WO2011102065A1 - 質量検出センサーを用いた検出方法 - Google Patents

質量検出センサーを用いた検出方法 Download PDF

Info

Publication number
WO2011102065A1
WO2011102065A1 PCT/JP2010/073769 JP2010073769W WO2011102065A1 WO 2011102065 A1 WO2011102065 A1 WO 2011102065A1 JP 2010073769 W JP2010073769 W JP 2010073769W WO 2011102065 A1 WO2011102065 A1 WO 2011102065A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
substrate
mass
solution
sensor
Prior art date
Application number
PCT/JP2010/073769
Other languages
English (en)
French (fr)
Inventor
徹 家邉
博保 角矢
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2011102065A1 publication Critical patent/WO2011102065A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0255(Bio)chemical reactions, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors

Definitions

  • the present invention relates to a detection method using a mass detection sensor, and more particularly to a detection method for detecting a precipitate generated by a reaction catalyzed by an enzyme using a mass detection sensor.
  • the reaction product produced by the reaction catalyzed by the labeling enzyme is generally detected by absorption, fluorescence, or luminescence, but an electrochemical detection method or a method using a mass detection sensor is also known. (For example, see Patent Document 1 and Non-Patent Document 1)
  • the enzyme alkaline phosphatase (ALP) and its substrate, bromochloroindolyl phosphate (BCIP) -nitroblue tetrazolium (NBT), are stained to detect the isolated protein of interest in Western blotting in the field of biochemistry. Used for the purpose. BCIP produces a blue precipitate upon reaction with ALP, and the reaction product oxidizes NBT to produce a purple insoluble precipitate that is stained. By staining the protein, the presence or absence can be visually confirmed.
  • an enzyme ALP is arranged above the sensor surface of the mass detection sensor according to the concentration of the detection target.
  • the present invention intends to provide a detection method using a mass detection sensor that can prevent the dynamic range from being narrowed even if the enzyme concentration is high.
  • the present invention provides a detection method using a mass detection sensor configured as follows.
  • the detection method using the mass detection sensor includes (i) a first step in which the sensor surface of the mass detection sensor is disposed upward and an enzyme is disposed in the vicinity of the sensor surface; and (ii) a reaction catalyzed by the enzyme.
  • a solution containing a substrate that generates an insoluble precipitate is supplied in contact with the sensor surface and the enzyme, and the insoluble precipitate generated from the substrate in the solution by the enzyme-catalyzed reaction is supplied to the sensor.
  • a substrate stock solution containing the substrate is mixed with a diluent having a buffering capacity that does not affect the function of the enzyme, and the concentration of the substrate is smaller than the concentration of the substrate in the substrate stock solution.
  • the concentration of the substrate is adjusted with a diluent. adjust.
  • the amount of the reaction product generated per unit time when the substrate reacts with the enzyme can be reduced by adjusting the concentration of the substrate with the diluent. This prevents reaction products from binding together to form a massive substance before depositing on the sensor surface of the mass detection sensor. A large amount of reaction product accumulates on the sensor surface, and a signal can be obtained according to the enzyme concentration, so that the dynamic range can be increased.
  • the enzyme may be in contact with the sensor surface of the mass detection sensor, but it is preferable that the enzyme does not become a mass load when the enzyme is away from the sensor surface.
  • the enzyme is alkaline phosphatase.
  • the substrate is bromochloroindolyl phosphate-nitroblue tetrazolium.
  • BCIP bromochloroindolyl phosphate
  • NBT nitrogen triphosphate
  • ALP Alkaline phosphatase
  • the concentration of the bromochloroindolyl phosphate (BCIP) in the solution is 0.05 mM or more and 0.2 mM or less.
  • the detection sensitivity can be increased by using a solution obtained by diluting a commercially available substrate stock solution, compared with the case of using the substrate stock solution.
  • the concentration of the nitro blue tetrazolium (NBT) in the solution is 0.04 mM or more and 0.16 mM or less.
  • the mass detection sensor is a surface acoustic wave sensor or a quartz crystal sensor.
  • the mass load due to the insoluble precipitate can be detected with high sensitivity.
  • the solution is continuously supplied onto the mass detection sensor using a supply means.
  • the supply means is a pump.
  • the dynamic range can be prevented from being narrowed even if the enzyme concentration is high.
  • Example 1 It is explanatory drawing which shows a detection principle typically.
  • Example 1 It is sectional drawing which shows a mass load state typically.
  • Example 1 It is a graph which shows the relationship between a substrate concentration and a frequency change rate.
  • Example 1 It is sectional drawing which shows a mass load state typically. (Comparative Example 1)
  • Example 1 A detection method using the mass detection sensor of Example 1 will be described with reference to FIGS.
  • FIG. 1 is an explanatory diagram schematically showing the detection principle of the first embodiment.
  • FIG. 2 is a cross-sectional view schematically showing a mass load state.
  • an enzyme-attached antibody 20 in which an enzyme 24 is linked to an antibody 22
  • a transport antibody 30 in which another antibody 32 is immobilized on a transportable carrier 34 such as a magnetic bead, and a substrate 4.
  • a solution containing a transportable carrier 34
  • the antibody 22 of the enzyme-attached antibody 20 and the antibody 32 of the delivery antibody 30 are antibodies that specifically bind to a trace amount of protein 2 (hereinafter also referred to as “target protein”) to be detected.
  • target protein a trace amount of protein 2
  • the target protein 2 is bound so as to be sandwiched between the antibody 22 of the enzyme-attached antibody 20 and the antibody 32 of the delivery antibody 30, the antibody-attached antibody 20 and the delivery antibody 30 are interposed via the target protein 2.
  • a combined complex 40 is formed.
  • an insoluble precipitate 6 which is a solid-phase reaction product, is generated from the substrate 4 in the solution.
  • substrate 4 is bromochloroindolyl phosphate (BCIP) -nitroblue tetrazolium (NBT) and enzyme 24 is alkaline phosphatase (ALP).
  • the substrate 4 2 In the state where the complex 40 in which the enzyme-attached antibody 20 and the transporting antibody 30 are combined is present in the vicinity of the sensor surface on which the vibration of the surface acoustic wave sensor or the crystal resonator sensor that is a mass detection sensor propagates, the substrate 4 2, the insoluble precipitate 6 is deposited on the sensor surface 11 of the mass detection sensor 10 and the mass load changes as shown in FIG.
  • the mass detection sensor 10 illustrated in FIG. 2 is a surface acoustic wave sensor, and an IDT (interdigital transducer) 14 is formed on a piezoelectric substrate 12 and is covered with an insulating film 16 such as SiO 2 .
  • the mass detection sensor 10 can detect the insoluble precipitate 6 by changing the frequency characteristics when the mass load changes. Since the insoluble precipitate 6 is generated according to the amount of the complex 40 formed by the target protein 2, the presence or amount of the target protein 2 is detected by detecting the mass load due to the insoluble precipitate 6. Can do.
  • the amount of the enzyme 24 increases according to the amount of the target protein 2, and when the substrate 4 is supplied thereto, the amount of the insoluble precipitate 6 increases according to the amount of the enzyme 24, so that the mass of the target protein 2 itself is measured.
  • the mass load on the mass detection sensor can be greatly increased, and the detection sensitivity can be increased.
  • the enzyme-attached antibody 20 is supplied to the specimen and mixed, and the target protein 2 in the specimen is bound to the antibody 22 of the enzyme-attached antibody 20.
  • a solution containing the substrate 4 is supplied, and the solution is brought into contact with the sensor surface 11 and the enzyme 24 contained in the antibody with enzyme 22 forming the complex 40.
  • an insoluble precipitate 6 is generated from the substrate 4 in the solution by a reaction catalyzed by the enzyme 24 included in the antibody with enzyme 22 forming the complex 40, and the generated insoluble precipitate 6 is converted into the mass detection sensor 10.
  • the sensor surface 11 is deposited.
  • the mass load due to the insoluble precipitate 6 deposited on the sensor surface 11 is detected using the mass detection sensor 10. For example, whether or not the insoluble precipitate 6 is deposited is detected from the difference in resonance frequency before and after the deposition of the insoluble precipitate 6 on the sensor surface 11.
  • a substrate stock solution with a concentration optimized for staining affects the function of the enzyme.
  • the solution is prepared and diluted with a diluent having a buffering capacity that does not give water, such as 0.1 M Tris-0.1 M NaCl-5 mM MgCl 2 (pH 9.5), and then supplied at a constant flow rate using an external pump.
  • a diluent having a buffering capacity that does not give water, such as 0.1 M Tris-0.1 M NaCl-5 mM MgCl 2 (pH 9.5)
  • a pump it is easier to control the solution supply speed than when supplying with a supply means such as a pipette.
  • the reaction products are bound to each other particularly at a high enzyme concentration.
  • the massive substance 7 is formed before adsorbing to the sensor surface 11 of the mass detection sensor 10. This massive substance 7 is useful for dyeing applications because it is colored and has excellent visibility, but it does not float and accumulate on the sensor surface 11, so it cannot give a mass load to the sensor surface 11, The signal from the mass detection sensor 10 reaches a peak.
  • the reaction is performed while replenishing the substrate 4 by continuously supplying the solution containing the substrate 4 using a supply means such as a pump. And the insoluble precipitate 6 can be accumulated.
  • a supply means such as a pump.
  • FIG. 3 is a graph showing the frequency change rate when the substrate concentration of the solution is changed.
  • the substrate stock solution (dilution ratio is 1) and the substrate stock solution are diluted 2.5 times, 5 times, 7.5 times, 10 times, 12.5 times, and 15 times.
  • the frequency change rate is shown for 4, 0.2, 0.13, 0.1, 0.08, and 0.066.
  • the horizontal axis indicates the dilution ratio with respect to the substrate stock solution.
  • the vertical axis represents the frequency change rate.
  • FIG. 3 shows that when the substrate stock solution is diluted 2.5 to 10 times, the frequency change rate becomes larger than that of the substrate stock solution and the detection sensitivity is improved.
  • the concentration of BCIP is preferably 2.5 to 10 times 0.5 mM of the substrate stock solution, that is, 0.05 to 0.2 mM.
  • the concentration of NBT is preferably 2.5 to 10 times 0.4 mM of the substrate stock solution, that is, 0.04 to 0.16 mM.
  • the concentration of the substrate has a buffer capacity that does not affect the function of the enzyme.
  • the sample, the antibody-attached antibody 20, and the delivery antibody 30 are mixed at the same time to form a complex 40 in which the enzyme-attached antibody 20 and the delivery antibody 30 are bound via the labeled protein 2, and then the complex.
  • the solution containing the substrate 4 may be supplied in a state in which 40 is arranged in the vicinity of the sensor surface of the mass detection sensor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Acoustics & Sound (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 酵素濃度が高くてもダイナミックレンジが狭くならないようにすることができる、質量検出センサーを用いた検出方法を提供する。 (i)質量検出センサーのセンサー面を上向きに配置し、センサー面の近傍に酵素24を配置する第1の工程と、(ii)酵素24が触媒する反応によって不溶性沈殿物6を生じさせる基質4を含む溶液を、センサー面及び酵素6に接するように供給して、酵素24の触媒する反応によって溶液中の基質4から生じた不溶性沈殿物6をセンサー面に堆積させ、センサー面に堆積した不溶性沈殿物6による質量負荷を検出する第2の工程とを含む。溶液は、基質4を含む基質原液に、酵素24の機能に影響を与えない緩衝能をもつ希釈液が混合されて、基質4の濃度が、基質原液中の基質4の濃度よりも小さくされている。

Description

質量検出センサーを用いた検出方法
 本発明は、質量検出センサーを用いた検出方法に関し、詳しくは、酵素により触媒される反応によって生じた沈殿物を、質量検出センサーを用いて検出する検出方法に関する。
 標的物質である抗原又は抗体を、標識酵素を連結した抗体又は抗原と反応させ、標識酵素が触媒する反応によって生じる反応生成物を検出することにより、標的物質の高感度な検出を達成することができる。
 標識酵素が触媒する反応によって生じる反応生成物は、吸光、蛍光、発光によって検出する方法が一般的であるが、電気化学的に検出する方法や、質量検出センサーを用いる方法も知られている。(例えば、特許文献1、非特許文献1参照)
国際公開第2006/033348号
Fernando Patolsky, Amir Lichtenstein, and Itamar Willner、"Detection of single-base DNA mutations by enzyme-amplified electronic transduction"、NATURE BIOTECHNOLOGY、MARCH 2001、VOLUME 19、p.253-257
 酵素であるアルカリフォスファターゼ(ALP)とその基質であるブロモクロロインドリル燐酸(BCIP)-ニトロブルーテトラゾリウム(NBT)は、生化学分野におけるウェスタンブロット法において、分離した目的のタンパク質を検出するために染色する目的で使用される。BCIPはALPとの反応により青色を呈する沈殿物を生成し、その反応生成物によりNBTが酸化されて紫色の不溶性沈殿を生じて染色される。タンパク質が染色されることにより、その存在有無を目視にて確認することが可能となる。
 質量検出センサーである水晶振動子や圧電表面弾性波振動子のようなピエゾ素子を用いて検出する方法においては、検出対象の濃度に応じて酵素ALPが質量検出センサーのセンサー面の上方に配置し、そこにBCIP-NBTのような不溶性沈殿物を生じる基質を含む溶液を供給し、不溶性沈殿物による質量負荷を検出することで、本来の検出対象物質による質量負荷のシグナルを増幅することが可能である。
 しかしながら、市販されている基質を含む溶液は染色用に基質濃度が最適化されており、そのまま用いると、特に酵素濃度が高い場合に、反応生成物が有色で塊状の物質となって浮遊するため、質量負荷を与えることができずシグナルが頭打ちとなる。この現象に伴い高濃度域の測定限界が小さくなり、ダイナミックレンジを狭める結果となってしまう。
 本発明は、かかる実情に鑑み、酵素濃度が高くてもダイナミックレンジが狭くならないようにすることができる、質量検出センサーを用いた検出方法を提供しようとするものである。
 本発明は、上記課題を解決するために、以下のように構成した質量検出センサーを用いた検出方法を提供する。
 質量検出センサーを用いた検出方法は、(i)質量検出センサーのセンサー面を上向きに配置し、該センサー面の近傍に酵素を配置する第1の工程と、(ii)前記酵素が触媒する反応によって不溶性沈殿物を生じさせる基質を含む溶液を、前記センサー面及び前記酵素に接するように供給して、前記酵素の触媒する反応によって前記溶液中の前記基質から生じた前記不溶性沈殿物を前記センサー面に堆積させ、前記センサー面に堆積した前記不溶性沈殿物による質量負荷を検出する第2の工程とを含む。前記溶液は、前記基質を含む基質原液に、前記酵素の機能に影響を与えない緩衝能をもつ希釈液が混合されて、前記基質の濃度が、前記基質原液中の前記基質の濃度よりも小さくされている。
 すなわち、酵素と該酵素と反応して不溶性沈殿物を生じさせる基質との組合せを用いて前記不溶性沈殿物による質量負荷を検出する、質量検出センサーの検出方法において、前記基質の濃度を希釈液により調整する。
 上記方法によれば、基質の濃度を希釈液により調整することにより、基質が酵素と反応して単位時間あたりに生じる反応生成物の量を減らすことができる。これにより、質量検出センサーのセンサー面に堆積する前に、反応生成物同士が結合して塊状の物質を形成することを防ぐことができるので、高濃度の酵素存在下においても、酵素濃度に応じた量の反応生成物がセンサー面に堆積し、酵素濃度に応じて信号を得ることができ、ダイナミックレンジを高めることができる。
 なお、酵素は、質量検出センサーのセンサー面に接しても構わないが、酵素がセンサー面から離れていると、酵素は質量負荷にならないため好ましい。
 好ましくは、前記酵素は、アルカリフォスファターゼである。前記基質は、ブロモクロロインドリル燐酸-ニトロブルーテトラゾリウムである。
 この場合、ブロモクロロインドリル燐酸(BCIP)-ニトロブルーテトラゾリウム(NBT)は、タンパク質の染色用として市販されており、入手が容易である。アルカリフォスファターゼ(ALP)は、BCIPに対して触媒として機能する。
 好ましくは、前記溶液中の前記ブロモクロロインドリル燐酸(BCIP)の濃度が、0.05mM以上、かつ、0.2mM以下である。
 この場合、市販の基質原液を希釈した溶液を用いることで、基質原液を用いた場合よりも、検出感度を高めることができる。
 より好ましくは、前記溶液中の前記ニトロブルーテトラゾリウム(NBT)の濃度が、0.04mM以上、かつ、0.16mM以下である。
 好ましくは、前記質量検出センサーは、弾性表面波センサー又は水晶振動子センサーである。
 この場合、不溶性沈殿物による質量負荷を高感度に検出することができる。
 好ましくは、前記溶液は、供給手段を用いて質量検出センサー上に連続的に供給する。
 この場合、基質を含む溶液を連続して供給することで、希釈による基質の不足を防ぎ、反応を連続させて、高濃度酵素存在下においても、酵素濃度に応じた大きな信号を得ることができる。
 より好ましくは、前記供給手段がポンプである。
 この場合、ピペットなどの供給手段を用いる場合に比べ、溶液の供給速度の制御が容易である。
 本発明の質量検出センサーによる検出方法によれば、酵素濃度が高くてもダイナミックレンジが狭くならないようにすることができる。
検出原理を模式的に示す説明図である。(実施例1) 質量負荷状態を模式的に示す断面図である。(実施例1) 基質濃度と周波数変化率との関係を示すグラフである。(実施例1) 質量負荷状態を模式的に示す断面図である。(比較例1)
 以下、本発明の実施の形態について、図1~図4を参照しながら説明する。
 <実施例1> 実施例1の質量検出センサーを用いた検出方法について、図1~図4を参照しながら説明する。
 図1は、実施例1の検出原理を模式的に示す説明図である。図2は、質量負荷状態を模式的に示す断面図である。図1に示すように、抗体22に酵素24が連結された酵素付抗体20と、別の抗体32が磁気ビーズなどの搬送可能な担体34に固定化された搬送用抗体30と、基質4を含む溶液とを用意する。
 酵素付抗体20の抗体22と、搬送用抗体30の抗体32とは、検出対象である微量のタンパク質2(以下、「標的タンパク質」とも言う。)と特異的に結合する抗体である。標的タンパク質2が、酵素付抗体20の抗体22と搬送用抗体30の抗体32との間に挟まれるように結合されると、酵素付抗体20と搬送用抗体30とが標的タンパク質2を介して結合された複合体40が形成される。
 酵素付抗体20の酵素24が触媒する反応によって、矢印8で示すように、溶液中の基質4から、固相の反応生成物である不溶性沈殿物6が生じる。例えば、基質4はブロモクロロインドリル燐酸(BCIP)-ニトロブルーテトラゾリウム(NBT)であり、酵素24はアルカリフォスファターゼ(ALP)である。
 質量検出センサーである表面弾性波センサーや水晶振動子センサーの振動が伝搬するセンサー面の近傍に、酵素付抗体20と搬送用抗体30とが結合された複合体40が存在する状態で、基質4を含む溶液を供給すると、図2に示すように、質量検出センサー10のセンサー面11に不溶性沈殿物6が堆積して質量負荷が変化する。
 図2に例示した質量検出センサー10は表面弾性波センサーであり、圧電基板12上にIDT(interdigital transducer)14が形成され、その上をSiO等の絶縁膜16で覆われている。
 質量検出センサー10は、質量負荷が変化すると周波数特性が変化することにより、不溶性沈殿物6を検出することができる。不溶性沈殿物6は、標的タンパク質2によって形成される複合体40の量に応じて生成されるので、不溶性沈殿物6による質量負荷を検出することで、標的タンパク質2の有無や量を検出することができる。
 標的タンパク質2の存在量に応じて酵素24の量が増え、そこに基質4を供給すると酵素24の量に応じて不溶性沈殿物6の量が増えるため、標的タンパク質2そのものの質量を測定するよりも、結果的には質量検出センサーへの質量負荷量を大幅に増やすことができ、検出感度を高めることができる。
 この測定系において、次の手順により検出を行う。
 まず、検体に酵素付抗体20を供給して混ぜ合わせ、検体中の標的タンパク質2を酵素付抗体20の抗体22に結合させる。
 次いで、磁石を用いるなどして質量検出センサーのセンサー面の近傍に搬送用抗体30が存在した状態で、検体と酵素付抗体20との混合物を供給し、酵素付抗体20に結合している標識タンパク質2を、搬送用抗体30の抗体32で捉えて、複合体40を形成する。
 次いで、基質4を含む溶液を供給し、センサー面11と複合体40を形成する酵素付抗体22に含まれる酵素24とに溶液が接するようにする。これによって、複合体40を形成する酵素付抗体22に含まれる酵素24が触媒する反応によって、溶液中の基質4から不溶性沈殿物6が生成され、生成された不溶性沈殿物6を質量検出センサー10のセンサー面11に堆積させる。そして、センサー面11に堆積した不溶性沈殿物6による質量負荷を、質量検出センサー10を用いて検出する。例えば、センサー面11への不溶性沈殿物6の堆積前後における共振周波数の差から、不溶性沈殿物6の堆積の有無や量を検出する。
 基質4を含む溶液は、市販されている染色用に最適化された濃度(BCIP:0.4~0.6mM、NBT:0.3~0.5mM)の基質原液を、酵素の機能に影響を与えない緩衝能をもつ希釈液、例えば0.1M Tris - 0.1M NaCl - 5mM MgCl(pH9.5)で調製・希釈した上、外付けのポンプを用いて一定流速で供給する。ポンプを用いると、ピペットなどの供給手段で供給する場合よりも、溶液の供給速度の制御が容易である。
 染色用に最適化された濃度(BCIP:0.4~0.6mM、NBT:0.3~0.5mM)の基質原液では、特に高い酵素濃度において反応生成物同士が結合して、図4の断面図に模式的に示すように、質量検出センサー10のセンサー面11に吸着する前に塊状の物質7を形成する。この塊状の物質7は、有色で視認性に優れているため染色用途には有用であるが、浮遊してセンサー面11上に堆積しないため、センサー面11に質量負荷を与えることができず、質量検出センサー10からのシグナルは頭打ちとなる。
 この基質原液を希釈することで、基質4が酵素24と反応して単位時間あたりに生じる反応生成物の量を減らし、反応生成物同士が結合して浮遊物になる前にセンサー面11に堆積し、質量負荷を与える不溶性沈殿物6の層を形成するようにすることができる。これによって、効率よく質量負荷を起こし、酵素24が高濃度であっても酵素濃度に応じて信号を得ることができ、ダイナミックレンジを高めることができる。
 溶液の基質濃度を下げることで、基質不足による反応の停止が懸念されるが、ポンプなどの供給手段を用いて基質4を含む溶液を連続して供給することにより、基質4を補給しながら反応を継続させて不溶性沈殿物6を累積させることができる。このように希釈による基質4の不足を防ぎ、反応を連続させることによって、酵素24が高濃度で存在していても、酵素濃度に応じた量の反応生成物がセンサー面に堆積し、酵素濃度に応じた大きな信号を得ることができる。
 図3は、溶液の基質濃度を変えたときの周波数変化率を示すグラフである。具体的には、基質原液(希釈率は1)と、基質原液を2.5倍、5倍、7.5倍、10倍、12.5倍、15倍に希釈したきの希釈率0.4、0.2、0.13、0.1、0.08、0.066とについて、周波数変化率を示している。横軸は、基質原液に対する希釈率を示す。縦軸は、周波数変化率であり、基質導入前の周波数をf、基質導入後の周波数をfとすると|f-f|/fで表され、単位はppmである。
 図3から、基質原液を2.5倍~10倍に希釈すると、基質原液よりも周波数変化率が大きくなり、検出感度が向上していることが分かる。図3から、BCIPの濃度は、基質原液のときの0.5mMの2.5~10倍、すなわち、0.05~0.2mMが好ましい。また、NBTの濃度は、基質原液のときの0.4mMの2.5~10倍、すなわち、0.04~0.16mMが好ましい。
 <まとめ> 以上に説明したように、酵素と基質との組合せを用いて検出対象物による信号を質量検出センサーにより検出する際に、基質の濃度を酵素の機能に影響を与えない緩衝能をもつ希釈液で調整・希釈して最適化することで、酵素濃度に応じて検出信号を得ることができ、ダイナミックレンジを高めることができる。
 なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。
 例えば、検体と、酵素付抗体20と、搬送用抗体30とを同時に混合し、酵素付抗体20と搬送用抗体30とが標識タンパク質2を介して結合した複合体40を形成した後、複合体40を質量検出センサーのセンサー面の近傍に配置した状態で、基質4を含む溶液を供給してもよい。
  2 標的タンパク質
  4 基質
  6 不溶性沈殿物
 10 弾性表面波センサー
 11 センサー面
 14 IDT
 16 絶縁膜
 20 酵素付抗体
 22 抗体
 24 酵素
 30 搬送用酵素
 32 抗体
 34 担体
 40 複合体

Claims (7)

  1.  質量検出センサーのセンサー面を上向きに配置し、該センサー面の近傍に酵素を配置する第1の工程と、
     前記酵素が触媒する反応によって不溶性沈殿物を生じさせる基質を含む溶液を、前記センサー面及び前記酵素に接するように供給して、前記酵素の触媒する反応によって前記溶液中の前記基質から生じた前記不溶性沈殿物を前記センサー面に堆積させ、前記センサー面に堆積した前記不溶性沈殿物による質量負荷を検出する第2の工程と、
    を含み、
     前記溶液は、前記基質を含む基質原液に、前記酵素の機能に影響を与えない緩衝能をもつ希釈液が混合されて、前記基質の濃度が、前記基質原液中の前記基質の濃度よりも小さくされていることを特徴とする、質量検出センサーを用いた検出方法。
  2.  前記酵素は、アルカリフォスファターゼであり、
     前記基質は、ブロモクロロインドリル燐酸-ニトロブルーテトラゾリウムであることを特徴とする、請求項1に記載の質量検出センサーを用いた検出方法。
  3.  前記溶液中の前記ブロモクロロインドリル燐酸の濃度が、0.05mM以上、かつ、0.2mM以下であることを特徴とする、請求項2に記載の質量検出センサーを用いた検出方法。
  4.  前記溶液中の前記ニトロブルーテトラゾリウムの濃度が、0.04mM以上、かつ、0.16mM以下であることを特徴とする、請求項3に記載の質量検出センサーを用いた検出方法。
  5.  前記質量検出センサーは、弾性表面波センサー又は水晶振動子センサーであることを特徴とする、請求項1乃至4のいずれか一つに記載の質量検出センサーを用いた検出方法。
  6.  前記溶液は、供給手段を用いて質量検出センサー上に連続的に供給することを特徴とする、請求項1乃至5のいずれか一つに記載の質量検出センサーを用いた検出方法。
  7.  前記供給手段がポンプであることを特徴とする、請求項6に記載の質量検出センサーを用いた検出方法。
PCT/JP2010/073769 2010-02-17 2010-12-28 質量検出センサーを用いた検出方法 WO2011102065A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010033005 2010-02-17
JP2010-033005 2010-02-17

Publications (1)

Publication Number Publication Date
WO2011102065A1 true WO2011102065A1 (ja) 2011-08-25

Family

ID=44482674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073769 WO2011102065A1 (ja) 2010-02-17 2010-12-28 質量検出センサーを用いた検出方法

Country Status (1)

Country Link
WO (1) WO2011102065A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014006208A (ja) * 2012-06-27 2014-01-16 Nippon Dempa Kogyo Co Ltd 感知方法
EP2972295A4 (en) * 2013-03-15 2016-11-09 Rapid Diagnostek Inc THIN-FILM VOLUME ACOUSTIC RESONATOR HAVING SIGNAL IMPROVEMENT
US10234425B2 (en) 2013-03-15 2019-03-19 Qorvo Us, Inc. Thin film bulk acoustic resonator with signal enhancement
US11408855B2 (en) 2018-07-06 2022-08-09 Qorvo Us, Inc. Bulk acoustic wave resonator with increased dynamic range
US11933793B2 (en) 2013-05-23 2024-03-19 Zomedica Biotechnologies Llc Two part assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032662A (ja) * 1989-04-13 1991-01-09 General Biometrics Inc 免疫測定システム、免疫測定方法、洗浄溶液試薬および酵素基質有機化学コンパウンド
JP2000065708A (ja) * 1998-08-25 2000-03-03 Toto Ltd センサ素子、その製造方法およびそれを用いた生体成分分析装置および尿成分分析装置
JP2004526409A (ja) * 2000-09-04 2004-09-02 イサム・リサーチ・デベロツプメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシテイ・オブ・エルサレム 核酸を検出するための方法およびシステム
JP2007040717A (ja) * 2005-07-29 2007-02-15 Kyowa Medex Co Ltd 測定器具及びこれを用いた測定用キット、測定方法並びに測定装置
JP2008275592A (ja) * 2007-04-03 2008-11-13 Sysmex Corp アルカリホスファターゼ標識検出用試薬キット、免疫測定用試薬キット及び免疫測定方法
WO2008145130A1 (en) * 2007-06-01 2008-12-04 Atonomics A/S Bio surface acoustic wave (saw) resonator amplification with nanoparticles for detection of a target analyte

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032662A (ja) * 1989-04-13 1991-01-09 General Biometrics Inc 免疫測定システム、免疫測定方法、洗浄溶液試薬および酵素基質有機化学コンパウンド
JP2000065708A (ja) * 1998-08-25 2000-03-03 Toto Ltd センサ素子、その製造方法およびそれを用いた生体成分分析装置および尿成分分析装置
JP2004526409A (ja) * 2000-09-04 2004-09-02 イサム・リサーチ・デベロツプメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシテイ・オブ・エルサレム 核酸を検出するための方法およびシステム
JP2007040717A (ja) * 2005-07-29 2007-02-15 Kyowa Medex Co Ltd 測定器具及びこれを用いた測定用キット、測定方法並びに測定装置
JP2008275592A (ja) * 2007-04-03 2008-11-13 Sysmex Corp アルカリホスファターゼ標識検出用試薬キット、免疫測定用試薬キット及び免疫測定方法
WO2008145130A1 (en) * 2007-06-01 2008-12-04 Atonomics A/S Bio surface acoustic wave (saw) resonator amplification with nanoparticles for detection of a target analyte

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014006208A (ja) * 2012-06-27 2014-01-16 Nippon Dempa Kogyo Co Ltd 感知方法
EP2972295A4 (en) * 2013-03-15 2016-11-09 Rapid Diagnostek Inc THIN-FILM VOLUME ACOUSTIC RESONATOR HAVING SIGNAL IMPROVEMENT
US10234425B2 (en) 2013-03-15 2019-03-19 Qorvo Us, Inc. Thin film bulk acoustic resonator with signal enhancement
US10539537B2 (en) 2013-03-15 2020-01-21 Qorvo Us, Inc. Thin film bulk acoustic resonator with signal enhancement
US11933793B2 (en) 2013-05-23 2024-03-19 Zomedica Biotechnologies Llc Two part assembly
US11408855B2 (en) 2018-07-06 2022-08-09 Qorvo Us, Inc. Bulk acoustic wave resonator with increased dynamic range
US11860129B2 (en) 2018-07-06 2024-01-02 Zomedica Biotechnologies Llc Bulk acoustic wave resonator with increased dynamic range

Similar Documents

Publication Publication Date Title
Ogi Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: A review
WO2011102065A1 (ja) 質量検出センサーを用いた検出方法
Fu et al. Recent advances in biosensors for nucleic acid and exosome detection
CN101449135B (zh) 基于偏振的干涉测量检测器
Chung et al. “Proof-of-principle” concept for label-free detection of glucose and α-glucosidase activity through the electrostatic assembly of alkynylplatinum (II) terpyridyl complexes
Uttenthaler et al. Characterization of immobilization methods for African swine fever virus protein and antibodies with a piezoelectric immunosensor
US20120051976A1 (en) Multifunctional biosensor based on zno nanostructures
Ogi et al. Replacement-free mass-amplified sandwich assay with 180-MHz electrodeless quartz-crystal microbalance biosensor
CN103033492A (zh) 使用了荧光粒子的检测对象物质的检测方法
EP1034430B1 (en) Sensor for detecting biological target complexes
Noi et al. Ultrahigh-sensitive wireless QCM with bio-nanocapsules
WO2016194879A1 (ja) 検出方法、および検出装置
GODbER et al. Direct quantification of analyte concentration by resonant acoustic profiling
Kao et al. Detection of C-reactive protein on an integrated microfluidic system by utilizing field-effect transistors and aptamers
Park et al. Application of a new microcantilever biosensor resonating at the air–liquid interface for direct insulin detection and continuous monitoring of enzymatic reactions
JP4733404B2 (ja) 弾性波センサ
KR102574622B1 (ko) 개선된 크레아티닌 측정 정확도를 위한 조성물과 방법, 및 그것의 사용
Islam et al. Investigation of the effects of design parameters on sensitivity of surface plasmon resonance biosensors
EP2553457B1 (en) Method for determination of binding stoichiometry
US20220288582A1 (en) Analyte depletion for sensor equilibration
US20160291005A1 (en) Sensors having internal calibration or positive controls
Kim et al. Immunosensor based on electrogenerated chemiluminescence using Ru (bpy) 32+‐Doped Silica Nanoparticles and Calix [4] crown‐5 self‐assembled monolayers
WO2010041736A9 (ja) 表面プラズモンを利用したアッセイ法
Liu et al. A gas-phase amplified quartz crystal microbalance immunosensor based on catalase modified immunoparticles
Vashist 3-aminopropyltriethoxysilane-based bioanalytical procedures for potential in vitro diagnostics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP