomycin resistance gene (NPTII), kanamycin resistance gene (NPTIII), hygromycin resistance gene (htp), glufosinate resistance gene (Bar), and chloramphenic acid.
- NPTII neomycin resistance gene
- NPTIII kanamycin resistance gene
- htp hygromycin resistance gene
- Bar glufosinate resistance gene
- chloramphenic acid for example, call acetyltransferase (CAT).
- Any reporter gene can be used as long as it can confirm whether or not a plant cell has been transformed by the expression of the gene.
- GUS ⁇ -glucuronidase
- LOC luciferase
- GFP green fluorescent protein
- CFP cyan fluorescent protein
- LacZ beta galactosidase
- each vector may be co-introduced (co-transfected) into the host.
- the expression suppression vector is a vector for suppressing the expression of endogenous genes in plant cells, and is a transformed plant in which the content of plant metabolites is regulated.
- the expression suppression vector is a part of a polynucleotide encoding the amino acid sequence shown in SEQ ID NOs: 18 to 32 or a variant thereof, or a part of a polynucleotide consisting of the base sequence shown in SEQ ID NOs: 1 to 17 or a variant thereof. It is constructed by inserting a part of a certain polynucleotide into an appropriate vector.
- the term “part” is described in detail in the section of various expression-suppressing vectors below, but is a poly having a base sequence of 21 or more consecutive nucleotides of the gene according to the present invention. It is a nucleotide and may contain the full length of the gene according to the present invention. Further, the “part” may be selected from any part of the gene according to the present invention, and thus may be selected from the UTR. Further, the “base sequence of 21 or more consecutive bases” may be selected from a plurality of portions of the gene according to the present invention and used, for example, by linking them.
- siRNA used for gene silencing may be used as a cocktail in which a plurality of siRNAs are mixed in order to ensure the effect of silencing.
- the “part” may be selected from a polynucleotide derived from a genomic DNA fragment containing the gene according to the present invention, and may be selected from, for example, an intron or a promoter.
- it is desirable that one polynucleotide is selected from the above-mentioned polynucleotides as in the case of the gene expression vector, but a plurality may be selected.
- suppressing gene expression is intended to include both a decrease in the amount of mRNA that is a transcription product of an endogenous gene and a decrease in the amount of a protein that is a translation product. Since the constituent elements other than the inserted polynucleotide in the expression suppression vector are basically the same as those of the gene expression vector, description thereof is omitted.
- RNA interference RNA interference
- microRNA RNA interference
- expression suppression vectors refer to RNAi vectors, antisense vectors, and VIGS vectors.
- an RNAi vector is a vector that expresses double-stranded RNA (dsRNA) that causes RNAi.
- dsRNA double-stranded RNA
- the expressed dsRNA is cleaved by double-stranded RNA-specific RNase (Dicer) to become RNA of 21 to 25 bases called siRNA.
- siRNA forms a complex called RNA-induced silencing complex (RISC), and finally RISC recognizes and degrades the target mRNA based on base sequence homology.
- the RNAi vector is preferably a vector that expresses dsRNA that causes RNAi as a hairpin dsRNA.
- RNAi vector that expresses dsRNA is a hairpin constructed by placing DNA corresponding to a dsRNA forming portion so that IR (inverted repeat) is placed at both ends of a spacer sequence of several bases or more such as an intron.
- Types of RNAi vectors can be used.
- the spacer is not limited to this, but, for example, a pdk intron (Non-Patent Document: Wesley SV et al., 2001., Plant J., 27, 581-90) can be preferably used.
- the RNAi vector may also be a tandem type in which sense RNA and antisense RNA are transcribed by separate promoters, and these hybridize in cells to produce dsRNA.
- RNAi may be caused by constructing a plurality of expression vectors in which sense RNA and antisense RNA are each transcribed.
- the polynucleotide inserted into the RNAi vector is, for example, a polynucleotide comprising a part of a polynucleotide encoding the amino acid sequence shown in SEQ ID NOs: 18 to 32 or a variant thereof, or a base sequence shown in SEQ ID NOs: 1 to 17 Alternatively, it consists of a polynucleotide comprising a continuous base sequence of 21 bases or more, more preferably a base sequence of 50 bases or more, more preferably a base sequence of 100 bases or more, which is a part of the mutant, and a complementary sequence of the base sequence Polynucleotides are used.
- a VIGS vector is a vector in which a polynucleotide for causing a VIGS for a target gene is incorporated, and is used for simply confirming the function of the gene.
- VIGS is a mechanism included in the mechanism of PTGS, and is considered as one of the defense mechanisms of plants against viruses.
- the VIGS vector contains a part of the base sequence of the target gene, and in the plant into which this is introduced, VIGS is induced upon amplification of the generated recombinant viral RNA and the endogenous target gene is silenced. .
- a TRV vector can be used as the VIGS vector.
- VIGS system using the TRV vector reference can be made to non-patent documents: Ratcliff F. et al, 2001, Plant Journal, 25, 237-245, and U.S. Patent No. 7,229,829.
- the polynucleotide inserted into the VIGS vector is, for example, a polynucleotide comprising a part of a polynucleotide encoding the amino acid sequence shown in SEQ ID NOs: 18 to 32 or a variant thereof, or a base sequence shown in SEQ ID NOs: 1 to 17 Alternatively, a polynucleotide comprising a continuous base sequence of 100 bases or more, more preferably a base sequence of 150 bases or more, further preferably a base sequence of 200 bases or more, which is a part of the mutant may be used.
- the direction inserted into the vector may be either the sense direction or the antisense direction.
- an antisense vector is a vector in which a polynucleotide for expressing an antisense RNA capable of binding to mRNA of a target gene is incorporated.
- An “antisense” RNA is a polynucleotide having a base sequence complementary to an endogenous mRNA having a “sense” sequence.
- the antisense vector is located downstream of the promoter, for example, a part of a polynucleotide encoding the amino acid sequence shown in SEQ ID NOs: 18 to 32 or a variant thereof, or a polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 1 to 17 or A polynucleotide comprising a continuous base sequence of 50 bases or more, preferably a base sequence of 100 bases or more, more preferably a base sequence of 500 bases or more, which is a part of the mutant is used.
- a ribozyme vector may be used by linking a ribozyme designed to cleave a target mRNA, downstream of a promoter such as a CaMV35S promoter in a recombinant vector so that it can be transcribed in plant cells.
- a cosuppression vector is a vector in which DNA having a sequence that is the same as or similar to the base sequence of the target gene is incorporated.
- “Cosuppression” is a phenomenon in which the expression of both the introduced foreign gene and the target endogenous gene is suppressed when a gene having the same or similar sequence as the target endogenous gene is introduced into the plant.
- the gene used for cosuppression need not be completely identical to the target gene, but at least 70% or more, preferably 80% or more, more preferably 90% or more (for example, 95% or more). Have.
- the sequence identity can be determined by a conventionally known method.
- each expression suppression method is expected to have different results due to the difference in the mechanism (for example, whether it is transient or constant) or the difference in the experimental system.
- a transformed plant in which the content of the plant metabolite according to the present invention is controlled can be produced by transforming a target plant using the above-described vector according to the present invention.
- the term “transformed plant with controlled plant metabolite content” means that the content of a particular plant metabolite is reduced or increased compared to a control plant.
- the “control plant” is a wild-type plant whose plant metabolite content is not regulated, and is the same species or the same variety as the plant whose plant metabolite content is regulated. It is cultivated or cultured under conditions. Or a transformed plant introduced with a gene used as a control or a part thereof, which is not involved in the regulation of the plant metabolite content, and is the same species or the same variety as the plant in which the plant metabolite content is regulated. Those grown or cultured under conditions are also included.
- the content of a specific plant metabolite is reduced or increased by 10% or more in the above “the content of the plant metabolite is regulated”.
- the above “10% or more” refers to a reduction or increase of preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, and most preferably 50% or more.
- “reduction or increase” is preferably realized in a plant body that has been subjected to a culling process to remove apical buds and buds, but may be realized in a plant body that has not been culled.
- “regulated” is preferably realized in specific tissues such as leaves and roots, but is not limited thereto.
- pinching is an important operation that is performed on various crops and has a great influence on the quality and yield of the crops.
- transformed plant refers to a genetically modified plant (also referred to as a transgenic plant) in which DNA introduced into the plant is integrated into the host's genomic DNA. Also included are transiently transformed plants that do not integrate into the genomic DNA.
- transformed plant refers to a transformed plant cell produced using the vector according to the present invention, or a plant derived from the cell or a part of the plant. Further, as will be described later, a progeny obtained by transferring a genome into which a desired polynucleotide according to the present invention is incorporated from a genetically modified plant cell can also be a “transformed plant”.
- a “transformed plant” can be a plant cell, a plant, a part of a plant, or a seed.
- the plant material to be transformed in the present invention includes the whole plant body, plant organs (for example, roots, stems, leaves, seeds, embryos, ovules, shoot tips, cocoons and pollen), plant tissues (for example, epidermis, mentor). Part, parenchyma, xylem, vascular bundle, palisade tissue, and spongy tissue, etc.), plant cultured cells (for example, suspension cultured cells) and plant cells including protoplasts, leaf sections, and callus Also means.
- plant organs for example, roots, stems, leaves, seeds, embryos, ovules, shoot tips, cocoons and pollen
- plant tissues for example, epidermis, mentor
- plant tissues for example, epidermis, mentor
- plant cultured cells for example, suspension cultured cells
- plant cells including protoplasts, leaf sections, and callus Also means.
- the plant used for transformation is not particularly limited, but it is preferably a dicotyledonous plant, more preferably a solanaceous plant or an Asteraceae plant.
- solanaceous plants include the genus Duboisia, the genus Anthocericis, the genus Salpiglessis, and the genus Nicotiana.
- the asteraceae plants include the genus Eclipta, and the Zinnia) and the like.
- a solanaceous plant is more preferable, and among them, a tobacco genus plant is particularly preferable.
- the plant belonging to the genus Tobacco is not particularly limited as long as it belongs to the genus Tobacco (Nicotiana). mul.
- Nicotiana paniculata Nicotiana pauczjlora, Nicotiana petunioides, Nicochi Ana Plumbaginifolia (Nicotiana plumbaginifolia), Nicotiana Quadrivalvis, Nicotiana Raymondii, Nicotiana Repanda, Nicotiana Rosulata, Nicotiana Rosulata Nicolsiana rosulata ellisubsp. ⁇ Solanifolia, Nicotiana spegauinii, Nicotiana stocktonii, Nicotiana suaveorens (Ni) cotiana suaveolens), Nicotiana sylvestris, Nicotiana ⁇ tabacum, Nicotiana thyrsiflora, Nicotiana tomentosa, Nicotiana ⁇ ⁇ ⁇ tanago ment (Nicotiana trigonophylla), Nicotiana ⁇ ⁇ umbratica, Nicotiana ⁇ ⁇ undulata, Nicotiana velutina, Nicotiana veluti
- the present invention includes a plant into which a desired polynucleotide contained in the vector according to the present invention has been introduced, a plant having the same properties as this plant, or a descendant of this plant, or these Also includes tissue from origin.
- a transformation method As a transformation method, a transformation method known to those skilled in the art can be used, and preferred examples include the Agrobacterium method, the particle gun method, the PEG-calcium phosphate method, and the electroporation method. . These are roughly classified into a method using Agrobacterium and a method for directly introducing into plant cells. Among these, the method using the Agrobacterium method is preferable. Examples of Agrobacterium suitably used for transformation include strains GV2260, LBA4404, and C58 of Rhizobium radiobacter (formerly Agrobacterium tumefaciens), such as Agrobacterium method.
- a pBI binary vector can be preferably used for transformation using Agrobacterium for transformation containing a target vector using a conventionally known method. it can.
- the transformed plant cell into which the gene has been introduced is first selected based on resistance to the drug using the above-described selection marker gene, and then regenerated into a plant body by a conventional method. Regeneration of a plant body from a transformed cell can be performed by a method known to those skilled in the art depending on the type of plant cell.
- PCR a Southern hybridization method
- Northern hybridization method a Northern hybridization method
- DNA is prepared from a transformed plant
- PCR is performed by designing primers specific to the introduced polynucleotide using this DNA as a template.
- the amplified product was subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, etc., and stained and detected with ethidium bromide and SYBR Green solution, etc. Can be confirmed.
- PCR can be performed using a primer previously labeled with a fluorescent dye or the like to detect an amplification product.
- amplification product is bound to a solid phase such as a microplate and the amplification product is confirmed by fluorescence or enzymatic reaction.
- a plant cell has been transformed can be confirmed by expression of a reporter gene.
- the VIGS vector has been introduced into the plant can be confirmed by confirming that the recombinant plant virus incorporated in the VIGS vector is infected and propagated in each tissue of the plant.
- the infection and propagation of the recombinant plant virus can be confirmed by RT-PCR method or RT-QPCR method using PCR primers for total RNA extracted from each tissue and the viral genome.
- TTF_r40 gene, TTF_r48 gene, TTF_r49 gene, TTF_r66 gene, TTF_r84 gene or TTF_r86 gene is modified can be obtained.
- tobacco can be used for the production of conventional tobacco, which has different contents in quantity or quality. Moreover, if such a leaf tobacco is used, the range of the taste and aroma of tobacco products that can be created by blending can be further expanded.
- leaf tobacco refers to the raw material of tobacco products obtained by drying the leaves (including stems) of the harvested tobacco plants. Nicotiana tabacum or Nicotiana rustica is used as a tobacco genus plant that becomes “leaf tobacco”. Typical tobacco products also include, but are not limited to, cigarettes, cigars, pipe tobacco, snuff and chewing tobacco.
- polypeptide having a function of reducing or increasing the content of plant metabolites wherein the polypeptide is the polypeptide described in (i) or (j) below: (I) a polypeptide comprising the amino acid sequence shown in SEQ ID NOs: 18 to 32; (J) A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added in the amino acid sequence shown in SEQ ID NOs: 18 to 32.
- a promoter that functions in a plant cell and a polynucleotide comprising a continuous base sequence that is a part of at least one of the polynucleotides described above, and the sense strand or antisense of this polynucleotide in the plant cell.
- a method for producing a transformed plant cell in which the content of plant metabolites is reduced or increased comprising a step of transforming a plant with the above-mentioned vector.
- the promoter contained in the vector used for transformation of the plant cell is the following (m), (n) or ( o) Method: (M) a promoter having an activity of constitutively expressing a target gene in a plant body; (N) a promoter having an activity of selectively expressing a target gene in cells of a plant root tissue; (O) A promoter having an activity of selectively expressing a target gene in cells of plant root cortex tissue.
- a method for producing a transformed plant cell with reduced or increased content of plant metabolites wherein the plant cell transformation method is the following (p) or (q): (P) a method carried out via Agrobacterium comprising the vector; (Q) A method that is carried out by causing the microparticles to which the vector is attached to collide with cells.
- a method for producing the above-described transformed plant cell comprising a step of regenerating a plant from the transformed plant cell.
- the transformed plant cell is more preferably a dicotyledonous cell, the dicotyledonous plant is more preferably a solanaceous plant, and the solanaceous plant is a tobacco genus plant. It is particularly preferred that the tobacco genus plant is Nicotiana tabacum.
- the transformed plant is preferably a plant cell or a plant body.
- a transformed plant produced by using any of the above-described methods for producing a transformed plant and its progeny are also included in the present invention.
- Tobacco raw materials (leaf tobacco) obtained from the plant body in which the plant body is Nicotiana tabacum and the content of the plant metabolite is reduced or increased, and tobacco products produced using the same are also provided. Included in the invention.
- the vector according to the present invention is a vector capable of producing a transformed plant in which the content of plant metabolites is controlled, and is characterized by including a part of the above-mentioned polynucleotide.
- Example 1 Plant hormone treatment of root section
- the apical buds (1-2 cm) cut from the seedlings of aseptically cultivated tobacco (Nicotiana tabacam, varieties Burley 21 and LA Burley 21) were halved in MS agar medium (incubator: plant box, capacity 50 ml, (Including 0.65% agar and 1.5% sucrose) for about one month, and the roots of the seedlings grown therefrom were collected.
- MS agar medium incubator: plant box, capacity 50 ml, (Including 0.65% agar and 1.5% sucrose) for about one month, and the roots of the seedlings grown therefrom were collected.
- LA Burley 21 is an isogenic line of Burley 21, and it hardly accumulates nicotine-related alkaloids such as nicotine due to the mutation of both regulatory loci (Nic1 and Nic2) involved in nicotine biosynthesis.
- Non-patent literature Legg et al., 1970, Crop Sci, 10., 212.
- Non-Patent Document Hibi et al., 1994, Plant Cell., 6, 723- 35.
- Root slices were prepared in 25% HF modified liquid medium (pH 5.8, non-patent literature: Mano et al., 1989, Plant Sci, 59, 191-201.) Containing 1% sucrose and 5 ⁇ M indoleacetic acid (IAA), 25 Pre-culture (80 rpm) was performed in the dark at 0 ° C. After culturing for 24 hours, the root slices were washed with sterilized water and cultured in 40 ml of HF liquid medium (incubator: 100 ml Erlenmeyer flask) containing 1% sucrose and 0.5 ⁇ M methyl jasmonic acid (MeJA).
- HF modified liquid medium pH 5.8, non-patent literature: Mano et al., 1989, Plant Sci, 59, 191-201.
- RNAlater product name, Ambion
- CDNA was synthesized from these samples, and quantitative PCR confirmed changes in the amount of transcripts of four nicotine synthase genes (PMT1, ODC1, MPO1, and QPT) known to be induced by jasmonic acid.
- PMT1, ODC1, MPO1, and QPT nicotine synthase genes
- a large increase in the amount of transcript was observed from 60 minutes to 120 minutes later. Therefore, it was considered that the obtained total RNA can be used for screening of genes induced by jasmonic acid.
- auxin removal treatment A total RNA sample for clarifying genes induced when auxin was removed from the culture broth was obtained as follows.
- Root slices were pre-cultured for 24 hours in HF modified medium containing 1% sucrose and 5 ⁇ M IAA, washed with sterilized water, and cultured in HF modified medium containing 1% sucrose. In addition, a part of the root section was cultured in a HF modified medium containing 1% sucrose and 5 ⁇ M IAA as a control. About 10 root slices were collected at 0, 1, 2, and 4 hours after the start of culture, and a total RNA sample was extracted from the root slices in the same manner as in the case of jasmonic acid treatment.
- 1-aminocyclopropane-1 which is precultured in HF modified medium containing 1% sucrose for 24 hours, washed with sterilized water, and contains 1 ⁇ M IAA or is a precursor of ethylene in plants.
- ACC carboxylic acid
- a part of the pre-cultured root slice was cultured in a HF modified medium containing 1% sucrose as a control. About 10 root slices were collected at 0, 30, and 60 minutes after the start of culture, and a total RNA sample was extracted from the root slices in the same manner as in the case of jasmonic acid treatment.
- Example 2 Tightening treatment of individual tobacco plant
- Tobacco plant (variety Tsukuba No. 1) is placed in an artificial meteorograph (Coitotron, 12 hours / 26 ° C / humidity 60% (light period) and 12 hours / 18 ° C / humidity 60% (dark period). Koito Kogyo).
- a tobacco plant was transplanted into a 12 cm terracotta packed with vermiculite, and 60-75 ml of Hyponex (HYPONEX JAPAN) diluted 2000 times was also given daily for irrigation. Cardiac arrest was performed on the 18th day after transplanting, leaving 12 leaves from the bottom. Roots were collected from individuals before and after 1, 3, 9, 24, and 48 hours from the end of the heart and subjected to total RNA extraction. As a control, roots were also collected from individuals who did not stop. Samples were taken from 4 individuals per time point and used as experimental repeats. The collected roots were immediately frozen in liquid nitrogen and stored at ⁇ 80 ° C. The frozen roots were ground in liquid nitrogen using a mortar and pestle, and then total RNA was extracted. Extraction of total RNA was performed in the same manner as in Example 1.
- Example 3 Selection of genes by microarray analysis
- the microarray is a 44K custom array that was commissioned to Agilent Technologies, Inc., the end sequence information of the applicant's full-length cDNA library derived from Nicotiana Tabacam variety Tsukuba No. 1 and Nicotiana registered in GenBank. -The probe for the assembled base sequence obtained by clustering the base sequence of the Tabacam gene is mounted.
- Hybridization including labeling was carried out according to the method of the one-color protocol recommended by Agilent Technologies (file name: One-Color Microarray-Based Gene Expression Analysis, Ver 5.5, and February 2007).
- Genes induced by jasmonic acid were selected as follows. First, in an experiment in which MeJA was treated on the root section of cultivar Burley 21, genes having a microarray signal ratio of 2 or more were selected 30 minutes or 60 minutes after treatment compared to before MeJA treatment. Next, genes having a microarray signal ratio of 2 or more were selected 30 or 60 minutes after MeJA treatment compared to the control. The union of both was taken as the gene induced by jasmonic acid.
- genes induced by the addition of auxin or ACC were selected as follows. First, genes having a signal ratio of 2 or more were selected at 1 or 2 hours after addition of auxin or ACC compared to before addition. Next, at 1 or 2 hours after the addition of auxin or ACC, genes having a microarray signal ratio of 2 or more were selected compared to the control, and the union of both was used as a gene induced by auxin or ethylene.
- genes induced by auxin removal genes having a microarray signal ratio of 2 or more as compared with the control were selected 1 hour or 2 hours after auxin removal.
- a gene having a microarray signal ratio of 2 or more at 9 hours after the heart arrest compared with that before the heart arrest was selected as a gene induced by the heart arrest treatment.
- Example 4 Selection of genes from known information
- a blastx search is performed on the Non-redundant protein sequence (nr) database of National Center for Biotechnology (NCBI), and keywords IAA, auxin, bHLH, MYC, C2H , An assembled base sequence that was hit by an amino acid sequence having zinc finger, ZAT, WZF, ZPT, or ethylene was extracted. Further, the EAR motif (SEQ ID NOs: 94 to 113) shown in Table 1 was used as a query to perform a tblastn search on the assembled base sequence, and the assembled base sequence having the EAR motif was further extracted. In total, 27 genes with high gene expression levels in the roots were selected from 178 genes.
- Example 5 Yeast One-Hybrid screening
- genes were also selected by the yeast One-Hybrid method described below.
- Yeast One-Hybrid selection was performed using Matchmaker TM One-Hybrid Library Construction & Screening Kit (Takara Bio) according to the manual attached to the kit.
- the yeast transformation method was carried out by partially improving the High efficiency method (http://www.umanitoba.ca/faculties/medicine/biochem/gietz/method.html) on the homepage at the following address.
- Yeast competent cells used for transformation were prepared as follows. A single colony (2-3 mm) of Y187 yeast strain cultured on YPDA plate at 30 ° C. for 3 days was scraped and shaken in 6 ml of 2 ⁇ YPDA liquid medium at 30 ° C. and 200 rpm for about 24 hours. A liquid was prepared. 2 ml of this preculture was added to 100 ml of 2 ⁇ YPDA liquid medium and cultured with shaking at 30 ° C. until the OD600 reached about 0.5 (2-4 hours). The cultured yeast was collected by centrifugation at low speed for 5 minutes, washed with sterilized water, finally suspended in 1 ml of sterilized water, and dispensed in 300 ml portions into 1.5 ml tubes.
- Transformation of yeast was performed as follows. After centrifuging the yeast suspension at 10000 rpm for 30 seconds and removing the supernatant, the yeast pellet was mixed with a previously prepared Transformation Mix (50% PEG3500: 240 ⁇ l, 1M lithium acetate: 36 ⁇ l, dH 2 O: 64 ⁇ l, 10 mg). / Ml denatured carrier DNA: 10 ⁇ l, plasmid DNA: 10 ⁇ l) was added and suspended completely by vortexing. Further, this suspension was kept at 42 ° C. for 20 minutes to give a heat shock, and then centrifuged at 10,000 rpm for 30 seconds to remove the supernatant and gently suspended in 1 ml of sterilized water. 200 ⁇ l of this suspension was plated on an SD plate and cultured at 30 ° C. for 2-7 days.
- a previously prepared Transformation Mix 50% PEG3500: 240 ⁇ l, 1M lithium acetate: 36 ⁇ l, dH 2 O: 64 ⁇ l, 10 mg).
- the screening cDNA is pre-cultured for 24 hours in HF-modified medium not containing plant hormones described in Example 1, and then attached to the kit using total RNA extracted from root slices cultured with IAA or ACC added as a template. It was prepared according to the manual.
- Bait sequences were selected from the promoter sequences of nicotine biosynthetic enzyme genes with reference to the presence or absence of known cis elements and promoter activity information.
- An ARE motif GAGCAC: non-patent literature: Guilfoyle et al., 2002, Plant Molecular Biology, 49, 373 from tobacco quinolinate phosphoryltransferase gene (QPT1, GenBank Accession No. AJ748262) whose expression specificity and injury inducibility are confirmed in roots -385.
- QPT1 Bait sequence SEQ ID NO: 33.
- the PMT1 sequence number 34 (SEQ ID NO: 34) obtained by ligating the putacine N-methyltransferase gene (PMT1, GenBank accession number AF126810) and the actataattgcaccagagaacacac (24mer: SEQ ID NO: 93) consisting of the TAA-Box / ARE motif three times. ). These were cloned into the pHis2.1 vector according to the manual attached to the kit.
- the base sequence held by these clones is decoded, and the blastx search and blastn search are performed using the sequence as a query to find a gene that suggests the possibility of encoding a transcription factor or a protein that has an unknown function. Selected.
- the genes selected in this way were transformed again into yeast, and genes that were reproducible for binding to Bait were selected.
- Example 6 VIGS assay
- a construct for VIGS was prepared using pSP221, which is a TRV-RNA2 vector adopting the Gateway (registered trademark) system.
- pSP221 inserts the TRV-RNA2 expression cassette of pTRV2-attR2-attR1 (non-patent literature: Liu Y. et al, 2002, Plan Journal, 31, 777-786) into the multicloning site of pSP202 derived from the binary vector pBI121. It produced by doing.
- PSP202 was modified by inserting the pUC18 Amp gene into pBI121 and selecting it with carbenicillin.
- DNA fragments for insertion into pSP221 were PCR amplified using primers specific for the base sequences of a total of 149 genes selected in Examples 3 and 4 and 5.
- Table 2 shows primers used for preparing a DNA fragment having a partial base sequence of TTF_r40 gene, TTF_r48 gene, TTF_r49 gene, TTF_r66 gene, TTF_r84 gene or TTF_r86 gene.
- PCR amplification was performed at 95 ° C. for 30 seconds and at 65 ° C. for 2 minutes using Pfu Ultra High-Fidelity DNA Polymerase (product name, Stratagene) and GeneAmp PCR System 9700 (product name, Applied Biosystems), followed by 95 ° C. for 30 seconds and 65 ° C. The reaction was carried out by reacting at 2 ° C. for 2 minutes for 35 cycles and at 72 ° C. for an additional 10 minutes. PCR amplification was performed using a reverse transcription reaction product prepared from the total RNA described in Example 1 using Omniscript RT Kit (product name, QIAGEN), and using this as a template. PCR products were cloned using the pENTR / D-TOPO cloning kit (product name, Invitrogen).
- the base sequences of the PCR-amplified DNA fragments are represented by SEQ ID NOs: 71 (TTF_ # 20), 72 (TTF_ # 53), 73 (TTF_ # 54), 74 (TTF_ # 55), 75 (TTF_ # 56), respectively.
- each DNA fragment consisting of the nucleotide sequences shown in SEQ ID NOs: 71 to 87 was cloned into the pENTR / D-TOPO vector to complete an entry clone for the Gateway (registered trademark) system.
- DNA consisting of a partial base sequence of the GUS gene was PCR-amplified using the binary vector pBI121 as a template and the primers shown in Table 2, and cloned into the pENTR / D-TOPO vector (Entry clone). The base sequence of this DNA obtained by PCR is shown in SEQ ID NO: 88.
- a DNA fragment consisting of the nucleotide sequence shown in SEQ ID NOs: 71 to 88 cloned into the pENTR / D-TOPO vector was converted into TRV-RNA2 by an attL ⁇ attR recombination reaction using Gateway (registered trademark) LR clonase II. It was incorporated into the vector pSP221.
- the Escherichia coli containing the desired recombinant construct was selected in the presence of 50 ⁇ g / mL carbenicillin.
- the TRV-RNA2 constructs pTRV2-TTF_ # 20, pTRV2-TTF_ # 53, pTRV2-TTF_ # 54, pTRV2-TTF_ # 55, pTRV2-TTF_ # 56, pTRV2-TTF_ # 80, pTRV2- TTF_ # 84, pTRV2-TTF_r20, pTRV2-TTF_r25, pTRV2-TTF_r33, pTRV2-TTF_r35, pTRV2-TTF_r40, pTRV2-TTF_r48, pTRV2-TTF_r49, pTRV2-TTFVT, TRF It was.
- These TRV-RNA2 constructs were introduced into Agrobacterium strain GV2260 (see Non-Patent Documents: Deblaere R., 1985, Nucleic Acids Res., 13, 4777-88.).
- TRV-RNA1 construct (GenBank accession number AF406990) encoding an RNA-dependent RNA replication enzyme of Tobacco Rattle Virus was similarly introduced into Agrobacterium strain GV2260.
- Agrobacterium containing TRV-RNA2 construct and Agrobacterium containing TRV-RNA1 construct were each pre-cultured overnight at 28 degrees in 10 ml of LB liquid medium (containing 50 mg / L kanamycin). On the next day, a part of the preculture was added to 50 ml of LB liquid medium (containing 50 mg / L kanamycin) and further cultured at 28 ° C. overnight.
- Each Agrobacterium collected by centrifugation at 3000 ⁇ g for 15 min was suspended in 10 mM MES buffer (pH 5.7) containing 10 mM MgCl 2 and 150 ⁇ M Acetosylone so that the OD600 value was 1.0.
- An inoculum was prepared by mixing the Agrobacterium suspension containing the TRV-RNA1 construct and the Agrobacterium suspension containing the TRV-RNA2 construct in a ratio of 1: 1.
- Nicotiana benthamiana was grown in soil in an artificial meteorograph set to conditions of 12 hours / 25 ° C./humidity 60% (light period) and 12 hours / 18 ° C./humidity 60% (dark period). About 18 days after sowing, the above inoculum is inoculated on the leaves of the plant, and the cultivation environment is 12 hours / 22 ° C./humidity 60% (light period), 12 hours / 18 ° C./humidity 60% (dark period). Changed and raised for another 17 days. During this time, plants were transplanted into 9 cm terracotta.
- Agrobacterium inoculation is performed by infiltration using a needle-free 1 ml syringe on fully expanded leaves (Non-patent literature: Kapila et al, 1997, Plant Sci., 122, 101-108., Rossi et al, 1993, Plant Mol. Biol. Rep., 11, 220-229. And Van der Hoorn et al, 2000, Mol. Plant-Microbe Interact., 13, 439-446.).
- TTF_ # 20 gene Of the total of 149 genes selected in Examples 3, 4, and 5 by the above VIGS assay, TTF_ # 20 gene, TTF_ # 53 gene, TTF_ # 54 gene, TTF_ # 55 gene, TTF_ # 56 gene , TTF_ # 80 gene, TTF_ # 84 gene, TTF_r20 gene, TTF_r25 gene, TTF_r33 gene, TTF_r35 gene, TTF_r40 gene, TTF_r48 gene, TTF_r49 gene, TTF_r66 gene, TTF_r84 gene or TTF_r84 gene, TTF_r84 gene or TTF_r84 gene It was found to affect the nicotine content per unit (FIG. 1, Table 3).
- FIG. 1 It was found to affect the nicotine content per unit (FIG. 1, Table 3).
- Table 1 shows the nicotine content in leaves of a control plant inoculated with Agrobacterium containing pTRV2-GUS and a plant inoculated with Agrobacterium containing a TRV-RNA2 construct into which a part of the gene of the present invention has been inserted.
- Table 3 shows the nicotine content in the leaves of the plant silenced with the gene of the present invention as a ratio to the control plant. As shown in FIG.
- TTF_ # 20 gene TTF_ # 53 gene, TTF_ # 54 gene, TTF_ # 55 gene, TTF_ # 56 gene, TTF_r20 gene, TTF_r25 gene, TTF_r33 gene, TTF_r35 gene, TTF_r40 gene, Silencing the TTF_r48 and TTF_r66 genes increased leaf nicotine content in arrested Nicotiana benthamiana plants by 17-69% compared to controls. Silencing the TTF_ # 80 gene, TTF_ # 84 gene, TTF_r49 gene, TTF_r84 gene and TTF_r86 gene also reduced the leaf nicotine content in the arrested Nicotiana benthamiana plants by 15-74% compared to the control. It was.
- TTF_ # 20 gene Cloning of cDNA having full-length ORF.
- the full-length cDNA of TTF_ # 20 gene was obtained from the applicant's own cDNA clone library.
- the TTF_ # 20 gene has been selected as a gene whose expression is induced by the addition of jasmonic acid and the removal of auxin in the microarray analysis shown in Example 3, and has the nucleotide sequence shown in SEQ ID NO: 1.
- the amino acid sequence predicted to be encoded by the TTF_ # 20 gene (SEQ ID NO: 18) has a WRKY domain and is predicted to be a transcriptional regulatory factor.
- TTF_ # 53 gene The full length cDNA of TTF_ # 53 gene was obtained from the applicant's own cDNA clone library.
- the TTF_ # 53 gene has been selected as a gene whose expression is induced by the addition of jasmonic acid in the microarray analysis shown in Example 3.
- the base sequence of the full-length cDNA is shown in SEQ ID NO: 2.
- the amino acid sequence predicted to be encoded by the TTF_ # 53 gene (SEQ ID NO: 19) has a bHLH domain and is predicted to be a transcriptional regulatory factor.
- TTF_ # 54 gene The full-length cDNA of TTF_ # 54 gene was obtained from the applicant's own cDNA clone library.
- the TTF_ # 54 gene has been selected as a gene whose expression is induced by the addition of jasmonic acid in the microarray analysis shown in Example 3 and is suppressed in LA Burley 21, and its full-length cDNA base sequence. Is shown in SEQ ID NO: 3.
- the amino acid sequence predicted to be encoded by the TTF_ # 54 gene (SEQ ID NO: 20) has a SANT domain and is predicted to be a transcriptional regulatory factor.
- TTF_ # 55 gene The full-length cDNA of TTF_ # 55 gene was obtained from the applicant's own cDNA clone library.
- the TTF_ # 55 gene has been selected as a gene whose expression is induced by the addition of jasmonic acid in the microarray analysis shown in Example 3.
- the base sequence of the full-length cDNA is shown in SEQ ID NO: 4.
- the amino acid sequence predicted to be encoded by the TTF_ # 55 gene (SEQ ID NO: 21) has a WRKY domain and is predicted to be a transcriptional regulator.
- TTF_ # 56 gene The full length cDNA of TTF_ # 56 gene was obtained from the applicant's own cDNA clone library.
- the TTF_ # 56 gene has been selected as a gene whose expression is induced by the addition of jasmonic acid and the removal of auxin in the microarray analysis shown in Example 3.
- the base sequence of the full-length cDNA is SEQ ID NO: 5. Shown in No obvious ORF is found in the base sequence of the TTF_ # 56 gene.
- TTF_ # 80 gene The full-length cDNA of TTF_ # 80 gene was obtained from the applicant's own cDNA clone library.
- the TTF_ # 80 gene has been selected as a gene that responds to jasmonic acid and injury in Example 4, and the base sequence of the full-length cDNA is shown in SEQ ID NO: 6.
- the amino acid sequence predicted to be encoded by the TTF_ # 80 gene (SEQ ID NO: 22) has a NadA domain and a SufE domain, and shows 64% homology with Arabidopsis thaliana quinolinate synthetase.
- TTF_ # 84 gene The full-length cDNA of TTF_ # 84 gene was obtained from the applicant's own cDNA clone library.
- the TTF_ # 84 gene has been selected as a gene that responds to jasmonic acid and injury in Example 4, and the base sequence of the full-length cDNA is shown in SEQ ID NO: 7.
- the amino acid sequence predicted to be encoded by the TTF_ # 84 gene (SEQ ID NO: 23) is homologous to the quinolinate synthetase of Arabidopsis thaliana (66%), similar to the amino acid sequence of the TTF_ # 84 gene.
- the TTF_ # 84 gene is a homologue of the TTF_ # 80 gene.
- TTF_r20 gene Since the full-length cDNA of TTF_r20 gene was not included in the applicant's own cDNA clone library, primer 1 (5′-GGATTCCCCGGGATTTTGAATTCTTG-3 ′: SEQ ID NO: 89) and primer 2 (5′-ATTCGAACAAATTGTTAAACTCACTGCCGTA-3 ′: Using the reverse transcription reaction product described in Example 1 as a template, cDNA having a full-length ORF was obtained using SEQ ID NO: 90).
- the TTF_r20 gene is a gene selected as a gene induced by auxin and ethylene in the microarray analysis shown in Example 3, and the base sequence of the cDNA having the full-length ORF is shown in SEQ ID NO: 8.
- the amino acid sequence predicted to be encoded by the TTF_r20 gene (SEQ ID NO: 24) has an AP2 domain and is predicted to be a transcriptional regulator.
- TTF_r25 gene Since the full-length cDNA of TTF_r25 gene was not included in the applicant's own cDNA clone library, primer 3 (5′-CTTTCCCCTGTTTTATAGCAGACATA-3 ′: SEQ ID NO: 91) and primer 4 (5′-CATTTACAAGATAATTACCGCTTAATCAATG-3 ′: Using SEQ ID NO: 92), a cDNA having a full-length ORF was obtained in the same manner as the TTF_r20 gene.
- the TTF_r25 gene is a gene selected as a gene induced by auxin and ethylene in the microarray analysis shown in Example 3, and the base sequence of the cDNA having the full-length ORF is shown in SEQ ID NO: 9.
- the amino acid sequence predicted to be encoded by the TTF_r25 gene (SEQ ID NO: 25) has an AP2 domain and is predicted to be a transcriptional regulatory factor.
- TTF_r33 gene The full length cDNA of the TTF_r33 gene was obtained from the applicant's own cDNA clone library.
- the TTF_r33 gene is a gene selected as a gene induced by auxin and ethylene in the microarray analysis shown in Example 3, and the base sequence of the cDNA having the full-length ORF is shown in SEQ ID NO: 10.
- the amino acid sequence predicted to be encoded by the TTF_r33 gene (SEQ ID NO: 26) has an AP2 domain and is predicted to be a transcriptional regulator.
- TTF_r35 gene The full-length cDNA of the TTF_r35 gene was not included in the applicant's own cDNA clone library, and the 5 ′ upstream region and 3 ′ downstream region of the transcript could not be revealed by the RACE method. Only the polynucleotide used for the VIGS assay (SEQ ID NO: 11) could be isolated for the TTF_r35 gene.
- the TTF_r35 gene has been selected as a gene whose expression is suppressed by the addition of jasmonic acid and the removal of auxin in the microarray analysis shown in Example 3.
- the partial amino acid sequence predicted to be encoded by the TTF_r35 gene is shown in SEQ ID NO: 27.
- TTF_r40 gene The full length cDNA of the TTF_r40 gene was obtained from the applicant's own cDNA library.
- the TTF_r40 gene is a gene selected as a gene induced by jasmonic acid treatment and cardiac arrest in the microarray analysis shown in Example 3, and the base sequence of the full-length cDNA is shown in SEQ ID NO: 12.
- the amino acid sequence predicted to be encoded by the TTF_r40 gene (SEQ ID NO: 28) has a tify domain and is predicted to be a transcriptional regulatory factor.
- TTF_r48 gene The full length cDNA of the TTF_r48 gene was obtained from the applicant's own cDNA library.
- the TTF_r48 gene is a gene selected as a gene induced by jasmonic acid treatment and cardiac arrest in the microarray analysis shown in Example 3, and the base sequence of the full-length cDNA is shown in SEQ ID NO: 13.
- the amino acid sequence predicted to be encoded by the TTF_r48 gene (SEQ ID NO: 29) has a tify domain and is predicted to be a transcriptional regulatory factor.
- TTF_r49 gene The full length cDNA of the TTF_r49 gene was obtained from the applicant's own cDNA library.
- the TTF_r49 gene is a gene selected as a gene whose expression is suppressed by jasmonic acid treatment in the microarray analysis shown in Example 3, and the base sequence of the full-length cDNA is shown in SEQ ID NO: 14.
- the amino acid sequence predicted to be encoded by the TTF_r49 gene (SEQ ID NO: 30) has an AUX / IAA domain and is predicted to be a transcriptional regulator.
- TTF_r66 gene The full length cDNA of the TTF_r66 gene was obtained from the applicant's own cDNA library.
- the TTF_r66 gene is a gene selected as a gene related to an amino acid sequence having ethylene as a keyword in Example 4, and the base sequence of the full-length cDNA is shown in SEQ ID NO: 15. No obvious ORF is found in the base sequence of the TTF_r66 gene.
- TTF_r84 gene The full length cDNA of the TTF_r84 gene was obtained from the applicant's own cDNA library.
- the TTF_r84 gene is a gene selected using the QPT1 Bait sequence in Example 5, and the base sequence of the full-length cDNA is shown in SEQ ID NO: 16. No conserved domain structure is found in the amino acid sequence predicted to be encoded by the TTF_r84 gene (SEQ ID NO: 31).
- TTF_r86 gene The full length cDNA of the TTF_r86 gene was obtained from the applicant's own cDNA library.
- the TTF_r86 gene is a gene selected using the PMT1 Bait sequence in Example 5, and the base sequence of the full-length cDNA is shown in SEQ ID NO: 17.
- the amino acid sequence predicted to be encoded by the TTF_r86 gene (SEQ ID NO: 32) has a conserved domain structure of Cytochrome oxidase subunit VIa.
- domain names of the amino acid sequences are those described in NCBI's Conserved Domain Database (CDD).
- Example 8 Modification of content components in transformed plant
- RNAi construct construction
- pSP231 in which a GFP expression cassette is inserted into the SacI site of Gateway (registered trademark) pHellsgate12 (Non-patent document: Wesley et al., 2001, Plant J., 27, 581-590) is used. Using.
- RNAi constructs of TTF_ # 20 gene, TTF_r20 gene, TTF_r25 gene, or NtPMT1 gene are DNA fragments (SEQ ID NO: 122 (TTF_ # 20), SEQ ID NO: 123 (TTF_r20), SEQ ID NO: 120) that are PCR amplified using the primers shown in Table 4.
- No. 124 (TTF_r25), SEQ ID NO: 125 (PMT1)) was prepared using an entry clone inserted into the pENTR / D-TOPO vector. PCR amplification and DNA fragment cloning were carried out by the methods described in Example 6.
- a plasmid obtained from the applicant's full-length cDNA clone library was used as a template for PCR amplification.
- RNAi construct was purified from E. coli using QIAprep Spin MiniprepKit (QIAGEN), and further, Agrobacterium strain LBA4404 (non-patent literature: Hoekema et al., 1983, Nature, 303, 179) by electroporation. -180).
- the RNAi construct of NtPMT1 was prepared for use as a positive control for nicotine content reduction.
- an overexpression construct of the NtPMT1 gene was prepared in order to create a transformed plant that served as a positive control for increasing the nicotine content.
- PRI201-AN (Takara Bio Inc.) was used as a transformation vector for overexpression.
- the DNA fragment to be inserted into the vector was a DNA fragment (SEQ ID NO: 128) obtained by PCR amplification using a forward primer having a PshBI restriction enzyme recognition site and a reverse primer having a SalI restriction enzyme recognition site shown in Table 5, Obtained by double digestion with NdeI and SalI.
- the double digestion product was inserted into the NdeI / SalI site in the multiple cloning site of pRI201-AN to obtain an overexpression construct of the NtPMT1 gene.
- leaf pieces were washed three times with sterilized water containing cefotaxime 250 mg / L to wash away bacteria, and then sucrose 30 g / L, indoleacetic acid 0.3 mg / L, 6- ( ⁇ , ⁇ -dimethylallyl-amino) purine It was placed on MS medium (pH 5.8) containing 10 mg / L, kanamycin 100 mg / L, cefotaxime 250 mg / L, and gellan gum 0.3%.
- a transformed plant (T0 generation) into which the target construct was introduced was selected by GFP fluorescence.
- the selected transformed plants were transplanted to 12 cm terracotta; 124 mm in diameter after about 3 months from co-cultivation and cultivated in a closed greenhouse adjusted to about 23 ° C. Furthermore, about 2.5 months after the potting, pollen was collected from the transformed plant (T0 generation) and pollinated by wild-type SR-1 to obtain F1 hybrid seeds.
- F1 plants are cultivated by an artificial weather device (8 hours long day, illuminance: about 30000 lux, temperature: 26 ° C (light period) / 18 ° C (dark period), relative humidity: 60% (light period) / 80% (dark Period)).
- F1 plant and SR-1 seeds were sown in sowing soil (Supermix A, Sakata Seed) and germinated by bottom irrigation.
- the seedlings that germinated were temporarily planted 18 days after sowing, and the seedlings were transplanted to 12 cm terracotta 13 days after the temporary planting.
- a leaf disk was collected from the leaves of the F1 plant, GFP fluorescence was observed, and a transformed plant F1 having a transgene was selected.
- Three or four transformed plants F1 were finally selected per line and subjected to the following experiment.
- 5 or 6 individuals of the control plant SR-1 were subjected to the experiment.
- the nicotine content of the leaf was reduced as compared with the control plant. That is, RNA interference of these genes reduced the nicotine content of tobacco plants, as in TRV assay.
- RNA interference of TTF_ # 56 gene, TTF_r35 gene, and TTF_r49 gene was different from that of TRV assay. That is, RNA interference of the TTF_ # 56 gene reduced the nicotine content of tobacco leaves that did not stop. RNA interference of the TTF_r35 gene reduced the nicotine content of the arrested tobacco leaves. RNA interference of the TTF_r49 gene increased leaf nicotine content with or without cardiac arrest.
- RNAi constructs of TTF_ # 80 and TTF_ # 84 significantly reduced the leaf nicotine content, similar to the RNAi construct of the NtPMT1 gene used as a positive control for nicotine content reduction.
- RNAi constructs of TTF_r35 and TTF_r86 genes decreased leaf nicotine content from 15% to 29%.
- the NtPMT1 gene overexpression construct used as a positive control for nicotine content increased the leaf nicotine content in non-preserving tobacco, but the nicotine content in the conserved tobacco leaf in line with the actual tobacco cultivation method Did not affect.
- RNAi constructs of several genes of the present invention reduced or increased the nicotine content of tobacco plant leaves. So far, examples in which the nicotine content has been significantly reduced are known, but examples in which the nicotine content is moderately reduced, such as the RNAi constructs of the TTF_r35 gene and the TTF_r86 gene of the present invention, are not known.
- examples in which the nicotine content is moderately reduced such as the RNAi constructs of the TTF_r35 gene and the TTF_r86 gene of the present invention, are not known.
- a stably transformed plant in which leaf nicotine content is increased by introducing a construct that suppresses gene expression.
- an increase in nicotine content compared to the control in stably transformed tobacco has been confirmed in individuals who have received the heart-holding treatment normally performed in actual tobacco cultivation.
- LC-TOF / MS analysis Freeze-dried powder of the F1 of a transformed plant into which an RNAi construct of the TTF_ # 53 gene, TTF_ # 56 gene, TTF_r20 gene, TTF_r25 gene, TTF_r84 gene, or TTF_r86 gene was introduced and the control plant was subjected to cardiac arrest treatment. It was prepared as described above in the section of cultivation of transformed plants and subjected to LC-TOF / MS analysis. LC-TOF / MS analysis was performed by Genaris, Inc. (Kanagawa, Japan).
- Samples subjected to analysis were prepared by mixing equal weights of 3 or 4 individuals (5 or 6 controls) of the same strain, and two samples were prepared per construct. Further, an extract to be subjected to LC-TOF / MS analysis was obtained from the lyophilized powder sample as follows. 1 ml of 50% acetonitrile and 0.5 g of ⁇ 1.0 mm glass beads were added to 100 mg of the lyophilized powder, and crushed at 4 ° C. for 5 minutes. Furthermore, after crushing the crushing liquid at 15000 rpm for 1 minute (4 ° C.), the supernatant was diluted 10 times with water.
- This supernatant diluted solution was subjected to ultrafiltration (fractional molecular weight: 10,000, 10 ° C.) to obtain an extract to be subjected to LC-TOF / MS analysis.
- LCT Premier XE / ACQUITY UPLC manufactured by Waters
- Separation in the UPLC section was performed using a ACQUITY UPLC T3 column (2.1 ⁇ 50 mm, Waters) and linear gradient elution (10 minutes) with water / acetonitrile containing 0.1% formic acid.
- ACQUITY UPLC T3 column 2.1 ⁇ 50 mm, Waters
- linear gradient elution (10 minutes) with water / acetonitrile containing 0.1% formic acid was used.
- two types of ionization modes of ESI Positive and ESI Negative were used, and all peaks in the range of 50 to 1000 m / z were measured.
- Extraction of a peak in which the signal intensity increased or decreased in F1 of the transformed plant as compared with the control was performed as follows. First, in a comparative analysis between the transformed plant F1 and a control, a peak having a signal intensity of more than 50 in at least one sample is selected as an analysis target from peaks having a retention time in LC of 0.3 to 9.9 minutes. did. The analysis target was approximately 1700 peak although it was different depending on the construct.
- peaks were extracted in which the signal values in the two transformed plants F1 were both 1 ⁇ 2 or less or twice or more that of the control.
- Table 8 shows the number of extracted peaks.
- the compound was estimated by collating information such as m / z value and retention time with data obtained by analyzing a known compound database and a standard product. From the estimated compound mapped on the KEGG metabolic pathway and the estimated compound based on the standard product analysis data, the estimated metabolite of the peak in which increase / decrease was confirmed in each transformed plant F1 was as follows.
- F1 of the transformed plant into which the RNAi construct of TTF_ # 53 gene was introduced increased anatalin (pyridine alkaloid biosynthesis).
- F1 of the transgenic plant into which the RNAi construct of TTF_ # 56 gene was introduced had increased glutamine, arginine (arginine, proline metabolism), and phenylalanine (phenylalanine metabolism).
- F1 of the transformed plant into which the RNAi construct of the TTF_r20 gene was introduced there was no estimated compound that could estimate the metabolic pathway.
- F1 of the transgenic plant into which the RNAi construct of TTF_r25 gene was introduced had decreased naphthalene, anthracene degradation pathway compounds, and fluorene degradation pathway compounds.
- erythronoid B (12-, 14-, 16-macrolide biosynthesis) was decreased.
- succinic acid 2-oxoglutaric acid (TCA circuit), and anatalin (pyridine alkaloid biosynthesis) were reduced.
- TCA circuit 2-oxoglutaric acid
- anatalin pyridine alkaloid biosynthesis
- # 84_F_5-Bam (5′-GGATCCGTTATGGACGCCGCAAAT-3 ′: SEQ ID NO: 131) and # 84_F_3-Kpn (5′-GGTACCTTAAGCGGAGCTTGATCGTTG-3 ′: SEQ ID NO: 132) are used as primers, and cDNA clone live owned by the applicant PCR was performed using a plasmid containing the full-length cDNA of TFF_ # 84 gene obtained from the rally as a template, and a DNA fragment containing the full-length ORF of TFF_ # 84 was amplified.
- the reaction was carried out using 10 ⁇ M of each primer and PrimeStarMax (Takara Bio Inc.) as an enzyme according to the attached manual.
- the amplified fragment double-digested with BamHI and KpnI was introduced into the BamHI / KpnI site at the multiple cloning site of pQE30 vector (Qiagen) to prepare an IPTG-induced expression construct.
- Competent cells of Nad-deficient Escherichia coli JD26148 transferred from the National Institute of Genetics were prepared by a conventional method and transformed using the above construct.
- the transformed E. coli cells into which the expression constructs of TFF_ # 80 gene and TFF_ # 84 gene were introduced were named # 80_pQE30_JD and # 84_pQE30_JD, respectively.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- General Chemical & Material Sciences (AREA)
- Nutrition Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Insects & Arthropods (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Pest Control & Pesticides (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Manufacture Of Tobacco Products (AREA)
- Peptides Or Proteins (AREA)
- Physiology (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
Abstract
植物代謝産物の含量を調節する機能を有するポリヌクレオチド、植物代謝産物の含量を調節する機能を有するポリペプチド、該ポリヌクレオチドまたはその一部分を含むベクター、ならびに該ベクターを用いて作出される形質転換植物およびその作出方法により、植物代謝産物の含量を調節する新規遺伝子、およびその利用を提供する。
Description
本発明は、植物内容成分の調節因子に関し、詳しくは内容成分を調節する遺伝子の塩基配列およびアミノ酸配列、その遺伝子組換え植物、ならびにその遺伝子組換え植物の作製方法に関するものである。
たばこ製品は、通常、種々の葉たばこをブレンドした原料をもとに作られる。ブレンドは、たばこ製品に限らず、コーヒー、茶、米、および小麦粉など、各種食品においても一般的に行われている。葉たばこは農産物であるがゆえに気象の影響で年毎に内容成分量が変動するが、多種多様な葉たばこを適宜ブレンドすることにより目的の品質を有する原料の再現が可能になり、品質の安定した製品の提供が可能である。また、従来の葉たばことは内容成分が量的あるいは質的に異なる葉たばこを開発できれば、ブレンドにより創造できる味および香りの範囲が広がり、様々な新製品の開発が一層可能になる。現在、葉たばこの多様性は、品種、栽培法、乾燥法、貯蔵/発酵法、産地、着葉位置等の組み合わせによって生み出されているが、このようなブレンド技術の可能性を一層広げるために、内容成分、例えば、香喫味に関連する内容成分が量的あるいは質的に既存の葉たばこと異なる新たな葉たばこの開発が期待されている。
葉たばこ中の香喫味に関連する内容成分として、例えば、糖、アミノ酸、有機酸、フェノール性化合物、テルペノイド、アルカロイド(ニコチン)がある。
その中でニコチンは葉たばこの主要成分の一つであり、Leffingwellは、栽培タバコ種であるニコチアナ・タバカムとニコチアナ・ルスチカではニコチン含量は0.2~8%の範囲にあることを報告している(非特許文献1)。このようにタバコ葉中ニコチン含量の大きな違いが存在する理由は、品種の有する遺伝的な要因のほか、気象要因・土壌要因などの環境要因、施肥法・摘芯法・収穫法などの栽培要因が大きく影響している。
こうした複数の要因の中で、遺伝的要因に関する我々の理解は分子生物学および遺伝子組換え技術の発展の結果近年大いに進歩し、タバコ属植物のニコチン含量に影響を及ぼす遺伝子が多数同定されるに至っている。
例えば、Satoらは、putrescine methyl transferase(PMT)遺伝子の発現を抑制あるいはPMT遺伝子を過剰発現し、葉中ニコチン量をそれぞれ減少あるいは増加した形質転換植物(ニコチアナ・シルベストリス)を報告している(非特許文献2)。Xieらは、quinolate phosphoribosyltransferase(QPT)遺伝子の発現を抑制し、葉中のニコチン量を低減した形質転換植物を報告している(非特許文献3)。Hashimotoらは、A622遺伝子、NBB1遺伝子、あるいはA622とNBB1遺伝子の両者を過剰発現しニコチン含量が増加した形質転換タバコ毛状根(品種K326)、ならびに、PMT遺伝子、QPT遺伝子、あるいはPMTとQPT遺伝子の両者を過剰発現し葉中ニコチン含量が増加した形質転換タバコ(品種K326)を報告している(特許文献1)。また、Hashimotoらは、N-methyl putrescineoxidase(MPO)遺伝子の発現を抑制しニコチン含量が減少した形質転換タバコ毛状根(品種SR-1)、ならびに、MPO遺伝子を過剰発現しニコチン含量を増加した形質転換タバコ細胞(BY-2)を報告している(特許文献2)。また、Hashimotoらは、A622遺伝子あるいはNBB1遺伝子の発現を抑制しニコチン含量を減少した形質転換タバコ細胞(BY-2)や形質転換タバコ毛状根(品種Petit Havana SR1)、ならびに、NBB1遺伝子の発現を抑制し葉中ニコチン含量を減少した形質転換タバコ(品種Petit Havana SR1)を報告している(特許文献3)。ChintapakornおよびHamillは、arginine decarboxylase(ADC)遺伝子の発現を抑制しニコチン含量を減少した形質転換タバコ毛状根(品種NC-95)を報告している(非特許文献4)。Hakkinenらは、MAP2、MC126、あるいはMT401遺伝子を過剰発現しニコチン含量を増加した形質転換タバコ細胞(BY-2)、ならびに、C127遺伝子を過剰発現しニコチン含量を増加した形質転換タバコ毛状根(品種BY-2)を報告している(非特許文献5)。Shojiらは、COI1遺伝子の発現を抑制し葉中ニコチン量を減少した形質転換タバコを報告している(非特許文献6)。Wangらは、ニコチアナ・アテヌアタにおいてJAR4とJAR6遺伝子の発現を同時に抑制し、葉中ニコチン量を減少した形質転換植物を報告している(非特許文献7)。Baileyらは、VHb遺伝子を過剰発現しニコチン含量を増加した形質転換タバコを報告している(特許文献4)。Inzeらは、MAP3遺伝子の過剰発現によりニコチン含量を増加した形質転換タバコ細胞(BY-2)を報告している(特許文献5)。PageおよびToddは、転写調節因子をコードするNbTF1遺伝子、NbTF4遺伝子、あるいはNbTF5遺伝子の発現を抑制しニコチン含量を減少した形質転換植物(ニコチアナ・ベンサミアナ)、NbTF1遺伝子、NbTF4遺伝子あるいはNbTF5遺伝子を過剰発現しニコチン含量を増加した形質転換植物(ニコチアナ・ベンサミアナ)を報告している(特許文献6)。
タバコ属植物におけるニコチンの生合成および蓄積機構に関しては、生理学的研究も古くから数多くなされており、オーキシン、ジャスモン酸、サリチル酸、およびエチレンといった植物ホルモンの関与が明らかになっている。例えば、Solt(非特許文献8)、Yasumatsu(非特許文献9)、Mizusakiら(非特許文献10)、ならびにTakahashiおよびYamada(非特許文献11)によって、オーキシンがニコチンの生合成あるいは蓄積を負に制御することが報告されている。Baldwinら(非特許文献12)によってサリチル酸がニコチンの蓄積を負に制御することが報告されている。Baldwinら(非特許文献13)、Imanishiら(非特許文献14)、およびGoossensら(非特許文献15)によってジャスモン酸がニコチンの生合成あるいは蓄積を正に制御することが報告されている。Shojiら(非特許文献16)、およびKahlら(非特許文献17)によってエチレンがニコチンの生合成あるいは蓄積を負に制御することが報告されている。
このような様々な植物ホルモンの関与は、ニコチンの生合成および蓄積が複数のシグナル伝達系および転写調節系から構成される複雑なネットワークにより制御されていることを示している。こうしたネットワークについては、例えば、KazanとMannersにより報告されている(非特許文献18)。タバコ属植物のニコチン含量に影響を及ぼす先に述べた遺伝子のうち、例えば、COI1、JAR4、JAR6、MAP3、NbTF1、NbTF4、およびNbTF5遺伝子は、ニコチン生合成酵素をコードする遺伝子ではなく、シグナル伝達あるいは転写調節に関与する遺伝子と考えられる。
植物ホルモンは様々な生命現象に多面的に作用する。例えば、植物の生長、形態の制御、二次代謝系の制御、および生物的/非生物的ストレスに対する応答の制御である。よって、植物ホルモンのシグナル伝達または転写調節を介して葉中ニコチン含量に影響を及ぼす遺伝子は、ニコチンのみならずその他内容成分も併せて変動させる可能性がある。こうした機能を有する遺伝子は先に述べた葉たばこの多様性を拡大する上で重要であり、既知のものに留まらず新たな遺伝子を同定するための研究が続けられている。
D. Layton Davis and Mark T. Nielsen., edsChapter 8, Leaf Chemistry, 8A Basic Chemical Constituents of Tobacco Leaf and Differences among Tobacco Types, Tobacco Production, Chemistry and Technology, Blackwell Science Ltd, 265-284 (1999).
Sato et al., Metabolic engineering of plant alkaloid biosynthesis., Proc. Natl. Acad. Sci. USA. 98: 367-372 (2001).
Xie et al., BIOTECHNOLOGY: A TOOL FOR REDUCED-RISK TOBACCO PRODUCTS-THE NICOTINEEXPREENCE FROM TEST TUBE TO CIGARETTE PACK, In Recent Advances in Tobacco Science Vomule30, Synposium Proceedings 58th Meeting, TOBACCO SCIENCE RESEARCH CONFERENCE (2004).
Chintapakorn and Hamill, Antisense-mediated regulation in ADC activity causes minor alterations in the alkaloid profile of cultured hairy roots and regenerated transgenic plants of Nicotianatabacum. Phytochemistry. 68: 2465-2479 (2007).
Hakkinen et al., Functional characterization of genes involved in pyridine alkaloid biosynthesis in tobacco. Phytochemistry. 68: 2773-2785 (2007).
Shoji et al., Jasmonate-Induced Nicotine Formation in Tobacco is Mediated by Tobacco COI1 and JAZ Genes. Plant and Cell Physiology. 49: 1003-1012 (2008).
Wang et al., Comparisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-Silenced Plants Reveal That JasmonicAcid and Jasmonic Acid-Amino Acid Conjugates Play Different Roles in Herbivore Resistance of Nicotianaattenuate. Plant Physiology. 146: 904-915 (2008).
Solt, Nicotine production and growth of excised tobacco root cultures. Plant Physiology. 32: 480-484 (1957).
Yasumatsu, Studies on the chemical regulation of alkaloid biosynthesis in tobacco plants. Part II. Inhibition of alkaloid biosynthesis by exogenous auxins. Agr.Biol.Chem. 31: 1441-1447 (1967).
Mizusaki et al., Changes in the activities of ornithine decarboxylase, putorescine N-methyltransferaseand N-methylputorescine oxidasein tobacco roots in relation to nicotine biosynthesis. Plant and Cell Physiology. 14: 103-110 (1973).
Takahashi and Yamada, Regulation of nicotine production by auxins in tobacco cultured cells in vitro. Agr.Biol.Chem. 37: 1755-1757 (1973).
Baldwin et al., Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta. 201: 397-404 (1997).
Baldwin et al., Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestrisSpegazzini and Comes. J. Chem. Ecol. 20: 1573-1561 (1994).
Imanishi et al., Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol. Biol. 38: 1101-1111 (1998).
Goossens et al., A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc. Natl. Acad. Sci. USA. 100: 8595-8600 (2003).
Shoji et al., Ethylene supresses jasmonate-induced gene expression in nicotine biosynthesis. Plant and Cell Physiology. 41: 1072-1076 (2000).
Kahl et al., Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta. 210: 336-342(2000).
Kazan and Manners, Jasmonate Signaling: Toward an Integrated View. Plant Physiology. 146: 1459-1468 (2008).
したがって、本発明の課題は、葉たばこの多様性の拡大に利用できる、植物代謝産物の生合成あるいは蓄積の新たな制御因子を提供することである。
本発明者らは、上記課題に鑑み鋭意検討した結果、外界からの植物ホルモン処理あるいは内生植物ホルモン量を変化させる処理により植物体において発現の変化する遺伝子群の中に、植物代謝産物の生合成あるいは蓄積の新たな制御因子を見出し、本発明を完成するに至った。また、当該制御因子を利用して葉中の植物代謝産物の含量が調節された植物を作出することに成功し、本発明を完成するに至った。
すなわち、本発明に係るポリヌクレオチドは、上記課題を解決するために、植物代謝産物の含量を調節する機能を有するポリヌクレオチドであって、以下の(a)、(b)または(c)に記載のポリヌクレオチドであることを特徴としている:
(a)配列番号1~17に示される塩基配列からなるポリヌクレオチド;
(b)配列番号1~17に示される塩基配列において1個もしくは数個の塩基が欠失、挿入、置換もしくは付加された塩基配列からなるポリヌクレオチド;
(c)上記(a)のポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド。
(a)配列番号1~17に示される塩基配列からなるポリヌクレオチド;
(b)配列番号1~17に示される塩基配列において1個もしくは数個の塩基が欠失、挿入、置換もしくは付加された塩基配列からなるポリヌクレオチド;
(c)上記(a)のポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド。
本発明に係るポリヌクレオチドは、上記課題を解決するために、植物代謝産物の含量を調節する機能を有するポリペプチドをコードするポリヌクレオチドであって、該ポリペプチドが以下の(d)または(e)に記載のポリペプチドである、ポリヌクレオチドであることを特徴としている:
(d)配列番号18~32に示されるアミノ酸配列からなるポリペプチド;
(e)配列番号18~32に示されるアミノ酸配列において1個もしくは数個のアミノ酸が欠失、挿入、置換もしくは付加されたアミノ酸配列からなるポリペプチド。
(d)配列番号18~32に示されるアミノ酸配列からなるポリペプチド;
(e)配列番号18~32に示されるアミノ酸配列において1個もしくは数個のアミノ酸が欠失、挿入、置換もしくは付加されたアミノ酸配列からなるポリペプチド。
本発明に係るポリペプチドは、上記課題を解決するために、植物代謝産物の含量を調節する機能を有するポリペプチドであって、以下の(d)または(e)に記載のポリペプチドであることを特徴としている:
(d)配列番号18~32に示されるアミノ酸配列からなるポリペプチド;
(e)配列番号18~32に示されるアミノ酸配列において、1個もしくは数個のアミノ酸が欠失、挿入、置換もしくは付加されたアミノ酸配列からなるポリペプチド。
(d)配列番号18~32に示されるアミノ酸配列からなるポリペプチド;
(e)配列番号18~32に示されるアミノ酸配列において、1個もしくは数個のアミノ酸が欠失、挿入、置換もしくは付加されたアミノ酸配列からなるポリペプチド。
本発明に係るベクターは、上述のポリヌクレオチドを含むことを特徴としている。
本発明に係る形質転換植物の作出方法は、上述のベクターを用いて植物細胞を形質転換する工程を含む、植物代謝産物の含量が調節された形質転換植物の作出方法である。
本発明に係る形質転換植物は、上述のベクターを用いて作出された、植物代謝産物の含量が調節された形質転換植物である。
本発明に係るたばこ製品は、上述の形質転換植物の植物体を用いて製造されており、該植物体は葉の植物代謝産物含量が調節されたニコチアナ・タバカムまたはニコチアナ・ルスチカであることを特徴としている。
本発明によれば、植物における植物代謝産物の量を調節することができるため、植物代謝産物の量が調節された植物を得ることができる。
〔1.植物代謝産物の含量を調節する機能を有するポリヌクレオチド〕
1つの局面において、本発明は、単離された、植物代謝産物の含量を調節する機能を有するポリヌクレオチドを提供する。
1つの局面において、本発明は、単離された、植物代謝産物の含量を調節する機能を有するポリヌクレオチドを提供する。
本発明に係るポリヌクレオチドの具体的な例としては、配列番号18~32に示されるアミノ酸配列あるいはその変異体をコードするポリヌクレオチド、または、配列番号1~17に示される塩基配列からなるポリヌクレオチドあるいはその変異体である。なお、配列番号1に示されるポリヌクレオチドをTTF_#20遺伝子、配列番号2に示されるポリヌクレオチドをTTF_#53遺伝子、配列番号3に示されるポリヌクレオチドをTTF_#54遺伝子、配列番号4に示されるポリヌクレオチドをTTF_#55遺伝子、配列番号5に示されるポリヌクレオチドをTTF_#56遺伝子、配列番号6に示されるポリヌクレオチドをTTF_#80遺伝子、配列番号7に示されるポリヌクレオチドをTTF_#84遺伝子、配列番号8に示されるポリヌクレオチドをTTF_r20遺伝子、配列番号9に示されるポリヌクレオチドをTTF_r25遺伝子、配列番号10に示されるポリヌクレオチドをTTF_r33遺伝子、配列番号11に示されるポリヌクレオチドをTTF_r35遺伝子、配列番号12に示されるポリヌクレオチドをTTF_r40遺伝子、配列番号13に示されるポリヌクレオチドをTTF_r48遺伝子、配列番号14に示されるポリヌクレオチドをTTF_r49遺伝子、配列番号15に示されるポリヌクレオチドをTTF_r66遺伝子、配列番号16に示されるポリヌクレオチドをTTF_r84遺伝子、および配列番号17に示されるポリヌクレオチドをTTF_r86遺伝子と称する。
本明細書中で使用される場合、用語「植物代謝産物の含量を調節する機能を有するポリヌクレオチド」とは、天然に植物細胞中に存在し、代謝産物含量の調節に関与している内因性のポリヌクレオチド、または、これを単離したポリヌクレオチドを指す。ここで、上記「機能」は、ポリヌクレオチドの翻訳産物であるポリペプチドが有していてもよいし、または、ポリペプチドをコードしていない機能性RNAのようにポリヌクレオチドそのものが有していてもよい。そのような機能性RNAとして、遺伝子量補正に関与するXist RNA(非特許文献:Plath Kら、2002. Annu Rev Genet 36, 233-78)、roX RNA(非特許文献:Meller and Rattner 2002. Embo J, 21, 1084-91)、およびステロイドホルモン受容体の活性化因子であるSRA(非特許文献:Lanz RBら、1999. Cell, 97:17-27)などが知られている。
本明細書中で使用される場合、用語「ポリヌクレオチド」は、「遺伝子」、「核酸」または「核酸分子」と交換可能に使用され、ヌクレオチドの重合体が意図される。本明細書中で使用される場合、用語「塩基配列」は、「核酸配列」または「ヌクレオチド配列」と交換可能に使用され、デオキシリボヌクレオチド(A、G、CおよびTと省略される)の配列として示される。
本発明に係るポリヌクレオチドは、RNA(例えば、mRNA)の形態、またはDNAの形態(例えば、cDNAまたはゲノムDNA)で存在し得る。DNAは、二本鎖または一本鎖であり得る。一本鎖DNAまたはRNAは、コード鎖(センス鎖としても知られる)であり得るか、または、非コード鎖(アンチセンス鎖としても知られる)であり得る。
本明細書中においてポリヌクレオチドに関して用いられる場合、用語「変異体」は、配列番号1~17に示される塩基配列において、1個または数個の塩基が欠失、挿入、置換または付加されている塩基配列からなるポリヌクレオチド;または配列番号1~17に示される塩基配列の相補配列と、ストリンジェントな条件下でハイブリダイズし得るポリヌクレオチドであり得る。ここで「数個の塩基」とは、例えば2個から30個の塩基、より好ましくは2個から10個の塩基、さらに好ましくは2個から6個の塩基を意味している。
「ストリンジェントな条件下でハイブリダイゼーション」するとは、少なくとも90%の同一性、好ましくは少なくとも95%の同一性、特に好ましくは少なくとも97%の同一性が配列間に存在するときにのみハイブリダイゼーションが起こることを意味する。「ストリンジェントな条件」の具体的な例としては、例えば、ハイブリダイゼーション溶液(50%ホルムアミド、5×SSC(150mMのNaCl、15mMのクエン酸三ナトリウム)、50mMのリン酸ナトリウム(pH7.6)、5×デンハート液、10%硫酸デキストラン、および20μg/mlの変性剪断サケ精子DNAを含む)中にて42℃で一晩インキュベーションした後、約65℃にて0.1×SSC中でフィルターを洗浄する条件を挙げることができる。また、ハイブリダイゼーションは、J. Sambrook et al. Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory(1989)に記載されている方法など、従来公知の方法で行なうことができ、特に限定されるものではない。通常、温度が高いほど、塩濃度が低いほどストリンジェンシーは高くなる(すなわち、ハイブリダイズし難くなる)。
また、本発明に係るポリヌクレオチドは、本発明に係るポリペプチドをコードするポリヌクレオチドであってもよい。すなわち、本発明に係るポリヌクレオチドは、配列番号18~32に示されるアミノ酸配列をコードする塩基配列からなるポリヌクレオチド、または配列番号18~32に示されるアミノ酸配列において、1個もしくは数個のアミノ酸が欠失、挿入、置換もしくは付加されたアミノ酸配列をコードする塩基配列からなるポリヌクレオチドであってもよい。ここで「数個のアミノ酸」とは、例えば、2個から30個のアミノ酸、より好ましくは2個から10個のアミノ酸、さらに好ましくは2個から5個のアミノ酸を意味している。後述するように、本発明に係るポリペプチドは、植物における代謝産物の含量を調節する働きを有する。
本明細書中で使用される場合、用語「ポリペプチド」は、「ペプチド」または「タンパク質」と交換可能に使用される。本発明に係るポリペプチドはまた、天然供給源より単離されても、化学合成されてもよい。
本明細書で使用される場合、用語「植物代謝産物」は「代謝産物」または「内容成分」と交換可能に使用される。「植物代謝産物」は、糖、有機酸、アミノ酸、および脂質などの生体を維持するのに必須の物質群である一次代謝産物とそれ以外の二次代謝産物とに分けられる。植物の二次代謝産物は、一次代謝系から派生してできたもので、外敵への防御、ストレス耐性、および昆虫の誘引などにかかわると考えられている。植物の二次代謝産物の具体例として、テルペノイド、アルカロイドおよびフェノール性化合物、ならびにこれらの誘導体が意図される。
テルペノイドは、原則的にはイソプレン単位が複数個結合して生合成されたものをいう。アルカロイドは、植物に由来する塩基性の含窒素有機化合物をいう。フェノール性化合物は、フェニルプロパノイドおよびフラボノイドなど、フェノール環を有する有機化合物のことをいう。
アルカロイドとしては、例えば、トロパン系アルカロイド、ピロリジン系アルカロイド、ピロリジジン系アルカロイド、ピペリジン系アルカロイド、フェニルエチルアミン類、イソキノリン系アルカロイド、キノリン系アルカロイド、ピリジン系アルカロイド、インドール系アルカロイド、イミダゾール系アルカロイド、プリン系アルカロイド、およびベンジルイソキノリン系アルカロイドが挙げられる。トロパン系アルカロイドは、その構造中にトロパン骨格を含むアルカロイドであり、例えば、アトロピンが挙げられる。ピリジン系アルカロイドは、その構造中にピリジン環を含むアルカロイドであり、例えば、ニコチンが挙げられる。なお、ニコチンは、ノルニコチンと共にタバコ属植物における主アルカロイドである。タバコ属植物に含まれるニコチン類縁アルカロイドとしては、ノルニコチン、アナタビン、アナバシン、ミオスミン、N-メチルミオスミン、コチニン、ニコチリン、ノルニコチリン、ニコチンN-オキシド、および2,3’-ビピリジル-メタニコチンなどが挙げられる。
本明細書中で使用される場合、用語「植物代謝産物の含量」は、植物体に含まれる特定の植物代謝産物の量が意図される。同様に、用語「アルカロイドの含量」は、植物体に含まれる特定のアルカロイドの量が意図される。なお、植物代謝産物の含量の分析は、ガスクロマトグラフなど、従来公知の方法により分析することができる。植物代謝産物の含量は、植物の乾燥重量に対する重量または植物の生重量に対する重量によって表すことができる。
本明細書中で使用される場合、「植物代謝産物の含量を調節する機能を有する」とは、広く、植物代謝産物の含量に関与していることを意図している。したがって、植物代謝産物の生合成を直接的に制御する機能を有しているもののほか、間接的に植物代謝産物の含量を変化させる機能を有するもの、すなわち、植物代謝産物の生合成経路には含まれず、結果として植物代謝産物の含量が変化するものも意図している。また、ここで、「調節する」とは、特定の植物代謝産物の含量を低減、あるいは、増加させることを意味している。
本明細書中においてポリヌクレオチドに関して用いられる場合、用語「単離された」は、後述する「ポリヌクレオチドを取得する方法」のようにして天然に植物細胞中に存在する状態から特定のポリヌクレオチドのみを取得することを指すほか、化学合成によりポリヌクレオチド全長を合成するものであってよく、又は複数の化学合成したポリヌクレオチドを連結させて合成するものであってもよい。
本発明に係るポリヌクレオチドを取得する方法は特に限定されるものではなく、一般的な方法が採用される。例えば、本発明の遺伝子を有する生物のゲノムDNA、またはcDNAライブラリーなどから適切な制限酵素で切り出し、精製すればよい。本発明の遺伝子のゲノムDNAは、例えば、植物細胞または組織からゲノムDNAを抽出し、ゲノミックライブラリーを作製し、このライブラリーから、配列番号1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、または17に示す塩基配列を基に設計したプローブあるいはプライマーを用いてコロニーハイブリダイゼーションまたはプラークハイブリダイゼーションを行なうことにより取得することができる。または本遺伝子のcDNAまたはゲノムDNAを鋳型としたPCRによって、取得することもできる。
本発明に係る遺伝子は、植物ホルモンに対する応答性または転写調節因子と何らかの関連性を有することから選抜された149種のタバコ遺伝子の中から、ウイルス誘導性遺伝子サイレンシング(VIGS:Virus-induced gene silencing)システムを用いた解析をとおして、タバコ属植物の葉のニコチン含量に影響を及ぼす遺伝子として見出されたものである。
VIGSシステムとは、転写後遺伝子サイレンシング(PTGS:post-transcriptional gene silencing)の仕組みを利用して遺伝子の機能を明らかにする方法である。本発明では、VIGSシステムとしてタバコ茎えそウイルス(TRV:Tobacco Rattle Virus)ベクター(Ratcliff F.ら,2001,Plant Journal,25,237-245、および米国特許第7,229,829号)を用いている。また、ベクターに挿入するポリヌクレオチドとしてタバコ(Nicotiana tabacum cv. Burley 21、またはTsukuba No. 1)の部分長cDNAを用い、ベクターを導入する植物としてニコチアナ・ベンサミアナ(Nicotiana benthamiana)を用いた。
このようにして得られた本発明に係る遺伝子の新たな機能は、さらに、液体クロマトグラフィー-飛行時間型質量分析計(LC-TOF/MS)などの精密な質量分析計を用いて見出すことができる。
具体的には、本発明に係る遺伝子を過剰に発現するよう形質転換した植物またはその子孫となる植物、あるいは、本発明に係る遺伝子の発現を抑制するよう形質転換した植物またはその子孫となる植物についてLC-TOF/MSなどの精密な質量分析計を用いた代謝産物の分析を行なうことによって、本発明に係る遺伝子が植物代謝産物に及ぼす影響を広く明らかにすることができる。
LC-TOF/MSは、難揮発性あるいは熱不安定な化合物の分離・分析法である液体クロマトグラフィー(LC)に、検出器として飛行時間型質量分析計(TOF/MS)を組み合わせた装置である。LCにより分離された成分は、イオン化部(例えばエレクトロスプレーイオン化法=ESI;ElectroSpray Ionization)でイオン化される。TOF/MSでは、このイオンを電磁気力を用いて飛行させ、質量差にもとづく飛行時間の違いにより検出する。LC-TOF/MSによれば、植物葉の抽出液を用いて多様な代謝産物について一斉分析を行なうことができる。LC-TOF/MSによる植物代謝産物の分析は、具体的には以下のようにして行なうことができる。
形質転換した植物またはその子孫である植物、または野生型の植物から採取したサンプルを乾燥させた後に粉砕し、これに50%のアセトニトリルを加えて抽出を行なう。抽出液を遠心分離して、その上清を限外濾過したものを、LC-TOF/MS分析に供する。LC-TOF/MSを用いた分析では、例えば、タバコの葉をサンプルとして用いた場合、数百以上の代謝産物について一斉分析が可能になる。
また、本発明に係る遺伝子が植物代謝産物に及ぼす影響を、マイクロアレイ解析などの遺伝子発現解析法を用いても広く明らかにすることができる。例えば、上記形質転換植物またはその子孫である植物と、野生型の植物とにおいて発現量に差の認められる遺伝子を明らかにすることにより、本発明に係る遺伝子が影響を及ぼす他の遺伝子の発現および代謝系を明らかにすることができる。
本明細書で使用される場合、用語「転写調節因子」とは、基本転写因子と相互作用してDNA、特にDNAのプロモーター領域に結合して作用したり、DNAと結合する他の転写調節因子と結合して作用することによって、特定の遺伝子の転写を増加したり、低減したりする機能を有するタンパク質を指す。シロイヌナズナの研究から、動物および酵母に比べ、高等植物は非常に多様な転写調節因子遺伝子を有していることが明らかにされ、植物の生命活動には転写レベルでの制御が重要な役割を果たしていることが示唆されている。これら植物の転写調節因子の大多数は未だ機能が明らかにされるに至っていないが、個体の発生および分化の制御、熱および乾燥などの環境ストレスに対する応答、ならびに病虫害および傷害に対する応答などに関わるものがこれまでに知られている。
このようにして機能が明らかにされた遺伝子が配列番号1~17に示される塩基配列を有する本発明に係るポリヌクレオチドである。例えば、タバコ属植物において、TTF_#20遺伝子、TTF_#53遺伝子、TTF_#54遺伝子、TTF_#55遺伝子、TTF_#56遺伝子、TTF_#80遺伝子、TTF_#84遺伝子、TTF_r20遺伝子、TTF_r25遺伝子、TTF_r33遺伝子、TTF_r35遺伝子、TTF_r40遺伝子、TTF_r48遺伝子、TTF_r49遺伝子、TTF_r66遺伝子、TTF_r84遺伝子またはTTF_r86遺伝子のサイレンシングを起こさせることにより、サイレンシングを起こしていない植物に比べて、ニコチン含量を低減または増加させることができる。
また、上記に示す機能から、配列番号1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、および17の塩基配列で示される遺伝子はタバコ属植物における「葉のニコチン含量」の制御因子であると言える。
本発明に係る遺伝子のいくつかは転写調節因子特有のドメインを有しており、転写調節因子であると考えられる。本発明に係る遺伝子が有する転写調節因子特有のドメインとして、例えば、TTF_#20遺伝子およびTTF_#55遺伝子はWRKYドメインを、TTF_r20遺伝子、TTF_r25遺伝子およびTTF_r33遺伝子はAP2ドメインを、TTF_r40遺伝子およびTTF_r48遺伝子はtifyドメインを、TTF_r49遺伝子はAUX/IAAドメインを、TTF_#53遺伝子はbHLHドメインを、TTF_#54遺伝子はSANTドメインをそれぞれ有している。なお、本発明に係るその他の遺伝子には転写調節因子特有のドメインは見出されない。本発明に係る遺伝子は、タバコ属植物において、ニコチンの生成、転流、および蓄積などのいずれかのステップに関与している可能性があり、その結果として「葉のニコチン含量」に影響を及ぼしているものと考えられる。
本発明に係る上記17種の遺伝子が有する機能については、これまで明らかにされておらず、本発明者らによって初めて植物代謝産物の含量を調節する機能を有することが明らかにされた。
本発明に係る上記17種の遺伝子の効果については、植物代謝産物の含量が増減することによって、あるいは各種シグナル伝達および転写調節を通して、熱および乾燥などの環境ストレスに対する耐性ならびに病虫害への耐性の付与も考えられる。
本発明に係るベクターは、周知の遺伝子組換え技術により、本発明に係るポリヌクレオチドまたはその一部分を所定のベクターに挿入することにより作製することができる。上記ベクターとしては、これに限定されるものではないが、後述する遺伝子組換え発現ベクターの他に、クローニングベクターを用いることができる。
〔2.植物代謝産物の含量を調節する機能を有するポリペプチド〕
1つの局面において、本発明は、植物代謝産物の含量を調節する機能を有するポリペプチドを提供する。
1つの局面において、本発明は、植物代謝産物の含量を調節する機能を有するポリペプチドを提供する。
本発明に係るポリペプチドは、配列番号18~32に示されるアミノ酸配列からなるポリペプチドあるいはその変異体であることが好ましい。
本明細書中においてタンパク質またはポリペプチドに関して用いられる場合、用語「変異体」は、目的のポリペプチドが有する特定の活性を保持したポリペプチドが意図され、「配列番号18~32に示されるアミノ酸配列からなるポリペプチドの変異体」は、植物代謝産物の含量を調節する機能を有するポリペプチドが意図される。
ポリペプチドを構成するアミノ酸配列中のいくつかのアミノ酸が、このポリペプチドの構造または機能に有意に影響することなく容易に改変され得ることは、当該分野において周知である。さらに、人為的に改変させるだけではく、天然のタンパク質において、当該タンパク質の構造または機能を有意に変化させない変異体が存在することもまた周知である。また、このポリペプチドをコードしている遺伝子の対立遺伝子におけるポリペプチドもまた、本発明の範疇に含まれる。
当業者は、周知技術を使用してポリペプチドのアミノ酸配列において1個または数個のアミノ酸を容易に変異させることができる。例えば、公知の点変異導入法に従えば、ポリペプチドをコードするポリヌクレオチドの任意の塩基を変異させることができる。また、ポリペプチドをコードするポリヌクレオチドの任意の部位に対応するプライマーを設計して欠失変異体または付加変異体を作製することができる。
本発明に係るポリペプチドは、天然の精製産物、化学合成の手法により合成された産物、および原核生物宿主または真核生物宿主(例えば、細菌細胞、酵母細胞、高等植物細胞、昆虫細胞、および哺乳動物細胞を含む)から組換え技術によって産生された産物を含む。組換え産生手順において用いられる宿主に依存して、本発明に係るポリペプチドは、グリコシル化、または非グリコシル化され得る。さらに、本発明に係るポリペプチドは、いくつかの場合、宿主媒介プロセスの結果として、開始の改変メチオニン残基を含み得る。
本発明に係るポリペプチドは、アミノ酸がペプチド結合しているポリペプチドであればよいが、これに限定されるものではなく、ポリペプチド以外の構造を含む複合ポリペプチドであってもよい。本明細書中で使用される場合、「ポリペプチド以外の構造」としては、糖鎖およびイソプレノイド基などを挙げることができるが、特に限定されない。
また、本発明に係るポリペプチドは、付加的なポリペプチドを含むものであってもよい。付加的なポリペプチドとしては、例えば、Hisタグ、Mycタグ、およびFLAG(登録商標)ペプチドなどのエピトープ標識ポリペプチドが挙げられる。
〔3.ベクター〕
本発明に係るベクターは、周知の遺伝子組換え技術により、本発明に係るポリヌクレオチドまたはその一部分を所定のベクターに挿入することにより作製することができる。上記ベクターとしては、これに限定されるものではないが、後述する植物形質転換用の遺伝子組換えベクターの他に、クローニングベクターが含まれる。また、遺伝子組換えベクターには、遺伝子発現ベクター、および発現抑制ベクターが含まれる。遺伝子発現ベクターおよび発現抑制ベクターは、植物代謝産物の含量を調節する上で、目的に応じて使用すればよい。遺伝子組換えベクターとして、相同組換え、ドミナントネガティブ遺伝子産物の発現(特許文献:特開2005-027654号公報)、および分子デコイの導入(特許文献:特表2001-510987号公報、および特表2004-507250号公報、非特許文献:Sullengerら、1991, J.Vitrol., 65, 6811-6816.)などを目的としたベクターの使用も考えられる。
本発明に係るベクターは、周知の遺伝子組換え技術により、本発明に係るポリヌクレオチドまたはその一部分を所定のベクターに挿入することにより作製することができる。上記ベクターとしては、これに限定されるものではないが、後述する植物形質転換用の遺伝子組換えベクターの他に、クローニングベクターが含まれる。また、遺伝子組換えベクターには、遺伝子発現ベクター、および発現抑制ベクターが含まれる。遺伝子発現ベクターおよび発現抑制ベクターは、植物代謝産物の含量を調節する上で、目的に応じて使用すればよい。遺伝子組換えベクターとして、相同組換え、ドミナントネガティブ遺伝子産物の発現(特許文献:特開2005-027654号公報)、および分子デコイの導入(特許文献:特表2001-510987号公報、および特表2004-507250号公報、非特許文献:Sullengerら、1991, J.Vitrol., 65, 6811-6816.)などを目的としたベクターの使用も考えられる。
(遺伝子発現ベクター)
植物体の形質転換に用いられる組換えベクターのうち、遺伝子発現ベクターは植物細胞内で本発明に係る遺伝子を過剰に発現させるためのベクターである。遺伝子発現ベクターは、配列番号18~32に示されるアミノ酸配列あるいはその変異体をコードするポリヌクレオチド、または、配列番号1~17に示される塩基配列からなるポリヌクレオチドあるいはその変異体を適当なベクターに挿入することにより構築されたものである。ここで、「遺伝子を過剰に発現させる」とは、本発明に係る遺伝子の転写産物であるmRNA量の増大、およびその翻訳産物であるタンパク質量の増大のいずれをも含む意味で用いている。また、ポリヌクレオチドは上記ポリヌクレオチドから一つが選択されてベクターに挿入されることが望ましいが、複数が選択されてもよい。
植物体の形質転換に用いられる組換えベクターのうち、遺伝子発現ベクターは植物細胞内で本発明に係る遺伝子を過剰に発現させるためのベクターである。遺伝子発現ベクターは、配列番号18~32に示されるアミノ酸配列あるいはその変異体をコードするポリヌクレオチド、または、配列番号1~17に示される塩基配列からなるポリヌクレオチドあるいはその変異体を適当なベクターに挿入することにより構築されたものである。ここで、「遺伝子を過剰に発現させる」とは、本発明に係る遺伝子の転写産物であるmRNA量の増大、およびその翻訳産物であるタンパク質量の増大のいずれをも含む意味で用いている。また、ポリヌクレオチドは上記ポリヌクレオチドから一つが選択されてベクターに挿入されることが望ましいが、複数が選択されてもよい。
適当なベクターとしては、ベクター内に挿入されたポリヌクレオチドを植物細胞内で発現させることが可能なベクターであれば特に限定されない。このようなベクターとしては、例えば、アグロバクテリウムを介して植物細胞に目的遺伝子を導入することができる、pBI系、pPZP系、およびpSMA系のベクターなどが好適に用いられる。特に、バイナリーベクター系(pBIG、pBIN19、pBI101、pBI121、pBI221、およびpPZP202など)のプラスミドが好ましい。また、植物細胞に遺伝子を直接導入する場合、例えば、pUC系ベクター(pUC18、およびpUC19など)を利用できる。また、カリフラワーモザイクウイルス(CaMV)、インゲンマメモザイクウイルス(BGMV)、およびタバコモザイクウイルス(TMV)などの植物ウイルスベクターも用いることができる。ここで、「ポリヌクレオチドをベクターに挿入する」とは、該ポリヌクレオチドの5’上流にプロモーターが連結され、また、3’下流にターミネーターが連結されるよう、該ポリヌクレオチドをベクターに挿入することを指す。また、ポリヌクレオチドがゲノミックDNAに由来するものであって、そのポリヌクレオチドにプロモーターあるいはターミネーターが含まれている場合は、プロモーターおよびターミネーターを有さないベクターに挿入してもよい。
本明細書中で遺伝子、またはベクターについて使用される場合、用語「導入する」とは、「形質転換する」、「形質移入する」または「トランスフェクトする」と交換可能に使用される。また、同様に、用語「導入」とは、「形質転換」、「形質移入」または「トランスフェクション」と交換可能に使用される。本明細書中で植物に対して使用される場合、用語「導入」とは、植物に導入されたDNAが宿主のゲノムDNAに組み込まれる場合に限らず、宿主のゲノムDNAに組み込まれない、植物の一過的な形質転換も含むものである。
遺伝子発現ベクターは、遺伝子がORFを有している場合には少なくともその遺伝子のORF領域を含んでいればよく、例えば、配列番号18~32に示されるアミノ酸配列あるいはその変異体をコードするポリヌクレオチドが含まれていればよい。また、各遺伝子のUTR(非翻訳領域)を含むものであってもよく、あるいは遺伝子がORFを有していない場合には、少なくとも植物代謝産物の含量を調節する機能を有している限りにおいては、その遺伝子の一部分を用いることができ、例えば、遺伝子発現ベクターは、配列番号1~17に示される塩基配列からなるポリヌクレオチドあるいはその変異体、またはそれらポリヌクレオチドの一部分を含むものであってもよい。
また、組換えベクターには、プロモーター配列、エンハンサー配列、ターミネーター配列、ポリA付加シグナル、5’-UTR配列、選抜マーカー遺伝子、レポーター遺伝子、およびアグロバクテリウム細菌中で増幅するための複製開始点などを配置することができる。
プロモーターとしては、特に限定されるものではないが、植物細胞で機能し得るものであればよい。特に、植物細胞内でポリヌクレオチドを構成的に発現させるプロモーター、および外的な刺激によって誘導的に活性化されるプロモーターは好適に用いられ得る。ポリヌクレオチドを構成的に発現させるプロモーターとしては、例えば、カリフラワーモザイクウイルス(CaMV)由来の35Sプロモーター、アグロバクテリウム由来のノパリン合成酵素遺伝子のプロモーター、トウモロコシ由来のユビキチン遺伝子プロモーター、およびイネ由来のアクチン遺伝子プロモーターなどが挙げられる。誘導的に活性化されるプロモーターとしては、熱ショック遺伝子プロモーターなどが挙げられる。また、組織特異的に遺伝子の発現を活性化するプロモーターも利用可能である。例えば、根組織に特異的なトマトのエクステンシン様蛋白質遺伝子プロモーター(特許文献:特表2002-530075号公報)およびタバコのTobRB7プロモーター(特許文献:米国特許第5,459,252号)など、根皮層組織に特異的なTobRD2遺伝子プロモーター(特許文献:特表平11-510056号公報)およびシロイヌナズナのリン酸トランスポーター遺伝子PHT1プロモーター(特許文献:特開2005-046036号公報)など、が利用可能である。
エンハンサー配列としては、例えば、目的遺伝子の発現効率を高めるために用いられ、CaMV35Sプロモーター内の上流側の配列を含むエンハンサー領域などが挙げられる。
ターミネーター配列としては、プロモーター配列により転写された遺伝子のmRNA合成を終結できる配列であればよく、例えば、ノパリン合成酵素(NOS)遺伝子のターミネーター、およびCaMV35S RNA遺伝子のターミネーターなどが挙げられる。
選抜マーカー遺伝子としては、例えば、アンピシリン耐性遺伝子(Amp、bla)、ネオマイシン耐性遺伝子(NPTII)、カナマイシン耐性遺伝子(NPTIII)、ハイグロマイシン耐性遺伝子(htp)、グルフォシネート耐性遺伝子(Bar)、およびクロラムフェニコールアセチルトランスフェラーゼ(CAT)などが挙げられる。これらの選抜マーカー遺伝子を利用して例えば、アンピシリン、ネオマイシン、カナマイシン、ハイグロマイシ、グルフォシネート、およびクロラムフェニコールなどの選抜薬剤を含む培地上で目的遺伝子が導入された組換え体を簡単に選抜できるようになる。
レポーター遺伝子としては、遺伝子の発現によって植物細胞が形質転換されたか否かを確認することができるものであればよく、例えば、β-グルクロニダーゼ(GUS)、ルシフェラーゼ(LUC)、緑色蛍光タンパク質(GFP)およびシアン蛍光タンパク質(CFP)などの蛍光タンパク質、ならびにベータガラクトシダーゼ(LacZ)などが挙げられる。
なお、レポーター遺伝子を含む発現カセットを目的遺伝子とそれぞれ別々の組換えベクター上に配置してもよい。別々に配置した場合は、各ベクターを宿主に共導入(コトランスフェクト)すればよい。
(発現抑制ベクター)
植物体の形質転換に用いられる組換えベクターのうち、発現抑制ベクターは、植物細胞内における内因性の遺伝子の発現を抑制するためのベクターであり、植物代謝産物の含量が調節された形質転換植物を作出しうるベクターである。発現抑制ベクターは、配列番号18~32に示されるアミノ酸配列あるいはその変異体をコードするポリヌクレオチドの一部分、または、配列番号1~17に示される塩基配列からなるポリヌクレオチドの一部分あるいはその変異体であるポリヌクレオチドの一部分を適当なベクターに挿入することにより構築されたものである。本明細書において使用される場合、用語「一部分」とは、以降に各種発現抑制ベクターの項で詳細に説明するが、本発明に係る遺伝子のうちの連続した21塩基以上の塩基配列を有するポリヌクレオチドであり、本発明に係る遺伝子の全長が含まれていてもよい。また、「一部分」は本発明に係る遺伝子のどの部分から選択されてもよく、したがって、UTRから選択されてもよい。また、「連続した21塩基以上の塩基配列」は本発明に係る遺伝子の複数の部分から選ばれて、例えばこれらを連結するなどして、使用されても良い。例えば遺伝子サイレンシングのために用いられるsiRNAは、サイレンシングの効果を確かなものとするために、複数のsiRNAを混合したカクテルとして利用されることがある。また、上記「一部分」は、本発明に係る遺伝子を含むゲノムDNA断片に由来するポリヌクレオチドから選択されてもよく、例えば、イントロン、またはプロモーターなどから選択されてもよい。また、ポリヌクレオチドは遺伝子発現ベクターと同様に、上記ポリヌクレオチドから一つが選択されることが望ましいが、複数が選択されてもよい。
植物体の形質転換に用いられる組換えベクターのうち、発現抑制ベクターは、植物細胞内における内因性の遺伝子の発現を抑制するためのベクターであり、植物代謝産物の含量が調節された形質転換植物を作出しうるベクターである。発現抑制ベクターは、配列番号18~32に示されるアミノ酸配列あるいはその変異体をコードするポリヌクレオチドの一部分、または、配列番号1~17に示される塩基配列からなるポリヌクレオチドの一部分あるいはその変異体であるポリヌクレオチドの一部分を適当なベクターに挿入することにより構築されたものである。本明細書において使用される場合、用語「一部分」とは、以降に各種発現抑制ベクターの項で詳細に説明するが、本発明に係る遺伝子のうちの連続した21塩基以上の塩基配列を有するポリヌクレオチドであり、本発明に係る遺伝子の全長が含まれていてもよい。また、「一部分」は本発明に係る遺伝子のどの部分から選択されてもよく、したがって、UTRから選択されてもよい。また、「連続した21塩基以上の塩基配列」は本発明に係る遺伝子の複数の部分から選ばれて、例えばこれらを連結するなどして、使用されても良い。例えば遺伝子サイレンシングのために用いられるsiRNAは、サイレンシングの効果を確かなものとするために、複数のsiRNAを混合したカクテルとして利用されることがある。また、上記「一部分」は、本発明に係る遺伝子を含むゲノムDNA断片に由来するポリヌクレオチドから選択されてもよく、例えば、イントロン、またはプロモーターなどから選択されてもよい。また、ポリヌクレオチドは遺伝子発現ベクターと同様に、上記ポリヌクレオチドから一つが選択されることが望ましいが、複数が選択されてもよい。
本明細書で用いる場合、「遺伝子の発現を抑制」は、内因性の遺伝子の転写産物であるmRNA量の減少、および翻訳産物であるタンパク質量の減少のいずれをも含むことが意図される。発現抑制ベクターにおける、挿入されるポリヌクレオチド以外の構成要素は、基本的には、遺伝子発現ベクターと同じであるため、その説明を省略する。
遺伝子の発現抑制を引き起こす方法としては、従来公知の方法が利用可能であり、例えば、アンチセンス、コサプレッション、RNA干渉(RNAi)、microRNA、VIGS、リボザイム、相同組換え、ドミナントネガティブ遺伝子産物の発現、および標準的な変異誘発技術などを利用した方法が挙げられる。
すなわち、発現抑制ベクターは、RNAiベクター、アンチセンスベクター、およびVIGSベクターなどをいう。
例えば、RNAiベクターは、RNAiを引き起こす二本鎖RNA(dsRNA)を発現するベクターである。発現したdsRNAは、二本鎖RNA特異的なRNase(Dicer)により切断されて、siRNAとよばれる21~25塩基のRNAになる。siRNAは、RNA-induced silencing complex(RISC)と呼ばれる複合体を形成し、最終的にRISCは標的mRNAを塩基配列相同性により認識し分解する。RNAiベクターとしては、RNAiを引き起こすdsRNAをヘアピン型dsRNAとして発現するベクターが好ましい。dsRNAを発現するRNAiベクターは、イントロンなどの数塩基以上のスペーサー配列の両端にIR(inverted repeat:逆位反復)となるように、dsRNA形成部分に対応したDNAを配置することによって構築されるヘアピン型のRNAiベクターを用いることができる。スペーサーとしては、これに限定されるものではないが、例えばpdkイントロン(非特許文献:Wesley SVら、2001., Plant J., 27, 581-90.)などが好適に利用できる。また、RNAiベクターは別々のプロモーターによってセンスRNAおよびアンチセンスRNAそれぞれが転写され、これらが細胞内でハイブリダイズしてdsRNAを産生する、タンデム型であってもよい。あるいは、センスRNAとアンチセンスRNAがそれぞれ転写されるような複数の発現ベクターを構築して、RNAiを引き起こしてもよい。
RNAiベクターに挿入されるポリヌクレオチドは、例えば、配列番号18~32に示されるアミノ酸配列あるいはその変異体をコードするポリヌクレオチドの一部分、または、配列番号1~17に示される塩基配列からなるポリヌクレオチドあるいはその変異体の一部分である連続した21塩基以上の塩基配列、より好ましくは50塩基以上の塩基配列、さらに好ましくは100塩基以上の塩基配列からなるポリヌクレオチドと、その塩基配列の相補配列からなるポリヌクレオチドとが用いられる。
また、例えば、VIGSベクターは、標的とする遺伝子についてVIGSを引き起こすためのポリヌクレオチドが組み込まれたベクターであり、遺伝子の機能を簡便に確認するために利用される。VIGSはPTGSの機構に含まれる機構であり、ウイルスに対する植物の防御機構の一つと考えられている。VIGSベクターには標的遺伝子の塩基配列の一部が含まれ、これを導入した植物では、生成される組換えウイルスRNAの増幅に対してVIGSが誘導され、内因性の標的遺伝子がサイレンシングされる。
VIGSベクターとして、例えば、TRVベクターを利用することができる。TRVベクターを用いたVIGSシステムについては、非特許文献:Ratcliff F. et al, 2001, Plant Journal, 25, 237-245、および米国特許第7,229,829号を参照できる。
VIGSベクターに挿入されるポリヌクレオチドは、例えば、配列番号18~32に示されるアミノ酸配列あるいはその変異体をコードするポリヌクレオチドの一部分、または、配列番号1~17に示される塩基配列からなるポリヌクレオチドあるいはその変異体の一部分である連続した100塩基以上の塩基配列、より好ましくは150塩基以上の塩基配列、さらに好ましくは200塩基以上の塩基配列からなるポリヌクレオチドが用いられ得る。ベクターに挿入される向きは、センス方向およびアンチセンス方向のいずれであってもよい。
また、例えば、アンチセンスベクターは、目的とする遺伝子のmRNAと結合し得るアンチセンスRNAを発現するためのポリヌクレオチドが組み込まれたベクターである。「アンチセンス」RNAは、「センス」配列を有している内因性のmRNAと相補的な塩基配列を有しているポリヌクレオチドである。アンチセンスベクターはプロモーターの下流に、例えば、配列番号18~32に示されるアミノ酸配列あるいはその変異体をコードするポリヌクレオチドの一部分、または、配列番号1~17に示される塩基配列からなるポリヌクレオチドあるいはその変異体の一部分である連続した50塩基以上の塩基配列、好ましくは100塩基以上の塩基配列、より好ましくは500塩基以上の塩基配列からなるポリヌクレオチドが用いられる。
また、例えば、リボザイムベクターは、標的のmRNAを切断できるよう設計されたリボザイムを、植物細胞中で転写されるように組換えベクター内のCaMV35Sプロモーターなどのプロモーターの下流に連結して用いればよい。
また、例えば、コサプレッションベクターは、標的遺伝子の塩基配列と同一もしくは類似した配列を有するDNAが組み込まれたベクターである。「コサプレッション」とは、植物に標的内在性遺伝子と同一若しくは類似した配列を有する遺伝子を導入すると、導入された外来遺伝子および標的となる内因性の遺伝子の両方の発現が抑制される現象のことをいう。コサプレッションに用いる遺伝子は、標的遺伝子と完全に同一である必要はないが、少なくとも70%以上、好ましくは80%以上、さらに好ましくは90%以上(例えば、95%以上)の配列の同一性を有する。配列の同一性は、従来公知の方法で決定することができる。
なお、各発現抑制方法は、その機構の相違(例えば、一過的であるか、恒常的であるか)、あるいは実験系の相違に起因して、各方法間で結果が異なることも想定される。そのため、目的に応じた発現抑制方法を選択することが好ましい。例えば、ウイルス感染下の一過的実験系であるVIGSと比べて、安定形質転換植物におけるRNAi遺伝子サイレンシングの方が、農家での栽培により近い実施形態といえる。
〔4.植物代謝産物の含量が調節された形質転換植物およびその作出方法〕
本発明に係る植物代謝産物の含量が調節された形質転換植物は、本発明に係る上述のベクターを用いて、対象の植物を形質転換することによって作出することができる。
本発明に係る植物代謝産物の含量が調節された形質転換植物は、本発明に係る上述のベクターを用いて、対象の植物を形質転換することによって作出することができる。
本明細書中で使用される場合、用語「植物代謝産物の含量が調節された形質転換植物」とは、対照となる植物と比較して、特定の植物代謝産物の含量が低減、あるいは、増加した形質転換植物であることを意味する。ここで、「対照となる植物」とは、植物代謝産物の含量が調節されていない野生型の植物であって、植物代謝産物の含量が調節された植物と同一種または同一品種であり、同一条件で栽培または培養されたものをいう。あるいは植物代謝産物の含量の調節に関与しない、対照として用いられる遺伝子あるいはその一部分を導入した形質転換植物であって、植物代謝産物の含量が調節された植物と同一種または同一品種であり、同一条件で栽培または培養されたものも、また、これに含まれる。
例えば、上記「植物代謝産物の含量が調節された」は、特定の植物代謝産物の含量が10%以上低減、または増加していることが好ましい。また、上記の「10%以上」とは、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上、最も好ましくは50%以上低減、または増加していることを言う。また、ここで、「低減、または増加」は頂芽および腋芽を取り除く摘芯処理が施された植物体で実現されていることが好ましいが、摘芯されていない植物体で実現されていてもよい。また、「調節された」は、葉および根などの特定の組織で実現されていることが好ましいが、これに限定されるものではない。なお、摘芯は、様々な作物で実施され、作物の品質、収量に大きな影響を及ぼす重要な作業である。
本明細書中で使用される場合、用語「形質転換植物」は植物に導入されたDNAが宿主のゲノムDNAに組み込まれた遺伝子組換え植物(トランスジェニック植物ともいう)のことを指す他、宿主のゲノムDNAに組み込まれない、一過的に形質転換された植物も含むものである。また、用語「形質転換植物」は本発明に係るベクターを用いて作製された形質転換植物細胞、または、その細胞に由来する植物体や植物体の一部をいう。また、後述するように、本発明に係る所望のポリヌクレオチドが組み込まれているゲノムが遺伝子組換え植物細胞から伝達された子孫も「形質転換植物」であり得る。「形質転換植物」は植物細胞、植物体、植物体の一部、種子であり得る。
本発明において形質転換の対象となる植物材料は、植物体全体、植物器官(例えば根、茎、葉、種子、胚、胚珠、茎頂、葯、および花粉など)、植物組織(例えば表皮、師部、柔組織、木部、維管束、柵状組織、および海綿状組織など)、植物培養細胞(例えば、懸濁培養細胞)およびプロトプラストを含む植物細胞、葉の切片、およびカルスなどのいずれをも意味する。
また、形質転換に用いられる植物としては、特に限定されないが、双子葉植物であることが好ましく、中でもナス科植物またはキク科植物であることがより好ましい。ナス科植物としては、ズボイシア(Duboisia)属、アントセリシス(Anthocericis)属、サルピグレシス(Salpiglessis)属、およびタバコ(Nicotiana)属などが挙げられ、キク科植物としては、エクリプタ(Eclipta)属、およびジニア(Zinnia)属などが挙げられる。これらの中でもナス科植物であることがさらに好ましく、その中でもタバコ属植物であることが特に好ましい。タバコ属植物としては、タバコ(Nicotiana)属に属する植物であれば特に限定されず、例えば、ニコチアナ・アカウリス(Nicotiana acaulis)、ニコチアナ・アカミナタ(Nicotiana acuminata)、ニコチアナ・アカミナタ・ヴァリエーション・ムルツユロラ(Nicotiana acuminata var. multzjlora)、ニコチアナ・アフリカナ(Nicotiana africana)、ニコチアナ・アラタ(Nicotiana alata)、ニコチアナ・アンプレクシカウリス(Nicotiana amplexicaulis)、ニコチアナ・アレンツィイ(Nicotiana arentsii)、ニコチアナ・アテヌアタ(Nicotiana attenuata)、ニコチアナ・ベナビデシイ(Nicotiana benavidesii)、ニコチアナ・ベンサミアナ(Nicotiana benthamiana)、ニコチアナ・ビゲロビイ(Nicotiana bigelovii)、ニコチアナ・ボナリエンシス(Nicotiana bonariensis)、ニコチアナ・カビコラ(Nicotiana cavicola)、ニコチアナ・クレベランディイ(Nicotiana clevelandii)、ニコチアナ・コルディフォリア(Nicotiana cordifolia)、ニコチアナ・コリンボサ(Nicotiana corymbosa)、ニコチアナ・デブネイ(Nicotiana debneyi)、ニコチアナ・エクセルシオール(Nicotianaexcelsior)、ニコチアナ・フォゲッチアナ(Nicotiana forgetiana)、ニコチアナ・フラグランス(Nicotiana fragrans)、ニコチアナ・グラウカ(Nicotiana glauca)、ニコチアナ・グルチノサ(Nicotiana glutinosa),ニコチアナ・グッドスピーディイ(Nicotiana goodspeedii)、ニコチアナ・ゴセイ(Nicotiana gossei)、ニコチアナ・イングルバ(Nicotiana ingulba)、ニコチアナ・カワカミイ(Nicotiana kawakamii)、ニコチアナ・ナイチアナ(Nicotiana knightiana)、ニコチアナ・ラングスドルフィ(Nicotiana langsdorfi)、ニコチアナ・リニアリス(Nicotiana linearis)、ニコチアナ・ロンギフロラ(Nicotiana longiflora)、ニコチアナ・マリチマ(Nicotiana maritima)、ニコチアナ・メガロシフォン(Nicotiana megalosiphon)、ニコチアナ・ミエルシイ(Nicotiana miersii)、ニコチアナ・ノクチフロラ(Nicotiana noctiflora)、ニコチアナ・ヌディカウリス(Nicotiana nudicaulis)、ニコチアナ・オブツシフォリア(Nicotiana obtusifolia)、ニコチアナ・オクシデンタリス(Nicotiana occidentalis)、ニコチアナ・オクシデンタリス・サブスピーシーズ・ヘスペリス(Nicotiana occidentalis subsp. Hesperis)、ニコチアナ・オトフォラ(Nicotiana otophora)、ニコチアナ・パニクラタ(Nicotiana paniculata)、ニコチアナ・パウクツユロラ(Nicotiana pauczjlora)、ニコチアナ・ペチュニオイデス(Nicotiana petunioides)、ニコチアナ・プランバギニフォリア(Nicotiana plumbaginifolia)、ニコチアナ・クアドリヴァルヴィス(Nicotiana quadrivalvis)、ニコチアナ・レイモンディイ(Nicotiana raimondii)、ニコチアナ・レパンダ(Nicotiana repanda)、ニコチアナ・ロズラタ(Nicotiana rosulata)、ニコチアナ・ロズラタ・サブスピーシーズ・イングルバ(Nicotiana rosulata subsp. Ingulba)、ニコチアナ・ロツンディフォリア(Nicotiana rotundifolia)、ニコチアナ・ルスチカ(Nicotiana rustica)(マルバタバコ)、ニコチアナ・セッチェルリイ(Nicotiana setchellii)、ニコチアナ・シムランス(Nicotiana simulans),ニコチアナ・ソラニフォリア(Nicotiana solanifolia)、ニコチアナ・スペガウイニイ(Nicotiana spegauinii)、ニコチアナ・ストックトニイ(Nicotiana stocktonii)、ニコチアナ・スアヴェオレンス(Nicotiana suaveolens)、ニコチアナ・シルベストリス(Nicotiana sylvestris)、ニコチアナ・タバカム(Nicotiana tabacum)、ニコチアナ・チルシフロラ(Nicotiana thyrsiflora)、ニコチアナ・トメントサ(Nicotiana tomentosa)、ニコチアナ・トメントシフォミス(Nicotiana tomentosifomis)、ニコチアナ・トリゴノフィラ(Nicotiana trigonophylla)、ニコチアナ・アンブラティカ(Nicotiana umbratica)、ニコチアナ・アンドゥラタ(Nicotiana undulata)、ニコチアナ・ベルンチナ(Nicotiana velutina)、ニコチアナ・ウィガンディオイデス(Nicotiana wigandioides)、およびタバコ属植物のハイブリッドなどが挙げられる。中でもニコチアナ・ベンサミアナ、ニコチアナ・ルスチカおよびニコチアナ・タバカムがより好ましく、葉たばこの原料として用いられるニコチアナ・ルスチカおよびニコチアナ・タバカムが特に好ましい。
本発明に係るベクターに含まれている所望のポリヌクレオチドがゲノム内に組み込まれた植物体が一旦取得されれば、この植物体の有性生殖または無性生殖によってその子孫となる植物を得ることができる。また、この植物体またはその子孫となる植物から、例えば、種子、葉、茎、根、おしべ、花粉、カルス、またはプロトプラストなどを得て、それらを基に所望のポリヌクレオチドがゲノム内に組み込まれた植物体を量産することができる。したがって、本発明には、本発明に係るベクターに含まれている所望のポリヌクレオチドが導入された植物体、または、この植物体と同一の性質を有するこの植物体の子孫となる植物、またはこれら由来の組織も含まれる。
形質転換の方法としては、当業者に公知の形質転換方法を用いることができ、その好ましい例としては、アグロバクテリウム法、パーティクルガン法、PEG-リン酸カルシウム法、およびエレクトロポレーション法などが挙げられる。これらは、アグロバクテリウムを介する方法と直接植物細胞に導入する方法とに大別される。なかでも、アグロバクテリウム法を用いる方法が好ましい。形質転換に好適に用いられるアグロバクテリウムとしては、例えば、リゾビウム・ラジオバクター(Rhizobium radiobacter(旧名アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens))の菌株GV2260、LBA4404およびC58などが挙げられる。アグロバクテリウム法を用いて形質転換を行なう場合には、pBI系のバイナリーベクターが好適に使用され得る。なお、目的のベクターを含む形質転換用のアグロバクテリウムの調製は、従来公知の方法を利用することができる。
遺伝子が導入された形質転換植物細胞は、まず上述の選抜マーカー遺伝子を利用した薬剤に対する耐性によって選択され、次いで定法によって植物体に再生される。形質転換細胞からの植物体の再生は、植物細胞の種類に応じて当業者に公知の方法で行なうことが可能である。
遺伝子が植物に導入されたか否かの確認は、PCR法、サザンハイブリダイゼーション法、およびノーザンハイブリダイゼーション法などによって行なうことができる。例えば、形質転換植物からDNAを調製し、このDNAを鋳型として、導入したポリヌクレオチドに特異的なプライマーを設計してPCRを行なう。PCRの後は、増幅産物についてアガロースゲル電気泳動、ポリアクリルアミドゲル電気泳動、およびキャピラリー電気泳動などを行い、臭化エチジウム、およびSYBR Green液などによって染色し検出することによって、形質転換されたことを確認することができる。また、予め蛍光色素などによって標識したプライマーを用いてPCRを行い、増幅産物を検出することもできる。さらに、マイクロプレートなどの固相に増幅産物を結合させ、蛍光または酵素反応などによって増幅産物を確認する方法も採用することができる。あるいは、レポーター遺伝子の発現によって、植物細胞が形質転換されたか否かを確認することができる。VIGSベクターが植物に導入されたか否かの確認は、VIGSベクターに組み込まれている組換え植物ウイルスが植物の各組織において感染および増殖していることを確認することで行なうことができる。組換え植物ウイルスの感染および増殖は、各組織から抽出した全RNAとウイルスゲノムに対するPCRプライマーを用いた、RT-PCR法やRT-QPCR法により、確認することができる。
以上により、植物におけるTTF_#20遺伝子、TTF_#53遺伝子、TTF_#54遺伝子、TTF_#55遺伝子、TTF_#56遺伝子、TTF_#80遺伝子、TTF_#84遺伝子、TTF_r20遺伝子、TTF_r25遺伝子、TTF_r33遺伝子、TTF_r35遺伝子、TTF_r40遺伝子、TTF_r48遺伝子、TTF_r49遺伝子、TTF_r66遺伝子、TTF_r84遺伝子またはTTF_r86遺伝子の発現が改変された形質転換植物を得ることができる。
本発明に係る「植物代謝産物の含量が調節された形質転換植物」においては、特定の植物代謝産物の量が減少、または増加しているので、例えば、「植物代謝産物の含量が調節されたタバコ」は従来の葉たばことは内容成分が量的あるいは質的に異なる葉たばこの生産に用いることができる。また、このような葉たばこを使用すれば、ブレンドにより創造できるたばこ製品の味および香りの範囲を一層広げることができる。ここで、「葉たばこ」とは収穫したタバコ属植物の葉(茎を含む)を乾燥させた、たばこ製品の原料のことを指す。「葉たばこ」となるタバコ属植物としては、ニコチアナ・タバカム、または、ニコチアナ・ルスチカが用いられる。また、典型的なタバコ製品には、紙巻きタバコ、葉巻、パイプタバコ、嗅ぎタバコ、および噛みタバコなどが含まれるが、これらに限定されるものではない。
なお、本発明を以下のように換言することもできる。
すなわち、植物代謝産物の含量を低減、または増加させる機能を有する、以下の(f)、(g)または(h)に記載のポリヌクレオチド:
(f)配列番号1~17に示される塩基配列からなるポリヌクレオチド;
(g)配列番号1~17に示される塩基配列において1個もしくは数個の塩基が欠失、挿入、置換もしくは付加された塩基配列からなるポリヌクレオチド;
(h)上記(f)のポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド。
(f)配列番号1~17に示される塩基配列からなるポリヌクレオチド;
(g)配列番号1~17に示される塩基配列において1個もしくは数個の塩基が欠失、挿入、置換もしくは付加された塩基配列からなるポリヌクレオチド;
(h)上記(f)のポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド。
植物代謝産物の含量を低減、または増加させる機能を有するポリペプチドをコードするポリヌクレオチドであって、該ポリペプチドが以下の(i)または(j)に記載のポリペプチドである、ポリヌクレオチド:
(i)配列番号18~32に示されるアミノ酸配列からなるポリペプチド;
(j)配列番号18~32に示されるアミノ酸配列において1個もしくは数個のアミノ酸が欠失、挿入、置換もしくは付加されたアミノ酸配列からなるポリペプチド。
(i)配列番号18~32に示されるアミノ酸配列からなるポリペプチド;
(j)配列番号18~32に示されるアミノ酸配列において1個もしくは数個のアミノ酸が欠失、挿入、置換もしくは付加されたアミノ酸配列からなるポリペプチド。
植物細胞内で機能するプロモーターと、上述のポリヌクレオチドのうちの少なくとも1つとを含み、このポリヌクレオチドを植物細胞内で発現させることが可能であるよう、該プロモーターと該ポリヌクレオチドとが連結されていることを特徴とするベクター。
植物細胞内で機能するプロモーターと、上述のポリヌクレオチドのうちの少なくとも1つのポリヌクレオチドの一部分である連続した塩基配列からなるポリヌクレオチドとを含み、植物細胞内でこのポリヌクレオチドのセンス鎖あるいはアンチセンス鎖のRNAとしてRNAが転写されるよう、該プロモーターとこのポリヌクレオチドとが連結されていることを特徴とするベクター。
植物細胞内で機能するプロモーターと、上述のポリヌクレオチドのうちの少なくとも1つのポリヌクレオチドの一部分である連続した21塩基以上の塩基配列からなるポリヌクレオチドとを含み、植物細胞内でこのポリヌクレオチドの二本鎖RNAが形成されるようにRNAが転写されるよう、該プロモーターとこのポリヌクレオチドとが連結されている、以下の(k)または(l)に記載のベクター:
(k)上記ポリヌクレオチドとしてセンス鎖およびアンチセンス鎖の両方を含んでいるベクター;
(l)上記ポリヌクレオチドのセンス鎖およびアンチセンス鎖のそれぞれが転写されるよう、当該ポリヌクレオチドの5’側と3’側の両方にプロモーターが連結されているベクター。
(k)上記ポリヌクレオチドとしてセンス鎖およびアンチセンス鎖の両方を含んでいるベクター;
(l)上記ポリヌクレオチドのセンス鎖およびアンチセンス鎖のそれぞれが転写されるよう、当該ポリヌクレオチドの5’側と3’側の両方にプロモーターが連結されているベクター。
植物代謝産物の含量を低減または増加させた形質転換植物細胞を作製する方法であって、上述のベクターにより植物を形質転換する工程を含むことを特徴とする方法。
植物代謝産物の含量を低減または増加させた形質転換植物細胞を作製する上述の方法であって、植物細胞の形質転換に用いられるベクターに含まれるプロモーターが以下の(m)、(n)または(o)である方法:
(m)目的遺伝子を植物体内で構成的に発現させる活性を有するプロモーター;
(n)目的遺伝子を植物の根組織の細胞において選択的に発現させる活性を有するプロモーター;
(o)目的遺伝子を植物の根皮層組織の細胞において選択的に発現させる活性を有するプロモーター。
(m)目的遺伝子を植物体内で構成的に発現させる活性を有するプロモーター;
(n)目的遺伝子を植物の根組織の細胞において選択的に発現させる活性を有するプロモーター;
(o)目的遺伝子を植物の根皮層組織の細胞において選択的に発現させる活性を有するプロモーター。
植物代謝産物の含量を低減または増加させた形質転換植物細胞を作製する方法であって、植物細胞の形質転換法が以下の(p)または(q)である方法:
(p)上記ベクターを含むアグロバクテリウムを介して実施される方法;
(q)上記ベクターを付着させた微粒子を細胞に衝突させることにより実施される方法。
(p)上記ベクターを含むアグロバクテリウムを介して実施される方法;
(q)上記ベクターを付着させた微粒子を細胞に衝突させることにより実施される方法。
形質転換した植物細胞から植物体を再生する工程を含む、上述の形質転換植物細胞を作製する方法。
また、形質転換植物細胞を作製する方法において、形質転換植物細胞が双子葉植物の細胞であることがより好ましく、双子葉植物がナス科植物であることがさらに好ましく、ナス科植物がタバコ属植物であることが特に好ましく、タバコ属植物がニコチアナ・タバカムであることが最も好ましい。
また、形質転換植物細胞を作製する方法において、形質転換植物が植物細胞または植物体であることが好ましい。
また、上述の形質転換植物を作製する方法の何れかを用いて作製した形質転換植物およびその子孫もまた本発明に含まれる。
上記植物体がニコチアナ・タバカムであって、植物代謝産物の含量を低減、または増加させた該植物体から得られたたばこ原料(葉たばこ)、およびこれを使用して製造されたたばこ製品もまた本発明に含まれる。
本発明に係るベクターは、植物代謝産物の含量が調節された形質転換植物を作出しうるベクターであって、上述のポリヌクレオチドの一部分を含むことを特徴としている。
以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
〔実施例1:根切片の植物ホルモン処理〕
無菌栽培したタバコ(ニコチアナ・タバカム、品種バーレー21およびLAバーレー21)の幼植物体から切り取った頂芽(1-2cm)を1/2濃度のMS寒天培地(培養器:プラントボックス、容量50ml、0.65%寒天、1.5%ショ糖を含む)にて1ヶ月程度培養し、そこから成長した幼植物体の根を採取した。根端を含んでいる先端部と側根の多い基部とを除いた中央部分である、長さ1cm程度の根切片を、以下の実験に供試した。なお、LAバーレー21とはバーレー21のアイソジェニック系統であり、ニコチンの生合成に関わる2個の調節遺伝子座(Nic1およびNic2)が両方とも変異したことによりニコチン等のニコチン類縁アルカロイドをほとんど蓄積しない系統である(非特許文献:Leggら、1970, Crop Sci, 10., 212.)。また、LAバーレー21では、バーレー21と比べ、ニコチン生合成酵素遺伝子の発現が大きく抑制されていることが明らかにされている(非特許文献:Hibiら、1994, Plant Cell., 6, 723-35.)。
無菌栽培したタバコ(ニコチアナ・タバカム、品種バーレー21およびLAバーレー21)の幼植物体から切り取った頂芽(1-2cm)を1/2濃度のMS寒天培地(培養器:プラントボックス、容量50ml、0.65%寒天、1.5%ショ糖を含む)にて1ヶ月程度培養し、そこから成長した幼植物体の根を採取した。根端を含んでいる先端部と側根の多い基部とを除いた中央部分である、長さ1cm程度の根切片を、以下の実験に供試した。なお、LAバーレー21とはバーレー21のアイソジェニック系統であり、ニコチンの生合成に関わる2個の調節遺伝子座(Nic1およびNic2)が両方とも変異したことによりニコチン等のニコチン類縁アルカロイドをほとんど蓄積しない系統である(非特許文献:Leggら、1970, Crop Sci, 10., 212.)。また、LAバーレー21では、バーレー21と比べ、ニコチン生合成酵素遺伝子の発現が大きく抑制されていることが明らかにされている(非特許文献:Hibiら、1994, Plant Cell., 6, 723-35.)。
(ジャスモン酸処理)
ジャスモン酸により誘導される遺伝子を明らかにするための全RNAサンプルを以下のようにして得た。
ジャスモン酸により誘導される遺伝子を明らかにするための全RNAサンプルを以下のようにして得た。
根切片を、1%ショ糖および5μMインドール酢酸(IAA)を含むHF改変液体培地(pH5.8,非特許文献:Mano et al.,1989、Plant Sci, 59, 191-201.)中、25℃の暗所下で予備培養(80rpm)した。24時間培養した後、この根切片を滅菌水で洗浄し、1%ショ糖および0.5μMメチルジャスモン酸(MeJA)を含む40mlのHF液体培地(培養器:100ml三角フラスコ)で培養した。また、予備培養した後に滅菌水で洗浄した根切片の一部は、対照として、1%ショ糖および5μM IAAを含むHF改変液体培地で培養した。培養開始から、0、30、60、および120分後に10本程度の根切片を分取し、0.4mlのRNAlater(製品名、Ambion社)に浸漬して、RNA抽出を行なうまで-30℃で保存した。なお、実験の反復として、それぞれの実験区の各タイムポイントにおいて根切片を3本のチューブに分取した。RNeasy Plant Mini Kit(製品名、QIAGEN社)を用いて根切片から全RNAを抽出した。
これらのサンプルからcDNAを合成し、定量PCRにより、ジャスモン酸により誘導されることが知られている4種のニコチン合成酵素遺伝子(PMT1、ODC1、MPO1、QPT)の転写産物量の変化を確認したところ、60分後から120分後にかけて転写産物量の大きな増加が認められた。したがって、得られた全RNAはジャスモン酸により誘導される遺伝子のスクリーニングに使用できると考えられた。
(オーキシン除去処理)
培養液からオーキシンを除去した際に誘導される遺伝子を明らかにするための全RNAサンプルを以下のようにして得た。
培養液からオーキシンを除去した際に誘導される遺伝子を明らかにするための全RNAサンプルを以下のようにして得た。
根切片を、1%ショ糖および5μMのIAAを含むHF改変培地で24時間予備培養した後に滅菌水で洗浄し、1%ショ糖を含むHF改変培地で培養した。また、根切片の一部は、対照として、1%ショ糖および5μMのIAAを含むHF改変培地で培養した。培養開始から、0、1、2、および4時間後に10本程度の根切片を分取し、ジャスモン酸処理の場合と同様にして根切片から全RNAサンプルを抽出した。
これらサンプルにおいても、オーキシンの有無により転写制御がなされる既知のニコチン合成酵素遺伝子の転写産物量の変化が認められた。したがって、得られた全RNAは、オーキシン除去により誘導される遺伝子のスクリーニングに使用できると考えられた。
(オーキシン処理、エチレン処理)
オーキシンまたはエチレンの添加により発現が誘導される遺伝子を明らかにするために同様の実験を行った。
オーキシンまたはエチレンの添加により発現が誘導される遺伝子を明らかにするために同様の実験を行った。
根切片を、1%ショ糖を含むHF改変培地で24時間予備培養した後に滅菌水で洗浄し、1μMのIAAを含む、または植物体内でのエチレンの前駆体である1-アミノシクロプロパン-1-カルボン酸(ACC)を5μMとなるよう含む、1%ショ糖を含むHF改変培地で培養した。また、予備培養した根切片の一部は、対照として、1%ショ糖を含むHF改変培地で培養した。培養開始から、0、30、および60分後に10本程度の根切片を分取し、ジャスモン酸処理の場合と同様にして根切片から全RNAサンプルを抽出した。
〔実施例2:タバコ植物個体の心止め処理〕
植物個体の頂芽部を取り除く心止め(摘芯ともいう)処理に応答して、根において発現する遺伝子を明らかにするために、以下の実験を実施して全RNAを抽出した。タバコ植物(品種つくば1号)を、12時間/26℃/湿度60%(明期)と12時間/18℃/湿度60%(暗期)の条件に設定された人工気象器内(コイトトロン、小糸工業製)で育成した。播種後1ヶ月目に、バーミキュライトを詰めた12cmテラコッタにタバコ植物を移植し、灌水を兼ねて、2000倍希釈した60~75mlのハイポネックス(HYPONEX JAPAN社)を毎日与えた。心止めは移植後18日目に下から12枚の葉を残して実施した。心止め前と、心止めしてから1、3、9、24、および48時間後の個体から根を採取し、全RNA抽出に供した。対照として、心止めをしなかった個体からも根を採取した。1タイムポイントあたり4個体からサンプルを採取し、これを実験の反復として用いた。採取した根は速やかに液体窒素で凍結し、-80℃で保存した。凍結した根は液体窒素中で乳鉢、乳棒を用いて磨砕後、全RNAを抽出した。全RNAの抽出は、実施例1と同様にして行なった。
植物個体の頂芽部を取り除く心止め(摘芯ともいう)処理に応答して、根において発現する遺伝子を明らかにするために、以下の実験を実施して全RNAを抽出した。タバコ植物(品種つくば1号)を、12時間/26℃/湿度60%(明期)と12時間/18℃/湿度60%(暗期)の条件に設定された人工気象器内(コイトトロン、小糸工業製)で育成した。播種後1ヶ月目に、バーミキュライトを詰めた12cmテラコッタにタバコ植物を移植し、灌水を兼ねて、2000倍希釈した60~75mlのハイポネックス(HYPONEX JAPAN社)を毎日与えた。心止めは移植後18日目に下から12枚の葉を残して実施した。心止め前と、心止めしてから1、3、9、24、および48時間後の個体から根を採取し、全RNA抽出に供した。対照として、心止めをしなかった個体からも根を採取した。1タイムポイントあたり4個体からサンプルを採取し、これを実験の反復として用いた。採取した根は速やかに液体窒素で凍結し、-80℃で保存した。凍結した根は液体窒素中で乳鉢、乳棒を用いて磨砕後、全RNAを抽出した。全RNAの抽出は、実施例1と同様にして行なった。
〔実施例3:マイクロアレイ解析による遺伝子の選抜〕
実施例1および実施例2において得られた全RNAをマイクロアレイ解析に供した。
実施例1および実施例2において得られた全RNAをマイクロアレイ解析に供した。
マイクロアレイは、アジレント・テクノロジー社に委託し作製した44Kカスタムアレイであり、ニコチアナ・タバカムの品種つくば1号に由来する出願人保有の完全長cDNAライブラリーの末端配列情報およびGenBankに登録されているニコチアナ・タバカムの遺伝子の塩基配列をクラスタリングして得た、アッセンブルされた塩基配列に対するプローブを搭載している。
標識を含むハイブリダイゼーションは、アジレント・テクノロジー社が推奨する一色法のプロトコール(ファイル名;One-Color Microarray-Based Gene Expression Analysis, ver 5.5, February 2007)の方法に準じて実施した。
マイクロアレイデータの解析に先だって、KOGデータベース(ftp://ftp.ncbi.nih.gov/pub/COG/KOG/kyva、2003/03/02版)を用いたBLASTX相同性検索により、上記アッセンブルされた塩基配列の中から転写調節因子をコードすると考えられる遺伝子のリストを作成した。この遺伝子リストを対象として、GeneSpring GX(アジレント・テクノロジー社)を用いたマイクロアレイデータの分析を行った。
(ジャスモン酸により誘導される遺伝子の選抜)
ジャスモン酸により誘導される遺伝子を以下のようにして選抜した。まず、品種バーレー21の根切片にMeJAを処理した実験において、MeJA処理以前と比べ処理後30分または60分でマイクロアレイのシグナルの比が2以上となる遺伝子を選抜した。次に、MeJA処理後30分または60分において対照と比べマイクロアレイのシグナルの比が2以上となる遺伝子を選抜した。両者の和集合をジャスモン酸により誘導される遺伝子とした。
ジャスモン酸により誘導される遺伝子を以下のようにして選抜した。まず、品種バーレー21の根切片にMeJAを処理した実験において、MeJA処理以前と比べ処理後30分または60分でマイクロアレイのシグナルの比が2以上となる遺伝子を選抜した。次に、MeJA処理後30分または60分において対照と比べマイクロアレイのシグナルの比が2以上となる遺伝子を選抜した。両者の和集合をジャスモン酸により誘導される遺伝子とした。
(Nic1およびNic2遺伝子座の影響を受ける遺伝子の選抜)
MeJAを処理していない条件下で、または、MeJA誘導処理後30分に、野生型であるバーレー21において、低ニコチン型であるLAバーレー21よりもマイクロアレイのシグナルの比が2以上となる遺伝子をNic1およびNic2遺伝子座の影響を受ける遺伝子として選定した。
MeJAを処理していない条件下で、または、MeJA誘導処理後30分に、野生型であるバーレー21において、低ニコチン型であるLAバーレー21よりもマイクロアレイのシグナルの比が2以上となる遺伝子をNic1およびNic2遺伝子座の影響を受ける遺伝子として選定した。
(オーキシンまたはエチレンにより誘導される遺伝子の選抜)
オーキシン添加もしくはACC添加により誘導される遺伝子を以下のようにして選抜した。まず、オーキシンまたはACC添加後1時間または2時間において添加以前と比べシグナル比が2以上となる遺伝子を選抜した。次に、オーキシンまたはACC添加後1時間または2時間において対照と比べマイクロアレイのシグナルの比が2以上となる遺伝子を選抜し、両者の和集合をオーキシンまたはエチレンにより誘導される遺伝子とした。
オーキシン添加もしくはACC添加により誘導される遺伝子を以下のようにして選抜した。まず、オーキシンまたはACC添加後1時間または2時間において添加以前と比べシグナル比が2以上となる遺伝子を選抜した。次に、オーキシンまたはACC添加後1時間または2時間において対照と比べマイクロアレイのシグナルの比が2以上となる遺伝子を選抜し、両者の和集合をオーキシンまたはエチレンにより誘導される遺伝子とした。
(オーキシン除去により誘導される遺伝子の選抜)
オーキシン除去により誘導される遺伝子として、オーキシン除去後1時間または2時間において対照と比べマイクロアレイのシグナルの比が2以上となる遺伝子を選抜した。
オーキシン除去により誘導される遺伝子として、オーキシン除去後1時間または2時間において対照と比べマイクロアレイのシグナルの比が2以上となる遺伝子を選抜した。
(心止め処理により誘導される遺伝子の選抜)
心止め前と比べて心止め後9時間においてマイクロアレイのシグナルの比が2以上となる遺伝子を、心止め処理により誘導される遺伝子として選抜した。
心止め前と比べて心止め後9時間においてマイクロアレイのシグナルの比が2以上となる遺伝子を、心止め処理により誘導される遺伝子として選抜した。
〔実施例4:既知情報からの遺伝子の選抜〕
ジャスモン酸、および傷害といった、タバコにおいてはニコチン合成を誘導する処理に応答して発現が誘導される遺伝子を、以下の非特許文献に開示されている公知情報から抽出した:Proc. Natl. Acad. Sci (2003) 100(14) p8595-8600:Supplement Data Table2、Plant Sci. (2000) 158 p19-32、Plant J. (2005) 44 p1065-1076、Plant Physiol (2005) 139 p.949-959:Supplement Data、Nature (2007) 448 p661-665、Nature (2007) 448 p666-673、Plant Physiol (2002) 129 p.661-677:Table1、Plant Cell (2007) 19 p2225-2245:Supplement Data(Table1)、Plant Cell (2004) 16 p1938-1950、Gene Dev. (2004) 18 p1577-1591、Plant Molecular Biology (2005) 58 p585-595、J. of Biochemistry (2004) 279(53) p55355-55361、Plant Molecular Biology (2004) 55 p183-192、Plant Cell Physiol (1998) 39(10) p993-1002、Plant Molecular Biology (2004) 55 p743-761、Plant Molecular Biology (2006) 60 p699-716、Plant Molecular Biology (2001) 45 p477-488、EMBO J (1991) 10(7) p1793-1802、EMBO J (1999) 18(16) p4455-4463、Plant J. (2001) 25(1) p43-53、J. of Biochemistry (2004) 279(51) p52940-52948、Plant Physiol(2007) 144 p1680-1689、およびPlant Physiol(1997) 115 p397-407。これらの遺伝子配列について上記アッセンブルされた塩基配列に対してBLAST検索を行い、対応する250遺伝子を抽出した。この内、根における遺伝子の発現レベルの高い45遺伝子を抽出し、実施例3に記載の44Kカスタムアレイに搭載されていない遺伝子およびユニークなプローブ配列が設計されていない遺伝子である13種の遺伝子を選抜した。
ジャスモン酸、および傷害といった、タバコにおいてはニコチン合成を誘導する処理に応答して発現が誘導される遺伝子を、以下の非特許文献に開示されている公知情報から抽出した:Proc. Natl. Acad. Sci (2003) 100(14) p8595-8600:Supplement Data Table2、Plant Sci. (2000) 158 p19-32、Plant J. (2005) 44 p1065-1076、Plant Physiol (2005) 139 p.949-959:Supplement Data、Nature (2007) 448 p661-665、Nature (2007) 448 p666-673、Plant Physiol (2002) 129 p.661-677:Table1、Plant Cell (2007) 19 p2225-2245:Supplement Data(Table1)、Plant Cell (2004) 16 p1938-1950、Gene Dev. (2004) 18 p1577-1591、Plant Molecular Biology (2005) 58 p585-595、J. of Biochemistry (2004) 279(53) p55355-55361、Plant Molecular Biology (2004) 55 p183-192、Plant Cell Physiol (1998) 39(10) p993-1002、Plant Molecular Biology (2004) 55 p743-761、Plant Molecular Biology (2006) 60 p699-716、Plant Molecular Biology (2001) 45 p477-488、EMBO J (1991) 10(7) p1793-1802、EMBO J (1999) 18(16) p4455-4463、Plant J. (2001) 25(1) p43-53、J. of Biochemistry (2004) 279(51) p52940-52948、Plant Physiol(2007) 144 p1680-1689、およびPlant Physiol(1997) 115 p397-407。これらの遺伝子配列について上記アッセンブルされた塩基配列に対してBLAST検索を行い、対応する250遺伝子を抽出した。この内、根における遺伝子の発現レベルの高い45遺伝子を抽出し、実施例3に記載の44Kカスタムアレイに搭載されていない遺伝子およびユニークなプローブ配列が設計されていない遺伝子である13種の遺伝子を選抜した。
一方、上記のアッセンブルされた塩基配列をクエリーにして、National Center for Biotechnology(NCBI)のNon-redundant protein sequence(nr)データベースに対してblastx検索を行い、キーワードとしてIAA、auxin、bHLH、MYC、C2H2、zinc finger、ZAT、WZF、ZPT、またはethyleneを有するアミノ酸配列にヒットしたアッセンブルされた塩基配列を抽出した。また、表1に示すEARモチーフ(配列番号94~113)をクエリーにして、上記アッセンブルされた塩基配列に対するtblastn検索を行い、EARモチーフを持つアッセンブルされた塩基配列をさらに抽出した。両者を合わせて178遺伝子から根における遺伝子発現レベルが高い27遺伝子を選抜した。
実施例3におけるマイクロアレイ解析、実施例4の既知情報からの選抜の他に、以下に述べる酵母One-Hybrid法によっても遺伝子の選抜を実施した。酵母One-Hybrid選抜はMatchmakerTM One-Hybrid Library Construction & Screening Kit(タカラバイオ)を用いて、キット添付のマニュアルに従って実施した。ただし、酵母形質転換法は下記アドレスのホームページのHigh efficiency method(http://www.umanitoba.ca/faculties/medicine/biochem/gietz/method.html)を一部改良して行なった。
(1.酵母形質転換)
形質転換に用いる酵母コンピテントセルを次のようにして作製した。YPDAプレート上で30℃、3日間培養したY187酵母株のシングルコロニー(2-3mm)を掻き取り、6mlの2×YPDA液体培地中で30℃、200rpmで約24時間振とうして、前培養液を作製した。この前培養液の2mlを100mlの2×YPDA液体培地に加え、OD600が0.5程度になるまで30℃で振とう培養した(2-4時間)。培養した酵母を5分間の低速の遠心分離により集菌した後、滅菌水で洗浄し、最終的に、1mlの滅菌水に懸濁して、300μlずつ1.5mlチューブに分注した。
形質転換に用いる酵母コンピテントセルを次のようにして作製した。YPDAプレート上で30℃、3日間培養したY187酵母株のシングルコロニー(2-3mm)を掻き取り、6mlの2×YPDA液体培地中で30℃、200rpmで約24時間振とうして、前培養液を作製した。この前培養液の2mlを100mlの2×YPDA液体培地に加え、OD600が0.5程度になるまで30℃で振とう培養した(2-4時間)。培養した酵母を5分間の低速の遠心分離により集菌した後、滅菌水で洗浄し、最終的に、1mlの滅菌水に懸濁して、300μlずつ1.5mlチューブに分注した。
酵母の形質転換は次のようにして行った。酵母懸濁液を10000rpmで30秒間遠心分離して上清を取り去った後に、酵母のペレットに、予め調製したTransformation Mix(50%PEG3500:240μl、1M リチウムアセテート:36μl、dH2O:64μl、10mg/ml変性キャリアDNA:10μl、プラスミドDNA:10μl)を360μl添加してボルテックスにより完全に懸濁した。さらに、この懸濁液を42℃で20分間保温してヒートショックを与えた後に、10000rpmで30秒間遠心分離して上清を取り去り、1mlの滅菌水に穏やかに懸濁した。この懸濁液の200μlをSDプレートにプレーティングし、30℃で2-7日間培養した。
(2.スクリーニング用cDNAの調製)
スクリーニング用cDNAは、実施例1に記載した、植物ホルモンを含まないHF改変培地で24時間予備培養し、その後、IAAもしくはACCを添加して培養した根切片から抽出した全RNAを鋳型としてキット添付のマニュアルに従って調製した。
スクリーニング用cDNAは、実施例1に記載した、植物ホルモンを含まないHF改変培地で24時間予備培養し、その後、IAAもしくはACCを添加して培養した根切片から抽出した全RNAを鋳型としてキット添付のマニュアルに従って調製した。
(3.Bait用ベクターの調製)
既知のシスエレメントの有無、およびプロモーター活性情報を参考にして、ニコチン生合成酵素遺伝子のプロモーター配列から以下の2種のBait配列を選定した。根における発現特異性および傷害誘導性が確認されているタバコのquinolinate phosphoribosyltransferase遺伝子(QPT1、GenBankアクセッション番号AJ748262)からAREモチーフ(GAGCAC:非特許文献:Guilfoyleら、2002, Plant Molecular Biology, 49, 373-385.)を含む90塩基からなるポリヌクレオチドをQPT1 Bait配列(配列番号33)として選定した。また、putrecine N-methyltransferase遺伝子(PMT1、GenBankアクセッション番号AF126810)からTAA-Box/AREモチーフからなるactaataattgcaccgagacaaac(24mer:配列番号93)を3回反復して連結したものもPMT1 Bait配列(配列番号34)とした。これらをキット添付マニュアルに従って、pHis2.1ベクターにクローニングした。
既知のシスエレメントの有無、およびプロモーター活性情報を参考にして、ニコチン生合成酵素遺伝子のプロモーター配列から以下の2種のBait配列を選定した。根における発現特異性および傷害誘導性が確認されているタバコのquinolinate phosphoribosyltransferase遺伝子(QPT1、GenBankアクセッション番号AJ748262)からAREモチーフ(GAGCAC:非特許文献:Guilfoyleら、2002, Plant Molecular Biology, 49, 373-385.)を含む90塩基からなるポリヌクレオチドをQPT1 Bait配列(配列番号33)として選定した。また、putrecine N-methyltransferase遺伝子(PMT1、GenBankアクセッション番号AF126810)からTAA-Box/AREモチーフからなるactaataattgcaccgagacaaac(24mer:配列番号93)を3回反復して連結したものもPMT1 Bait配列(配列番号34)とした。これらをキット添付マニュアルに従って、pHis2.1ベクターにクローニングした。
(4.スクリーニング)
スクリーニングにはプラスミドDNAとしてTransformation Mix 360μl当たり、Bait用ベクターを250ng、pGADRecベクターを150ng、cDNAを100ng用いた。10mM 3-Amino-1,2,4-Triazole(3-AT、シグマ社)を含むTDO(-His/-Leu/-Trp)のSDプレート上で生育したコロニーを陽性クローンとした。ただし、PMT1 Baitに用いた場合は20mMの3-ATを含むTDOのSDプレートを用いた。得られた陽性コロニーは3-ATを含むTDOのSDプレートに再ストリークし、生育するクローンを選抜した。さらにこれらクローンの保持する塩基配列を解読し、その配列をクエリーとしてblastx検索およびblastn検索を実施して、転写因子をコードする可能性が示唆される遺伝子または機能未知であるタンパク質をコードする遺伝子を選定した。このようにして選定した遺伝子について、再び酵母に形質転換して、Baitとの結合性に再現性のみられた遺伝子を選抜した。
スクリーニングにはプラスミドDNAとしてTransformation Mix 360μl当たり、Bait用ベクターを250ng、pGADRecベクターを150ng、cDNAを100ng用いた。10mM 3-Amino-1,2,4-Triazole(3-AT、シグマ社)を含むTDO(-His/-Leu/-Trp)のSDプレート上で生育したコロニーを陽性クローンとした。ただし、PMT1 Baitに用いた場合は20mMの3-ATを含むTDOのSDプレートを用いた。得られた陽性コロニーは3-ATを含むTDOのSDプレートに再ストリークし、生育するクローンを選抜した。さらにこれらクローンの保持する塩基配列を解読し、その配列をクエリーとしてblastx検索およびblastn検索を実施して、転写因子をコードする可能性が示唆される遺伝子または機能未知であるタンパク質をコードする遺伝子を選定した。このようにして選定した遺伝子について、再び酵母に形質転換して、Baitとの結合性に再現性のみられた遺伝子を選抜した。
〔実施例6:VIGSアッセイ〕
実施例3、4、および5において選抜された、合計149種の遺伝子について、TRVベクターを用いたVIGSアッセイにより、タバコ属植物の葉におけるニコチン含量との関連を調査した。
実施例3、4、および5において選抜された、合計149種の遺伝子について、TRVベクターを用いたVIGSアッセイにより、タバコ属植物の葉におけるニコチン含量との関連を調査した。
(TRVベクターの構築)
TRVベクターの詳細については以下の文献を参照できる:Ratcliff F. et al, 2001, Plant Journal, 25, 237-245、Liu Y. et al, 2002, Plant Journal, 31, 777-786、Liu Y. et al, 2002, Plant Journal, 30, 415-429、Burch-Smith T.M. et al, 2004, Plant Journal, 39, 734-746、およびBaulcombe D., 2004, Nature, 431, 356-363、ならびに米国特許特許6,369,296号、および米国特許第7,229,829号。
TRVベクターの詳細については以下の文献を参照できる:Ratcliff F. et al, 2001, Plant Journal, 25, 237-245、Liu Y. et al, 2002, Plant Journal, 31, 777-786、Liu Y. et al, 2002, Plant Journal, 30, 415-429、Burch-Smith T.M. et al, 2004, Plant Journal, 39, 734-746、およびBaulcombe D., 2004, Nature, 431, 356-363、ならびに米国特許特許6,369,296号、および米国特許第7,229,829号。
VIGSのためのコンストラクトは、Gateway(登録商標)システムを採用したTRV-RNA2ベクターであるpSP221を用いて作製した。pSP221は、pTRV2-attR2-attR1(非特許文献:Liu Y. et al, 2002, Plant Journal, 31, 777-786)のTRV-RNA2発現カセットを、バイナリーベクターpBI121由来のpSP202のマルチクローニングサイトに挿入することにより作製した。なお、pSP202は、pBI121にpUC18のAmp遺伝子を挿入し、カルベニシリンで選抜できるように改変したものである。
pSP221に挿入するためのDNA断片は、実施例3および4、5において選抜された、合計149種の遺伝子の塩基配列に特異的なプライマーを用いてPCR増幅した。このうち、TTF_#20遺伝子、TTF_#53遺伝子、TTF_#54遺伝子、TTF_#55遺伝子、TTF_#56遺伝子、TTF_#80遺伝子、TTF_#84遺伝子、TTF_r20遺伝子、TTF_r25遺伝子、TTF_r33遺伝子、TTF_r35遺伝子、TTF_r40遺伝子、TTF_r48遺伝子、TTF_r49遺伝子、TTF_r66遺伝子、TTF_r84遺伝子またはTTF_r86遺伝子の部分塩基配列を有するDNA断片を調製するために用いたプライマーを、表2に示す。なお、PCR増幅はPfuUltra High-Fidelity DNA Polymerase(製品名、stratagene社)およびGeneAmp PCR System 9700(製品名、Applied Biosystems社)を用いて、95℃で2分間の後、95℃で30秒間および65℃で2分間を35サイクル、72℃でさらに10分間反応させることにより実施した。また、PCR増幅は、実施例1に記載の全RNAからOmniscript RT Kit(製品名、QIAGEN社)を用いて逆転写反応産物を作製し、これを鋳型として行った。また、PCR産物のクローニングはpENTR/D-TOPOクローニングキット(製品名、Invitrogen社)を用いて行った。
このようにして、配列番号71~87に示される塩基配列からなる各DNA断片を、pENTR/D-TOPOベクターにクローニングして、Gateway(登録商標)システムのためのエントリークローンを完成した。また、VIGSアッセイにおける対照として用いるために、GUS遺伝子の部分塩基配列からなるDNAを、バイナリーベクターpBI121を鋳型として、表2に記載のプライマーを用いてPCR増幅し、pENTR/D-TOPOベクターにクローニングした(エントリークローン)。PCRにより得られたこのDNAの塩基配列を配列番号88に示す。
pENTR/D-TOPOベクターにクローニングされた、配列番号71~88に示される塩基配列からなるDNA断片を、Gateway(登録商標)LRクロナーゼIIを用いたattL×attRの組換え反応によって、TRV-RNA2ベクターであるpSP221に組み込んだ。なお、目的とする組換えコンストラクトを含む大腸菌は50μg/mL カルベニシリンの存在下で選抜した。以上の操作によって、TRV-RNA2コンストラクトである、pTRV2-TTF_#20、pTRV2-TTF_#53、pTRV2-TTF_#54、pTRV2-TTF_#55、pTRV2-TTF_#56、pTRV2-TTF_#80、pTRV2-TTF_#84、pTRV2-TTF_r20、pTRV2-TTF_r25、pTRV2-TTF_r33、pTRV2-TTF_r35、pTRV2-TTF_r40、pTRV2-TTF_r48、pTRV2-TTF_r49、pTRV2-TTF_r66、pTRV2-TTF_r84、pTRV2-TTF_r86、およびpTRV2-GUSを得た。これらのTRV-RNA2コンストラクトを、アグロバクテリウムの菌株GV2260(非特許文献:Deblaere R., 1985, Nucleic Acids Res., 13, 4777-88.を参照)に、エレクトロポレーション法により導入した。
また、上記TRV-RNA2コンストラクトに加え、Tobacco Rattle VirusのRNA依存RNA複製酵素をコードするTRV-RNA1コンストラクト(GenBankアクセッション番号AF406990)を、同様にして、アグロバクテリウムの菌株GV2260に導入した。
(ウイルス感染)
TRV-RNA2コンストラクトを含むアグロバクテリウム、およびTRV-RNA1コンストラクトを含むアグロバクテリウムをそれぞれ、10mlのLB液体培地(50mg/Lカナマイシンを含む)中、28度で一晩前培養した。翌日、前培養液の一部を50mlのLB液体培地(50mg/Lカナマイシンを含む)に添加し、さらに一晩28℃で培養した。3000×g、15minの遠心分離により集菌した各アグロバクテリウムを、OD600値が1.0になるように、10mMのMgCl2および150μMのAcetosyringoneを含む10mMのMESバッファー(pH5.7)に懸濁し、さらに、室温で3時間軽く振とうした。TRV-RNA1コンストラクトを含むアグロバクテリウム懸濁液とTRV-RNA2コンストラクトを含むアグロバクテリウム懸濁液を1:1の割合で混合することにより、接種液を調製した。
TRV-RNA2コンストラクトを含むアグロバクテリウム、およびTRV-RNA1コンストラクトを含むアグロバクテリウムをそれぞれ、10mlのLB液体培地(50mg/Lカナマイシンを含む)中、28度で一晩前培養した。翌日、前培養液の一部を50mlのLB液体培地(50mg/Lカナマイシンを含む)に添加し、さらに一晩28℃で培養した。3000×g、15minの遠心分離により集菌した各アグロバクテリウムを、OD600値が1.0になるように、10mMのMgCl2および150μMのAcetosyringoneを含む10mMのMESバッファー(pH5.7)に懸濁し、さらに、室温で3時間軽く振とうした。TRV-RNA1コンストラクトを含むアグロバクテリウム懸濁液とTRV-RNA2コンストラクトを含むアグロバクテリウム懸濁液を1:1の割合で混合することにより、接種液を調製した。
ニコチアナ・ベンサミアナを、12時間/25℃/湿度60%(明期)、12時間/18℃/湿度60%(暗期)の条件に設定された人工気象器内、土壌中で育成した。播種後約18日目の植物の葉に、上記接種液を接種し、栽培環境を12時間/22℃/湿度60%(明期)、12時間/18℃/湿度60%(暗期)に変更して、さらに17日間育成した。この間に植物を9cmテラコッタに移植した。アグロバクテリウムの接種は、完全展開した葉に針無しの1mlシリンジを用いてインフィルトレーション法(非特許文献:Kapila et al, 1997, Plant Sci., 122, 101-108.、Rossi et al, 1993, Plant Mol. Biol. Rep., 11, 220-229.、およびVan der Hoorn et al, 2000, Mol. Plant-Microbe Interact., 13, 439-446.)により実施した。
上記接種された植物の半数に対して、接種後18日目に13枚の葉を残して頂芽部を除去する心止め処理を実施した。接種後18日目以降は、全ての接種された植物を12時間/26℃/湿度60%(明期)、12時間/18℃/湿度60%(暗期)の条件下で栽培し、接種後24日目に全ての葉および根を採取した。採取した葉は70℃(湿度10%)で一晩熱風乾燥した後に粉砕して、ニコチン分析のためのサンプルとした。また、接種後18日目以降は、全ての接種された植物について発達し始めた腋芽を全て取り除いた。
(ニコチン含量の測定)
ニコチン含量の分析を次のように行った。0.3gの乾燥した葉の粉末に水を5ml、0.5g/L n-ヘプタデカン含有ヘキサンを10ml、および8M NaOHを2.5ml加え、60分間振とうした。その後、ヘキサン層(上層)を採取して、分析サンプルとした。ニコチン含量の分析は、ガスクロマトグラフ(Agilent 6890N、アジレント・テクノロジー社)、およびDB-17カラム(アジレントテクノロジー社)を用いて実施した。
ニコチン含量の分析を次のように行った。0.3gの乾燥した葉の粉末に水を5ml、0.5g/L n-ヘプタデカン含有ヘキサンを10ml、および8M NaOHを2.5ml加え、60分間振とうした。その後、ヘキサン層(上層)を採取して、分析サンプルとした。ニコチン含量の分析は、ガスクロマトグラフ(Agilent 6890N、アジレント・テクノロジー社)、およびDB-17カラム(アジレントテクノロジー社)を用いて実施した。
以上のVIGSアッセイにより、実施例3、4、および5において選抜した、合計149種の遺伝子のうち、TTF_#20遺伝子、TTF_#53遺伝子、TTF_#54遺伝子、TTF_#55遺伝子、TTF_#56遺伝子、TTF_#80遺伝子、TTF_#84遺伝子、TTF_r20遺伝子、TTF_r25遺伝子、TTF_r33遺伝子、TTF_r35遺伝子、TTF_r40遺伝子、TTF_r48遺伝子、TTF_r49遺伝子、TTF_r66遺伝子、TTF_r84遺伝子またはTTF_r86遺伝子が、タバコ属植物の葉の乾物重あたりのニコチン含量に影響を及ぼすことが分かった(図1、表3)。なお、図1はpTRV2-GUSを含むアグロバクテリウムを接種した対照植物および本発明の遺伝子の一部分を挿入したTRV-RNA2コンストラクトを含むアグロバクテリウムを接種した植物の葉におけるニコチン含量を示している。また、表3は上記の本発明の遺伝子をサイレンシングした植物の葉におけるニコチン含量を対照植物との比で表したものである。図1および表3に示すように、TTF_#20遺伝子、TTF_#53遺伝子、TTF_#54遺伝子、TTF_#55遺伝子、TTF_#56遺伝子、TTF_r20遺伝子、TTF_r25遺伝子、TTF_r33遺伝子、TTF_r35遺伝子、TTF_r40遺伝子、TTF_r48遺伝子およびTTF_r66遺伝子のサイレンシングは、心止めしたニコチアナ・ベンサミアナ植物における葉のニコチン含量を、対照に比して17~69%増加させた。また、TTF_#80遺伝子、TTF_#84遺伝子、TTF_r49遺伝子、TTF_r84遺伝子およびTTF_r86遺伝子のサイレンシングは、心止めしたニコチアナ・ベンサミアナ植物における葉のニコチン含量を、対照に比して15~74%低減させた。TTF_r66遺伝子のサイレンシングは、ニコチアナ・ベンサミアナ植物における葉のニコチン含量を、心止めしない条件下において、対照に比して約40%増加させた。なお、図1中の「無処理」とは、心止め処理を行なっていないことを意味しており、「心止め」とは、心止め処理を行なっていることを意味している。
(TTF_#20遺伝子)
TTF_#20遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_#20遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸の添加、および、オーキシンの除去により発現が誘導される遺伝子として選ばれてきた遺伝子であり、配列番号1に示す塩基配列を有する。TTF_#20遺伝子がコードすると予測されるアミノ酸配列(配列番号18)はWRKYドメインを有しており、転写調節因子と予想される。
(TTF_#53遺伝子)
TTF_#53遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_#53遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸の添加により発現が誘導される遺伝子として選ばれてきた遺伝子であり、その完全長cDNAの塩基配列を配列番号2に示す。TTF_#53遺伝子がコードすると予測されるアミノ酸配列(配列番号19)はbHLHドメインを有しており、転写調節因子であると予想される。
TTF_#53遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_#53遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸の添加により発現が誘導される遺伝子として選ばれてきた遺伝子であり、その完全長cDNAの塩基配列を配列番号2に示す。TTF_#53遺伝子がコードすると予測されるアミノ酸配列(配列番号19)はbHLHドメインを有しており、転写調節因子であると予想される。
(TTF_#54遺伝子)
TTF_#54遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_#54遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸の添加により発現が誘導され、LAバーレー21において発現が抑制されている遺伝子として選ばれてきた遺伝子であり、その完全長cDNAの塩基配列を配列番号3に示す。TTF_#54遺伝子がコードすると予測されるアミノ酸配列(配列番号20)はSANTドメインを有しており、転写調節因子であると予想される。
TTF_#54遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_#54遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸の添加により発現が誘導され、LAバーレー21において発現が抑制されている遺伝子として選ばれてきた遺伝子であり、その完全長cDNAの塩基配列を配列番号3に示す。TTF_#54遺伝子がコードすると予測されるアミノ酸配列(配列番号20)はSANTドメインを有しており、転写調節因子であると予想される。
(TTF_#55遺伝子)
TTF_#55遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_#55遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸の添加により発現が誘導される遺伝子として選ばれてきた遺伝子であり、その完全長cDNAの塩基配列を配列番号4に示す。TTF_#55遺伝子がコードすると予測されるアミノ酸配列(配列番号21)はWRKYドメインを有しており、転写調節因子であると予想される。
TTF_#55遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_#55遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸の添加により発現が誘導される遺伝子として選ばれてきた遺伝子であり、その完全長cDNAの塩基配列を配列番号4に示す。TTF_#55遺伝子がコードすると予測されるアミノ酸配列(配列番号21)はWRKYドメインを有しており、転写調節因子であると予想される。
(TTF_#56遺伝子)
TTF_#56遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_#56遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸の添加、および、オーキシンの除去により発現が誘導される遺伝子として選ばれてきた遺伝子であり、その完全長cDNAの塩基配列を配列番号5に示す。TTF_#56遺伝子の塩基配列には明らかなORFは見出されない。
TTF_#56遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_#56遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸の添加、および、オーキシンの除去により発現が誘導される遺伝子として選ばれてきた遺伝子であり、その完全長cDNAの塩基配列を配列番号5に示す。TTF_#56遺伝子の塩基配列には明らかなORFは見出されない。
(TTF_#80遺伝子)
TTF_#80遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_#80遺伝子は実施例4においてジャスモン酸および傷害に応答する遺伝子として選ばれてきた遺伝子であり、その完全長cDNAの塩基配列を配列番号6に示す。TTF_#80遺伝子がコードすると予測されるアミノ酸配列(配列番号22)はNadAドメインおよびSufEドメインを有しており、Arabidopsis thalianaのquinolinate synthetaseと64%の相同性を示す。
TTF_#80遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_#80遺伝子は実施例4においてジャスモン酸および傷害に応答する遺伝子として選ばれてきた遺伝子であり、その完全長cDNAの塩基配列を配列番号6に示す。TTF_#80遺伝子がコードすると予測されるアミノ酸配列(配列番号22)はNadAドメインおよびSufEドメインを有しており、Arabidopsis thalianaのquinolinate synthetaseと64%の相同性を示す。
(TTF_#84遺伝子)
TTF_#84遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_#84遺伝子は実施例4においてジャスモン酸および傷害に応答する遺伝子として選ばれてきた遺伝子であり、その完全長cDNAの塩基配列を配列番号7に示す。TTF_#84遺伝子がコードすると予測されるアミノ酸配列(配列番号23)はTTF_#84遺伝子のアミノ酸配列と同様にArabidopsis thalianaのquinolinate synthetaseと相同性を示す(66%)。TTF_#84遺伝子はTTF_#80遺伝子のホモログである。
TTF_#84遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_#84遺伝子は実施例4においてジャスモン酸および傷害に応答する遺伝子として選ばれてきた遺伝子であり、その完全長cDNAの塩基配列を配列番号7に示す。TTF_#84遺伝子がコードすると予測されるアミノ酸配列(配列番号23)はTTF_#84遺伝子のアミノ酸配列と同様にArabidopsis thalianaのquinolinate synthetaseと相同性を示す(66%)。TTF_#84遺伝子はTTF_#80遺伝子のホモログである。
(TTF_r20遺伝子)
TTF_r20遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーに含まれていなかったため、プライマー1(5’-GGATTCCCGGGATTTTGAATTCTTG-3’:配列番号89)およびプライマー2(5’-ATCGAACAAATTGTTAAACTCACTGCGTA-3’:配列番号90)を用いて、実施例1に記載の逆転写反応産物を鋳型として、PCRを行なうことにより、完全長ORFを有するcDNAを得た。TTF_r20遺伝子は実施例3に示すマイクロアレイ解析においてオーキシンおよびエチレンにより誘導される遺伝子として選抜された遺伝子であり、その完全長ORFを有するcDNAの塩基配列を配列番号8に示す。TTF_r20遺伝子がコードすると予測されるアミノ酸配列(配列番号24)はAP2ドメインを有しており、転写調節因子であると予想される。
TTF_r20遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーに含まれていなかったため、プライマー1(5’-GGATTCCCGGGATTTTGAATTCTTG-3’:配列番号89)およびプライマー2(5’-ATCGAACAAATTGTTAAACTCACTGCGTA-3’:配列番号90)を用いて、実施例1に記載の逆転写反応産物を鋳型として、PCRを行なうことにより、完全長ORFを有するcDNAを得た。TTF_r20遺伝子は実施例3に示すマイクロアレイ解析においてオーキシンおよびエチレンにより誘導される遺伝子として選抜された遺伝子であり、その完全長ORFを有するcDNAの塩基配列を配列番号8に示す。TTF_r20遺伝子がコードすると予測されるアミノ酸配列(配列番号24)はAP2ドメインを有しており、転写調節因子であると予想される。
(TTF_r25遺伝子)
TTF_r25遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーに含まれていなかったため、プライマー3(5’-CTTTCCCTCGTTTTATTAGCAGATCA-3’:配列番号91)およびプライマー4(5’-CTATTTACAAGAATTAACGCTTAATCAATG-3’:配列番号92)を用いて、上記TTF_r20遺伝子と同様にして、完全長ORFを有するcDNAを得た。TTF_r25遺伝子は実施例3に示すマイクロアレイ解析においてオーキシンおよびエチレンにより誘導される遺伝子として選抜された遺伝子であり、その完全長ORFを有するcDNAの塩基配列を配列番号9に示す。TTF_r25遺伝子がコードすると予測されるアミノ酸配列(配列番号25)はAP2ドメインを有しており、転写調節因子であると予想される。
TTF_r25遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーに含まれていなかったため、プライマー3(5’-CTTTCCCTCGTTTTATTAGCAGATCA-3’:配列番号91)およびプライマー4(5’-CTATTTACAAGAATTAACGCTTAATCAATG-3’:配列番号92)を用いて、上記TTF_r20遺伝子と同様にして、完全長ORFを有するcDNAを得た。TTF_r25遺伝子は実施例3に示すマイクロアレイ解析においてオーキシンおよびエチレンにより誘導される遺伝子として選抜された遺伝子であり、その完全長ORFを有するcDNAの塩基配列を配列番号9に示す。TTF_r25遺伝子がコードすると予測されるアミノ酸配列(配列番号25)はAP2ドメインを有しており、転写調節因子であると予想される。
(TTF_r33遺伝子)
TTF_r33遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_r33遺伝子は実施例3に示すマイクロアレイ解析においてオーキシンおよびエチレンにより誘導される遺伝子として選抜された遺伝子であり、その完全長ORFを有するcDNAの塩基配列を配列番号10に示す。TTF_r33遺伝子がコードすると予測されるアミノ酸配列(配列番号26)はAP2ドメインを有しており、転写調節因子であると予想される。
TTF_r33遺伝子の完全長cDNAは、出願人保有のcDNAクローンライブラリーから得た。TTF_r33遺伝子は実施例3に示すマイクロアレイ解析においてオーキシンおよびエチレンにより誘導される遺伝子として選抜された遺伝子であり、その完全長ORFを有するcDNAの塩基配列を配列番号10に示す。TTF_r33遺伝子がコードすると予測されるアミノ酸配列(配列番号26)はAP2ドメインを有しており、転写調節因子であると予想される。
(TTF_r35遺伝子)
TTF_r35遺伝子の完全長cDNAは出願人保有のcDNAクローンライブラリーに含まれておらず、また、RACE法によっても転写産物の5‘上流域および3’下流域を明らかにすることができなかった。TTF_r35遺伝子に関して単離できたのはVIGS assayに使用したポリヌクレオチド(配列番号11)のみである。なお、TTF_r35遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸の添加、および、オーキシンの除去により発現が抑制される遺伝子として選ばれてきた遺伝子である。TTF_r35遺伝子がコードすると予測される部分アミノ酸配列を配列番号27に示す。
TTF_r35遺伝子の完全長cDNAは出願人保有のcDNAクローンライブラリーに含まれておらず、また、RACE法によっても転写産物の5‘上流域および3’下流域を明らかにすることができなかった。TTF_r35遺伝子に関して単離できたのはVIGS assayに使用したポリヌクレオチド(配列番号11)のみである。なお、TTF_r35遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸の添加、および、オーキシンの除去により発現が抑制される遺伝子として選ばれてきた遺伝子である。TTF_r35遺伝子がコードすると予測される部分アミノ酸配列を配列番号27に示す。
(TTF_r40遺伝子)
TTF_r40遺伝子の完全長cDNAは、出願人保有のcDNAライブラリーから得た。TTF_r40遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸処理および心止めで誘導される遺伝子として選抜された遺伝子であり、その完全長cDNAの塩基配列を配列番号12に示す。TTF_r40遺伝子がコードすると予測されるアミノ酸配列(配列番号28)はtifyドメインを有しており、転写調節因子であると予想される。
TTF_r40遺伝子の完全長cDNAは、出願人保有のcDNAライブラリーから得た。TTF_r40遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸処理および心止めで誘導される遺伝子として選抜された遺伝子であり、その完全長cDNAの塩基配列を配列番号12に示す。TTF_r40遺伝子がコードすると予測されるアミノ酸配列(配列番号28)はtifyドメインを有しており、転写調節因子であると予想される。
(TTF_r48遺伝子)
TTF_r48遺伝子の完全長cDNAは、出願人保有のcDNAライブラリーから得た。TTF_r48遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸処理および心止めで誘導される遺伝子として選抜された遺伝子であり、その完全長cDNAの塩基配列を配列番号13に示す。TTF_r48遺伝子がコードすると予測されるアミノ酸配列(配列番号29)はtifyドメインを有しており、転写調節因子であると予想される。
TTF_r48遺伝子の完全長cDNAは、出願人保有のcDNAライブラリーから得た。TTF_r48遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸処理および心止めで誘導される遺伝子として選抜された遺伝子であり、その完全長cDNAの塩基配列を配列番号13に示す。TTF_r48遺伝子がコードすると予測されるアミノ酸配列(配列番号29)はtifyドメインを有しており、転写調節因子であると予想される。
(TTF_r49遺伝子)
TTF_r49遺伝子の完全長cDNAは、出願人保有のcDNAライブラリーから得た。TTF_r49遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸処理で発現が抑制される遺伝子として選抜された遺伝子であり、その完全長cDNAの塩基配列を配列番号14に示す。TTF_r49遺伝子がコードすると予測されるアミノ酸配列(配列番号30)はAUX/IAAドメインを有しており、転写調節因子であると予想される。
TTF_r49遺伝子の完全長cDNAは、出願人保有のcDNAライブラリーから得た。TTF_r49遺伝子は実施例3に示すマイクロアレイ解析においてジャスモン酸処理で発現が抑制される遺伝子として選抜された遺伝子であり、その完全長cDNAの塩基配列を配列番号14に示す。TTF_r49遺伝子がコードすると予測されるアミノ酸配列(配列番号30)はAUX/IAAドメインを有しており、転写調節因子であると予想される。
(TTF_r66遺伝子)
TTF_r66遺伝子の完全長cDNAを、出願人保有のcDNAライブラリーから得た。TTF_r66遺伝子は実施例4においてキーワードとしてethyleneを有するアミノ酸配列と関連する遺伝子として選抜された遺伝子であり、その完全長cDNAの塩基配列を配列番号15に示す。TTF_r66遺伝子の塩基配列には明らかなORFは見出されない。
TTF_r66遺伝子の完全長cDNAを、出願人保有のcDNAライブラリーから得た。TTF_r66遺伝子は実施例4においてキーワードとしてethyleneを有するアミノ酸配列と関連する遺伝子として選抜された遺伝子であり、その完全長cDNAの塩基配列を配列番号15に示す。TTF_r66遺伝子の塩基配列には明らかなORFは見出されない。
(TTF_r84遺伝子)
TTF_r84遺伝子の完全長cDNAは、出願人保有のcDNAライブラリーから得た。TTF_r84遺伝子は実施例5においてQPT1 Bait配列を用いて選抜された遺伝子であり、その完全長cDNAの塩基配列を配列番号16に示す。TTF_r84遺伝子がコードすると予測されるアミノ酸配列(配列番号31)には保存されたドメイン構造は見出されない。
TTF_r84遺伝子の完全長cDNAは、出願人保有のcDNAライブラリーから得た。TTF_r84遺伝子は実施例5においてQPT1 Bait配列を用いて選抜された遺伝子であり、その完全長cDNAの塩基配列を配列番号16に示す。TTF_r84遺伝子がコードすると予測されるアミノ酸配列(配列番号31)には保存されたドメイン構造は見出されない。
(TTF_r86遺伝子)
TTF_r86遺伝子の完全長cDNAは、出願人保有のcDNAライブラリーから得た。TTF_r86遺伝子は実施例5においてPMT1 Bait配列を用いて選抜された遺伝子であり、その完全長cDNAの塩基配列を配列番号17に示す。TTF_r86遺伝子がコードすると予測されるアミノ酸配列(配列番号32)はCytochrome c oxidase subunit VIaの保存されたドメイン構造を有している。
TTF_r86遺伝子の完全長cDNAは、出願人保有のcDNAライブラリーから得た。TTF_r86遺伝子は実施例5においてPMT1 Bait配列を用いて選抜された遺伝子であり、その完全長cDNAの塩基配列を配列番号17に示す。TTF_r86遺伝子がコードすると予測されるアミノ酸配列(配列番号32)はCytochrome c oxidase subunit VIaの保存されたドメイン構造を有している。
なお、アミノ酸配列の有するドメインの名称はNCBIのConserved Domain Database(CDD)に記載のものである。
〔実施例8:形質転換植物における内容成分の改変〕
RNAiコンストラクトまたは過剰発現コンストラクトを導入した形質転換植物を作製し、形質転換植物における内容成分の変化を以下のように確認した。
RNAiコンストラクトまたは過剰発現コンストラクトを導入した形質転換植物を作製し、形質転換植物における内容成分の変化を以下のように確認した。
(コンストラクトの構築)
RNAiのためのベクターは、Gateway(登録商標)ベクターであるpHellsgate12(非特許文献:Wesley et al., 2001, Plant J., 27, 581-590)のSacI部位にGFP発現カセットを挿入したpSP231を用いた。
RNAiのためのベクターは、Gateway(登録商標)ベクターであるpHellsgate12(非特許文献:Wesley et al., 2001, Plant J., 27, 581-590)のSacI部位にGFP発現カセットを挿入したpSP231を用いた。
TTF_#53遺伝子、TTF_#54遺伝子、TTF_#55遺伝子、TTF_#56遺伝子、TTF_#80遺伝子、TTF_#84遺伝子、TTF_r33遺伝子、TTF_r35遺伝子、TTF_r40遺伝子、TTF_r48遺伝子、TTF_r49遺伝子、TTF_r66遺伝子、TTF_r84遺伝子、およびTTF_r86遺伝子のRNAiコンストラクトは、実施例6に示したエントリークローンを使用して作製した。TTF_#20遺伝子、TTF_r20遺伝子、TTF_r25遺伝子、またはNtPMT1遺伝子のRNAiコンストラクトは、表4に示すプライマーを用いてPCR増幅したDNA断片(配列番号122(TTF_#20)、配列番号123(TTF_r20)、配列番号124(TTF_r25)、配列番号125(PMT1))をpENTR/D-TOPOベクターに挿入したエントリークローンを使用して作製した。なお、PCR増幅およびDNA断片のクローニングは実施例6に記載した方法で実施した。また、PCR増幅の鋳型には出願人保有の完全長cDNAクローンライブラリーから得たプラスミドを使用した。
温室内で約1.5ヵ月栽培したタバコ品種SR-1から最上位展開葉を採取し、有効塩素1%の次亜塩素酸ナトリウム溶液(Tween 20を数滴/L加える)で約5分間表面殺菌を行なった後、滅菌水で3回洗浄した。さらに、メスを用いて、表面殺菌を行なった葉から約5mm角の葉片を調製した。この葉片と形質転換コンストラクトを含むアグロバクテリウム(約108細胞)を30g/Lのショ糖を含むMurashige and Skoogの培地(MS培地、非特許文献:Physiol. Plant, 1962, 18, 100-127)で48時間共存培養した。その後、葉片をセフォタキシム250mg/Lを含む滅菌水で3回洗浄して細菌を洗い落とした後、ショ糖30g/L、インドール酢酸0.3mg/L、6-(γ,γ-dimetylallyl-amino)purine 10mg/L、カナマイシン100mg/L、セフォタキシム250mg/L、およびゲランガム0.3%を含むMS培地(pH5.8)に置床した。当該MS培地での培養開始から約2週間後、カナマイシン耐性を示すカルス様の細胞塊を、ショ糖15g/L、カナマイシン100mg/L、セフォタキシム250mg/Lおよびゲランガム0.3%を含む1/2MS培地(pH 5.8)に置床し再分化個体を得た。
目的のコンストラクトが導入された形質転換植物(T0世代)をGFP蛍光によって選抜した。選抜された形質転換植物を、共存培養から約3ヶ月後に12cmテラコッタ;径124mmに移植し、約23℃に調節された閉鎖系温室内で栽培した。さらに、鉢上げから約2.5ヶ月後に、形質転換植物(T0世代)から花粉を採取し、これを野生型のSR-1に受粉させることにより、F1ハイブリッドの種子を得た。
(形質転換植物の栽培)
F1植物の栽培は人工気象器(8時間日長、照度:約30000ルクス、温度:26℃(明期)/18℃(暗期)、相対湿度:60%(明期)/80%(暗期))を用いて行なった。
F1植物の栽培は人工気象器(8時間日長、照度:約30000ルクス、温度:26℃(明期)/18℃(暗期)、相対湿度:60%(明期)/80%(暗期))を用いて行なった。
F1植物およびSR-1の種子を播種用肥土(スーパーミックスA、サカタのタネ)に播種し、底面潅水により発芽させた。播種から18日後に、発芽した幼苗を仮植し、さらに仮植から13日後に苗を12cmテラコッタに移植した。なお、播種から4週間前後にF1植物の葉からリーフディスクを採取してGFP蛍光を観察し、導入遺伝子を有する形質転換植物F1を選抜した。形質転換植物F1は最終的に系統あたり3または4個体を選び、以下の実験に供した。同様に、対照植物であるSR-1は5または6個体を実験に供した。
移植後13日目に、形質転換植物F1および野生型植物の下から第1~4葉を除去し、一部の個体は下から第7葉の上で心止めした。心止めした個体については、葉腋より発生したわき芽を適宜除去した。心止めしなかった個体のわき芽はそのまま放置した。
移植後20日目(心止め処理から7日後)に、心止めした個体の葉をすべて採取した。また、心止めしなかった個体から、心止めした個体と同じ着位の葉(第5~7葉)を収穫した。収穫した葉は中骨を除去し、液体窒素を用いて直ちに凍結して-80℃で保存した。凍結した葉は、凍結乾燥した後に、マルチビーズショッカー(安井機器)を用いて粉砕した。
(ニコチン含量の測定)
形質転換植物におけるニコチン含量の分析は実施例6と同様にして実施した。形質転換がニコチン含量に及ぼした影響を、対照に対する形質転換植物F1のニコチン含量比として表6に示した。TTF_#20遺伝子、TTF_#53遺伝子、TTF_#54遺伝子、TTF_#55遺伝子、TTF_r33遺伝子、TTF_r40遺伝子、TTF_r48遺伝子、およびTTF_r66遺伝子のRNAiコンストラクトを導入した形質転換植物のF1においては、対照植物に比して、葉のニコチン含量が増加していた。すなわち、これらの遺伝子のRNA干渉は、実施例6のTRV assayの場合と同様に、タバコ植物のニコチン含量を増加させた。また、TTF_#80遺伝子、TTF_#84遺伝子,またはTTF_r86遺伝子のRNAiコンストラクトを導入した形質転換植物のF1においては、対照植物に比して、葉のニコチン含量が低減していた。すなわち、これらの遺伝子のRNA干渉は、TRV assayの場合と同様に、タバコ植物のニコチン含量を低減させた。
形質転換植物におけるニコチン含量の分析は実施例6と同様にして実施した。形質転換がニコチン含量に及ぼした影響を、対照に対する形質転換植物F1のニコチン含量比として表6に示した。TTF_#20遺伝子、TTF_#53遺伝子、TTF_#54遺伝子、TTF_#55遺伝子、TTF_r33遺伝子、TTF_r40遺伝子、TTF_r48遺伝子、およびTTF_r66遺伝子のRNAiコンストラクトを導入した形質転換植物のF1においては、対照植物に比して、葉のニコチン含量が増加していた。すなわち、これらの遺伝子のRNA干渉は、実施例6のTRV assayの場合と同様に、タバコ植物のニコチン含量を増加させた。また、TTF_#80遺伝子、TTF_#84遺伝子,またはTTF_r86遺伝子のRNAiコンストラクトを導入した形質転換植物のF1においては、対照植物に比して、葉のニコチン含量が低減していた。すなわち、これらの遺伝子のRNA干渉は、TRV assayの場合と同様に、タバコ植物のニコチン含量を低減させた。
TTF_#80およびTTF_#84のRNAiコンストラクトは、ニコチン含量低減のポジィティブコントロールとして用いたNtPMT1遺伝子のRNAiコンストラクトと同様に、葉のニコチン含量を大幅に低減させた。一方、TTF_r35遺伝子およびTTF_r86遺伝子のRNAiコンストラクトは葉のニコチン含量を15%から29%減少させた。また、ニコチン含量増加のポジィティブコントロールとして用いたNtPMT1遺伝子の過剰発現コンストラクトは心止めしないタバコで葉のニコチン含量を増加させたが、実際のタバコ耕作法に即した心止めしたタバコの葉ではニコチン含量に影響しなかった。
上記のとおり、本発明のいくつかの遺伝子のRNAiコンストラクトはタバコ植物の葉のニコチン含量を低減あるいは増加させた。これまで、ニコチン含量を大幅に低減させた例は知られているが、本発明のTTF_r35遺伝子およびTTF_r86遺伝子のRNAiコンストラクトのようにニコチン含量を穏やかに低減する例は知られていない。また、本発明のいくつかの形質転換植物のように、遺伝子発現を抑制するコンストラクトの導入によって葉のニコチン含量が増加した安定形質転換植物の例も知られていない。さらに、安定形質転換タバコにおける対照と比したニコチン含量の増加が実際のタバコ耕作で通常行なわれる心止め処理を施した個体で確認された例も知られていない。
なお、Shojiらはアルカロイド合成のマスタースイッチの一つと考えられていたNIC2遺伝子座に少なくとも7種のERF遺伝子が存在していることを見出し、これらのうちERF189およびERF179にEARモチーフを連結して過剰発現させることによってアルカロイド含量を大幅に減少した形質転換タバコ毛状根(品種Petit Havana SR1)を報告している(非特許文献:Shoji et al, 2010, Plant Cell., 22, 3390-409)。さらにShojiらは、ERF189およびERF115を過剰発現させることによって、品種NC95の遺伝的背景を有するnic(nic1nic2)変異系統の根のアルカロイド含量を向上させることに成功している。
(LC-TOF/MS分析)
TTF_#53遺伝子、TTF_#56遺伝子、TTF_r20遺伝子、TTF_r25遺伝子、TTF_r84遺伝子、またはTTF_r86遺伝子のRNAiコンストラクトを導入した形質転換植物のF1および対照植物の心止め処理をした個体の葉の凍結乾燥粉末を上述の形質転換植物の栽培の項で記載の通り調製し、LC-TOF/MS分析に供した。LC-TOF/MS分析はGenaris, Inc.(神奈川、日本)に委託した。
TTF_#53遺伝子、TTF_#56遺伝子、TTF_r20遺伝子、TTF_r25遺伝子、TTF_r84遺伝子、またはTTF_r86遺伝子のRNAiコンストラクトを導入した形質転換植物のF1および対照植物の心止め処理をした個体の葉の凍結乾燥粉末を上述の形質転換植物の栽培の項で記載の通り調製し、LC-TOF/MS分析に供した。LC-TOF/MS分析はGenaris, Inc.(神奈川、日本)に委託した。
分析に供したサンプルは同一系統の3または4個体(対照は5または6個体)の凍結乾燥粉末を等重量混合したものであり、コンストラクトあたり2系統のサンプルを準備した。さらに、凍結乾燥粉末サンプルから次のようにしてLC-TOF/MS分析に供する抽出物を得た。凍結乾燥粉末100mgに対し1mlの50%アセトニトリルおよび0.5gのΦ1.0mmのガラスビーズを加え、4℃で5分間の破砕処理を行なった。さらに、破砕液を15000rpmで1分間遠心分離(4℃)した後に、上清を水で10倍に希釈した。この上清希釈液を限外ろ過(分画分子量:10,000、10℃)して、LC-TOF/MS分析に供する抽出物とした。必要に応じて5%アセトニトリル液(水/アセトニトリル=95/5)で希釈した試料を分析に用いた。
分析には、LCT Premier XE/ACQUITY UPLC(Waters社製)を用いた。UPLC部での分離は、ACQUITY UPLC T3 カラム(2.1×50mm、Waters社)を使用して、0.1%ギ酸を含む、水/アセトニトリルによるリニアグラジエント溶出(10分)を行なった。質量分析部ではESI PositiveおよびESI Negativeの2種類のイオン化モードを使用し、50-1000m/zの範囲にあるピークをすべて測定した。
対照と比べて形質転換植物のF1でシグナル強度が増大または減少するピークの抽出は以下のようにして行なった。まず、形質転換植物F1と対照との比較解析において、LCでの保持時間が0.3分から9.9分までのピークの中から、少なくとも1サンプルにおいてシグナル強度が50より大きいピークを解析対象とした。解析対象は、コンストラクトによって異なるものの、おおよそ1700ピークとなった。
次に、2系統の形質転換植物F1におけるシグナル値がいずれも対照と比べて1/2以下あるいは2倍以上であるピークを抽出した。抽出したピークの数を表8に示す。また、抽出した各ピークについては、m/z値および保持時間などの情報を既知化合物データベースおよび標準品を分析したデータと照合して化合物を推定した。KEGG代謝経路上にマッピングされる推定化合物および標準品分析データに基づく推定化合物から、各形質転換植物F1で増減が確認されたピークの推定代謝産物は以下の通りであった。
〔実施例9:TFF_#80遺伝子、TFF_#84遺伝子の機能確認〕
大腸菌相補試験を実施して、TFF_#80遺伝子およびTFF_#84遺伝子について、その機能を確認した。
大腸菌相補試験を実施して、TFF_#80遺伝子およびTFF_#84遺伝子について、その機能を確認した。
(大腸菌発現コンストラクトの構築)
#80_F_5-Bam(5’-GGATCCGTGATGGATGCCGCAAAT-3’:配列番号129)および#80_F_3-Kpn(5’-GGTACCTTAAGCAGAGCTTGATCGTCC-3’:配列番号130)をプライマーとして用い、出願人保有のcDNAクローンライブラリーから得たTFF_#80遺伝子の完全長cDNAを含むプラスミドを鋳型としてPCRを行ない、TFF_#80のORF全長を含むDNA断片を増幅した。同様に、#84_F_5-Bam(5’-GGATCCGTTATGGACGCCGCAAAT-3’:配列番号131)および#84_F_3-Kpn(5’-GGTACCTTAAGCGGAGCTTGATCGTTG-3’:配列番号132)をプライマーとして用い、出願人保有のcDNAクローンライブラリーから得たTFF_#84遺伝子の完全長cDNAを含むプラスミドを鋳型としてPCRを行ない、TFF_#84のORF全長を含むDNA断片を増幅した。各プライマーを10μM、酵素としてPrimeStarMax(タカラバイオ社)を用いて、添付マニュアルに従って反応を行なった。BamHIおよびKpnIで二重消化した増幅断片を、pQE30ベクター(Qiagen社)のマルチクローニングサイトにあるBamHI/KpnI部位に導入して、IPTG誘導発現コンストラクトを作製した。
#80_F_5-Bam(5’-GGATCCGTGATGGATGCCGCAAAT-3’:配列番号129)および#80_F_3-Kpn(5’-GGTACCTTAAGCAGAGCTTGATCGTCC-3’:配列番号130)をプライマーとして用い、出願人保有のcDNAクローンライブラリーから得たTFF_#80遺伝子の完全長cDNAを含むプラスミドを鋳型としてPCRを行ない、TFF_#80のORF全長を含むDNA断片を増幅した。同様に、#84_F_5-Bam(5’-GGATCCGTTATGGACGCCGCAAAT-3’:配列番号131)および#84_F_3-Kpn(5’-GGTACCTTAAGCGGAGCTTGATCGTTG-3’:配列番号132)をプライマーとして用い、出願人保有のcDNAクローンライブラリーから得たTFF_#84遺伝子の完全長cDNAを含むプラスミドを鋳型としてPCRを行ない、TFF_#84のORF全長を含むDNA断片を増幅した。各プライマーを10μM、酵素としてPrimeStarMax(タカラバイオ社)を用いて、添付マニュアルに従って反応を行なった。BamHIおよびKpnIで二重消化した増幅断片を、pQE30ベクター(Qiagen社)のマルチクローニングサイトにあるBamHI/KpnI部位に導入して、IPTG誘導発現コンストラクトを作製した。
国立遺伝学研究所から譲受したNad欠損大腸菌:JD26148のコンピテントセルを常法により調製し、上記のコンストラクトを用いて形質転換した。TFF_#80遺伝子、TFF_#84遺伝子の発現コンストラクトを導入した形質転換大腸菌を、それぞれ#80_pQE30_JD、#84_pQE30_JDと名付けた。
(大腸菌相補試験)
JD26148(形質転換をしていないコントロール)、#80_pQE30_JD、#84_pQE30_JDを、最小培地であるM9培地、M9+IPTG(1mM)培地、M9+NA(ニコチン酸:10μg/ml)培地、M9+NA+IPTG培地にストリークし、37℃で4日間培養した。JD26148はカナマイシン耐性であるため、培地には25μg/mlカナマイシンを添加した。培養の結果を図2に示す。図中の(1)は、M9+IPTG培地を用いた結果を示しており、(2)はM9培地を用いた結果を示しており、(3)はM9+NA+IPTG培地を用いた結果を示しており、(4)はM9+NA培地を用いた結果を示している。また、(5)は、(1)~(4)に示す培地上の各区画にストリークされた大腸菌の菌株を示すものであり、「A」に対応する区画にはJD26148が、「B」に対応する区画には#80_pQE30_JDが、「C」に対応する区画には#84_pQE30_JDが、それぞれストリークされている。図2に示すとおり、JD26148はM9培地では増殖せず、NAを含む培地でのみ増殖した。これに対し、#80_pQE30_JD、#84_pQE30_JDはM9培地では増殖しないが、NAを含まないM9+IPTG(1mM)培地では増殖した。JD26148、#80_pQE30_JD、および#84_pQE30_JDはいずれもNA存在下であれば、IPTGの有無によらず増殖した。これらの結果を表9に示す。JD26148はTFF_#80遺伝子またはTFF_#84遺伝子の全長ORFが発現することにより増殖可能になったことから、TFF_#80遺伝子およびTFF_#84遺伝子はQuinolinate Synthase(QS)をコードする遺伝子であるとが推定された。
JD26148(形質転換をしていないコントロール)、#80_pQE30_JD、#84_pQE30_JDを、最小培地であるM9培地、M9+IPTG(1mM)培地、M9+NA(ニコチン酸:10μg/ml)培地、M9+NA+IPTG培地にストリークし、37℃で4日間培養した。JD26148はカナマイシン耐性であるため、培地には25μg/mlカナマイシンを添加した。培養の結果を図2に示す。図中の(1)は、M9+IPTG培地を用いた結果を示しており、(2)はM9培地を用いた結果を示しており、(3)はM9+NA+IPTG培地を用いた結果を示しており、(4)はM9+NA培地を用いた結果を示している。また、(5)は、(1)~(4)に示す培地上の各区画にストリークされた大腸菌の菌株を示すものであり、「A」に対応する区画にはJD26148が、「B」に対応する区画には#80_pQE30_JDが、「C」に対応する区画には#84_pQE30_JDが、それぞれストリークされている。図2に示すとおり、JD26148はM9培地では増殖せず、NAを含む培地でのみ増殖した。これに対し、#80_pQE30_JD、#84_pQE30_JDはM9培地では増殖しないが、NAを含まないM9+IPTG(1mM)培地では増殖した。JD26148、#80_pQE30_JD、および#84_pQE30_JDはいずれもNA存在下であれば、IPTGの有無によらず増殖した。これらの結果を表9に示す。JD26148はTFF_#80遺伝子またはTFF_#84遺伝子の全長ORFが発現することにより増殖可能になったことから、TFF_#80遺伝子およびTFF_#84遺伝子はQuinolinate Synthase(QS)をコードする遺伝子であるとが推定された。
本発明によれば、特定の植物代謝産物の量を調節することができるので、例えば、タバコにおいては従来の葉たばことは内容成分が量的あるいは質的に異なる葉たばこを開発することができ、ブレンドにより創造できるたばこ製品の味および香りの範囲を一層広げることができる。
Claims (8)
- 植物代謝産物の含量を調節する機能を有するポリヌクレオチドであって、以下の(a)、(b)または(c)に記載のポリヌクレオチド:
(a)配列番号1~17に示される塩基配列からなるポリヌクレオチド;
(b)配列番号1~17に示される塩基配列において1個もしくは数個の塩基が欠失、挿入、置換もしくは付加された塩基配列からなるポリヌクレオチド;
(c)上記(a)のポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド。 - 植物代謝産物の含量を調節する機能を有するポリペプチドをコードするポリヌクレオチドであって、該ポリペプチドが以下の(d)または(e)に記載のポリペプチドである、ポリヌクレオチド:
(d)配列番号18~32に示されるアミノ酸配列からなるポリペプチド;
(e)配列番号18~32に示されるアミノ酸配列において1個もしくは数個のアミノ酸が欠失、挿入、置換もしくは付加されたアミノ酸配列からなるポリペプチド。 - 植物代謝産物の含量を調節する機能を有するポリペプチドであって、以下の(d)または(e)に記載のポリペプチド:
(d)配列番号18~32に示されるアミノ酸配列からなるポリペプチド;
(e)配列番号18~32に示されるアミノ酸配列において、1個もしくは数個のアミノ酸が欠失、挿入、置換もしくは付加されたアミノ酸配列からなるポリペプチド。 - 請求項1または2に記載のポリヌクレオチドを含む、ベクター。
- 植物代謝産物の含量が調節された形質転換植物を作出しうるベクターであって、請求項1または2に記載のポリヌクレオチドの一部分であるポリヌクレオチドを含む、ベクター。
- 請求項4または5に記載のベクターを用いて植物細胞を形質転換する工程を含む、植物代謝産物の含量が調節された形質転換植物の作出方法。
- 請求項4または5に記載のベクターを用いて作出された、植物代謝産物の含量が調節された形質転換植物。
- 請求項7に記載の形質転換植物の植物体を使用して製造され、
該植物体がニコチアナ・タバカムまたはニコチアナ・ルスチカである、たばこ製品。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11744680.7A EP2537929B1 (en) | 2010-02-17 | 2011-02-16 | Plant component regulation factor, and use thereof |
JP2012500630A JP5540068B2 (ja) | 2010-02-17 | 2011-02-16 | 植物内容成分の調節因子、およびその利用 |
US13/586,335 US9422346B2 (en) | 2010-02-17 | 2012-08-15 | Tobacco enzymes for regulating content of plant metabolites, and uses thereof |
US15/176,792 US10047370B2 (en) | 2010-02-17 | 2016-06-08 | Tobacco enzymes for regulating content of plant metabolites, and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010032537 | 2010-02-17 | ||
JP2010-032537 | 2010-02-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/586,335 Continuation US9422346B2 (en) | 2010-02-17 | 2012-08-15 | Tobacco enzymes for regulating content of plant metabolites, and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011102394A1 true WO2011102394A1 (ja) | 2011-08-25 |
Family
ID=44482979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/053297 WO2011102394A1 (ja) | 2010-02-17 | 2011-02-16 | 植物内容成分の調節因子、およびその利用 |
Country Status (4)
Country | Link |
---|---|
US (2) | US9422346B2 (ja) |
EP (1) | EP2537929B1 (ja) |
JP (1) | JP5540068B2 (ja) |
WO (1) | WO2011102394A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015077242A1 (en) * | 2013-11-19 | 2015-05-28 | Brandeis University | Multiplex target detection assay |
US10405571B2 (en) | 2015-06-26 | 2019-09-10 | Altria Client Services Llc | Compositions and methods for producing tobacco plants and products having altered alkaloid levels |
WO2021210688A1 (ja) | 2020-04-17 | 2021-10-21 | 日本たばこ産業株式会社 | 低アルカロイド含量のタバコ属植物体およびその製造方法 |
US11659807B2 (en) | 2016-08-26 | 2023-05-30 | Japan Tobacco Inc. | Virus-resistant tobacco and breeding method therefor |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015157359A1 (en) * | 2014-04-08 | 2015-10-15 | Altria Client Services Llc | Tobacco having altered leaf properties and methods of making and using |
AP2016009666A0 (ja) | 2014-06-27 | 2016-12-31 | Japan Tobacco Inc | |
WO2016007632A1 (en) | 2014-07-08 | 2016-01-14 | Altria Client Services Llc | The genetic locus imparting a low anatabine trait in tobacco and methods of using |
EP3198015A1 (en) * | 2014-09-26 | 2017-08-02 | Philip Morris Products S.a.s. | Reducing tobacco specific nitrosamines through alteration of the nitrate assimilation pathway |
US10897925B2 (en) | 2018-07-27 | 2021-01-26 | Joseph Pandolfino | Articles and formulations for smoking products and vaporizers |
US20200035118A1 (en) | 2018-07-27 | 2020-01-30 | Joseph Pandolfino | Methods and products to facilitate smokers switching to a tobacco heating product or e-cigarettes |
CN112143738B (zh) * | 2020-09-30 | 2023-04-11 | 云南省烟草农业科学研究院 | 一种烟草受体蛋白基因及其克隆方法与应用 |
CN113151307B (zh) * | 2021-06-11 | 2022-09-30 | 云南中烟工业有限责任公司 | 一种烟草乙烯响应转录因子相关的基因及其应用 |
CN114574508B (zh) * | 2022-03-18 | 2023-09-01 | 安庆市长三角未来产业研究院 | Pub22基因在调控植物对虫害胁迫抗性中的应用 |
CN115852019A (zh) * | 2022-09-13 | 2023-03-28 | 云南省烟草质量监督检测站 | 一种简捷高效鉴别制烟原料中烟与非烟的分子标记及其应用 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5459252A (en) | 1991-01-31 | 1995-10-17 | North Carolina State University | Root specific gene promoter |
WO1998012913A1 (en) | 1996-09-26 | 1998-04-02 | Bailey James E | Expression of globin proteins in plants |
JPH11510056A (ja) | 1995-07-28 | 1999-09-07 | ノース・キャロライナ・ステイト・ユニヴァーシティ | 根皮層に特異的な遺伝子プロモーター |
JP2001510987A (ja) | 1996-10-25 | 2001-08-07 | アメリカ合衆国 | 哺乳動物のCD97αサブユニットを含む炎症および脈管形成を阻害するための方法および組成物 |
US6369296B1 (en) | 2000-02-01 | 2002-04-09 | Plant Bioscience Limited | Recombinant plant viral vectors |
JP2002530075A (ja) | 1998-11-16 | 2002-09-17 | エト チューリヒ | 植物の根における遺伝子発現のプロモーター |
WO2003097790A2 (en) | 2002-05-17 | 2003-11-27 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Genes and uses thereof to modulate secondary metabolite biosynthesis |
JP2004507250A (ja) | 2000-08-30 | 2004-03-11 | ノース・キャロライナ・ステイト・ユニヴァーシティ | タンパク質含量を変化させる分子デコイを含有するトランスジェニック植物 |
JP2005027654A (ja) | 2003-06-20 | 2005-02-03 | Japan Science & Technology Agency | 転写因子を転写抑制因子に変換するペプチド及びこれをコードするポリヌクレオチド、並びにその利用 |
JP2005046036A (ja) | 2003-07-31 | 2005-02-24 | Oji Paper Co Ltd | プロモーターdna断片及び遺伝子発現の制御方法 |
WO2006109197A2 (en) | 2005-02-28 | 2006-10-19 | Nara Institute Of Science And Technology | Reducing levels of nicotinic alkaloids in plants |
US7229829B2 (en) | 2002-03-14 | 2007-06-12 | Yale University | Tobacco rattle virus vectors and related compositions and methods |
WO2007072224A2 (en) | 2006-09-13 | 2007-06-28 | Nara Institute Of Science And Technology | Increasing levels of nicotinic alkaloids |
US20080292735A1 (en) | 2006-11-17 | 2008-11-27 | Nara Institute Of Science And Technology | Regulating alkaloids |
WO2009063312A2 (en) | 2007-05-25 | 2009-05-22 | National Research Council Of Canada | Nucleic acid sequences encoding transcription factors regulating alkaloid biosynthesis and their use in modifying plant metabolism |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5260205A (en) * | 1990-11-14 | 1993-11-09 | Philip Morris Incorporated | Method of purifying putrescine N-methyltransferase from tobacco plant extract with a polyamine |
US6586661B1 (en) | 1997-06-12 | 2003-07-01 | North Carolina State University | Regulation of quinolate phosphoribosyl transferase expression by transformation with a tobacco quinolate phosphoribosyl transferase nucleic acid |
EP1586645A3 (en) * | 1999-02-25 | 2006-02-22 | Ceres Incorporated | Sequence-determined DNA fragments and corresponding polypeptides encoded thereby |
US20060107345A1 (en) * | 2003-09-30 | 2006-05-18 | Nickolai Alexandrov | Sequence-determined DNA fragments and corresponding polypeptides encoded thereby |
US8410341B2 (en) | 2006-06-19 | 2013-04-02 | National Research Council Of Canada | Nucleic acid encoding N-methylputrescine oxidase and uses thereof |
US9551003B2 (en) | 2006-09-13 | 2017-01-24 | 22Nd Century Limited, Llc | Increasing levels of nicotinic alkaloids in plants |
-
2011
- 2011-02-16 EP EP11744680.7A patent/EP2537929B1/en active Active
- 2011-02-16 WO PCT/JP2011/053297 patent/WO2011102394A1/ja active Application Filing
- 2011-02-16 JP JP2012500630A patent/JP5540068B2/ja active Active
-
2012
- 2012-08-15 US US13/586,335 patent/US9422346B2/en not_active Expired - Fee Related
-
2016
- 2016-06-08 US US15/176,792 patent/US10047370B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5459252A (en) | 1991-01-31 | 1995-10-17 | North Carolina State University | Root specific gene promoter |
JPH11510056A (ja) | 1995-07-28 | 1999-09-07 | ノース・キャロライナ・ステイト・ユニヴァーシティ | 根皮層に特異的な遺伝子プロモーター |
WO1998012913A1 (en) | 1996-09-26 | 1998-04-02 | Bailey James E | Expression of globin proteins in plants |
JP2001510987A (ja) | 1996-10-25 | 2001-08-07 | アメリカ合衆国 | 哺乳動物のCD97αサブユニットを含む炎症および脈管形成を阻害するための方法および組成物 |
JP2002530075A (ja) | 1998-11-16 | 2002-09-17 | エト チューリヒ | 植物の根における遺伝子発現のプロモーター |
US6369296B1 (en) | 2000-02-01 | 2002-04-09 | Plant Bioscience Limited | Recombinant plant viral vectors |
JP2004507250A (ja) | 2000-08-30 | 2004-03-11 | ノース・キャロライナ・ステイト・ユニヴァーシティ | タンパク質含量を変化させる分子デコイを含有するトランスジェニック植物 |
US7229829B2 (en) | 2002-03-14 | 2007-06-12 | Yale University | Tobacco rattle virus vectors and related compositions and methods |
WO2003097790A2 (en) | 2002-05-17 | 2003-11-27 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Genes and uses thereof to modulate secondary metabolite biosynthesis |
JP2005027654A (ja) | 2003-06-20 | 2005-02-03 | Japan Science & Technology Agency | 転写因子を転写抑制因子に変換するペプチド及びこれをコードするポリヌクレオチド、並びにその利用 |
JP2005046036A (ja) | 2003-07-31 | 2005-02-24 | Oji Paper Co Ltd | プロモーターdna断片及び遺伝子発現の制御方法 |
WO2006109197A2 (en) | 2005-02-28 | 2006-10-19 | Nara Institute Of Science And Technology | Reducing levels of nicotinic alkaloids in plants |
WO2007072224A2 (en) | 2006-09-13 | 2007-06-28 | Nara Institute Of Science And Technology | Increasing levels of nicotinic alkaloids |
US20080292735A1 (en) | 2006-11-17 | 2008-11-27 | Nara Institute Of Science And Technology | Regulating alkaloids |
WO2009063312A2 (en) | 2007-05-25 | 2009-05-22 | National Research Council Of Canada | Nucleic acid sequences encoding transcription factors regulating alkaloid biosynthesis and their use in modifying plant metabolism |
Non-Patent Citations (68)
Title |
---|
"Leaf Chemistry", vol. 8A, 1999, BLACKWELL SCIENCE LTD, pages: 265 - 284 |
BALDWIN ET AL.: "Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris", PLANTA, vol. 201, 1997, pages 397 - 404, XP002452060 |
BALDWIN ET AL.: "Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes", J. CHEM. ECOL., vol. 20, 1994, pages 1573 - 1561 |
BAULCOMBE D., NATURE, vol. 431, 2004, pages 356 - 363 |
BURCH-SMITH T.M. ET AL., PLANT JOURNAL, vol. 39, 2004, pages 734 - 746 |
CHINTAPAKORN; HAMILL: "Antisense-mediated regulation in ADC activity causes minor alterations in the alkaloid profile of cultured hairy roots and regenerated transgenic plants of Nicotiana tabacum", PHYTOCHEMISTRY, vol. 68, 2007, pages 2465 - 2479, XP022264118, DOI: doi:10.1016/j.phytochem.2007.05.025 |
DATABASE DDBJ/EMBL/GENBANK [online] 22 October 2010 (2010-10-22), ZHAO, J. ET AL.: "NTEC-EST-1844 Tobacco egg cell cDNA library Nicotiana tabacum cDNA 5-, mRNA sequence", XP008165620, Database accession no. H0846947 * |
DATABASE DDBJ/EMBL/GENBANK [online] 3 October 2006 (2006-10-03), COATES, S.A. ET AL.: "Definition: KN6B.106K17F.060104T7 KN6B Nicotiana tabacum cDNA clone KN6B. 106K17, mRNA sequence", XP008165622, Database accession no. EB440571 * |
DATABASE DDBJ/EMBL/GENBANK [online] 3 October 2006 (2006-10-03), COATES, S.A. ET AL.: "Definition: TL13.107B16F.060315T7 TL13 Nicotiana tabacum cDNA clone TL13. 107B16, mRNA sequence", XP008165621, Database accession no. EB434434 * |
DEBLAERE R., NUCLEIC ACIDS RES., vol. 13, 1985, pages 4777 - 88 |
EMBO J, vol. 10, no. 7, 1991, pages 1793 - 1802 |
EMBO J, vol. 18, no. 16, 1999, pages 4455 - 4463 |
GENE DEV., vol. 18, 2004, pages 1577 - 1591 |
GOOSSENS ET AL.: "A functional genomics approach toward the understanding of secondary metabolism in plant cells", PROC. NATL. ACAD. SCI. USA., vol. 100, 2003, pages 8595 - 8600 |
GUILFOYLE ET AL., PLANT MOLECULAR BIOLOGY, vol. 49, 2002, pages 373 - 385 |
HAKKINEN ET AL.: "Functional characterization of genes involved in pyridine alkaloid biosynthesis in tobacco", PHYTOCHEMISTRY, vol. 68, 2007, pages 2773 - 2785 |
HIBI ET AL., PLANT CELL., vol. 6, 1994, pages 723 - 35 |
HOEKEMA ET AL., NATURE, vol. 303, 1983, pages 179 - 180 |
IMANISHI ET AL.: "Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures", PLANT MOL. BIOL., vol. 38, 1998, pages 1101 - 1111 |
J. OF BIOCHEMISTRY, vol. 279, no. 51, 2004, pages 52940 - 52948 |
J. OF BIOCHEMISTRY, vol. 279, no. 53, 2004, pages 55355 - 55361 |
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY |
KAHL ET AL.: "Herbivore- induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore", PLANTA, vol. 210, 2000, pages 336 - 342 |
KAPILA ET AL., PLANT SCI., vol. 122, 1997, pages 101 - 108 |
KAZAN; MANNERS: "Jasmonate Signaling: Toward an Integrated View", PLANT PHYSIOLOGY, vol. 146, 2008, pages 1459 - 1468 |
LANZ RB ET AL., CELL, vol. 97, 1999, pages 17 - 27 |
LEGG ET AL., CROP SCI, vol. 10, 1970, pages 212 |
LIU Y. ET AL., PLANT JOURNAL, vol. 30, 2002, pages 415 - 429 |
LIU Y. ET AL., PLANT JOURNAL, vol. 31, 2002, pages 777 - 786 |
MANO ET AL., PLANT SCI, vol. 59, 1989, pages 191 - 201 |
MELLER; RATTNER, EMBO J, vol. 21, 2002, pages 1084 - 91 |
MIZUSAKI ET AL.: "Changes in the activities of ornithine decarboxylase, putorescine N-methyltransferase and N-methylputorescine oxidase in tobacco roots in relation to nicotine biosynthesis", PLANT AND CELL PHYSIOLOGY, vol. 14, 1973, pages 103 - 110 |
NATURE, vol. 448, 2007, pages 666 - 673 |
NATURE, vol. 448, 2007, pages 66L - 665 |
PHYSIOL. PLANT, vol. 18, 1962, pages 100 - 127 |
PLANT CELL PHYSIOL, vol. 39, no. 10, 1998, pages 993 - 1002 |
PLANT CELL, vol. 16, 2004, pages 1938 - 1950 |
PLANT CELL, vol. 19, 2007, pages 2225 - 2245 |
PLANT J., vol. 25, no. 1, 2001, pages 43 - 53 |
PLANT J., vol. 44, 2005, pages 1065 - 1076 |
PLANT MOLECULAR BIOLOGY, vol. 45, 2001, pages 477 - 488 |
PLANT MOLECULAR BIOLOGY, vol. 55, 2004, pages 183 - 192 |
PLANT MOLECULAR BIOLOGY, vol. 55, 2004, pages 743 - 76L |
PLANT MOLECULAR BIOLOGY, vol. 58, 2005, pages 585 - 595 |
PLANT MOLECULAR BIOLOGY, vol. 60, 2006, pages 699 - 7L6 |
PLANT PHYSIOL, vol. 115, 1997, pages 397 - 407 |
PLANT PHYSIOL, vol. 129, 2002, pages 661 - 677 |
PLANT PHYSIOL, vol. 139, 2005, pages 949 - 959 |
PLANT PHYSIOL, vol. 144, 2007, pages 1680 - 1689 |
PLANT SCI., vol. 158, 2000, pages 19 - 32 |
PLATH K ET AL., ANNU REV GENET, vol. 36, 2002, pages 233 - 78 |
PROC. NATL. ACAD. SCI, vol. 100, no. 14, 2003, pages 8595 - 8600 |
RATCLIFF F. ET AL., PLANT JOURNAL, vol. 25, 2001, pages 237 - 245 |
ROSSI ET AL., PLANT MOL. BIOL. REP., vol. 11, 1993, pages 220 - 229 |
SATO ET AL.: "Metabolic engineering of plant alkaloid biosynthesis.", PROC. NATL. ACAD. SCI. USA., vol. 98, 2001, pages 367 - 372, XP002955220, DOI: doi:10.1073/pnas.011526398 |
See also references of EP2537929A4 * |
SHOJI ET AL., PLANT CELL., vol. 22, 2010, pages 3390 - 409 |
SHOJI ET AL.: "Ethylene supresses jasmonate-induced gene expression in nicotine biosynthesis", PLANT AND CELL PHYSIOLOGY, vol. 41, 2000, pages 1072 - 1076 |
SHOJI ET AL.: "Jasmonate-Induced Nicotine Formation in Tobacco is Mediated by Tobacco COI1 and JAZ Genes", PLANT AND CELL PHYSIOLOGY, vol. 49, 2008, pages 1003 - 1012 |
SOLT: "Nicotine production and growth of excised tobacco root cultures", PLANT PHYSIOLOGY, vol. 32, 1957, pages 480 - 484 |
SULLENGER ET AL., J. VITROL., vol. 65, 1991, pages 6811 - 6816 |
TAKAHASHI; YAMADA: "Regulation of nicotine production by auxins in tobacco cultured cells in vitro", AGR. BIOL. CHEM., vol. 37, 1973, pages 1755 - 1757 |
VAN DER HOORN ET AL., MOL. PLANT-MICROBE INTERACT., vol. 13, 2000, pages 439 - 446 |
WANG ET AL.: "Comparisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-Silenced Plants Reveal That Jasmonic Acid and Jasmonic Acid-Amino Acid Conjugates Play Different Roles in Herbivore Resistance of Nicotiana attenuate", PLANT PHYSIOLOGY, vol. 146, 2008, pages 904 - 915 |
WESLEY ET AL., PLANT J., vol. 27, 2001, pages 581 - 590 |
WESLEY SV ET AL., PLANT J., vol. 27, 2001, pages 581 - 90 |
XIE ET AL.: "BIOTECHNOLOGY: A TOOL FOR REDUCED-RISK TOBACCO PRODUCTS-THE NICOTINEEXPREENCE FROM TEST TUBE TO CIGARETTE PACK", RECENT ADVANCES IN TOBACCO SCIENCE VOMULE 30, SYNPOSIUM PROCEEDINGS 58TH MEETING, vol. 30, 2004 |
YASUMATSU: "Studies on the chemical regulation of alkaloid biosynthesis in t obacco plants. Part II. Inhibition of alkaloid biosynth esis by exogenous auxins", AGR. BIOL. CHEM., vol. 31, 1967, pages 1441 - 1447 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015077242A1 (en) * | 2013-11-19 | 2015-05-28 | Brandeis University | Multiplex target detection assay |
US10738347B2 (en) | 2013-11-19 | 2020-08-11 | Brandeis University | Multiplex target detection assay |
US11674171B2 (en) | 2013-11-19 | 2023-06-13 | Brandeis University | Multiplex target detection assay |
US10405571B2 (en) | 2015-06-26 | 2019-09-10 | Altria Client Services Llc | Compositions and methods for producing tobacco plants and products having altered alkaloid levels |
US11659807B2 (en) | 2016-08-26 | 2023-05-30 | Japan Tobacco Inc. | Virus-resistant tobacco and breeding method therefor |
WO2021210688A1 (ja) | 2020-04-17 | 2021-10-21 | 日本たばこ産業株式会社 | 低アルカロイド含量のタバコ属植物体およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5540068B2 (ja) | 2014-07-02 |
US20130056014A1 (en) | 2013-03-07 |
EP2537929B1 (en) | 2017-04-12 |
US9422346B2 (en) | 2016-08-23 |
JPWO2011102394A1 (ja) | 2013-06-17 |
EP2537929A4 (en) | 2013-08-28 |
EP2537929A1 (en) | 2012-12-26 |
US20160272984A1 (en) | 2016-09-22 |
US10047370B2 (en) | 2018-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5540068B2 (ja) | 植物内容成分の調節因子、およびその利用 | |
US11597941B2 (en) | Nucleic acid sequences encoding transcription factors regulating alkaloid biosynthesis and their use in modifying plant metabolism | |
JP2019526263A (ja) | 転写因子NtERF241およびその使用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11744680 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012500630 Country of ref document: JP |
|
REEP | Request for entry into the european phase |
Ref document number: 2011744680 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011744680 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |