WO2011102337A1 - Heat insulator and process for producing heat insulator - Google Patents

Heat insulator and process for producing heat insulator Download PDF

Info

Publication number
WO2011102337A1
WO2011102337A1 PCT/JP2011/053127 JP2011053127W WO2011102337A1 WO 2011102337 A1 WO2011102337 A1 WO 2011102337A1 JP 2011053127 W JP2011053127 W JP 2011053127W WO 2011102337 A1 WO2011102337 A1 WO 2011102337A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat insulating
metal foil
resin sheet
envelope
Prior art date
Application number
PCT/JP2011/053127
Other languages
French (fr)
Japanese (ja)
Inventor
徳彦 辻
宏憲 八木
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2011102337A1 publication Critical patent/WO2011102337A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/026Mattresses, mats, blankets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/08Means for preventing radiation, e.g. with metal foil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/44Number of layers variable across the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating

Definitions

  • the present invention relates to a heat insulator for suppressing heat dissipation and a method for manufacturing the heat insulator.
  • the inside of the manufacturing apparatus may be heated by, for example, a heater.
  • a heat insulator is disposed along the outer wall surface of the apparatus. Specifically, the temperature of the heat insulator is increased to, for example, about 180 ° C. to 200 ° C. such as the outer surface of a process chamber (processing vessel), the surroundings of a gas pipe and an exhaust pipe heated by a heater, and the like. A site.
  • a fiber glass wool or powdery filler made of a material having as low a thermal conductivity as possible, for example, silica (silicon dioxide) glass, and the silica glass are provided.
  • the mantle heat insulator provided with the outer skin layer which makes packing materials, such as cloth is mentioned.
  • the heat reflectivity is small compared to, for example, metal, for example, when heat is dissipated from the processing vessel toward the mantle insulator, the mantle insulator absorbs heat and rises in temperature. The heat of the processing vessel is radiated to the outside through the mantle insulator.
  • a metal film such as aluminum (Al) is known as a member that reflects heat.
  • Al aluminum
  • a metal film such as aluminum (Al) is known as a member that reflects heat.
  • a metal film such as aluminum (Al) is known as a member that reflects heat.
  • Al aluminum
  • the thermal conductivity of the metal film is higher than that of, for example, silica glass, the metal film gradually increases in temperature due to the radiant heat that could not be reflected to the processing container side, and the heat of the processing container is transferred to the outside through the metal film. There is a risk of dissipating heat.
  • a vacuum insulator using a vacuum region as a heat insulator is known as a heat insulator having higher heat insulation than the mantle heat insulator described above.
  • this vacuum insulator is composed of two films made of a resin, such as polyethylene, and a fiber or powder made of silica glass is stored between the polyethylene films, and the storage area of the silica glass is evacuated. While maintaining, the end faces of the polyethylene film are heated to, for example, about several tens of degrees Celsius over the circumferential direction, and are heat-sealed (heat sealed).
  • a metal film such as aluminum is formed so as to cover the polyethylene film, thereby suppressing air permeation (leakage) to the vacuum region.
  • This vacuum heat insulator is used for household appliances, for example.
  • the insulator of the present invention is A first envelope made of a metal foil in which the peripheral metal surfaces are bonded and sealed, and the inside is in a vacuum atmosphere; A heat insulating material enclosed in the first envelope; And a resin sheet provided so as to cover the first sealing body.
  • the resin sheet forms a second sealed body by sealing the resin sheets with each other at the peripheral part or by joining the peripheral part to the peripheral part of the sealed body, It is preferable that a heat insulating material is filled between the second envelope and the first envelope.
  • the first sealing body is partitioned into a plurality of regions that are airtight to each other by joining a part of metal foils facing each other. Each of the plurality of regions may be sealed with a heat insulating material.
  • the method for producing the heat insulator of the present invention is as follows. Arranging the metal foil so as to wrap the heat insulating material, and pressing the metal surfaces of the metal foil around the heat insulating material with each other; While maintaining the atmosphere in which the heat insulating material and the metal foil are placed in a vacuum atmosphere, by heating the contact portion between the metal surfaces so that atoms diffuse between the metal surfaces, the metal surfaces are mutually bonded. Bonding and forming a first envelope; And a step of covering the first sealing body with a resin sheet.
  • the step of covering the first envelope with the resin sheet includes the step of sealing the peripheral portions of the resin sheet on the outside of the first envelope or the peripheral portion of the resin sheet with the first envelope.
  • the heat insulating material outside the first sealing body is filled between the second sealing body made of the resin sheet and the first sealing body. Also good.
  • the step of pressing the metal surfaces of the metal foil together includes the step of attaching one metal foil to one mold in which a plurality of recesses are formed, and heat insulation through the one metal foil in each of the recesses.
  • the step of forming the first sealing body may be a step of heating a contact portion between metal surfaces in each peripheral portion of the concave portion.
  • FIG. 1 It is a perspective view which shows an example of the heating apparatus provided with the heat insulating body of this invention.
  • the resin sheet is provided so as to cover the first sealing body made of the metal foil configured to be in a vacuum atmosphere, the first insulation is performed while performing vacuum heat insulation. Heat dissipation from the sealed body can be suppressed, and therefore a heat insulator excellent in heat insulation can be obtained.
  • a heat reflecting sheet comprising a resin sheet and a metal layer laminated on the heat-insulating region side of the resin sheet is opposed to the heat-insulating region inside the heat-insulating block. Therefore, the heat radiation from the heat-insulated region can be reflected by the metal layer toward the heat-insulated region and the heat radiation from the metal layer to the outside can be suppressed, so that a heat insulator excellent in heat insulation can be obtained. it can.
  • FIG. 1 An example of an embodiment of a heat insulator according to the present invention will be described with reference to FIGS. First, the whole structure of the heating apparatus provided with this heat insulating body is demonstrated easily.
  • this apparatus accommodates a substrate (not shown) such as a semiconductor wafer (hereinafter referred to as “wafer”) inside, and is formed by, for example, a CVD (Chemical Vapor Deposition) method or an ALD (Atomic Layer Deposition) method.
  • a processing container 1 which is a heat-insulated region for heating the wafer to about 700 ° C. using a heater (not shown) or the like is provided.
  • the processing container 1 On the outer wall surface made of a metal such as aluminum (Al), for example, in the processing container 1, as shown in FIG. are disposed so as to cover the processing container 1. Further, an exhaust pipe 1a for evacuating the atmosphere inside the processing container 1 is connected to the processing container 1, and the other end of the exhaust pipe 1a is connected to a vacuum pump (via a pressure adjusting unit such as a butterfly valve). Neither is shown).
  • the processing container 1 is connected to a processing gas supply path (not shown) for supplying a processing gas, for example, a film forming gas, into the processing container 1.
  • a processing gas supply path not shown
  • the heat insulator 2 on the right side of the processing container 1 is omitted.
  • the heat insulator 2 is formed in a substantially plate shape so that the surface facing the outer wall surface of the processing container 1 is wide.
  • the heat insulator 2 is made of glass wool (fiber) such as silica (silicon dioxide) or powder in a substantially box shape arranged along the wall surface of the processing container 1.
  • a filler (heat insulating material) 11 is provided.
  • a metal foil 13 made of, for example, aluminum having a thickness of 0.05 mm covers the filler 11 as a first sealing body. It is provided as follows.
  • a storage region 14 for the filler 11 that is an internal region of the metal foil 13 is maintained in a vacuum atmosphere.
  • the storage area 14 is formed by stacking two metal foils 13 and 13 so as to overlap each other, storing the filler 11 between the metal foils 13 and 13, and in the vacuum container (not shown) It is formed airtight by an atomic diffusion bonding method in which the metal foils 13 and 13 are bonded to each other by heating while applying pressure to the peripheral portion of the 13 in the circumferential direction. Therefore, since the metal foils 13 and 13 around the storage region 14 are joined so that the interface and the boundary between the metal foils 13 and 13 are hardly discernable at the joint 15 as schematically shown in FIG.
  • the storage area 14 is hermetically sealed. The metal foils 13 and 13 are pressed against the filler 11 so as to follow the outer surface shape of the filler 11 because the storage region 14 is in a vacuum atmosphere.
  • Resin sheets 16 and 16 made of a resin material such as these are laminated so as to sandwich the metal foils 13 and 13 from above and below, for example.
  • the resin sheet 16 has a thermal conductivity of, for example, 0.28 W / mK and a heat resistant temperature of 300 ° C.
  • These resin sheets 16 and 16 are, for example, welded or bonded in a hermetic manner in the circumferential direction at a portion close to the joint 15 of the metal foils 13 and 13 to form a second sealing body.
  • a heat insulating material 18, for example, a fiber or powder made of silica is stored in a storage member such as a cloth (not shown) or a storage member. Arranged without.
  • the airtight region 17 is, for example, an air atmosphere. In FIG. 3, drawing of the heat insulating material 18 and the resin sheet 16 outside the metal foil 13 is omitted.
  • the wafer is stored in the processing container 1 whose outer wall surface is covered with a plurality of heat insulators 2, and the processing container 1 is evacuated through the exhaust pipe 1a.
  • the opening degree of a butterfly valve (not shown) provided in the exhaust pipe 1a is adjusted so as to have a processing pressure when performing the film forming process.
  • the processing gas is decomposed on the wafer surface by the heat of the heater. A thin film is formed.
  • the outer wall surface of the processing container 1 can be heated to, for example, about 200 ° C. by heat transfer from the inside of the processing container 1. And this heat is going to be radiated outside through the heat insulator 2 provided along the outer wall surface of the processing container 1, but the resin sheet 16 having a low thermal conductivity is applied to the outer wall surface as described above. Since it arrange
  • the heat insulating material 18 and the resin sheet 16 are arranged outside the metal foil 13, heat transfer from the resin sheet 16 to the outside is suppressed.
  • the joint between the resin sheets 16 and 16 and the joint 15 between the metal foils 13 and 13 are heated to temperatures close to 200 ° C., respectively, but the heat resistance of the resin sheet 16 and the metal foil 13. Is high (resin sheet 16: 300 ° C., metal foil 13: 660 ° C.), no melting or alteration occurs. Accordingly, a vacuum atmosphere is maintained for the storage area 14 and an air atmosphere is maintained for the airtight area 17.
  • the heat insulating body 2 is arrange
  • the metal foil 13 configured to have a vacuum atmosphere is provided and the metal foil 13 is covered. Since the resin sheet 16 is provided as described above, it is possible to perform the heat insulation from the vacuum and to suppress the heat radiation from the metal foil 13, and thus it is possible to obtain the heat insulating body 2 having excellent heat insulating properties.
  • the resin sheet 16 having a heat resistant temperature of 300 ° C. is provided so as to cover the periphery of the metal foil 13, as described above, the heat insulator is formed on the outer wall surface of the processing container 1 that is heated to about 180 ° C. to 200 ° C. Even when 2 is disposed, deterioration of the resin sheet 16 such as melting and alteration can be suppressed, and heat of the processing container 1 can be prevented from flowing outside through the metal foil 13.
  • the storage region 14 is formed of aluminum that does not cause gas permeation or melting at the temperature of the processing container 1, it is possible to suppress a decrease in the degree of vacuum in the storage region 14, and thus heat insulation can be maintained over a long period of time. Can be maintained.
  • the heat insulating material 18 is provided in the airtight region 17 between the metal foil 13 and the resin sheet 16, the atmosphere inside the airtight region 17 and the heat insulating material 18 can be used between the metal foil 13 and the resin sheet 16. Therefore, heat transfer from the processing container 1 can be suppressed.
  • the metal foil 13 is made of aluminum having high flexibility, the inside of the storage area 14 can be evacuated without breaking the metal foil 13, and the heat insulator 2 is disposed along the processing container 1. Can be arranged.
  • the airtight region 17 is an air atmosphere.
  • the airtight region 17 may be made into a vacuum atmosphere to further improve the heat insulation.
  • the gas barrier property of the resin sheet 16 is compensated on the outside of the resin sheet 16 as shown in FIG. 5 in order to prevent external gas from entering the airtight region 17 through the resin sheet 16.
  • an auxiliary metal foil 21 made of aluminum for example, may be provided in an airtight manner.
  • the auxiliary metal foil 21 is formed by laminating two auxiliary metal foils 21 and 21 so as to sandwich the heat insulator 2 from above and below, and surrounding the peripheral portions of these auxiliary metal foils 21 and 21.
  • an auxiliary resin sheet 22 made of polyimide may be provided outside the auxiliary metal foil 21 in order to prevent the heat in the processing container 1 from flowing outside through the auxiliary metal foils 21 and 21.
  • a heat insulating material made of, for example, silica glass may be accommodated between the auxiliary metal foil 21 and the auxiliary resin sheet 22.
  • the metal foils 13 and 13 are bonded to each other at the bonding portion 15 by the atomic diffusion bonding method, but may be bonded by a bonding method in which gas from the outside does not enter, for example, a welding method using an electron beam. .
  • the heat insulating material 18 is provided between the metal foil 13 and the resin sheet 16
  • the resin sheet 16 may be configured by coating polyimide, for example, on the outside of the metal foil 13 without providing the heat insulating material 18. In this case, for example, after the metal foils 13 and 13 are joined airtightly, the resin sheet 16 is laminated on the outside of the metal foils 13 and 13. Further, the resin sheet 16 is disposed so as to cover the metal foil 13, but as shown in FIG.
  • the resin sheet 16 and the peripheral portions of the metal foil 13 may be joined together while separating the resin sheets 16. .
  • a masking material is applied so as to cover the vicinity of the bonding portion 15 in the circumferential direction. .
  • the resin sheet 16 is coated on the surface of the metal foil 13, and then the masking material is peeled off.
  • the storage region 14 is hermetically held by the metal foil 13 for the heat insulator 2, but as shown in FIG. 7, a vacuum atmosphere may be held by the resin sheet 16 instead of the metal foil 13. good.
  • resin sheets 16 and 16 are provided on the outer side of the filler 11, and the above-described joint portion 15 is formed on these resin sheets 16 and 16 by heat fusion (heat sealing).
  • a metal foil 13 for compensating the gas barrier property of the resin sheet 16 and an auxiliary resin sheet 22 for suppressing heat radiation from the metal foil 13 are arranged in this order from the inside so as to cover the resin sheet 16. Will be formed.
  • the block main body 31 and the outer skin layer 32 constitute a heat insulating block 30 (heat insulating body 2), and the heat insulating block 30 is configured to have, for example, a substantially box shape.
  • a heat reflecting sheet 35 made of, for example, a resin layer 34 made of a polyimide sheet and an aluminum layer 33 which is a metal layer formed on the resin layer 34 by vapor deposition, for example, is housed.
  • the aluminum layer 33 is for reflecting the heat in the processing container 1 toward the processing container 1, and the resin layer 34 is heated when the aluminum layer 33 cannot reflect the heat of the processing container 1. This is to prevent heat from being radiated to the outside.
  • the heat reflecting sheet 35 is disposed in the heat insulating block 30 so as to be approximately at the center position in the thickness direction of the heat insulating block 30, that is, to be sandwiched between the block main bodies 31 having substantially the same thickness from both sides in the thickness direction. ing.
  • the heat insulation block 30 is arrange
  • the aluminum layer 33 and the resin layer 34 have a thickness of, for example, 0.05 mm and 0.05 mm, respectively.
  • the surface of the aluminum layer 33 may be coated with a resin layer 34, or the aluminum layer 33 and the resin layer 34 are individually formed into a sheet shape and bonded to each other. You may do it.
  • the processing container 1 when the outer wall surface of the processing container 1 is heated to, for example, about 200 ° C. by performing the heat treatment on the wafer as described above, the processing container 1 is placed in the heat insulating block 30. Although heat is about to be transferred, heat transfer into the heat insulating block 30 is suppressed by the outer skin layer 32 and the block body 31 adjacent to the outer wall surface. And when a part of heat of the processing container 1 reaches
  • the heat conductivity of the aluminum layer 33 is high, and thus this heat is transmitted toward the block body 31 outside the processing container 1. Try to heat up.
  • a resin layer 34 having a lower thermal conductivity than that of the aluminum layer 33 is provided between the aluminum layer 33 and the block main body 31, the resin layer 34 provides the block main body 31 with a resin layer 34 as shown in FIG. Heat dissipation is suppressed. Even if the block main body 31 is slightly transferred from the processing container 1 through the resin layer 34, the heat dissipation to the outside can be suppressed because the block main body 31 is made of silica glass as described above. become.
  • the heat insulation block 30 (block main body 31) can be made thinner compared to a mantle heat insulator made of only conventional silica wool or the like.
  • FIG. 11 and 12 show a modification of the second embodiment.
  • FIG. 11 shows an example in which a heat reflecting sheet 35 is provided in a region close to the outer skin layer 32 on the processing container 1 side in the heat insulating block 30.
  • an aluminum layer 33 is disposed on the processing container 1 side, and a resin layer 34 is provided on the outside.
  • FIG. 12 shows an example in which the heat reflecting sheet 35 is disposed in the heat insulating block 30 at a position close to the outer skin layer 32 on the side away from the processing container 1.
  • the aluminum layer 33 and the resin layer 34 are disposed on the processing container 1 side and the outside, respectively.
  • a plurality of heat insulators are arranged on the outer wall surface of the processing container 1, but as shown in FIG. 13, a schematic box whose lower surface opens so as to cover the processing container 1 from above.
  • a type of insulation may be used.
  • heat insulator 2 or Each surface is constituted by the heat insulation block 30)
  • peripheral portions of the heat insulators are bonded to each other so as to form a box shape whose lower surface is opened by these five heat insulators. Even if it is such a heat insulating material, the effect
  • the exhaust pipe 1a is heated using a heater (not shown) in order to suppress the product generated by cooling the gas exhausted from the processing container 1 from adhering to the inner wall of the exhaust pipe 1a.
  • a heat insulator may be provided so as to cover the exhaust pipe 1a which is a heat-insulated region.
  • a ring-shaped heat insulator disposed along the exhaust pipe 1a is divided into a plurality of, for example, two in the circumferential direction, and each heat insulator is subjected to each of the above-described implementations. You may comprise with the heat insulating body 2 or the heat insulation block 30 of the form.
  • the number of divisions of the heat insulating material may be three or more, or for example, the heat insulating body is formed in a substantially strip shape, and one surface side of the heat insulating body is an outer peripheral surface along the length direction of the exhaust pipe 1a.
  • a plurality of heat insulators 2 may be arranged along the circumferential direction of the exhaust pipe 1a so as to follow the above.
  • Reference numeral 1b in FIG. 14 is a block made of, for example, aluminum provided between the exhaust pipe 1a and the heat insulating material, and reference numeral 1c is, for example, an adhesive tape for connecting the heat insulators.
  • the heat insulator of the present invention may be provided around the processing gas supply pipe.
  • silica glass has been described as an example, but glass wool, urethane foam, or the like may be used, for example.
  • the metal foil 13 and the aluminum layer 33 may be stainless steel or nickel other than aluminum.
  • any resin having high heat resistance other than polyimide may be used.
  • polybenzimidazole (PBI) having a heat resistant temperature (melting temperature) of 200 ° C. or higher, polyether ether, and the like.
  • the heat insulator (vacuum heat insulator) 2 has a substantially plate shape, so that the heat generating portion (heat-insulated region) whose outer surface is flat is used. Suitable for construction (pasting).
  • the shape of the outer surface of the heat generating part varies depending on the installation part of the apparatus and the heat insulator 2.
  • the outer surface of the exhaust pipe 1 a described above has a curved shape, and Corners (ridge lines) are formed on the four sides.
  • a protrusion such as a flange (exhaust port) for the exhaust pipe 1a is provided on the processing container 1, it is necessary to arrange the heat insulator 2 so as to avoid the protrusion.
  • the size, shape, or arrangement method of the heat insulating body 2 may be variously adjusted according to the shape of the outer surface of the heat generating portion. It is advantageous in terms of cost if the versatility is increased so that the outer surface of various shapes can be accommodated by the heat insulator 2 having a size). Therefore, it is preferable that the plate-like heat insulating body 2 described above is configured so that a notch or an opening can be formed so as to be bent or curved, and to avoid protrusions.
  • the heat insulating material 2 is filled with the filling material 11 in the storage area 14 which is a vacuum atmosphere, the heat insulating material 2 is not tightly curved because the filling material 11 is tightly and tightly tightened. Moreover, since the heat insulation performance of the heat insulation body 2 will fall if the storage area 14 is made into air atmosphere, a notch
  • the heat insulating body 2 is airtightly partitioned into a plurality of cylindrical regions in a plane (XY direction in FIG. 15). That is, partition regions (divided regions) 50 protruding in a columnar shape are arranged in a matrix in the vertical and horizontal directions on a substantially rectangular laminated sheet 51, and each partition region 50 includes a storage region 14 (see FIG. 18). Is formed.
  • the heat insulating material 18 is provided between the metal foil 13 and the resin sheet 16. In this example, the metal foil 13 and the resin are provided.
  • each partition region 50 is formed such that a corner portion on the front end side extending upward from the laminated sheet 51 is gradually tapered (R-shaped) in the circumferential direction.
  • R-shaped the degree of tapered
  • each partition region 50 has a height dimension h from the laminated sheet 51 of 5 mm and a diameter dimension R of 20 mm.
  • the separation dimension D between the partition regions 50 and 50 is, for example, 5 mm.
  • the dimension of the metal foil 13 and the resin sheet 16 is exaggerated and drawn thickly.
  • the adjacent partitioned areas 50 can be moved vertically and horizontally.
  • the heat insulating body 2 in this embodiment is a time when each partition area 50 is moved independently of each other, or when one or more of these partition areas 50 are separated from the laminated sheet 51. However, the vacuum atmosphere in each storage area 14 is maintained.
  • a method for manufacturing the heat insulator 2 will be described with reference to FIGS.
  • the metal foil 13 is formed by rolling the metal plate 41 using the first mold 61 and the second mold 62 disposed on the side and the upper side, respectively.
  • the metal foil 13 When the metal foil 13 is removed from the molds 61 and 62, the metal foil 13 has a concave surface of the concave portion 55 in the first mold 61 and a convex portion 56 in the second mold 62, as shown in FIG. 20.
  • Projecting portions 57 projecting downward from the metal foil 13 are molded at a plurality of locations so that the shape of the outer surface and the shape of the inner surface respectively follow the shape of the convex surface.
  • Each projecting portion 57 has the inner peripheral surface at the lower end surface and the bent portion of the outer peripheral surface gently (R-shaped) in the circumferential direction, and has a thickness dimension of, for example, about 0.05 mm.
  • region between the protrusion parts 57 and 57 becomes flat over a horizontal direction, and is thinly extended by the metal mold
  • the metal plate 41 is shown partially enlarged and cut away.
  • a third mold 63 made of, for example, stainless steel, in which a plurality of openings 63 a are formed in a lattice shape so as to correspond to the arrangement pattern of the protrusions 57.
  • the metal foil 13 is placed (attached) so that the protrusions 57 are accommodated in the openings 63a.
  • glass wool or powder made of silica or the like is filled as a filler 11 in each protruding portion 57.
  • a flat metal foil 42 made of, for example, aluminum having a thickness dimension of, for example, about 0.05 mm is placed so as to block the opening regions (storage regions for the filler 11) on the upper surface of the protruding portion 57.
  • Each of the fillers 11 is wrapped by the metal foil 13 and the metal foil 42.
  • the third mold 63, the metal foil 13, the filler 11, and the metal foil 42 are carried into a vacuum chamber 71 for performing a heat treatment in a vacuum atmosphere, and a heating table 72. Placed on.
  • 73 is a heater
  • 74 is a vacuum exhaust path.
  • die 64 which consists of stainless steel etc. with a flat lower surface is pressurized toward the metal foil 42 from the upper side of the metal foil 42, and metal foil 13 and 42 are brought into pressure contact with each other.
  • the heating table 72 heats the contact portion (the region between the protruding portions 57 and 57) of the metal foil 13 and the metal foil 42 to, for example, about 600 to 700 ° C.
  • this heat treatment and pressure treatment are performed for about 12 hours, for example, diffusion of atoms occurs between the contact portions of the metal foil 41 (13) and the metal foil 42 as shown in FIG.
  • each protrusion 57 is hermetically sealed in the circumferential direction in a state where the inner region (housing region 14) filled with the filler 11 is in a vacuum atmosphere. Is done.
  • FIG. 21 the illustration of the pressurizing mechanism for pressurizing the fourth mold 64 downward is omitted.
  • these integrated metal foil 41 (13) and metal foil 42 are immersed in a liquid made of resin, for example, and taken out from the liquid, followed by drying and heat treatment.
  • resin sheets 16 and 16 are formed on the surfaces of the metal foil 13 and the metal foil 42 so that the film thicknesses are about 0.05 mm, for example.
  • the heat insulating body 2 in which a plurality of partition regions 50 are formed is obtained. Therefore, in each partition region 50, the storage region 14 hermetically sealed with the metal foil 13 (metal foils 13 and 42) is provided in the same manner as the heat insulator 2 described in the first embodiment. It is formed.
  • a film-like resin sheet 16 may be attached instead of performing immersion and heat treatment in a resin liquid.
  • the above-described laminated sheet 51 which is a part (metal foil 13, metal foil 42, and resin sheets 16, 16) that connects one end side (upper side) of each partition region 50, has a film thickness of, for example, 0.
  • each side is formed into a square having a dimension of 20 mm, for example, when viewed in a plane (XY plane).
  • this heat insulating body 2 is arrange
  • the surface side of the heat insulating body 2 is the exhaust pipe as shown in FIG.
  • the heat insulator 2 is disposed along the curved surface (outer peripheral surface) of the exhaust pipe 1a and the length direction of the exhaust pipe 1a so as to face the 1a side, that is, so that the tip of each partition region 50 contacts the exhaust pipe 1a. It is wound around the exhaust pipe 1a. Then, the end portions of the heat insulator 2 are bonded to each other using, for example, a heat-resistant tape 65 or the like.
  • the partition regions 50 are flexible and supported by the laminated sheet 51, so that the metal foils 13 and 13 in the partition regions 50 are placed on the outer peripheral surface of the exhaust pipe 1a.
  • the heat insulator 2 is arranged so as to follow, generation of stress that is stretched or compressed, for example, is suppressed. Therefore, for example, the occurrence of pinholes and cracks in the metal foil 13 is suppressed, and the vacuum atmosphere (heat insulation performance) of the storage region 14 is maintained.
  • each partition region 50 has a substantially cylindrical shape, and the corner of the tip of the partition region 50 is smoothed, a sharp (sharp) surface is formed on the metal foil 13. Since it is suppressed, the concentration of stress on a part of the metal foil 13 is suppressed, and the occurrence of pinholes and cracks is further suppressed.
  • the laminated sheet 51 is positioned outside the partition region 50 when viewed from the exhaust pipe 1a, heat radiation from the exhaust pipe 1a to the outside through the laminated sheet 51 is suppressed. Even if a pinhole or the like is formed in the metal foil 13, the resin sheet 16 is formed so as to cover the metal foil 13, so that the vacuum atmosphere in the storage region 14 may be maintained by the resin sheet 16. .
  • the metal foil 13 is not formed with pinholes or the like even if bent or curved.
  • the thickness of the foil 13 is increased to, for example, about 15 mm, the metal foil 13 may have a high rigidity (high strength) and may be difficult to bend. Therefore, by partitioning the heat insulator 2 into the plurality of partition regions 50 in an airtight manner, pinholes can be suppressed while the film thickness of the metal foil 13 is kept thin, so that the heat insulation performance of the heat insulator 2 is maintained.
  • the heat insulator 2 can be easily bent or bent.
  • the heat insulator 2 when the heat insulator 2 is wound around the outer periphery of the exhaust pipe 1a, when the length dimension of the heat insulator 2 is shorter than the circumferential dimension or length dimension of the exhaust pipe 1a (dimension in the direction in which the exhaust pipe 1a extends). Attaches a plurality of heat insulators 2 to the outer surface of the exhaust pipe 1a, and adheres the heat insulators 2 to each other using the heat-resistant tape 65 as described above. On the other hand, when the length of the heat insulator 2 is longer than each dimension of the exhaust pipe 1a, the laminated sheet 51 in the region between the partition regions 50 and 50 in the heat insulator 2, for example, the AA line shown in FIG. Disconnect.
  • a block 1 b may be disposed between the exhaust pipe 1 a and the heat insulator 2.
  • FIG. 24 the arrangement interval between the partition regions 50 and 50 and the laminated sheet 51 are schematically shown.
  • the separation dimension D between the partition areas 50 and 50 described above is 10 mm or less because the storage areas 14 and 14 that are in a vacuum atmosphere are separated too much from each other and the heat insulation performance is deteriorated. Is preferred. In addition, if the separation dimension D is too small (too close), it is difficult to correspond to a curved surface having a large curvature, that is, it is difficult to bend the heat insulating body 2, and thus, for example, 5 mm or more is preferable.
  • the separation dimension D varies depending on the heat generation part.
  • the exhaust pipe 1a described above will be described as an example. When the outer diameter dimension of the exhaust pipe 1a is ⁇ 50 mm, it is 5 to 10 mm, and ⁇ 100 mm.
  • the heat insulator 2 may be arranged so as to cover the corners on the upper and lower four sides of the processing container 1. Even in this case, the vacuum atmosphere of the storage region 14 in each partition region 50 is maintained, that is, in a state in which the occurrence of pinholes or the like in the metal foil 13 is suppressed, along the outer surface of the processing container 1.
  • the heat insulating body 2 is affixed.
  • a flange (exhaust port) 75 for connecting the projection for example, the above-described exhaust pipe 1a is formed on the outer surface of the processing container 1, it corresponds to the size and shape of the flange 75.
  • a part of the heat insulator 2 may be cut off. Even in this case, for example, as shown in FIG. 26, the vacuum in the storage region 14 around the opening 66 is formed by separating the one or a plurality of partition regions 50 in the heat insulator 2 to form the opening 66. The atmosphere can be maintained. Therefore, as shown in FIGS. 27 and 28, the heat insulator 2 can be arranged avoiding the flange 75. In FIG. 27, the heat insulator 2 in the Y direction is omitted, and the laminated sheet 51 is omitted in FIG.
  • the heat insulator 2 can be applied to heat generating portions of various shapes, specifically curved surfaces, bent portions, and surfaces on which protrusions are formed. Since it is not necessary to manufacture the heat insulating body 2 according to the kind of heat generating part, high versatility is obtained for the heat insulating body 2, which is advantageous in terms of cost.
  • the opening part 66 was demonstrated in this example, it may replace with the opening part 66 and may make a notch so that one or several division area
  • a heat insulating material 18 may be provided between the metal foil 13 and the resin sheet 16.
  • the heat insulating material 18 is arranged around the metal plate 41 and the metal foil 42, and the metal plate 41, the metal foil 42 and the heat insulating material 18 are covered with, for example, a thin film.
  • the resin sheets 16 and 16 are arranged, and the peripheral portions of the resin sheets 16 and 16 are bonded to each other.
  • the heat insulating material 18 is arrange
  • the heat insulating material 18 may be partitioned by the resin sheet 16 between the partition regions 50, 50.
  • a resin liquid is applied to the surface of the third mold 63 (FIG. 21) described above.
  • the heat insulating materials 18 are accommodated in the openings 63a (regions in which the protrusions 57 are accommodated) of the third mold 63 so as to be, for example, about half the depth of the openings 63a.
  • the protrusion part 57 is each accommodated in each opening part 63a of the 3rd metal mold
  • the heat insulating body 2 of FIG. 30 is obtained by performing the application
  • the vacuum atmosphere in each storage region 14 is maintained by cutting along the line BB in FIG.
  • leakage and scattering of the heat insulating material 18 can also be suppressed.
  • the partition regions 50 are arranged in a grid pattern, but may be arranged in a staggered pattern (alternately) as shown in FIG. 31, for example.
  • the partition region 50 may be a substantially box shape as shown in FIG. 32, for example.
  • a triangular prism-shaped partition region 50 having a triangular bottom surface and top surface is provided, and the two partition regions 50 and 50 are disposed so that the side surfaces of the partition regions 50 and 50 are close to each other and face each other.
  • These two partition regions 50 and 50 may be provided as a set at a plurality of locations.
  • the heat insulator 2 is partially cut away.
  • the heat insulating body 2 is constituted by the plurality of partition regions 50, the protruding portion 57 is formed using the first mold 61 and the second mold 62, but such molds 61 and 62 are used. Instead, the filler 11 may be scattered in a plurality of regions on the substantially flat metal plate 41.
  • the metal plate 41 around the dotted region is supported from below by the upper surface of the third mold 63 so that the dotted region of these fillers 11 is airtightly partitioned, and the metal plate A metal foil 42 is laminated above 41. Then, in a vacuum atmosphere, the metal foil 42 around the dotted region is moved downward from the upper side of the metal plate 41 and the metal foil 42 by another mold in a state where the upper and lower sides of the third mold 63 are switched. Pressurize. And like the above-mentioned example, the contact surface of these metal plates 41 and the metal foil 42 is joined by performing a pressurizing process and a heat processing.
  • the manufacturing method of the heat insulator 2 in the first embodiment described above will be briefly described with reference to FIG.
  • the filler 11 is placed on the metal plate 41 (metal foil 13) on a substantially flat plate, and the metal foil 42 ( A metal foil 13) is laminated.
  • the metal surfaces of the metal plate 41 and the metal foil 42 around the filler material 11 are brought into contact with each other so that the filler material 11 is wrapped by the metal plate 41 and the metal foil 42, and the contact surface is in a vacuum atmosphere.
  • the pressure is applied and the contact surface is heated.
  • reference numerals 81 and 82 denote a mold for supporting the contact surface from the lower side over the circumferential direction of the heat insulator 2 and a mold for pressing the support surface by the mold 81 downward from the upper side.
  • Reference numeral 83 is a heating unit for heating a region sandwiched between the molds 81 and 82.
  • the laminated sheet 51 made of the metal foil 13 and the resin sheet 16 (specifically, the metal plate 41, the metal foil 42, and the resin sheets 16 and 16) is used.
  • a plurality of partition regions 50 may be connected. Specifically, as described with reference to FIG. 34, a plurality of heat insulators 2 in which the partition regions 50 are not provided are produced. Then, as will be described below, a plurality of these heat insulators 2 are connected in a plane using two connection molds 90 shown in FIGS. 35 and 36.
  • connection mold 90 concave portions 91 for accommodating the heat insulating body 2 are arranged in a plurality of places, for example, in a lattice shape, and the concave portion 91 has an end portion of the heat insulating body 2 accommodated in the concave portion 91.
  • the width dimension is set so that it extends slightly outward from the outer edge of the recess 91, for example, about 2 mm, that is, the heat insulator 2 is supported from the side in the region between the recesses 91, 91.
  • a line-shaped groove 93 is formed in the horizontal portion 92 which is a portion formed horizontally between the concave portions 91 and 91 so as to divide the upper surface of the connection mold 90 vertically and horizontally.
  • the grooves 93 communicate with each other and open toward the outside of the connection mold 90 on the side surface of the connection mold 90.
  • connection mold 90 a plurality of heat insulators 2 are arranged on the connection mold 90 so that the heat insulators 2 are accommodated in the recesses 91, and the end portions of these heat insulators 2 are placed above the grooves 93 as shown in FIG. 37.
  • another connection mold 90 is lowered from above the heat insulator 2 placed on the connection mold 90 in a state where the upper and lower sides of the connection mold 90 are switched.
  • the connection molds 90 and 90 are fixed by a fixing tool (not shown) so that the heat insulator 2 is accommodated in the recesses 91 and 91 in the connection molds 90 and 90 from above and below.
  • connection molds 90 and 90 are immersed in the resin liquid, the resin liquid is grooved from the side surface of the connection mold 90 so as to connect the ends of the heat insulators 2 and 2 adjacent to each other. 93 flows through.
  • the connection molds 90 and 90 are taken out from the resin liquid, and drying and heat treatment are performed while preventing the resin liquid from being discharged from the groove 93 (while closing the opening of the groove 93 on the side surface of the connection mold 90).
  • the connection molds 90 and 90 are removed, the plurality of heat insulators 2 in which the end portions are planarly connected by the resin material 95 are obtained.
  • the heat insulator 2 connected in a plane using the resin material 95 may have a shape similar to that of the partition region 50 described above, as shown in FIG.
  • a method for joining the metal foils 13 and 13 described above a method of applying pressure while heating the contact portions of the metal foils 13 and 13 has been described as an example.
  • an electron beam or the like is used as a contact portion in a vacuum atmosphere.
  • a welding method of irradiating and joining may be used.
  • the storage region 14 is partitioned into a plurality of partition regions 50 for the heat insulator 2 of the first embodiment in which the vacuum atmosphere is used, but the mantle heat insulator of the second embodiment described above is also a plurality of the same. You may make it divide into the division area 50 of this. Below, an example of the manufacturing method of such a mantle heat insulator is demonstrated.
  • the outer skin layer 32 described above is arranged so as to follow the surface (a plurality of recesses 55) of the first mold 61, and for example, a fiber-like or powder-like one.
  • the block main body 31 made of silica glass or the like is accommodated in each recess 55 through the outer skin layer 32.
  • a thin film aluminum layer 33 is disposed so as to close each recess 55, and the lower surface of the aluminum layer 33 and the upper surface of the outer skin layer 32 (between the recesses 55, 55). The area).
  • the mold 70 having the same configuration as the first mold 61 is used so as to be along the recess 55 of the mold 70.
  • the block body 31 is accommodated in each recess 55 via the outer skin layer 32 disposed in the above, and the above-described aluminum layer 33 is disposed so as to cover each recess 55.
  • the lower surface of the aluminum layer 33 and the upper surface of the outer skin layer 32 are bonded.
  • the first mold 61 is turned upside down so that the aluminum layers 33 and 33 face each other, and the resin layer 34 is placed between the aluminum layers 33 and 33. Deploy. Then, the aluminum layer 33, the resin layer 34, and the aluminum layer 33 are bonded to each other to form the heat reflecting sheet 35. Next, the outer layers 32 and 32 around the mantle insulator are bonded together, and the first mold 61 and the mold 70 are removed to obtain a mantle insulator partitioned into a plurality of partition regions 50.
  • the mantle heat insulator is also configured to be bendable and separable between the partition regions 50 and 50 in the same manner as the vacuum heat insulator (heat insulator 2) described above. 39 and 40, the thickness dimension of the heat reflecting sheet 35 is exaggerated.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)

Abstract

A metal foil (13) constituted of, for example, aluminum and configured so that a vacuum atmosphere is formed inside is disposed, and a resin sheet (16), e.g., a polyimide sheet, is disposed so as to surround the metal foil (13). Thus, vacuum insulation is conducted, and the metal foil (13) is inhibited from radiating heat. Meanwhile, an aluminum layer (33) and a resin layer (34) are superposed in a heat insulation block (30) in this order from the side facing a processing vessel (1). Thus, heat conducted from the processing vessel (1) is reflected toward the processing vessel (1) by the aluminum layer (33). When the temperature of the aluminum layer (33) has risen because the heat from the processing vessel (1) surpasses the reflection, outward heat radiation can be inhibited by the resin layer (34).

Description

断熱体及び断熱体の製造方法Insulator and method of manufacturing insulator
 本発明は、放熱を抑えるための断熱体及びこの断熱体の製造方法に関する。 The present invention relates to a heat insulator for suppressing heat dissipation and a method for manufacturing the heat insulator.
 半導体装置を製造するための製造装置において、当該製造装置の内部が例えばヒーターにより加熱される場合がある。このような製造装置では、ヒーターの加熱効率を高くするために、またオペレータに対する安全を図るために、例えば装置の外壁面に沿って断熱体が配置される。この断熱体の配置部位としては、具体的には例えばプロセスチャンバ(処理容器)の外表面や、ヒーターにより加熱されるガス配管及び排気管の周囲などの例えば180℃~200℃程度に昇温する部位が挙げられる。 In a manufacturing apparatus for manufacturing a semiconductor device, the inside of the manufacturing apparatus may be heated by, for example, a heater. In such a manufacturing apparatus, in order to increase the heating efficiency of the heater and to ensure safety for the operator, for example, a heat insulator is disposed along the outer wall surface of the apparatus. Specifically, the temperature of the heat insulator is increased to, for example, about 180 ° C. to 200 ° C. such as the outer surface of a process chamber (processing vessel), the surroundings of a gas pipe and an exhaust pipe heated by a heater, and the like. A site.
 このような断熱体の一例としては、熱伝導率のなるべく小さい材料例えばシリカ(二酸化ケイ素)ガラスなどからなる繊維状のガラスウールまたは粉末状の充填物と、このシリカガラスを覆うように設けられた例えば布などの梱包材をなす外皮層と、を備えたマントル断熱体が挙げられる。しかし、このマントル断熱体では、熱の反射率が例えば金属などに比べて小さいので、例えば処理容器からマントル断熱体に向かって熱が放熱されると、マントル断熱体が吸熱して昇温し、当該マントル断熱体を介して処理容器の熱を外部に放熱してしまう。 As an example of such a heat insulator, a fiber glass wool or powdery filler made of a material having as low a thermal conductivity as possible, for example, silica (silicon dioxide) glass, and the silica glass are provided. For example, the mantle heat insulator provided with the outer skin layer which makes packing materials, such as cloth, is mentioned. However, in this mantle insulator, since the heat reflectivity is small compared to, for example, metal, for example, when heat is dissipated from the processing vessel toward the mantle insulator, the mantle insulator absorbs heat and rises in temperature. The heat of the processing vessel is radiated to the outside through the mantle insulator.
 一方、熱を反射する部材として、例えばアルミニウム(Al)などの金属膜が知られており、例えば処理容器の外壁面に沿うようにこのような金属膜をマントル断熱体内に設けることによって、例えば処理容器から放熱される輻射熱を当該処理容器側に反射することができると考えられる。しかし、金属膜の熱伝導率が例えばシリカガラスよりも高いので、処理容器側に反射しきれなかった輻射熱により金属膜が徐々に昇温し、当該金属膜を介して処理容器の熱を外部に放熱してしまうおそれがある。 On the other hand, for example, a metal film such as aluminum (Al) is known as a member that reflects heat. For example, by providing such a metal film in the mantle insulation body along the outer wall surface of the processing container, for example, processing is performed. It is considered that the radiant heat radiated from the container can be reflected to the processing container side. However, since the thermal conductivity of the metal film is higher than that of, for example, silica glass, the metal film gradually increases in temperature due to the radiant heat that could not be reflected to the processing container side, and the heat of the processing container is transferred to the outside through the metal film. There is a risk of dissipating heat.
 また、既述のマントル断熱体よりも断熱性の高い断熱体として、真空領域を断熱体として用いる真空断熱体が知られている。この真空断熱体は、具体的には樹脂例えばポリエチレンなどからなるフィルムを2枚重ね合わせると共に、これらポリエチレンフィルムの間にシリカガラスからなる繊維や粉末を収納し、このシリカガラスの収納領域を真空に保ちながら、ポリエチレンフィルムの端面同士を周方向に亘って例えば数十℃程度に加熱して熱融着(ヒートシール)させることによって構成される。また、このポリエチレンフィルムのガスバリア性を補償するために、当該ポリエチレンフィルムを覆うように例えばアルミニウムなどの金属膜を形成して、真空領域への空気の透過(リーク)を抑えている。この真空断熱体は、例えば家庭用の電化製品などに用いられている。 Further, a vacuum insulator using a vacuum region as a heat insulator is known as a heat insulator having higher heat insulation than the mantle heat insulator described above. Specifically, this vacuum insulator is composed of two films made of a resin, such as polyethylene, and a fiber or powder made of silica glass is stored between the polyethylene films, and the storage area of the silica glass is evacuated. While maintaining, the end faces of the polyethylene film are heated to, for example, about several tens of degrees Celsius over the circumferential direction, and are heat-sealed (heat sealed). Further, in order to compensate for the gas barrier property of the polyethylene film, a metal film such as aluminum is formed so as to cover the polyethylene film, thereby suppressing air permeation (leakage) to the vacuum region. This vacuum heat insulator is used for household appliances, for example.
 しかし、ポリエチレンフィルムの耐熱温度が例えば100℃程度であるため、この真空断熱体を既述の処理容器などに設けると、処理容器の熱により例えばポリエチレンフィルムが溶融して、真空領域が維持できなくなって断熱性が悪化してしまう。また、真空断熱体の外表面に金属膜を設けると、既述のように金属膜の熱伝導率が高いため、処理容器の熱が当該金属膜を介して真空断熱体を回り込んで外部に放熱されてしまう。特に、既述のように処理容器の温度が200℃もの高温の場合には、このような熱の回り込みが大きくなってしまう。 
 特許文献1、2及び非特許文献1には、真空断熱体などについて記載されているが、既述の課題については検討されていない。
However, since the heat-resistant temperature of the polyethylene film is, for example, about 100 ° C., if this vacuum insulator is provided in the processing container described above, for example, the polyethylene film melts due to the heat of the processing container and the vacuum region cannot be maintained As a result, the heat insulation properties deteriorate. In addition, when a metal film is provided on the outer surface of the vacuum heat insulator, the heat conductivity of the metal film is high as described above, so the heat of the processing vessel wraps around the vacuum heat insulator through the metal film to the outside. Heat is dissipated. In particular, when the temperature of the processing container is as high as 200 ° C. as described above, such heat wrap-around becomes large.
Patent Documents 1 and 2 and Non-Patent Document 1 describe vacuum insulators and the like, but the above-described problems are not studied.
特開2008-240924JP2008-240924 特開2001-231681JP2001-231681
 本発明はこのような事情に鑑みてなされたものであり、その目的は、断熱性に優れた断熱体及びこの断熱体の製造方法を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide a heat insulator excellent in heat insulation and a method for manufacturing the heat insulator.
 本発明の断熱体は、
 周縁部の金属面同士が接合されて封止されると共に内部が真空雰囲気とされる金属箔からなる第1の封体と、
 この第1の封体内に封入された断熱材と、
 前記第1の封体を覆うように設けられた樹脂シートと、を備えたことを特徴とする。
The insulator of the present invention is
A first envelope made of a metal foil in which the peripheral metal surfaces are bonded and sealed, and the inside is in a vacuum atmosphere;
A heat insulating material enclosed in the first envelope;
And a resin sheet provided so as to cover the first sealing body.
 前記樹脂シートは、周縁部にて当該樹脂シート同士が封止されるかまたは周縁部が前記封体の周縁部に接合されることにより、第2の封体を形成し、
 この第2の封体と前記第1の封体との間に断熱材が充填されていることが好ましい。前記第1の封体は、互いに対向する金属箔の一部同士を接合することにより内部が互いに気密な複数の領域に区画され、
 前記複数の領域の各々は、断熱材が封入されていても良い。
The resin sheet forms a second sealed body by sealing the resin sheets with each other at the peripheral part or by joining the peripheral part to the peripheral part of the sealed body,
It is preferable that a heat insulating material is filled between the second envelope and the first envelope. The first sealing body is partitioned into a plurality of regions that are airtight to each other by joining a part of metal foils facing each other.
Each of the plurality of regions may be sealed with a heat insulating material.
 また、本発明の断熱体は、
 断熱ブロックと、この断熱ブロックの内部において被断熱領域に対向するように設けられた熱反射シートと、を備え、
 前記熱反射シートは、樹脂シートとこの樹脂シートにおける前記被断熱領域側に積層された金属層と、からなることを特徴とする。 
 前記断熱ブロックは、セラミック材を外皮層で覆うことにより構成されたことが好ましい。 
 前記樹脂シートは、ポリイミドからなることが好ましい。
Moreover, the heat insulator of the present invention is
A heat-insulating block, and a heat-reflective sheet provided so as to face the heat-insulated region inside the heat-insulating block,
The heat reflecting sheet includes a resin sheet and a metal layer laminated on the heat insulating region side of the resin sheet.
The heat insulating block is preferably configured by covering a ceramic material with an outer skin layer.
The resin sheet is preferably made of polyimide.
 本発明の断熱体の製造方法は、
 断熱材を包むように金属箔を配置して、この断熱材の周囲における前記金属箔の金属面同士を互いに圧接させる工程と、
 これら断熱材及び金属箔が置かれる雰囲気を真空雰囲気に保ちながら、前記金属面同士の間で原子の拡散が起こるように、前記金属面同士の接触部を加熱することにより、金属面同士を互いに接合させて第1の封体を形成する工程と、
 続いて、樹脂シートにより前記第1の封体を覆う工程と、を含むことを特徴とする。
The method for producing the heat insulator of the present invention is as follows.
Arranging the metal foil so as to wrap the heat insulating material, and pressing the metal surfaces of the metal foil around the heat insulating material with each other;
While maintaining the atmosphere in which the heat insulating material and the metal foil are placed in a vacuum atmosphere, by heating the contact portion between the metal surfaces so that atoms diffuse between the metal surfaces, the metal surfaces are mutually bonded. Bonding and forming a first envelope;
And a step of covering the first sealing body with a resin sheet.
 前記第1の封体を形成する工程と前記樹脂シートにより前記第1の封体を覆う工程との間に、当該第1の封体の外側に断熱材を配置する工程を行い、
 前記樹脂シートにより前記第1の封体を覆う工程は、前記第1の封体の外側において当該樹脂シートの周縁部同士を封止する工程または前記樹脂シートの周縁部を前記第1の封体の周縁部に接合する工程であり、この工程により前記第1の封体の外側の断熱材が前記樹脂シートからなる第2の封体と前記第1の封体との間に充填されていても良い。
Between the step of forming the first envelope and the step of covering the first envelope with the resin sheet, performing a step of disposing a heat insulating material on the outside of the first envelope,
The step of covering the first envelope with the resin sheet includes the step of sealing the peripheral portions of the resin sheet on the outside of the first envelope or the peripheral portion of the resin sheet with the first envelope. In this step, the heat insulating material outside the first sealing body is filled between the second sealing body made of the resin sheet and the first sealing body. Also good.
 前記金属箔の金属面同士を互いに圧接させる工程は、複数の凹部が形成された一方の金型に一方の金属箔を装着する工程と、前記凹部内に各々前記一方の金属箔を介して断熱材を位置させる工程と、その後、前記一方の金型に他方の金型を、前記一方の金属箔上に積層された他方の金属箔を介して圧接する工程であり、
 前記第1の封体を形成する工程は、前記凹部の各々の周縁部における金属面同士の接触部を加熱する工程であっても良い。
The step of pressing the metal surfaces of the metal foil together includes the step of attaching one metal foil to one mold in which a plurality of recesses are formed, and heat insulation through the one metal foil in each of the recesses. A step of positioning the material, and then pressing the other mold to the one mold through the other metal foil laminated on the one metal foil,
The step of forming the first sealing body may be a step of heating a contact portion between metal surfaces in each peripheral portion of the concave portion.
本発明の断熱体を備えた加熱装置の一例を示す斜視図である。It is a perspective view which shows an example of the heating apparatus provided with the heat insulating body of this invention. 断熱体の第1の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of 1st Embodiment of a heat insulating body. 断熱体を示す拡大断面図である。It is an expanded sectional view showing a heat insulator. 加熱装置における作用の一例を示す断面図である。It is sectional drawing which shows an example of the effect | action in a heating apparatus. 断熱体の他の例を示す断面図である。It is sectional drawing which shows the other example of a heat insulating body. 断熱体の他の例を示す断面図である。It is sectional drawing which shows the other example of a heat insulating body. 断熱体の他の例を示す断面図である。It is sectional drawing which shows the other example of a heat insulating body. 断熱体の第2の実施の形態の一例を示す断面である。It is a cross section which shows an example of 2nd Embodiment of a heat insulating body. 断熱体における作用の一例を示す断面図である。It is sectional drawing which shows an example of the effect | action in a heat insulating body. 断熱体における作用の一例を示す断面図である。It is sectional drawing which shows an example of the effect | action in a heat insulating body. 第2の実施の形態における他の例を示す断面図である。It is sectional drawing which shows the other example in 2nd Embodiment. 第2の実施の形態における他の例を示す断面図である。It is sectional drawing which shows the other example in 2nd Embodiment. 加熱装置の他の例を示す断面図である。It is sectional drawing which shows the other example of a heating apparatus. 断熱体が適用される配管の一例を示す概略図である。It is a schematic diagram showing an example of piping to which a heat insulator is applied. 本発明の他の実施の形態の断熱体を示す斜視図である。It is a perspective view which shows the heat insulator of other embodiment of this invention. 他の実施の形態の断熱体を示す平面図である。It is a top view which shows the heat insulating body of other embodiment. 他の実施の形態の断熱体を示す側面図である。It is a side view which shows the heat insulating body of other embodiment. 他の実施の形態の断熱体の示す断面図である。It is sectional drawing which shows the heat insulating body of other embodiment. 他の実施の形態の断熱体の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the heat insulating body of other embodiment. 他の実施の形態の断熱体の製造方法の一例を示す斜視図である。It is a perspective view which shows an example of the manufacturing method of the heat insulating body of other embodiment. 他の実施の形態の断熱体の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the heat insulating body of other embodiment. 他の実施の形態の断熱体の製造方法の一例を示す断面拡大図である。It is a cross-sectional enlarged view which shows an example of the manufacturing method of the heat insulating body of other embodiment. 他の実施の形態の断熱体の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the heat insulating body of other embodiment. 本発明の断熱体が設けられた排気管の一例を示す断面図である。It is sectional drawing which shows an example of the exhaust pipe provided with the heat insulating body of this invention. 本発明の断熱体が設けられた加熱装置の一部を示す断面拡大図である。It is a cross-sectional enlarged view which shows a part of heating apparatus provided with the heat insulating body of this invention. 他の実施の形態の断熱体の製造方法の一例を示す斜視図である。It is a perspective view which shows an example of the manufacturing method of the heat insulating body of other embodiment. 他の実施の形態の断熱体の製造方法の一例を示す断面拡大図である。It is a cross-sectional enlarged view which shows an example of the manufacturing method of the heat insulating body of other embodiment. 他の実施の形態の断熱体の製造方法の一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the manufacturing method of the heat insulating body of other embodiment. 他の実施の形態の断熱体の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the heat insulating body of other embodiment. 他の実施の形態の断熱体の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the heat insulating body of other embodiment. 本発明の他の実施の形態の断熱体を示す平面図である。It is a top view which shows the heat insulator of other embodiment of this invention. 本発明の他の実施の形態の断熱体を示す斜視図である。It is a perspective view which shows the heat insulator of other embodiment of this invention. 本発明の他の実施の形態の断熱体を示す斜視図である。It is a perspective view which shows the heat insulator of other embodiment of this invention. 第1の実施の形態の断熱体の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the heat insulating body of 1st Embodiment. 本発明の他の実施の形態の断熱体を製造する時に用いられる金型を示す模式図である。It is a schematic diagram which shows the metal mold | die used when manufacturing the heat insulating body of other embodiment of this invention. 本発明の他の実施の形態の断熱体を製造する時に用いられる金型を示す模式図である。It is a schematic diagram which shows the metal mold | die used when manufacturing the heat insulating body of other embodiment of this invention. 他の実施の形態の断熱体を製造方法の一例を示す断面拡大図である。It is a cross-sectional enlarged view which shows an example of the manufacturing method of the heat insulating body of other embodiment. 本発明の他の実施の形態の断熱体を製造方法の一例を示す側面図である。It is a side view which shows an example of the manufacturing method of the heat insulating body of other embodiment of this invention. 第2の実施の形態の断熱体の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the heat insulating body of 2nd Embodiment. 第2の実施の形態の断熱体の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the heat insulating body of 2nd Embodiment.
 本発明の実施形態によれば、内部が真空雰囲気となるように構成された金属箔からなる第1の封体を覆うように樹脂シートを設けているので、真空断熱を行うと共に前記第1の封体からの放熱を抑えることができ、従って断熱性に優れた断熱体を得ることができる。また、本発明の他の実施形態によれば、断熱ブロックの内部に、樹脂シートとこの樹脂シートにおける被断熱領域側に積層された金属層とからなる熱反射シートを被断熱領域に対向するように設けているので、被断熱領域からの放熱を被断熱領域に向かって金属層により反射すると共に金属層から外部への放熱を抑えることができ、そのため断熱性に優れた断熱体を得ることができる。 According to the embodiment of the present invention, since the resin sheet is provided so as to cover the first sealing body made of the metal foil configured to be in a vacuum atmosphere, the first insulation is performed while performing vacuum heat insulation. Heat dissipation from the sealed body can be suppressed, and therefore a heat insulator excellent in heat insulation can be obtained. According to another embodiment of the present invention, a heat reflecting sheet comprising a resin sheet and a metal layer laminated on the heat-insulating region side of the resin sheet is opposed to the heat-insulating region inside the heat-insulating block. Therefore, the heat radiation from the heat-insulated region can be reflected by the metal layer toward the heat-insulated region and the heat radiation from the metal layer to the outside can be suppressed, so that a heat insulator excellent in heat insulation can be obtained. it can.
 [第1の実施の形態]
 本発明の断熱体の実施の形態の一例について、図1~図3を参照して説明する。先ず、この断熱体を備えた加熱装置の全体構成について簡単に説明する。図1に示すように、この装置は、図示しない基板例えば半導体ウエハ(以下「ウエハ」と言う)を内部に収納して、例えばCVD(Chemical Vapor Deposition)法やALD(Atomic Layer Deposition)法による成膜処理を行うため、図示しないヒーターなどを用いてウエハを例えば700℃程度に加熱するための被断熱領域である処理容器1を備えている。処理容器1の例えばアルミニウム(Al)などの金属からなる外壁面には、図1に示すように、処理容器1から外部への放熱を抑えるために、複数の断熱体2が側面側及び上面側から処理容器1を覆うように配置されている。また、処理容器1には、処理容器1の内部の雰囲気を真空排気するための排気管1aが接続され、この排気管1aの他端側はバタフライバルブなどの圧力調整部を介して真空ポンプ(いずれも図示せず)に接続されている。また、この処理容器1には、処理容器1内に処理ガス例えば成膜ガスを供給するための図示しない処理ガス供給路が接続されている。尚、この図1においては、処理容器1の右側の断熱体2を省略している。
[First Embodiment]
An example of an embodiment of a heat insulator according to the present invention will be described with reference to FIGS. First, the whole structure of the heating apparatus provided with this heat insulating body is demonstrated easily. As shown in FIG. 1, this apparatus accommodates a substrate (not shown) such as a semiconductor wafer (hereinafter referred to as “wafer”) inside, and is formed by, for example, a CVD (Chemical Vapor Deposition) method or an ALD (Atomic Layer Deposition) method. In order to perform the film processing, a processing container 1 which is a heat-insulated region for heating the wafer to about 700 ° C. using a heater (not shown) or the like is provided. On the outer wall surface made of a metal such as aluminum (Al), for example, in the processing container 1, as shown in FIG. Are disposed so as to cover the processing container 1. Further, an exhaust pipe 1a for evacuating the atmosphere inside the processing container 1 is connected to the processing container 1, and the other end of the exhaust pipe 1a is connected to a vacuum pump (via a pressure adjusting unit such as a butterfly valve). Neither is shown). The processing container 1 is connected to a processing gas supply path (not shown) for supplying a processing gas, for example, a film forming gas, into the processing container 1. In FIG. 1, the heat insulator 2 on the right side of the processing container 1 is omitted.
 断熱体2は、処理容器1の外壁面に臨む面が広くなるように概略板状型に形成されている。また、断熱体2の内部には、図2に示すように、処理容器1の壁面に沿うように配置された概略箱型の例えばシリカ(二酸化ケイ素)などのガラスウール(繊維)や粉体からなる充填材(断熱材)11が設けられており、この充填材11の周囲には、例えば厚さが0.05mmのアルミニウムなどからなる金属箔13が第1の封体として充填材11を覆うように設けられている。金属箔13の内部領域である充填材11の収納領域14は、真空雰囲気に保たれている。即ち、この収納領域14は、2枚の金属箔13、13を互いに重ね合わせるように積層し、これら金属箔13、13間に充填材11を収納し、図示しない真空容器内において金属箔13、13の周縁部に対して周方向に亘って圧力を加えながら加熱して金属箔13、13同士を接合する原子の拡散接合法により気密に形成される。従って、収納領域14の周囲における金属箔13、13が、図3に模式的に示すように、接合部15において金属箔13、13間の界面や境界がほとんど判別できないように接合されるため、収納領域14は気密に封止される。また、金属箔13、13は、収納領域14が真空雰囲気となっているため、充填材11の外面形状に倣うように充填材11に押し付けられる。 The heat insulator 2 is formed in a substantially plate shape so that the surface facing the outer wall surface of the processing container 1 is wide. In addition, as shown in FIG. 2, the heat insulator 2 is made of glass wool (fiber) such as silica (silicon dioxide) or powder in a substantially box shape arranged along the wall surface of the processing container 1. A filler (heat insulating material) 11 is provided. Around the filler 11, a metal foil 13 made of, for example, aluminum having a thickness of 0.05 mm covers the filler 11 as a first sealing body. It is provided as follows. A storage region 14 for the filler 11 that is an internal region of the metal foil 13 is maintained in a vacuum atmosphere. That is, the storage area 14 is formed by stacking two metal foils 13 and 13 so as to overlap each other, storing the filler 11 between the metal foils 13 and 13, and in the vacuum container (not shown) It is formed airtight by an atomic diffusion bonding method in which the metal foils 13 and 13 are bonded to each other by heating while applying pressure to the peripheral portion of the 13 in the circumferential direction. Therefore, since the metal foils 13 and 13 around the storage region 14 are joined so that the interface and the boundary between the metal foils 13 and 13 are hardly discernable at the joint 15 as schematically shown in FIG. The storage area 14 is hermetically sealed. The metal foils 13 and 13 are pressed against the filler 11 so as to follow the outer surface shape of the filler 11 because the storage region 14 is in a vacuum atmosphere.
 金属箔13、13の外側には、処理容器1の熱が金属箔13を介して伝熱してこの処理容器1から外部に放熱されることを抑えるために、例えば厚さが0.05mmのポリイミドなどの樹脂材からなる樹脂シート16、16がこれらの金属箔13、13を例えば上下から挟み込むように積層されている。この樹脂シート16は、熱伝導率が例えば0.28W/mK、耐熱温度が300℃となっている。これらの樹脂シート16、16は、例えば金属箔13、13の接合部15に近接する部位において、周方向に亘って気密に溶着または接着されて第2の封体をなしている。これらの金属箔13と樹脂シート16との間において気密に形成された気密領域17には、断熱材18例えばシリカからなる繊維や粉末が図示しない布などの収納部材に収納されて、または収納部材なしで配置されている。この気密領域17は、例えば大気雰囲気となっている。尚、図3では金属箔13の外側の断熱材18や樹脂シート16については描画を省略している。 In order to prevent heat from the processing container 1 from being transferred through the metal foil 13 and being radiated to the outside from the processing container 1 on the outside of the metal foils 13 and 13, for example, a polyimide having a thickness of 0.05 mm Resin sheets 16 and 16 made of a resin material such as these are laminated so as to sandwich the metal foils 13 and 13 from above and below, for example. The resin sheet 16 has a thermal conductivity of, for example, 0.28 W / mK and a heat resistant temperature of 300 ° C. These resin sheets 16 and 16 are, for example, welded or bonded in a hermetic manner in the circumferential direction at a portion close to the joint 15 of the metal foils 13 and 13 to form a second sealing body. In the airtight region 17 formed hermetically between the metal foil 13 and the resin sheet 16, a heat insulating material 18, for example, a fiber or powder made of silica is stored in a storage member such as a cloth (not shown) or a storage member. Arranged without. The airtight region 17 is, for example, an air atmosphere. In FIG. 3, drawing of the heat insulating material 18 and the resin sheet 16 outside the metal foil 13 is omitted.
 続いて、この断熱体2を備えた加熱装置の作用について、図4を参照して説明する。既述の図1に示したように、複数の断熱体2により外壁面が覆われた処理容器1内にウエハを収納すると共に、排気管1aを介して処理容器1内を真空引きして、例えば成膜処理を行う時の処理圧力となるように排気管1aに設けられた図示しないバタフライバルブの開度を調整する。そして、処理容器1内の例えばヒーターによってウエハを例えば700℃程度に加熱すると共に、このウエハに例えば成膜用の処理ガスを供給すると、ウエハの表面において例えば処理ガスがヒーターの熱により分解して薄膜が成膜されていく。 Subsequently, the operation of the heating device provided with the heat insulator 2 will be described with reference to FIG. As shown in FIG. 1 described above, the wafer is stored in the processing container 1 whose outer wall surface is covered with a plurality of heat insulators 2, and the processing container 1 is evacuated through the exhaust pipe 1a. For example, the opening degree of a butterfly valve (not shown) provided in the exhaust pipe 1a is adjusted so as to have a processing pressure when performing the film forming process. Then, for example, when the wafer is heated to, for example, about 700 ° C. by the heater in the processing container 1 and a processing gas for film formation is supplied to the wafer, for example, the processing gas is decomposed on the wafer surface by the heat of the heater. A thin film is formed.
 ここで、処理容器1の外壁面は、処理容器1内部からの熱の伝熱により、例えば200℃程度に加熱され得る。そして、この熱は、処理容器1の外壁面に沿って設けられた断熱体2を介して外部に放熱されようとするが、既述のように熱伝導率の低い樹脂シート16が外壁面に沿って配置されているので、断熱体2内への伝熱が抑えられる。また、樹脂シート16の内側に設けられた断熱材18によって、同様に処理容器1から断熱体2の内部への伝熱が妨げられる。そのため、断熱体2の内部には、処理容器1の熱の一部が樹脂シート16及び断熱材18を介して金属箔13に伝熱されていく。 Here, the outer wall surface of the processing container 1 can be heated to, for example, about 200 ° C. by heat transfer from the inside of the processing container 1. And this heat is going to be radiated outside through the heat insulator 2 provided along the outer wall surface of the processing container 1, but the resin sheet 16 having a low thermal conductivity is applied to the outer wall surface as described above. Since it arrange | positions along, the heat transfer into the heat insulating body 2 is suppressed. Similarly, heat transfer from the processing container 1 to the inside of the heat insulator 2 is prevented by the heat insulating material 18 provided inside the resin sheet 16. Therefore, a part of the heat of the processing container 1 is transferred to the metal foil 13 through the resin sheet 16 and the heat insulating material 18 inside the heat insulating body 2.
 そして、図4に示すように、処理容器1の熱が金属箔13に到達すると、金属箔13、13の内部の収納領域14を介して伝熱しようとするが、収納領域14が熱伝導率の極めて低い真空雰囲気となっているため、収納領域14にはほとんど伝熱されない。一方、金属箔13が断熱材18などよりも熱伝導率の高いアルミニウムから構成されているので、処理容器1内から伝熱された熱は、この金属箔13を介して収納領域14を回り込んで行く。処理容器1内の熱が金属箔13を介して例えば処理容器1の反対側の面にまで回り込むと、この熱は金属箔13から温度の低い外部に向かって伝熱しようとする。しかし、金属箔13の外側には断熱材18及び樹脂シート16が配置されているので、樹脂シート16から外部への伝熱が抑えられることになる。このとき、樹脂シート16、16同士の接合部及び金属箔13、13同士の接合部15は、夫々200℃に近い温度に昇温することになるが、樹脂シート16及び金属箔13の耐熱性が高い(樹脂シート16:300℃、金属箔13:660℃)ため、溶融や変質が起こらない。従って、収納領域14については真空雰囲気が維持され、気密領域17については大気雰囲気が保たれる。尚、処理容器1の外壁面には、既述の図1に示すように断熱体2が隙間無く配置されているが、図4においては1つの断熱体2を模式的に描画している。 And as shown in FIG. 4, when the heat | fever of the processing container 1 reaches | attains the metal foil 13, it will try to transfer heat through the storage area | region 14 inside the metal foils 13 and 13, but the storage area | region 14 is thermal conductivity. Therefore, almost no heat is transferred to the storage area 14. On the other hand, since the metal foil 13 is made of aluminum having a higher thermal conductivity than the heat insulating material 18 or the like, the heat transferred from the inside of the processing container 1 wraps around the storage region 14 via the metal foil 13. Go on. When the heat in the processing container 1 wraps around the metal foil 13 to, for example, the opposite surface of the processing container 1, this heat tends to transfer from the metal foil 13 toward the outside where the temperature is low. However, since the heat insulating material 18 and the resin sheet 16 are arranged outside the metal foil 13, heat transfer from the resin sheet 16 to the outside is suppressed. At this time, the joint between the resin sheets 16 and 16 and the joint 15 between the metal foils 13 and 13 are heated to temperatures close to 200 ° C., respectively, but the heat resistance of the resin sheet 16 and the metal foil 13. Is high (resin sheet 16: 300 ° C., metal foil 13: 660 ° C.), no melting or alteration occurs. Accordingly, a vacuum atmosphere is maintained for the storage area 14 and an air atmosphere is maintained for the airtight area 17. In addition, although the heat insulating body 2 is arrange | positioned on the outer wall surface of the processing container 1 without gap as shown in FIG. 1 mentioned above, in FIG. 4, one heat insulating body 2 is drawn typically.
 上述の実施の形態によれば、被断熱領域である処理容器1から外部への放熱を抑えるために、内部が真空雰囲気となるように構成された金属箔13を設けると共に、金属箔13を覆うように樹脂シート16を設けているので、真空断熱を行うと共に金属箔13からの放熱を抑えることができ、従って断熱性に優れた断熱体2を得ることができる。 According to the above-described embodiment, in order to suppress heat radiation from the processing container 1 which is a heat-insulated region to the outside, the metal foil 13 configured to have a vacuum atmosphere is provided and the metal foil 13 is covered. Since the resin sheet 16 is provided as described above, it is possible to perform the heat insulation from the vacuum and to suppress the heat radiation from the metal foil 13, and thus it is possible to obtain the heat insulating body 2 having excellent heat insulating properties.
 また、耐熱温度が300℃の樹脂シート16を金属箔13の周囲を覆うように設けているので、既述のように180℃~200℃程度に昇温する処理容器1の外壁面に断熱体2を配置する場合であっても、樹脂シート16の溶融や変質などの劣化を抑えることができ、金属箔13を介して処理容器1の熱が外部に回り込むことを抑制できる。更に、気体の透過や処理容器1の温度における溶融が起こらないアルミニウムにより収納領域14を形成しているので、収納領域14における真空度の低下を抑えることができ、従って断熱性を長期間に亘って維持することができる。更にまた、金属箔13と樹脂シート16との間の気密領域17に断熱材18を設けているので、気密領域17の内部の雰囲気及び断熱材18によって、金属箔13と樹脂シート16との間における伝熱を抑制でき、従って処理容器1の放熱を抑えることができる。また、金属箔13を屈曲性に富むアルミニウムにより構成しているので、金属箔13を破断させることなく収納領域14内を真空雰囲気にすることができると共に、処理容器1に沿って断熱体2を配置することができる。 In addition, since the resin sheet 16 having a heat resistant temperature of 300 ° C. is provided so as to cover the periphery of the metal foil 13, as described above, the heat insulator is formed on the outer wall surface of the processing container 1 that is heated to about 180 ° C. to 200 ° C. Even when 2 is disposed, deterioration of the resin sheet 16 such as melting and alteration can be suppressed, and heat of the processing container 1 can be prevented from flowing outside through the metal foil 13. Furthermore, since the storage region 14 is formed of aluminum that does not cause gas permeation or melting at the temperature of the processing container 1, it is possible to suppress a decrease in the degree of vacuum in the storage region 14, and thus heat insulation can be maintained over a long period of time. Can be maintained. Furthermore, since the heat insulating material 18 is provided in the airtight region 17 between the metal foil 13 and the resin sheet 16, the atmosphere inside the airtight region 17 and the heat insulating material 18 can be used between the metal foil 13 and the resin sheet 16. Therefore, heat transfer from the processing container 1 can be suppressed. In addition, since the metal foil 13 is made of aluminum having high flexibility, the inside of the storage area 14 can be evacuated without breaking the metal foil 13, and the heat insulator 2 is disposed along the processing container 1. Can be arranged.
 既述の例では、気密領域17を大気雰囲気としたが、例えば気密領域17の内部領域を真空引きしながら、あるいは真空容器内にこの断熱体2を収納した状態で樹脂シート16、16同士の接合部を溶着(ヒートシール)することによって、気密領域17を真空雰囲気にして断熱性を更に高めるようにしても良い。この場合には、樹脂シート16を介して気密領域17内に外部のガスが侵入することを抑えるために、図5に示すように、樹脂シート16の外側に樹脂シート16のガスバリア性を補償するための例えばアルミニウムからなる補助金属箔21を気密に設けても良い。補助金属箔21は、既述の金属箔13と同様に、断熱体2を上下から挟み込むように2枚の補助金属箔21、21を積層し、これら補助金属箔21、21の周縁部を周方向に亘って接合することにより形成される。また、処理容器1内の熱がこの補助金属箔21、21を介して外部に回り込むことを抑えるために、ポリイミドからなる補助樹脂シート22を補助金属箔21の外側に設けても良い。これらの補助金属箔21と補助樹脂シート22との間に、例えばシリカガラスなどからなる断熱材を収納しても良い。 In the above-described example, the airtight region 17 is an air atmosphere. By welding (heat sealing) the joint portion, the airtight region 17 may be made into a vacuum atmosphere to further improve the heat insulation. In this case, the gas barrier property of the resin sheet 16 is compensated on the outside of the resin sheet 16 as shown in FIG. 5 in order to prevent external gas from entering the airtight region 17 through the resin sheet 16. For this purpose, an auxiliary metal foil 21 made of aluminum, for example, may be provided in an airtight manner. As in the case of the metal foil 13 described above, the auxiliary metal foil 21 is formed by laminating two auxiliary metal foils 21 and 21 so as to sandwich the heat insulator 2 from above and below, and surrounding the peripheral portions of these auxiliary metal foils 21 and 21. It is formed by joining over the direction. In addition, an auxiliary resin sheet 22 made of polyimide may be provided outside the auxiliary metal foil 21 in order to prevent the heat in the processing container 1 from flowing outside through the auxiliary metal foils 21 and 21. A heat insulating material made of, for example, silica glass may be accommodated between the auxiliary metal foil 21 and the auxiliary resin sheet 22.
 また、金属箔13、13同士は、接合部15において、原子の拡散接合法により接合されたが、外部からのガスが侵入しない接合方法例えば電子ビームなどを用いた溶接法により接合されても良い。更に、金属箔13と樹脂シート16との間に断熱材18を設けたが、断熱材18を設けずに金属箔13の外側に例えばポリイミドをコーティングして樹脂シート16を構成しても良い。この場合には、例えば金属箔13、13同士を気密に接合した後、これらの金属箔13、13の外側に樹脂シート16が積層される。更に、金属箔13を覆うように樹脂シート16を配置したが、図6に示すように、樹脂シート16同士を離間させつつ、樹脂シート16及び金属箔13の周縁部同士を接合しても良い。このように樹脂シート16、16間を離間させる方法としては、具体的には例えば金属箔13、13同士を接合した後、接合部15付近を周方向に亘って覆うようにマスキング材を塗布する。次いで、金属箔13の表面に樹脂シート16をコーティングし、続いてマスキング材を剥離する。このように、樹脂シート16、16同士を離間させることにより、これら樹脂シート16、16間の伝熱が抑制されるので、更に断熱性を高めることができる。 Further, the metal foils 13 and 13 are bonded to each other at the bonding portion 15 by the atomic diffusion bonding method, but may be bonded by a bonding method in which gas from the outside does not enter, for example, a welding method using an electron beam. . Furthermore, although the heat insulating material 18 is provided between the metal foil 13 and the resin sheet 16, the resin sheet 16 may be configured by coating polyimide, for example, on the outside of the metal foil 13 without providing the heat insulating material 18. In this case, for example, after the metal foils 13 and 13 are joined airtightly, the resin sheet 16 is laminated on the outside of the metal foils 13 and 13. Further, the resin sheet 16 is disposed so as to cover the metal foil 13, but as shown in FIG. 6, the resin sheet 16 and the peripheral portions of the metal foil 13 may be joined together while separating the resin sheets 16. . As a method of separating the resin sheets 16 and 16 in this way, specifically, for example, after the metal foils 13 and 13 are bonded together, a masking material is applied so as to cover the vicinity of the bonding portion 15 in the circumferential direction. . Next, the resin sheet 16 is coated on the surface of the metal foil 13, and then the masking material is peeled off. Thus, since the heat transfer between these resin sheets 16 and 16 is suppressed by separating the resin sheets 16 and 16, heat insulation can be improved further.
 また、断熱体2について、金属箔13により収納領域14を気密に保持するようにしたが、図7に示すように、金属箔13に代えて樹脂シート16により真空雰囲気を保持するようにしても良い。この場合には、充填材11の外側には樹脂シート16、16が設けられ、これら樹脂シート16、16は熱融着(ヒートシール)により既述の接合部15が形成される。また、この樹脂シート16を覆うように、樹脂シート16のガスバリア性を補償するための金属箔13と、この金属箔13からの放熱を抑えるための補助樹脂シート22と、が内側からこの順番で形成されることになる。 In addition, the storage region 14 is hermetically held by the metal foil 13 for the heat insulator 2, but as shown in FIG. 7, a vacuum atmosphere may be held by the resin sheet 16 instead of the metal foil 13. good. In this case, resin sheets 16 and 16 are provided on the outer side of the filler 11, and the above-described joint portion 15 is formed on these resin sheets 16 and 16 by heat fusion (heat sealing). Further, a metal foil 13 for compensating the gas barrier property of the resin sheet 16 and an auxiliary resin sheet 22 for suppressing heat radiation from the metal foil 13 are arranged in this order from the inside so as to cover the resin sheet 16. Will be formed.
 [第2の実施の形態]
 続いて、本発明の断熱体の第2の実施の形態の一例について、図8を参照して説明する。この断熱体は、例えば繊維状あるいは粉体状の例えばシリカガラスなどからなるブロック本体31が、例えばシリカ繊維からなる外皮層(梱包材)32によって表面が覆われてマントル断熱体を構成している。これらのブロック本体31及び外皮層32により断熱ブロック30(断熱体2)が構成されており、この断熱ブロック30は、例えば概略箱型となるように構成されている。この断熱ブロック30の内部には、例えばポリイミドシートからなる樹脂層34と、この樹脂層34に例えば蒸着により形成された金属層であるアルミニウム層33と、からなる熱反射シート35が収納されている。アルミニウム層33は、処理容器1内の熱を処理容器1に向けて反射するためのものであり、樹脂層34は、このアルミニウム層33が処理容器1の熱を反射しきれずに昇温した場合に熱が外部へ放熱されることを抑えるためのものである。この熱反射シート35は、断熱ブロック30の厚さ方向において概略中央位置となるように、即ち厚さ方向両側からほぼ同じ厚さのブロック本体31により挟まれるように、断熱ブロック30内に配置されている。そして、この熱反射シート35が処理容器1に対向するように、断熱ブロック30が配置されている。これらのアルミニウム層33及び樹脂層34は、膜厚が例えば夫々0.05mm、0.05mmとなっている。尚、熱反射シート35の積層方法としては、アルミニウム層33の表面に樹脂層34をコーティングしても良いし、あるいはこれらのアルミニウム層33及び樹脂層34を個別にシート状に形成して互いに接着しても良い。
[Second Embodiment]
Next, an example of the second embodiment of the heat insulator of the present invention will be described with reference to FIG. In this heat insulator, a block main body 31 made of, for example, fiber or powder, such as silica glass, is covered with an outer skin layer (packing material) 32 made of, for example, silica fiber to constitute a mantle heat insulator. . The block main body 31 and the outer skin layer 32 constitute a heat insulating block 30 (heat insulating body 2), and the heat insulating block 30 is configured to have, for example, a substantially box shape. Inside the heat insulating block 30, a heat reflecting sheet 35 made of, for example, a resin layer 34 made of a polyimide sheet and an aluminum layer 33 which is a metal layer formed on the resin layer 34 by vapor deposition, for example, is housed. . The aluminum layer 33 is for reflecting the heat in the processing container 1 toward the processing container 1, and the resin layer 34 is heated when the aluminum layer 33 cannot reflect the heat of the processing container 1. This is to prevent heat from being radiated to the outside. The heat reflecting sheet 35 is disposed in the heat insulating block 30 so as to be approximately at the center position in the thickness direction of the heat insulating block 30, that is, to be sandwiched between the block main bodies 31 having substantially the same thickness from both sides in the thickness direction. ing. And the heat insulation block 30 is arrange | positioned so that this heat | fever reflection sheet 35 may oppose the processing container 1. FIG. The aluminum layer 33 and the resin layer 34 have a thickness of, for example, 0.05 mm and 0.05 mm, respectively. As a method of laminating the heat reflecting sheet 35, the surface of the aluminum layer 33 may be coated with a resin layer 34, or the aluminum layer 33 and the resin layer 34 are individually formed into a sheet shape and bonded to each other. You may do it.
 この第2の実施の形態では、既述のようにウエハに対して加熱処理を行うことによって処理容器1の外壁面が例えば200℃程度に昇温すると、断熱ブロック30内にこの処理容器1の熱が伝熱しようとするが、外壁面に隣接する外皮層32及びブロック本体31により断熱ブロック30内への伝熱が抑えられる。そして、処理容器1の熱の一部が熱反射シート35に到達すると、図9に示すように、アルミニウム層33によりこの熱の大部分が処理容器1側に向けて反射される。そして、処理容器1側に反射しきれなかった熱によりアルミニウム層33が次第に昇温すると、アルミニウム層33の熱伝導率が高いため、この熱が処理容器1の外側のブロック本体31に向かって伝熱しようとする。しかし、このアルミニウム層33とブロック本体31との間にアルミニウム層33よりも熱伝導率の小さい樹脂層34が設けられているので、図10に示すように、樹脂層34によってブロック本体31への放熱が抑制される。このブロック本体31に樹脂層34を介して処理容器1から僅かに伝熱したとしても、このブロック本体31が既述のようにシリカガラスにより構成されているので、外部への放熱が抑えられることになる。 In the second embodiment, when the outer wall surface of the processing container 1 is heated to, for example, about 200 ° C. by performing the heat treatment on the wafer as described above, the processing container 1 is placed in the heat insulating block 30. Although heat is about to be transferred, heat transfer into the heat insulating block 30 is suppressed by the outer skin layer 32 and the block body 31 adjacent to the outer wall surface. And when a part of heat of the processing container 1 reaches | attains the heat | fever reflection sheet 35, as shown in FIG. 9, most heat of this is reflected toward the processing container 1 side by the aluminum layer 33. As shown in FIG. When the temperature of the aluminum layer 33 gradually increases due to heat that could not be reflected to the processing container 1 side, the heat conductivity of the aluminum layer 33 is high, and thus this heat is transmitted toward the block body 31 outside the processing container 1. Try to heat up. However, since a resin layer 34 having a lower thermal conductivity than that of the aluminum layer 33 is provided between the aluminum layer 33 and the block main body 31, the resin layer 34 provides the block main body 31 with a resin layer 34 as shown in FIG. Heat dissipation is suppressed. Even if the block main body 31 is slightly transferred from the processing container 1 through the resin layer 34, the heat dissipation to the outside can be suppressed because the block main body 31 is made of silica glass as described above. become.
 この第2の実施の形態では、断熱ブロック30の内部にアルミニウム層33と樹脂層34とを処理容器1側からこの順番で積層しているので、アルミニウム層33により処理容器1から伝熱される熱を処理容器1に向けて反射することができ、また処理容器1の熱を反射しきれずにアルミニウム層33が昇温した場合であっても、樹脂層34により外部への放熱を抑えることができる。そのため、断熱性に優れた断熱体を得ることができる。従って、例えば従来のシリカウールなどだけで構成されていたマントル断熱体に比べて、断熱ブロック30(ブロック本体31)を薄くすることができる。 In the second embodiment, since the aluminum layer 33 and the resin layer 34 are laminated in this order from the processing container 1 side inside the heat insulating block 30, the heat transferred from the processing container 1 by the aluminum layer 33. Can be reflected toward the processing container 1, and even when the aluminum layer 33 is heated without reflecting the heat of the processing container 1, heat radiation to the outside can be suppressed by the resin layer 34. . Therefore, a heat insulator excellent in heat insulation can be obtained. Therefore, for example, the heat insulation block 30 (block main body 31) can be made thinner compared to a mantle heat insulator made of only conventional silica wool or the like.
 図11及び図12は、第2の実施の形態の変形例を示している。図11は、断熱ブロック30内において、処理容器1側の外皮層32に近接する領域に熱反射シート35を設けた例を示している。この熱反射シート35において、処理容器1側にアルミニウム層33が配置され、外側に樹脂層34が設けられている。このように発熱源(処理容器1)に近接した部位に熱反射シート35を設けることによって、外部への放熱を更に抑えることができる。また、図12は、断熱ブロック30内において、処理容器1から離れた側の外皮層32に近接する位置に熱反射シート35を配置した例を示している。この例においても、アルミニウム層33及び樹脂層34は、夫々処理容器1側及び外側に配置される。 11 and 12 show a modification of the second embodiment. FIG. 11 shows an example in which a heat reflecting sheet 35 is provided in a region close to the outer skin layer 32 on the processing container 1 side in the heat insulating block 30. In the heat reflection sheet 35, an aluminum layer 33 is disposed on the processing container 1 side, and a resin layer 34 is provided on the outside. As described above, by providing the heat reflecting sheet 35 at a position close to the heat generation source (processing container 1), heat radiation to the outside can be further suppressed. FIG. 12 shows an example in which the heat reflecting sheet 35 is disposed in the heat insulating block 30 at a position close to the outer skin layer 32 on the side away from the processing container 1. Also in this example, the aluminum layer 33 and the resin layer 34 are disposed on the processing container 1 side and the outside, respectively.
 以上の第1及び第2の実施の形態では、処理容器1の外壁面に断熱体を複数配置したが、図13に示すように、処理容器1を上方から覆うように下面が開口する概略箱型の断熱体を用いても良い。具体的には、例えば処理容器1の外壁面の5つの面(上面及び側面)の各面に沿って配置される断熱体の各々について、一つ(一枚)の断熱体(断熱体2または断熱ブロック30)により各面を構成すると共に、これら5つの断熱体により下面が開口する箱型となるように各断熱体の周縁部同士を例えば接着する。このような断熱材であっても、既述の各実施の形態の作用及び効果が得られる。 In the first and second embodiments described above, a plurality of heat insulators are arranged on the outer wall surface of the processing container 1, but as shown in FIG. 13, a schematic box whose lower surface opens so as to cover the processing container 1 from above. A type of insulation may be used. Specifically, for example, for each of the heat insulators arranged along each of the five surfaces (upper surface and side surface) of the outer wall surface of the processing container 1, one (one) heat insulator (heat insulator 2 or Each surface is constituted by the heat insulation block 30), and the peripheral portions of the heat insulators are bonded to each other so as to form a box shape whose lower surface is opened by these five heat insulators. Even if it is such a heat insulating material, the effect | action and effect of each embodiment mentioned above are acquired.
 また、既述の排気管1aについて、処理容器1から排気されるガスが冷却されて生成する生成物が排気管1aの内壁に付着を抑えるために排気管1aを図示しないヒーターを用いて加熱する場合には、被断熱領域である排気管1aを覆うように断熱体を設けても良い。この場合には、図14に示すように、例えば排気管1aに沿って配置されるリング状の断熱体を周方向に複数例えば2つに分割して、各々の断熱体を既述の各実施の形態の断熱体2または断熱ブロック30により構成しても良い。この場合の断熱材の分割数としては、3つ以上であっても良いし、あるいは例えば断熱体を概略短冊状に形成し、断熱体の一面側が排気管1aの長さ方向に沿って外周面に倣うように排気管1aの周方向に亘って断熱体2を複数並べても良い。この図14中の参照符号1bは、排気管1aと断熱材との間に設けられた例えばアルミニウムからなるブロックであり、参照符号1cは断熱体同士を接続するための例えば粘着テープである。また、処理容器1内に例えば処理ガスを供給する処理ガス供給管を加熱する場合においても、この処理ガス供給管の周囲に本発明の断熱体を設けても良い。 Further, with respect to the exhaust pipe 1a described above, the exhaust pipe 1a is heated using a heater (not shown) in order to suppress the product generated by cooling the gas exhausted from the processing container 1 from adhering to the inner wall of the exhaust pipe 1a. In that case, a heat insulator may be provided so as to cover the exhaust pipe 1a which is a heat-insulated region. In this case, as shown in FIG. 14, for example, a ring-shaped heat insulator disposed along the exhaust pipe 1a is divided into a plurality of, for example, two in the circumferential direction, and each heat insulator is subjected to each of the above-described implementations. You may comprise with the heat insulating body 2 or the heat insulation block 30 of the form. In this case, the number of divisions of the heat insulating material may be three or more, or for example, the heat insulating body is formed in a substantially strip shape, and one surface side of the heat insulating body is an outer peripheral surface along the length direction of the exhaust pipe 1a. A plurality of heat insulators 2 may be arranged along the circumferential direction of the exhaust pipe 1a so as to follow the above. Reference numeral 1b in FIG. 14 is a block made of, for example, aluminum provided between the exhaust pipe 1a and the heat insulating material, and reference numeral 1c is, for example, an adhesive tape for connecting the heat insulators. Further, even when a processing gas supply pipe for supplying a processing gas into the processing container 1 is heated, for example, the heat insulator of the present invention may be provided around the processing gas supply pipe.
 既述の充填材11及びブロック本体31としては、シリカガラスを例に挙げて説明したが、例えばグラスウール、ウレタンフォームなどを用いても良い。また、金属箔13及びアルミニウム層33としては、アルミニウム以外にもステンレスやニッケルなどであっても良い。更に、樹脂シート16及び樹脂層34としては、ポリイミド以外にも耐熱性の高い樹脂であれば良く、耐熱温度(溶融温度)が例えば200℃以上の例えばポリベンゾイミダゾール(PBI)、ポリエーテル・エーテル・ケトン(PEEK)、PAIポリアミド・イミド、ポリフェニレンサルファイド(PPS)などであっても良い。 As the filler 11 and the block body 31 described above, silica glass has been described as an example, but glass wool, urethane foam, or the like may be used, for example. Further, the metal foil 13 and the aluminum layer 33 may be stainless steel or nickel other than aluminum. Further, as the resin sheet 16 and the resin layer 34, any resin having high heat resistance other than polyimide may be used. For example, polybenzimidazole (PBI) having a heat resistant temperature (melting temperature) of 200 ° C. or higher, polyether ether, and the like. -Ketone (PEEK), PAI polyamide imide, polyphenylene sulfide (PPS), etc. may be sufficient.
 既述の第1の実施の形態の断熱体(真空断熱体)2は、既に詳述したように、概略板状をなしているので、外表面が平面である発熱部位(被断熱領域)に対しての施工(貼り付け)に適している。一方、発熱部位の外表面の形状は装置や断熱体2の設置部位に応じてまちまちであり、例えば既述の排気管1aの外表面は曲面形状をなしているし、処理容器1の上下の四辺には角部(稜線)が形成されている。また、処理容器1に排気管1a用のフランジ(排気ポート)などといった突起物が設けられている場合には、この突起物を避けるように断熱体2を配置する必要がある。これらの場合には、既述のように、発熱部位の外表面の形状に応じて、断熱体2の大きさや形状あるいは配置方法を種々調整するようにしても良いが、1つの品種(形状及び大きさ)の断熱体2によって様々な形状の外表面に対応できるように汎用性を高くしておくと、コスト的に有利である。従って、既述の板状の断熱体2について、折り曲げたり湾曲させたりできるように、更には突起物を避けるために切り欠きや開口部を形成できるように構成することが好ましい。 As already described in detail, the heat insulator (vacuum heat insulator) 2 according to the first embodiment described above has a substantially plate shape, so that the heat generating portion (heat-insulated region) whose outer surface is flat is used. Suitable for construction (pasting). On the other hand, the shape of the outer surface of the heat generating part varies depending on the installation part of the apparatus and the heat insulator 2. For example, the outer surface of the exhaust pipe 1 a described above has a curved shape, and Corners (ridge lines) are formed on the four sides. Further, when a protrusion such as a flange (exhaust port) for the exhaust pipe 1a is provided on the processing container 1, it is necessary to arrange the heat insulator 2 so as to avoid the protrusion. In these cases, as described above, the size, shape, or arrangement method of the heat insulating body 2 may be variously adjusted according to the shape of the outer surface of the heat generating portion. It is advantageous in terms of cost if the versatility is increased so that the outer surface of various shapes can be accommodated by the heat insulator 2 having a size). Therefore, it is preferable that the plate-like heat insulating body 2 described above is configured so that a notch or an opening can be formed so as to be bent or curved, and to avoid protrusions.
 しかし、この断熱体2は、真空雰囲気である収納領域14に充填材11が充填されているので、充填材11が密に堅く締まった状態となっていて湾曲させにくい。また、収納領域14を大気雰囲気にすると断熱体2の断熱性能が低下してしまうので、収納領域14に対して切り込みや開口部を形成できない。そこで、容易に折り曲げたり屈曲させたりすることができ、更には収納領域14を真空雰囲気に保ったまま断熱体2に切り欠きや開口部を形成できる断熱体2について、以下に説明する。 However, since the insulating material 2 is filled with the filling material 11 in the storage area 14 which is a vacuum atmosphere, the heat insulating material 2 is not tightly curved because the filling material 11 is tightly and tightly tightened. Moreover, since the heat insulation performance of the heat insulation body 2 will fall if the storage area 14 is made into air atmosphere, a notch | incision and an opening part cannot be formed with respect to the storage area 14. FIG. Therefore, the heat insulator 2 that can be easily bent or bent and that can form a notch or an opening in the heat insulator 2 while keeping the storage region 14 in a vacuum atmosphere will be described below.
 始めに、この断熱体2の概観について説明する。断熱体2は、図15~図18に示すように、平面的(図15中X-Y方向)に複数の円柱状の領域に気密に区画されている。即ち、概略矩形の積層シート51上に、円柱状に突出した区画領域(分割領域)50が縦横にマトリックス状に配置されており、各々の区画領域50には、収納領域14(図18参照)が形成されている。図2に示すように既述の第1の実施の形態の断熱体2では、金属箔13と樹脂シート16との間に断熱材18を設けたが、この例では、これら金属箔13と樹脂シート16とが積層されている場合を例に挙げて説明する。従って、積層シート51は、図18に概略的に示すように、これら樹脂シート16、金属箔13、13及び樹脂シート16が上方側から(あるいは下方側から)積層された状態となっている。また、各区画領域50は、図17に示すように、積層シート51から上方に向かって伸びる先端側の角部が周方向に亘ってなだらかにテーパー状に(R状に)なるように各々形成されている。この例では、各々の区画領域50は、図17に示すように、積層シート51からの高さ寸法hが5mm、直径寸法Rが20mmとなっている。また、各々の区画領域50、50間の離間寸法Dは、例えば5mmとなっている。尚、金属箔13及び樹脂シート16の寸法を誇張して厚く描画している。 First, an overview of the heat insulator 2 will be described. As shown in FIGS. 15 to 18, the heat insulating body 2 is airtightly partitioned into a plurality of cylindrical regions in a plane (XY direction in FIG. 15). That is, partition regions (divided regions) 50 protruding in a columnar shape are arranged in a matrix in the vertical and horizontal directions on a substantially rectangular laminated sheet 51, and each partition region 50 includes a storage region 14 (see FIG. 18). Is formed. As shown in FIG. 2, in the heat insulator 2 of the first embodiment described above, the heat insulating material 18 is provided between the metal foil 13 and the resin sheet 16. In this example, the metal foil 13 and the resin are provided. A case where the sheet 16 is laminated will be described as an example. Accordingly, as schematically shown in FIG. 18, the laminated sheet 51 is in a state in which the resin sheet 16, the metal foils 13 and 13, and the resin sheet 16 are laminated from the upper side (or from the lower side). In addition, as shown in FIG. 17, each partition region 50 is formed such that a corner portion on the front end side extending upward from the laminated sheet 51 is gradually tapered (R-shaped) in the circumferential direction. Has been. In this example, as shown in FIG. 17, each partition region 50 has a height dimension h from the laminated sheet 51 of 5 mm and a diameter dimension R of 20 mm. Further, the separation dimension D between the partition regions 50 and 50 is, for example, 5 mm. In addition, the dimension of the metal foil 13 and the resin sheet 16 is exaggerated and drawn thickly.
 積層シート51は、膜厚が例えば0.2mm程度であり、可撓性があることから、隣接する区画領域50同士を上下左右に各々動かすことができる。そして、この実施の形態における断熱体2は、各々の区画領域50を互いに独立して動かす時であっても、あるいはこれらの区画領域50のうち一つまたは複数を積層シート51から切り離す時であっても、各々の収納領域14における真空雰囲気が維持されるように構成されている。 Since the laminated sheet 51 has a film thickness of, for example, about 0.2 mm and is flexible, the adjacent partitioned areas 50 can be moved vertically and horizontally. And the heat insulating body 2 in this embodiment is a time when each partition area 50 is moved independently of each other, or when one or more of these partition areas 50 are separated from the laminated sheet 51. However, the vacuum atmosphere in each storage area 14 is maintained.
 続いて、この断熱体2の製造方法について、図19~図23を参照して説明する。先ず、図19(a)~(c)に示すように、厚み寸法が例えば0.5mm程度の薄板(平板)状あるいは薄膜状の例えばアルミニウムからなる金属板41に対して、金属板41の下方側及び上方側に夫々配置された第1の金型61及び第2の金型62を用いてプレス加工を行い、金属板41を圧延して金属箔13を形成する。 Subsequently, a method for manufacturing the heat insulator 2 will be described with reference to FIGS. First, as shown in FIGS. 19A to 19C, a metal plate 41 below a metal plate 41 with respect to a metal plate 41 made of aluminum (thin plate) or thin film having a thickness of about 0.5 mm, for example. The metal foil 13 is formed by rolling the metal plate 41 using the first mold 61 and the second mold 62 disposed on the side and the upper side, respectively.
 そして、金属箔13を金型61、62から取り外すと、金属箔13には、図20に示すように、第1の金型61における凹部55の凹面及び第2の金型62における凸部56の凸面の形状に外面の形状及び内面の形状が夫々倣うように、金属箔13から下方に向かって突出する突出部57が複数箇所に成型される。各々の突出部57は、下端面の内周面及び外周面の屈曲部が周方向に亘ってなだらか(R状)になっており、また厚み寸法が例えば0.05mm程度となっている。また、この成形により、突出部57、57間の領域は、水平方向に亘って平坦となり、また金型61、62によって薄く引き延ばされて厚み寸法が例えば0.05mm程度となる。尚、図20では金属板41を一部切り欠いて拡大して示している。 When the metal foil 13 is removed from the molds 61 and 62, the metal foil 13 has a concave surface of the concave portion 55 in the first mold 61 and a convex portion 56 in the second mold 62, as shown in FIG. 20. Projecting portions 57 projecting downward from the metal foil 13 are molded at a plurality of locations so that the shape of the outer surface and the shape of the inner surface respectively follow the shape of the convex surface. Each projecting portion 57 has the inner peripheral surface at the lower end surface and the bent portion of the outer peripheral surface gently (R-shaped) in the circumferential direction, and has a thickness dimension of, for example, about 0.05 mm. Moreover, by this shaping | molding, the area | region between the protrusion parts 57 and 57 becomes flat over a horizontal direction, and is thinly extended by the metal mold | dies 61 and 62, and a thickness dimension is set to about 0.05 mm. In FIG. 20, the metal plate 41 is shown partially enlarged and cut away.
 次いで、図19(d)及び図20に示すように、各々の突出部57の配列パターンに対応するように複数の開口部63aが格子状に形成された例えばステンレスからなる第3の金型63上に、開口部63a内に突出部57が各々収納されるように金属箔13を載置(装着)する。続いて、図19(d)に示すように、各々の突出部57内に、シリカなどからなるガラスウールや粉末を充填材11として充填する。そして、突出部57における上面の開口領域(充填材11の収納領域)を各々塞ぐように、厚み寸法が例えば0.05mm程度の例えばアルミニウムからなる平板状の金属箔42を載置する。これらの金属箔13及び金属箔42により、各々の充填材11が包まれた状態となる。次いで、図21に示すように、真空雰囲気において加熱処理を行うための真空チャンバ71内に、これら第3の金型63、金属箔13、充填材11及び金属箔42を搬入して加熱台72に載置する。図21中73はヒーター、74は真空排気路である。 Next, as shown in FIGS. 19D and 20, a third mold 63 made of, for example, stainless steel, in which a plurality of openings 63 a are formed in a lattice shape so as to correspond to the arrangement pattern of the protrusions 57. On top, the metal foil 13 is placed (attached) so that the protrusions 57 are accommodated in the openings 63a. Subsequently, as shown in FIG. 19 (d), glass wool or powder made of silica or the like is filled as a filler 11 in each protruding portion 57. Then, a flat metal foil 42 made of, for example, aluminum having a thickness dimension of, for example, about 0.05 mm is placed so as to block the opening regions (storage regions for the filler 11) on the upper surface of the protruding portion 57. Each of the fillers 11 is wrapped by the metal foil 13 and the metal foil 42. Next, as shown in FIG. 21, the third mold 63, the metal foil 13, the filler 11, and the metal foil 42 are carried into a vacuum chamber 71 for performing a heat treatment in a vacuum atmosphere, and a heating table 72. Placed on. In FIG. 21, 73 is a heater, and 74 is a vacuum exhaust path.
 そして、真空チャンバ71内を真空雰囲気に設定すると共に、金属箔42の上方側から、下面が平坦な例えばステンレスなどからなる第4の金型64を金属箔42に向けて加圧して、金属箔13、42を互いに圧接させる。また、加熱台72により、金属箔13及び金属箔42の接触部(突出部57、57間の領域)が例えば600~700℃程度となるように加熱する。そして、この加熱処理及び加圧処理を例えば12時間程度行うと、図22に示すように、金属箔41(13)及び金属箔42の接触部の間で原子の拡散が起こり、接触部において界面や境界がほとんど判別出来ない程度にこれら金属箔13及び金属箔42が拡散接合される。そのため、各々の突出部57は、図23に示すように、充填材11の充填された内部の領域(収納領域14)が真空雰囲気となった状態で、周方向に亘って各々気密に封止される。尚、図21において、第4の金型64を下方に向かって加圧するための加圧機構については図示を省略している。 And while setting the inside of the vacuum chamber 71 to a vacuum atmosphere, the 4th metal mold | die 64 which consists of stainless steel etc. with a flat lower surface is pressurized toward the metal foil 42 from the upper side of the metal foil 42, and metal foil 13 and 42 are brought into pressure contact with each other. In addition, the heating table 72 heats the contact portion (the region between the protruding portions 57 and 57) of the metal foil 13 and the metal foil 42 to, for example, about 600 to 700 ° C. When this heat treatment and pressure treatment are performed for about 12 hours, for example, diffusion of atoms occurs between the contact portions of the metal foil 41 (13) and the metal foil 42 as shown in FIG. The metal foil 13 and the metal foil 42 are diffusion-bonded to such an extent that the boundary is hardly discernable. Therefore, as shown in FIG. 23, each protrusion 57 is hermetically sealed in the circumferential direction in a state where the inner region (housing region 14) filled with the filler 11 is in a vacuum atmosphere. Is done. In FIG. 21, the illustration of the pressurizing mechanism for pressurizing the fourth mold 64 downward is omitted.
 そして、これらの一体化した金属箔41(13)及び金属箔42を例えば樹脂からなる液体中に浸漬して、液体から取り出した後乾燥や加熱処理を行う。この処理により、図18に示すように、金属箔13及び金属箔42の表面に夫々膜厚が例えば0.05mm程度となるように樹脂シート16、16が形成されて、既述の図15に示したように、区画領域50の複数形成された断熱体2が得られる。従って、各々の区画領域50には、既述の第1の実施の形態で説明した断熱体2と同様に、金属箔13(金属箔13、42)により気密に封止された収納領域14が形成される。この樹脂シート16としては、樹脂からなる液体中への浸漬及び熱処理を行うことに代えて、例えばフィルム状の樹脂シート16を貼り付けても良い。 Then, these integrated metal foil 41 (13) and metal foil 42 are immersed in a liquid made of resin, for example, and taken out from the liquid, followed by drying and heat treatment. By this treatment, as shown in FIG. 18, resin sheets 16 and 16 are formed on the surfaces of the metal foil 13 and the metal foil 42 so that the film thicknesses are about 0.05 mm, for example. As shown, the heat insulating body 2 in which a plurality of partition regions 50 are formed is obtained. Therefore, in each partition region 50, the storage region 14 hermetically sealed with the metal foil 13 (metal foils 13 and 42) is provided in the same manner as the heat insulator 2 described in the first embodiment. It is formed. As this resin sheet 16, for example, a film-like resin sheet 16 may be attached instead of performing immersion and heat treatment in a resin liquid.
 図18において、各々の区画領域50の一端側(上方側)を接続する部位(金属箔13、金属箔42及び樹脂シート16、16)である既述の積層シート51は、膜厚が例えば0.2mm程度であり、例えば平面(X-Y面)で見た時の一辺の寸法が夫々例えば20mmの正方形に形成される。このように積層シート51が薄膜状となっているので、各々の区画領域50は、各々の収納領域14の真空雰囲気を維持しながら、各々個別に独立して動くことができるように積層シート51により支持される。 In FIG. 18, the above-described laminated sheet 51, which is a part (metal foil 13, metal foil 42, and resin sheets 16, 16) that connects one end side (upper side) of each partition region 50, has a film thickness of, for example, 0. For example, each side is formed into a square having a dimension of 20 mm, for example, when viewed in a plane (XY plane). Thus, since the lamination sheet 51 is thin-film-like, each division area | region 50 can each move independently, maintaining the vacuum atmosphere of each storage area | region 14, so that each lamination area | region 51 can move independently. Is supported by
 続いて、この断熱体2を既述の排気管1aの外表面に沿って配置する場合について説明する。ここで、断熱体2を平面で見た時の区画領域50の先端側が向く面を表面、積層シート51側が向く面を裏面とすると、図24に示すように、断熱体2の表面側が排気管1a側に臨むように、即ち各々の区画領域50の先端部が排気管1aに接触するように、排気管1aの曲面(外周面)及び排気管1aの長さ方向に沿って断熱体2を排気管1aに巻き付ける。そして、例えば耐熱テープ65などを用いて、断熱体2の端部同士を互いに接着する。 Then, the case where this heat insulating body 2 is arrange | positioned along the outer surface of the exhaust pipe 1a mentioned above is demonstrated. Here, when the surface facing the front end side of the partition region 50 when the heat insulating body 2 is viewed in a plane is the front surface, and the surface facing the laminated sheet 51 side is the back surface, the surface side of the heat insulating body 2 is the exhaust pipe as shown in FIG. The heat insulator 2 is disposed along the curved surface (outer peripheral surface) of the exhaust pipe 1a and the length direction of the exhaust pipe 1a so as to face the 1a side, that is, so that the tip of each partition region 50 contacts the exhaust pipe 1a. It is wound around the exhaust pipe 1a. Then, the end portions of the heat insulator 2 are bonded to each other using, for example, a heat-resistant tape 65 or the like.
 このとき、既述のように各々の区画領域50が互いに柔軟性を有して積層シート51により支持されているので、これら区画領域50における金属箔13、13は、排気管1aの外周面に倣うように断熱体2が配置される時に、例えば引き延ばされたり圧縮されたりする応力の発生が抑えられる。従って、例えば金属箔13におけるピンホールや亀裂の発生が抑えられて、収納領域14の真空雰囲気(断熱性能)が維持される。また、各々の区画領域50において個別に収納領域14を形成しているので、これら収納領域14のうち一つの金属箔13に例えばピンホールが形成されて大気雰囲気に戻ってしまっても、他の収納領域14には影響をほとんど及ぼさないので、断熱体2の全体としては断熱性能をほぼ維持できる。更に、各々の区画領域50を概略円筒形状にしていることから、また区画領域50の先端部の角部をなだらかにしていることから、金属箔13には鋭利な(シャープな)面の形成が抑えられるので、金属箔13の一部に対する応力の集中が抑制され、ピンホールや亀裂の発生がより一層抑えられる。更にまた、排気管1aから見て積層シート51が区画領域50よりも外側に位置していることから、排気管1aから外部への積層シート51を介した放熱が抑えられる。尚、金属箔13にピンホールなどが形成されたとしても、金属箔13を覆うように樹脂シート16が形成されているので、樹脂シート16により収納領域14の真空雰囲気が維持される場合もある。 At this time, as described above, the partition regions 50 are flexible and supported by the laminated sheet 51, so that the metal foils 13 and 13 in the partition regions 50 are placed on the outer peripheral surface of the exhaust pipe 1a. When the heat insulator 2 is arranged so as to follow, generation of stress that is stretched or compressed, for example, is suppressed. Therefore, for example, the occurrence of pinholes and cracks in the metal foil 13 is suppressed, and the vacuum atmosphere (heat insulation performance) of the storage region 14 is maintained. Further, since the storage areas 14 are individually formed in each of the partition areas 50, even if, for example, a pinhole is formed in one metal foil 13 of these storage areas 14 and the atmosphere is returned to the atmosphere, Since the storage region 14 is hardly affected, the heat insulation performance of the heat insulator 2 as a whole can be substantially maintained. Furthermore, since each partition region 50 has a substantially cylindrical shape, and the corner of the tip of the partition region 50 is smoothed, a sharp (sharp) surface is formed on the metal foil 13. Since it is suppressed, the concentration of stress on a part of the metal foil 13 is suppressed, and the occurrence of pinholes and cracks is further suppressed. Furthermore, since the laminated sheet 51 is positioned outside the partition region 50 when viewed from the exhaust pipe 1a, heat radiation from the exhaust pipe 1a to the outside through the laminated sheet 51 is suppressed. Even if a pinhole or the like is formed in the metal foil 13, the resin sheet 16 is formed so as to cover the metal foil 13, so that the vacuum atmosphere in the storage region 14 may be maintained by the resin sheet 16. .
 このとき、既述の第1の実施の形態の断熱体2(複数の区画領域50を設けない場合)において、折り曲げたり湾曲させたりしても金属箔13にピンホールなどが形成されないように金属箔13を例えば15mm程度まで厚くした時には、この金属箔13の剛性が高くなって(強度が高くなって)曲げにくくなる場合がある。従って、断熱体2を複数の区画領域50に気密に区画することによって、金属箔13の膜厚を薄く保った状態でピンホールの発生を抑制できるので、断熱体2の断熱性能を保ったまま断熱体2を容易に曲げたり屈曲させたりすることができる。 At this time, in the heat insulator 2 of the first embodiment described above (in the case where the plurality of partition regions 50 are not provided), the metal foil 13 is not formed with pinholes or the like even if bent or curved. When the thickness of the foil 13 is increased to, for example, about 15 mm, the metal foil 13 may have a high rigidity (high strength) and may be difficult to bend. Therefore, by partitioning the heat insulator 2 into the plurality of partition regions 50 in an airtight manner, pinholes can be suppressed while the film thickness of the metal foil 13 is kept thin, so that the heat insulation performance of the heat insulator 2 is maintained. The heat insulator 2 can be easily bent or bent.
 ここで、排気管1aの外周に断熱体2を巻き付けるとき、断熱体2の長さ寸法が排気管1aの円周寸法あるいは長さ寸法(排気管1aの伸びる方向の寸法)よりも短い場合には、複数の断熱体2を排気管1aの外面に貼り付けて、既述のように耐熱テープ65を用いてこれら断熱体2、2同士を接着する。一方、断熱体2の長さ寸法が排気管1aの各寸法よりも長い場合には、断熱体2において区画領域50、50間の領域、即ち例えば図16に示すA-A線における積層シート51を切断する。このように断熱体2を途中部位で切断する場合でも、各々の収納領域14を避けて断熱体2を切断することにより、各々の区画領域50の真空雰囲気が保たれて、断熱性が維持される。このとき、図14に示したように、排気管1aと断熱体2との間にブロック1bを配置しても良い。尚、図24においては、区画領域50、50間の配置間隔や積層シート51については模式的に示している。 Here, when the heat insulator 2 is wound around the outer periphery of the exhaust pipe 1a, when the length dimension of the heat insulator 2 is shorter than the circumferential dimension or length dimension of the exhaust pipe 1a (dimension in the direction in which the exhaust pipe 1a extends). Attaches a plurality of heat insulators 2 to the outer surface of the exhaust pipe 1a, and adheres the heat insulators 2 to each other using the heat-resistant tape 65 as described above. On the other hand, when the length of the heat insulator 2 is longer than each dimension of the exhaust pipe 1a, the laminated sheet 51 in the region between the partition regions 50 and 50 in the heat insulator 2, for example, the AA line shown in FIG. Disconnect. In this way, even when the heat insulating body 2 is cut at an intermediate position, by cutting the heat insulating body 2 while avoiding the respective storage areas 14, the vacuum atmosphere of each partition area 50 is maintained, and the heat insulating property is maintained. The At this time, as shown in FIG. 14, a block 1 b may be disposed between the exhaust pipe 1 a and the heat insulator 2. In FIG. 24, the arrangement interval between the partition regions 50 and 50 and the laminated sheet 51 are schematically shown.
 既述の区画領域50、50間の離間寸法Dは、大きすぎる(離れすぎる)と真空雰囲気である収納領域14、14が互いに離間しすぎて断熱性能が低下することから、10mm以下であることが好ましい。また、離間寸法Dは、小さすぎる(近接しすぎる)と曲率の大きな曲面に対応し難くなることから、即ち断熱体2を湾曲させにくくなることから、例えば5mm以上であることが好ましい。この離間寸法Dとしては、発熱部位毎にも異なるが、例えば既述の排気管1aを例に挙げて説明すると、排気管1aの外径寸法がΦ50mmの場合には5mm~10mm、Φ100mmの場合には10mm~15mm程度であることが好ましい。更に、積層シート51からの区画領域50の高さ寸法h及び区画領域50の直径寸法Rについては、例えばhは5mm~10mm、Rは20mm~40mm程度にしておくことが好ましい(図17参照)。 The separation dimension D between the partition areas 50 and 50 described above is 10 mm or less because the storage areas 14 and 14 that are in a vacuum atmosphere are separated too much from each other and the heat insulation performance is deteriorated. Is preferred. In addition, if the separation dimension D is too small (too close), it is difficult to correspond to a curved surface having a large curvature, that is, it is difficult to bend the heat insulating body 2, and thus, for example, 5 mm or more is preferable. The separation dimension D varies depending on the heat generation part. For example, the exhaust pipe 1a described above will be described as an example. When the outer diameter dimension of the exhaust pipe 1a is Φ50 mm, it is 5 to 10 mm, and Φ100 mm. Is preferably about 10 mm to 15 mm. Further, with respect to the height dimension h of the partition area 50 and the diameter dimension R of the partition area 50 from the laminated sheet 51, for example, h is preferably about 5 mm to 10 mm, and R is about 20 mm to 40 mm (see FIG. 17). .
 また、図25に示すように、処理容器1の上下の四辺における角部を覆うように断熱体2を配置しても良い。この場合であっても、各々の区画領域50における収納領域14の真空雰囲気が維持されたまま、即ち金属箔13におけるピンホールなどの発生が抑えられた状態で、処理容器1の外面に沿って断熱体2が貼り付けられる。 Further, as shown in FIG. 25, the heat insulator 2 may be arranged so as to cover the corners on the upper and lower four sides of the processing container 1. Even in this case, the vacuum atmosphere of the storage region 14 in each partition region 50 is maintained, that is, in a state in which the occurrence of pinholes or the like in the metal foil 13 is suppressed, along the outer surface of the processing container 1. The heat insulating body 2 is affixed.
 更に、処理容器1の外面に突起物例えば既述の排気管1aを接続するためのフランジ(排気ポート)75が形成されている場合には、このフランジ75の大きさ及び形状に対応するように、断熱体2の一部を切り離すようにしても良い。この場合であっても、例えば図26に示すように、断熱体2における一つまたは複数の区画領域50を切り離して開口部66を形成することにより、開口部66の周囲における収納領域14の真空雰囲気を保つことができる。従って、図27及び図28に示すように、フランジ75を避けて断熱体2を配置することができる。尚、図27においてY方向の断熱体2については省略しており、また図28において積層シート51を省略している。 Further, when a flange (exhaust port) 75 for connecting the projection, for example, the above-described exhaust pipe 1a is formed on the outer surface of the processing container 1, it corresponds to the size and shape of the flange 75. A part of the heat insulator 2 may be cut off. Even in this case, for example, as shown in FIG. 26, the vacuum in the storage region 14 around the opening 66 is formed by separating the one or a plurality of partition regions 50 in the heat insulator 2 to form the opening 66. The atmosphere can be maintained. Therefore, as shown in FIGS. 27 and 28, the heat insulator 2 can be arranged avoiding the flange 75. In FIG. 27, the heat insulator 2 in the Y direction is omitted, and the laminated sheet 51 is omitted in FIG.
 このように、様々な形状の発熱部位、具体的には曲面や屈曲部、更には突起物の形成された面に対して、1つの品種(大きさ及び形状)の断熱体2を適用できるので、発熱部位の種類に応じて断熱体2を製造しなくて済むため、断熱体2について高い汎用性が得られてコスト的に有利となる。尚、この例では開口部66について説明したが、開口部66に代えて、例えば断熱体2の側方側から一つまたは複数の区画領域50を取り除くように切り欠きを入れても良い。 In this way, one type (size and shape) of the heat insulator 2 can be applied to heat generating portions of various shapes, specifically curved surfaces, bent portions, and surfaces on which protrusions are formed. Since it is not necessary to manufacture the heat insulating body 2 according to the kind of heat generating part, high versatility is obtained for the heat insulating body 2, which is advantageous in terms of cost. In addition, although the opening part 66 was demonstrated in this example, it may replace with the opening part 66 and may make a notch so that one or several division area | region 50 may be removed from the side of the heat insulating body 2, for example.
 また、既述の例で説明したように、金属箔13と樹脂シート16との間に断熱材18を設けても良い。この場合には、図29に示すように、金属板41及び金属箔42の周囲に断熱材18を配置すると共に、これら金属板41、金属箔42及び断熱材18を覆うように、例えば薄膜状の樹脂シート16、16を配置して、樹脂シート16、16の周縁部同士を接着する。この場合には、断熱材18は、各々の区画領域50を跨ぐように配置される。 Further, as described in the above example, a heat insulating material 18 may be provided between the metal foil 13 and the resin sheet 16. In this case, as shown in FIG. 29, the heat insulating material 18 is arranged around the metal plate 41 and the metal foil 42, and the metal plate 41, the metal foil 42 and the heat insulating material 18 are covered with, for example, a thin film. The resin sheets 16 and 16 are arranged, and the peripheral portions of the resin sheets 16 and 16 are bonded to each other. In this case, the heat insulating material 18 is arrange | positioned so that each division area | region 50 may be straddled.
 また、図30に示すように、各々の区画領域50、50間で樹脂シート16により断熱材18を区画するようにしても良い。このように断熱材18を区画する場合には、金属箔13、13同士を拡散接合した後、例えば既述の第3の金型63(図21)の表面に樹脂液を塗布して、この第3の金型63の開口部63a(突出部57が収納される領域)に、開口部63aの深さ寸法の例えば半分程度となるように、断熱材18を各々収納する。そして、開口部63a、63a間における水平面によって突出部57、57間の領域を下方側から支持するように、第3の金型63の各々の開口部63aに突出部57を各々収納する。そして、これら断熱体2及び第3の金型63を加熱することにより、第3の金型63の表面の樹脂液が硬化して、各々の突出部57の周囲において金属箔13(金属箔42)と樹脂膜(樹脂シート16)とが接続されると共に、各々の突出部57と樹脂シート16との間には断熱材18が収納される。従って、各々の区画領域50毎に、断熱材18が区画される。続いて、断熱体2の上方側についても、同様に図示しない金型を用いて樹脂液の塗布処理、断熱材18の収納及び加熱処理を行うことにより、図30の断熱体2が得られる。図30の断熱体2において、既述のように一つまたは複数の区画領域50を切り離す時は、例えば図30中B-B線で切断することにより、各々の収納領域14の真空雰囲気を維持しながら、断熱材18の漏れ出しや飛散についても抑えることができる。 Further, as shown in FIG. 30, the heat insulating material 18 may be partitioned by the resin sheet 16 between the partition regions 50, 50. When partitioning the heat insulating material 18 in this way, after diffusion bonding the metal foils 13, 13, for example, a resin liquid is applied to the surface of the third mold 63 (FIG. 21) described above. The heat insulating materials 18 are accommodated in the openings 63a (regions in which the protrusions 57 are accommodated) of the third mold 63 so as to be, for example, about half the depth of the openings 63a. And the protrusion part 57 is each accommodated in each opening part 63a of the 3rd metal mold | die 63 so that the area | region between the protrusion parts 57 and 57 may be supported from the downward side by the horizontal surface between opening part 63a, 63a. Then, by heating the heat insulator 2 and the third mold 63, the resin liquid on the surface of the third mold 63 is cured, and the metal foil 13 (metal foil 42) around each protrusion 57. ) And the resin film (resin sheet 16) are connected, and a heat insulating material 18 is accommodated between each protrusion 57 and the resin sheet 16. Therefore, the heat insulating material 18 is partitioned for each partition region 50. Then, also about the upper side of the heat insulating body 2, the heat insulating body 2 of FIG. 30 is obtained by performing the application | coating process of a resin liquid, accommodation of the heat insulating material 18, and heat processing similarly using the metal mold | die which is not illustrated. In the heat insulator 2 in FIG. 30, when one or a plurality of partition regions 50 are separated as described above, the vacuum atmosphere in each storage region 14 is maintained by cutting along the line BB in FIG. However, leakage and scattering of the heat insulating material 18 can also be suppressed.
 既述の例では、区画領域50を格子状に配置したが、例えば図31に示すように千鳥状(互い違い)に配置しても良い。また、区画領域50としては、概略円筒形状以外にも、例えば図32に示すように概略箱型であっても良い。更に、図33に示すように、底面及び上面が三角形である三角柱状の区画領域50を設けると共に、2つの区画領域50、50の側面同士が互いに近接して相対向するように配置して、これら2つの区画領域50、50を一組として複数箇所に設けても良い。そして、これら一組の互いに近接する区画領域50、50同士において相対向する面が一列に並ぶように、積層シート51上に複数の区画領域50を並べることにより、その列に直交する方向(図33中矢印で示す方向)に対して、断熱体2が曲がりやすくなる。尚、図32及び図33では断熱体2を一部切り欠いて示している。 
 また、断熱体2を複数の区画領域50により構成するにあたって、第1の金型61及び第2の金型62を用いて突出部57を形成したが、このような金型61、62を用いずに、概略平板状の金属板41上の複数の領域に充填材11を点在させても良い。この場合には、これら充填材11の点在領域が気密に区画されるように、第3の金型63の上面によって点在領域の周囲の金属板41を下方側から支持して、金属板41の上方に金属箔42を積層する。そして、真空雰囲気において、これら金属板41及び金属箔42の上方側から、第3の金型63の上下を入れ替えた状態の別の金型によって、点在領域の周囲の金属箔42を下方側に加圧する。そして、既述の例と同様に、加圧処理及び加熱処理を行うことにより、これらの金属板41及び金属箔42の接触面が接合される。
In the above-described example, the partition regions 50 are arranged in a grid pattern, but may be arranged in a staggered pattern (alternately) as shown in FIG. 31, for example. In addition to the substantially cylindrical shape, the partition region 50 may be a substantially box shape as shown in FIG. 32, for example. Further, as shown in FIG. 33, a triangular prism-shaped partition region 50 having a triangular bottom surface and top surface is provided, and the two partition regions 50 and 50 are disposed so that the side surfaces of the partition regions 50 and 50 are close to each other and face each other. These two partition regions 50 and 50 may be provided as a set at a plurality of locations. Then, by arranging a plurality of partition regions 50 on the laminated sheet 51 such that the surfaces facing each other in the set of partition regions 50 and 50 adjacent to each other are aligned in a row, a direction orthogonal to the row (see FIG. The direction of the heat insulator 2 is easily bent with respect to the direction indicated by the arrow in FIG. 32 and 33, the heat insulator 2 is partially cut away.
Further, when the heat insulating body 2 is constituted by the plurality of partition regions 50, the protruding portion 57 is formed using the first mold 61 and the second mold 62, but such molds 61 and 62 are used. Instead, the filler 11 may be scattered in a plurality of regions on the substantially flat metal plate 41. In this case, the metal plate 41 around the dotted region is supported from below by the upper surface of the third mold 63 so that the dotted region of these fillers 11 is airtightly partitioned, and the metal plate A metal foil 42 is laminated above 41. Then, in a vacuum atmosphere, the metal foil 42 around the dotted region is moved downward from the upper side of the metal plate 41 and the metal foil 42 by another mold in a state where the upper and lower sides of the third mold 63 are switched. Pressurize. And like the above-mentioned example, the contact surface of these metal plates 41 and the metal foil 42 is joined by performing a pressurizing process and a heat processing.
 ここで、既述の第1の実施の形態における断熱体2の製造方法について、図34を参照して簡単に説明する。既述の金型61、62を用いない場合と同様に、概略平板上の金属板41(金属箔13)上に充填材11を載置して、この充填材11の上方に金属箔42(金属箔13)を積層する。そして、充填材11が金属板41及び金属箔42により包まれるように、充填材11の周囲における金属板41及び金属箔42の金属面同士を互いに接触させ、真空雰囲気中においてこの接触面に対して圧力を加えると共に、接触面を加熱する。こうして既述の例と同様に加圧処理及び加熱処理を行うことにより、接触面において原子の拡散が起こり、第1の実施の形態の断熱体2が得られる。図34中、参照符号81及び82は、夫々接触面を断熱体2の周方向に亘って下方側から支持する金型及び金型81による支持面を上方側から下方に向けて加圧する金型であり、参照符号83は金型81、82により挟み込まれる領域を加熱するための加熱部である。 Here, the manufacturing method of the heat insulator 2 in the first embodiment described above will be briefly described with reference to FIG. As in the case where the molds 61 and 62 described above are not used, the filler 11 is placed on the metal plate 41 (metal foil 13) on a substantially flat plate, and the metal foil 42 ( A metal foil 13) is laminated. Then, the metal surfaces of the metal plate 41 and the metal foil 42 around the filler material 11 are brought into contact with each other so that the filler material 11 is wrapped by the metal plate 41 and the metal foil 42, and the contact surface is in a vacuum atmosphere. The pressure is applied and the contact surface is heated. In this way, by performing the pressure treatment and the heat treatment in the same manner as in the above-described example, diffusion of atoms occurs on the contact surface, and the heat insulator 2 of the first embodiment is obtained. In FIG. 34, reference numerals 81 and 82 denote a mold for supporting the contact surface from the lower side over the circumferential direction of the heat insulator 2 and a mold for pressing the support surface by the mold 81 downward from the upper side. Reference numeral 83 is a heating unit for heating a region sandwiched between the molds 81 and 82.
 また、複数の区画領域50を接続するにあたって、金属箔13及び樹脂シート16(詳しくは金属板41、金属箔42及び樹脂シート16、16)からなる積層シート51を用いたが、樹脂材によりこれら複数の区画領域50を接続するようにしても良い。具体的には、図34において説明したように、区画領域50の設けられていない断熱体2を複数作製する。そして、以下に説明するように、図35及び図36に示す接続用金型90を2つ用いて、これら断熱体2を平面的に複数接続する。この接続用金型90には、断熱体2を収納するための凹部91が複数箇所に例えば格子状に配置されており、この凹部91は、凹部91に収納される断熱体2の端部が凹部91の外縁から僅かに例えば2mm程度外側に向かって伸び出すように、即ち凹部91、91間の領域において断熱体2が側方側から支持されるように、幅寸法が設定されている。また、これらの凹部91、91間において水平に形成された部位である水平部92には、接続用金型90の上面を縦横に区切るように、ライン状の溝93が形成されている。この溝93は、各々連通すると共に、接続用金型90の側面において接続用金型90の外側に向かって開口している。 Further, in connecting the plurality of partition regions 50, the laminated sheet 51 made of the metal foil 13 and the resin sheet 16 (specifically, the metal plate 41, the metal foil 42, and the resin sheets 16 and 16) is used. A plurality of partition regions 50 may be connected. Specifically, as described with reference to FIG. 34, a plurality of heat insulators 2 in which the partition regions 50 are not provided are produced. Then, as will be described below, a plurality of these heat insulators 2 are connected in a plane using two connection molds 90 shown in FIGS. 35 and 36. In this connection mold 90, concave portions 91 for accommodating the heat insulating body 2 are arranged in a plurality of places, for example, in a lattice shape, and the concave portion 91 has an end portion of the heat insulating body 2 accommodated in the concave portion 91. The width dimension is set so that it extends slightly outward from the outer edge of the recess 91, for example, about 2 mm, that is, the heat insulator 2 is supported from the side in the region between the recesses 91, 91. Further, a line-shaped groove 93 is formed in the horizontal portion 92 which is a portion formed horizontally between the concave portions 91 and 91 so as to divide the upper surface of the connection mold 90 vertically and horizontally. The grooves 93 communicate with each other and open toward the outside of the connection mold 90 on the side surface of the connection mold 90.
 そして、凹部91に断熱体2が収納されるように、接続用金型90上に複数の断熱体2を並べると共に、図37に示すように、これら断熱体2の端部を溝93の上方位置に位置させる。次いで、接続用金型90上に載置されたこれら断熱体2の上方側から、別の接続用金型90を、下方側の接続用金型90とは上下を入れ替えた状態で下降させる。そして、これらの接続用金型90、90における凹部91、91に断熱体2が上方側及び下方側から収納されるように接続用金型90、90を図示しない固定具により固定する。続いて、この接続用金型90、90を樹脂液中に浸漬すると、互いに隣接する断熱体2、2の端部間を接続するように、接続用金型90の側面側から樹脂液が溝93内を通流する。こうして樹脂液から接続用金型90、90を取り出して、溝93から樹脂液が排出されないようにしながら(接続用金型90の側面における溝93の開口部を塞ぎながら)乾燥や加熱処理を行い、接続用金型90、90を取り外すと、樹脂材95によって互いの端部同士が平面的に接続された複数の断熱体2が得られる。 
 このとき、樹脂材95を用いて平面的に接続する断熱体2としては、図38に示すように、既述の区画領域50と同様の形状のものであっても良い。また、既述の金属箔13、13同士を接合する方法として、これら金属箔13、13の接触部を加熱しながら加圧する手法を例に説明したが、真空雰囲気において電子ビームなどを接触部に照射して接合する溶接法であっても良い。
Then, a plurality of heat insulators 2 are arranged on the connection mold 90 so that the heat insulators 2 are accommodated in the recesses 91, and the end portions of these heat insulators 2 are placed above the grooves 93 as shown in FIG. 37. To position. Next, another connection mold 90 is lowered from above the heat insulator 2 placed on the connection mold 90 in a state where the upper and lower sides of the connection mold 90 are switched. Then, the connection molds 90 and 90 are fixed by a fixing tool (not shown) so that the heat insulator 2 is accommodated in the recesses 91 and 91 in the connection molds 90 and 90 from above and below. Subsequently, when the connection molds 90 and 90 are immersed in the resin liquid, the resin liquid is grooved from the side surface of the connection mold 90 so as to connect the ends of the heat insulators 2 and 2 adjacent to each other. 93 flows through. Thus, the connection molds 90 and 90 are taken out from the resin liquid, and drying and heat treatment are performed while preventing the resin liquid from being discharged from the groove 93 (while closing the opening of the groove 93 on the side surface of the connection mold 90). When the connection molds 90 and 90 are removed, the plurality of heat insulators 2 in which the end portions are planarly connected by the resin material 95 are obtained.
At this time, the heat insulator 2 connected in a plane using the resin material 95 may have a shape similar to that of the partition region 50 described above, as shown in FIG. In addition, as a method for joining the metal foils 13 and 13 described above, a method of applying pressure while heating the contact portions of the metal foils 13 and 13 has been described as an example. However, an electron beam or the like is used as a contact portion in a vacuum atmosphere. A welding method of irradiating and joining may be used.
 ここで、収納領域14が真空雰囲気である第1の実施の形態の断熱体2について複数の区画領域50に区画したが、既述の第2の実施の形態のマントル断熱体についても同様に複数の区画領域50に区画するようにしても良い。以下に、このようなマントル断熱体の製造方法の一例について説明する。先ず、図39(a)に示すように、例えば第1の金型61の表面(複数の凹部55)に倣うように既述の外皮層32を配置すると共に、例えば繊維状あるいは粉体状の例えばシリカガラスなどからなるブロック本体31を外皮層32を介して各々の凹部55内に収納する。次いで、同図(b)に示すように、各々の凹部55を塞ぐように、例えば薄膜状のアルミニウム層33を配置して、アルミニウム層33の下面と外皮層32の上面(凹部55、55間の領域)とを接着する。 Here, the storage region 14 is partitioned into a plurality of partition regions 50 for the heat insulator 2 of the first embodiment in which the vacuum atmosphere is used, but the mantle heat insulator of the second embodiment described above is also a plurality of the same. You may make it divide into the division area 50 of this. Below, an example of the manufacturing method of such a mantle heat insulator is demonstrated. First, as shown in FIG. 39 (a), for example, the outer skin layer 32 described above is arranged so as to follow the surface (a plurality of recesses 55) of the first mold 61, and for example, a fiber-like or powder-like one. For example, the block main body 31 made of silica glass or the like is accommodated in each recess 55 through the outer skin layer 32. Next, as shown in FIG. 2B, for example, a thin film aluminum layer 33 is disposed so as to close each recess 55, and the lower surface of the aluminum layer 33 and the upper surface of the outer skin layer 32 (between the recesses 55, 55). The area).
 また、図39(c)に示すように、以上の図39(a)と同様にして、第1の金型61と同じ構成の金型70を用いて、金型70の凹部55に沿うように配置した外皮層32を介して各々の凹部55内にブロック本体31を収納すると共に、各々の凹部55を覆うように、既述のアルミニウム層33を配置する。そして、同様にアルミニウム層33の下面と外皮層32の上面とを接着する。 Further, as shown in FIG. 39C, in the same manner as in FIG. 39A, the mold 70 having the same configuration as the first mold 61 is used so as to be along the recess 55 of the mold 70. The block body 31 is accommodated in each recess 55 via the outer skin layer 32 disposed in the above, and the above-described aluminum layer 33 is disposed so as to cover each recess 55. Similarly, the lower surface of the aluminum layer 33 and the upper surface of the outer skin layer 32 are bonded.
 続いて、図40に示すように、アルミニウム層33、33同士が互いに相対向するように、例えば第1の金型61の上下を反転させると共に、これらアルミニウム層33、33間に樹脂層34を配置する。そして、これらアルミニウム層33、樹脂層34及びアルミニウム層33同士を互いに接着して、熱反射シート35を形成する。次いで、マントル断熱体の周囲における外皮層32、32同士を接着すると共に、第1の金型61及び金型70を取り外すことにより、複数の区画領域50に区画されたマントル断熱体が得られる。このマントル断熱体についても、既述の真空断熱体(断熱体2)と同様に屈曲自在及び区画領域50、50間において切り離し可能に構成される。尚、これら図39及び図40においても熱反射シート35の厚み寸法については誇張して描画している。 Subsequently, as shown in FIG. 40, for example, the first mold 61 is turned upside down so that the aluminum layers 33 and 33 face each other, and the resin layer 34 is placed between the aluminum layers 33 and 33. Deploy. Then, the aluminum layer 33, the resin layer 34, and the aluminum layer 33 are bonded to each other to form the heat reflecting sheet 35. Next, the outer layers 32 and 32 around the mantle insulator are bonded together, and the first mold 61 and the mold 70 are removed to obtain a mantle insulator partitioned into a plurality of partition regions 50. The mantle heat insulator is also configured to be bendable and separable between the partition regions 50 and 50 in the same manner as the vacuum heat insulator (heat insulator 2) described above. 39 and 40, the thickness dimension of the heat reflecting sheet 35 is exaggerated.
 本国際出願は2010年2月16日及び2010年8月2日にそれぞれ出願された日本国特許出願2010-031665号及び2010-173861号に基づく優先権を主張するものであり、その全内容をここに援用する。
 
 
This international application claims priority based on Japanese Patent Applications 2010-031665 and 2010-173861 filed on February 16, 2010 and August 2, 2010, respectively. This is incorporated here.

Claims (9)

  1.  周縁部の金属面同士が接合されて封止されると共に内部が真空雰囲気とされる金属箔からなる第1の封体と、
     前記第1の封体内に封入された断熱材と、
     前記第1の封体を覆うように設けられた樹脂シートと、を備えたことを特徴とする断熱体。
    A first envelope made of a metal foil in which the peripheral metal surfaces are bonded and sealed, and the inside is in a vacuum atmosphere;
    A heat insulating material enclosed in the first envelope;
    And a resin sheet provided so as to cover the first sealing body.
  2.  前記樹脂シートは、周縁部にて当該樹脂シート同士が封止されるかまたは周縁部が前記第1の封体の周縁部に接合されることにより、第2の封体を形成し、
     前記第2の封体と前記第1の封体との間に断熱材が充填されていることを特徴とする、請求項1に記載の断熱体。
    The resin sheet forms a second envelope by sealing the resin sheets to each other at the peripheral edge or by joining the peripheral edge to the peripheral edge of the first envelope.
    The heat insulator according to claim 1, wherein a heat insulating material is filled between the second seal and the first seal.
  3.  前記第1の封体は、互いに対向する金属箔の一部同士を接合することにより内部が互いに気密な複数の領域に区画され、
     前記複数の領域の各々は、断熱材が封入されていることを特徴とする、請求項1または2に記載の断熱体。
    The first sealing body is partitioned into a plurality of regions that are airtight to each other by joining a part of metal foils facing each other.
    The heat insulator according to claim 1 or 2, wherein a heat insulating material is sealed in each of the plurality of regions.
  4.  断熱ブロックと、該断熱ブロックの内部において被断熱領域に対向するように設けられた熱反射シートと、を備え、
     前記熱反射シートは、樹脂シートと該樹脂シートにおける前記被断熱領域側に積層された金属層と、からなることを特徴とする断熱体。
    A heat-insulating block, and a heat-reflective sheet provided so as to face the heat-insulated region inside the heat-insulating block,
    The heat-reflecting sheet comprises a resin sheet and a metal layer laminated on the heat-insulated region side of the resin sheet.
  5.  前記断熱ブロックは、セラミック材を外皮層で覆うことにより構成されたことを特徴とする、請求項4に記載の断熱体。 The heat insulating body according to claim 4, wherein the heat insulating block is configured by covering a ceramic material with an outer skin layer.
  6.  前記樹脂シートは、ポリイミドからなることを特徴とする、請求項1、2、4、および5のいずれか一項に記載の断熱体。 The heat insulating body according to any one of claims 1, 2, 4, and 5, wherein the resin sheet is made of polyimide.
  7.  断熱材を包むように金属箔を配置して、該断熱材の周囲における前記金属箔の金属面同士を互いに圧接させる工程と、
     これら断熱材及び金属箔が置かれる雰囲気を真空雰囲気に保ちながら、前記金属面同士の間で原子の拡散が起こるように、前記金属面同士の接触部を加熱することにより、金属面同士を互いに接合させて第1の封体を形成する工程と、
     続いて、樹脂シートにより前記第1の封体を覆う工程と、を含むことを特徴とする断熱体の製造方法。
    Arranging the metal foil so as to wrap the heat insulating material, and pressing the metal surfaces of the metal foil around the heat insulating material with each other;
    While maintaining the atmosphere in which the heat insulating material and the metal foil are placed in a vacuum atmosphere, by heating the contact portion between the metal surfaces so that atoms diffuse between the metal surfaces, the metal surfaces are mutually bonded. Bonding and forming a first envelope;
    Then, the process of covering a said 1st sealing body with a resin sheet, The manufacturing method of the heat insulating body characterized by the above-mentioned.
  8.  前記第1の封体を形成する工程と前記樹脂シートにより前記第1の封体を覆う工程との間に、当該第1の封体の外側に断熱材を配置する工程を行い、
     前記樹脂シートにより前記第1の封体を覆う工程は、前記第1の封体の外側において当該樹脂シートの周縁部同士を封止する工程または前記樹脂シートの周縁部を前記第1の封体の周縁部に接合する工程であり、当該工程により前記第1の封体の外側の断熱材が前記樹脂シートからなる第2の封体と前記第1の封体との間に充填されることを特徴とする、請求項7に記載の断熱体の製造方法。
    Between the step of forming the first envelope and the step of covering the first envelope with the resin sheet, performing a step of disposing a heat insulating material on the outside of the first envelope,
    The step of covering the first envelope with the resin sheet includes the step of sealing the peripheral portions of the resin sheet on the outside of the first envelope or the peripheral portion of the resin sheet with the first envelope. The heat insulating material outside the first envelope is filled between the second envelope made of the resin sheet and the first envelope. The manufacturing method of the heat insulating body of Claim 7 characterized by these.
  9.  前記金属箔の金属面同士を互いに圧接させる工程は、複数の凹部が形成された一方の金型に一方の金属箔を装着する工程と、前記凹部内に各々前記一方の金属箔を介して断熱材を位置させる工程と、その後、前記一方の金型に他方の金型を、前記一方の金属箔上に積層された他方の金属箔を介して圧接する工程であり、
     前記第1の封体を形成する工程は、前記凹部の各々の周縁部における金属面同士の接触部を加熱する工程であることを特徴とする、請求項7または8に記載の断熱体の製造方法。
    The step of pressing the metal surfaces of the metal foil together includes the step of attaching one metal foil to one mold in which a plurality of recesses are formed, and heat insulation through the one metal foil in each of the recesses. A step of positioning the material, and then pressing the other mold to the one mold through the other metal foil laminated on the one metal foil,
    The process of forming a said 1st sealing body is a process of heating the contact part of the metal surfaces in each peripheral part of the said recessed part, The manufacture of the heat insulating body of Claim 7 or 8 characterized by the above-mentioned. Method.
PCT/JP2011/053127 2010-02-16 2011-02-15 Heat insulator and process for producing heat insulator WO2011102337A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010031665 2010-02-16
JP2010-031665 2010-02-16
JP2010173861A JP2011190925A (en) 2010-02-16 2010-08-02 Heat insulator and method of manufacturing the same
JP2010-173861 2010-08-02

Publications (1)

Publication Number Publication Date
WO2011102337A1 true WO2011102337A1 (en) 2011-08-25

Family

ID=44482922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053127 WO2011102337A1 (en) 2010-02-16 2011-02-15 Heat insulator and process for producing heat insulator

Country Status (3)

Country Link
JP (1) JP2011190925A (en)
TW (1) TW201202589A (en)
WO (1) WO2011102337A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104595634A (en) * 2015-01-26 2015-05-06 黄国平 VIP (vacuum insulated panel)
EP2980467A4 (en) * 2013-03-29 2016-11-23 Mitsubishi Electric Corp Vacuum heat-insulating material
WO2017029460A1 (en) * 2015-08-20 2017-02-23 Hutchinson Assembly and articulated panel with intermediate positioning portions, for thermal insulation
FR3070471A1 (en) * 2017-08-22 2019-03-01 Hutchinson ASSEMBLY WITH REINFORCED INSULATION
US10493725B2 (en) 2016-02-04 2019-12-03 Mitsubishi Electric Corporation Thermal insulator, vacuum insulation member, and method of manufacturing vacuum insulation member
CN113943910A (en) * 2021-08-26 2022-01-18 张小静 Molybdenum plate stretching heat treatment annealing treatment die

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228016A (en) * 2012-04-25 2013-11-07 Mitsubishi Electric Corp Vacuum heat insulating material, method of manufacturing the same, and heat insulated device
JP5496264B2 (en) * 2012-06-19 2014-05-21 マグ・イゾベール株式会社 Vacuum insulation panel
JP7122511B2 (en) * 2018-07-12 2022-08-22 パナソニックIpマネジメント株式会社 toilet seat device
WO2020115808A1 (en) * 2018-12-04 2020-06-11 日新ネオ株式会社 Heat insulating material, method for manufacturing same, and insulating container using heat insulating material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07139690A (en) * 1993-11-22 1995-05-30 Asahi Chem Ind Co Ltd Vacuum heat insulation material
JP2008223958A (en) * 2007-03-15 2008-09-25 Matsushita Electric Ind Co Ltd Bag body and vacuum heat insulation material
JP2009079650A (en) * 2007-09-26 2009-04-16 Panasonic Corp Vacuum heat insulating material
JP2009287586A (en) * 2008-05-27 2009-12-10 Panasonic Corp Vacuum heat insulating material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07139690A (en) * 1993-11-22 1995-05-30 Asahi Chem Ind Co Ltd Vacuum heat insulation material
JP2008223958A (en) * 2007-03-15 2008-09-25 Matsushita Electric Ind Co Ltd Bag body and vacuum heat insulation material
JP2009079650A (en) * 2007-09-26 2009-04-16 Panasonic Corp Vacuum heat insulating material
JP2009287586A (en) * 2008-05-27 2009-12-10 Panasonic Corp Vacuum heat insulating material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980467A4 (en) * 2013-03-29 2016-11-23 Mitsubishi Electric Corp Vacuum heat-insulating material
CN104595634A (en) * 2015-01-26 2015-05-06 黄国平 VIP (vacuum insulated panel)
WO2017029460A1 (en) * 2015-08-20 2017-02-23 Hutchinson Assembly and articulated panel with intermediate positioning portions, for thermal insulation
US11174978B2 (en) 2015-08-20 2021-11-16 Hutchinson Assembly and articulated panel with intermediate positioning portions, for thermal insulation
US10493725B2 (en) 2016-02-04 2019-12-03 Mitsubishi Electric Corporation Thermal insulator, vacuum insulation member, and method of manufacturing vacuum insulation member
FR3070471A1 (en) * 2017-08-22 2019-03-01 Hutchinson ASSEMBLY WITH REINFORCED INSULATION
CN113943910A (en) * 2021-08-26 2022-01-18 张小静 Molybdenum plate stretching heat treatment annealing treatment die

Also Published As

Publication number Publication date
TW201202589A (en) 2012-01-16
JP2011190925A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
WO2011102337A1 (en) Heat insulator and process for producing heat insulator
TWI457233B (en) Groove type vacuum heat insulation material
JP4861715B2 (en) Manufacturing method of vacuum insulation
JP5333038B2 (en) Vacuum insulation and manufacturing method thereof
JP6070269B2 (en) Insulation
JP5907204B2 (en) Manufacturing method of vacuum insulation
JP5301816B2 (en) Heat resistant vacuum insulation
US20240011680A1 (en) Thermoelectric assembly sealing member with vapor barrier
US11815296B2 (en) Thermoelectric assembly sealing member with metal vapor barrier
KR20130037640A (en) Vacuumed insulation marerial, and method and apparatus for manufacturing the same
JP2014005872A (en) Vacuum heat insulation body
JP2009092224A (en) Vacuum heat insulating material and building adopting vacuum heat insulation material
JP2017078479A (en) Vacuum heat insulation material, method for manufacturing vacuum heat insulation material, and heat insulation container
JP6508162B2 (en) Method of manufacturing vacuum insulation panel
JP2008240507A (en) Heat insulating material, heat insulating sheet and heat reserving sheet
JP2001128860A (en) Vacuum thermally insulating container
JP4944567B2 (en) Vacuum insulation article and method for manufacturing the same
JPH11210983A (en) Vacuum thermal insulating panel and its manufacture
JP5591149B2 (en) Method and apparatus for manufacturing vacuum insulation panel
JP2018200106A (en) Heat insulation body
JP2004232735A (en) Evacuated heat insulating panel
JP4807334B2 (en) Vacuum insulation
TWI767409B (en) Manufacturing method of heat insulating member, heat insulating member, cooling/heating machine using the same, and manufacturing method of the cooling/heating machine
KR101407487B1 (en) Vacuum insulation panels and the manufacturing metod of it
JP2019094962A (en) Heat insulation panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744623

Country of ref document: EP

Kind code of ref document: A1