WO2011101987A1 - Lithium ion secondary battery and production method for same - Google Patents

Lithium ion secondary battery and production method for same Download PDF

Info

Publication number
WO2011101987A1
WO2011101987A1 PCT/JP2010/052606 JP2010052606W WO2011101987A1 WO 2011101987 A1 WO2011101987 A1 WO 2011101987A1 JP 2010052606 W JP2010052606 W JP 2010052606W WO 2011101987 A1 WO2011101987 A1 WO 2011101987A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
polymer
active material
mixture layer
Prior art date
Application number
PCT/JP2010/052606
Other languages
French (fr)
Japanese (ja)
Inventor
山口 裕之
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/511,389 priority Critical patent/US20120328949A1/en
Priority to JP2012500438A priority patent/JP5534369B2/en
Priority to PCT/JP2010/052606 priority patent/WO2011101987A1/en
Priority to KR1020127014099A priority patent/KR101368029B1/en
Priority to CN2010800544034A priority patent/CN102804475A/en
Publication of WO2011101987A1 publication Critical patent/WO2011101987A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the lithium ion secondary battery includes a positive electrode having a positive electrode active material containing manganese (eg, spinel type lithium manganese oxide) and a negative electrode having a negative electrode active material.
  • the battery includes an electrolyte (typically a non-aqueous electrolyte) interposed between the positive electrode and the negative electrode.
  • the battery further includes an acidic group-containing polymer disposed between the positive electrode active material and the negative electrode active material.
  • the negative electrode of the lithium ion secondary battery disclosed herein typically includes a negative electrode mixture layer containing the negative electrode active material.
  • the acidic group-containing polymer is disposed on the negative electrode mixture layer.
  • a battery having such a configuration can be preferably manufactured by, for example, applying the acidic group-containing polymer solution to the surface of the negative electrode mixture layer and drying it.
  • the amount of the acidic group-containing polymer disposed per 1 cm 2 of the area of the negative electrode mixture layer can be, for example, about 0.01 mg to 0.20 mg.
  • the technology disclosed herein can be applied to various forms of lithium ion secondary batteries constructed using a positive electrode including a positive electrode active material containing Mn (a Mn-containing positive electrode active material).
  • the Mn-containing positive electrode active material can be, for example, a manganese compound having a crystal structure such as a spinel type, a layered rock salt type, or an olivine type.
  • lithium manganese oxide having a layered rock salt type crystal structure.
  • a part of the Mn is selected from other metal elements (for example, Li, Mg, Al, Ni, Fe, Co, Ti, Zr, Nb). Or the compound of the composition replaced by 2 or more types is illustrated.
  • An oxide having a composition in which 50% or more of a metal element other than lithium is Mn in terms of the number of atoms is preferable. Specific examples include LiNi 0.5 Mn 0.5 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 4/3 Mn 2/3 O 2 and the like.
  • the positive electrode mixture layer is, for example, a composition (typically a paste or slurry) in which a positive electrode active material and a conductive material used as necessary are dispersed in a liquid medium containing an appropriate solvent and a binder.
  • the composition is preferably applied to a current collector, dried and optionally pressed.
  • the solvent any of water, an organic solvent and a mixed solvent thereof can be used.
  • a separator is interposed between the positive electrode and the negative electrode.
  • a separator the thing similar to the separator used for a general lithium ion secondary battery can be used, and it does not specifically limit.
  • a porous sheet made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, or polyamide, a nonwoven fabric, or the like can be used.
  • the electrolyte may also serve as a separator.
  • the acidic group-containing polymer may be disposed at a location where Mn ions eluted from the positive electrode active material can capture the Mn ions in the route to the negative electrode active material.
  • the acidic group-containing polymer is preferably arranged in a thinly spread form (for example, a film form, a sheet form, or the like).
  • the acidic group-containing polymer is disposed on the negative electrode mixture layer (in other words, the surface of the negative electrode mixture layer is acidic. Group-containing polymer).
  • a method for applying the polymer solution a method using a coating machine such as a slit coater, a method of immersing the negative electrode mixture layer in the polymer solution (dip coating), and a method of spraying the polymer solution on the surface of the negative electrode mixture layer (spray coating) ), Etc., can be employed as appropriate.
  • the technology disclosed herein is a charge / discharge condition in which the upper limit voltage between terminals can be 4.5 V or higher (for example, 4.7 V or higher, particularly 4.8 V or higher, typically 7 V or lower, for example, 5.5 V or lower). It can be preferably applied to a lithium ion secondary battery for use in the above.
  • a so-called 5V class lithium ion secondary battery provided with a spinel type lithium manganese oxide as a positive electrode active material can be mentioned.
  • the matter disclosed by this specification includes any lithium ion secondary battery disclosed herein (preferably, a secondary battery including spinel type lithium manganese oxide as a positive electrode active material) having an upper limit voltage.
  • the negative electrode sheet (without polymer coating) was laminated with the positive electrode sheet and two long separator sheets, and the laminate was wound in the long direction to produce a wound electrode body.
  • a porous polyethylene sheet having a thickness of 25 ⁇ m was used as the separator sheet.
  • the electrode body was used together with an electrolytic solution (an electrolytic solution having a composition in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which EC and DEC were mixed at a volume ratio of 3: 7).
  • the 18650 type lithium ion secondary battery (battery sample 1) was constructed.
  • Example 3 In Example 2, the polyacrylic acid concentration in the polyacrylic acid ethyl alcohol solution was changed to 1.0 mass%. The other points were the same as in Example 2, and the negative electrode mixture layer was coated with polyacrylic acid. The coating amount was 0.10 mg / cm 2 . A battery sample 3 was constructed in the same manner as in Example 1 except that the negative electrode sheet coated with polyacrylic acid was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

Disclosed is a lithium ion secondary battery which is provided with cathode active material containing Mn, and which exhibits improved charge/discharge cycle characteristics. The secondary battery (10) is provided with: a cathode (12) having cathode active material containing manganese; an anode (14) having anode active material; a non-aqueous electrolyte (20) which lies between the cathode (12) and the anode (14); and an acidic-group containing polymer (18) which is disposed between the cathode active material and the anode active material.

Description

リチウムイオン二次電池とその製造方法Lithium ion secondary battery and manufacturing method thereof
 本発明は、マンガンを含む正極活物質を備えたリチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery provided with a positive electrode active material containing manganese.
 リチウムイオン二次電池は、リチウムイオンを可逆的に吸蔵および放出する活物質を備えた正極および負極と、それら両電極間に介在された電解液とを備え、両電極間をリチウムイオンが行き来することにより充放電を行う。代表的な正極活物質としては、コバルト酸リチウムやニッケル酸リチウム等のリチウム遷移金属酸化物が挙げられる。負極活物質の代表例としては黒鉛等の炭素材料が挙げられる。 A lithium ion secondary battery includes a positive electrode and a negative electrode that include an active material that reversibly absorbs and releases lithium ions, and an electrolyte that is interposed between the two electrodes, and lithium ions travel between the electrodes. Charge / discharge. Typical positive electrode active materials include lithium transition metal oxides such as lithium cobaltate and lithium nickelate. Typical examples of the negative electrode active material include carbon materials such as graphite.
 特許文献1には、炭素材料を負極に用いる電池において、アクリロニトリルやアクリル酸エステル等のアクリル酸系ポリマーで炭素粒子を被覆することにより、電池の不可逆反応を抑制して初期クーロン効率等の特性を向上させ得ることが記載されている。 In Patent Document 1, in a battery using a carbon material for a negative electrode, by covering the carbon particles with an acrylic acid polymer such as acrylonitrile or acrylic ester, characteristics such as initial Coulomb efficiency are suppressed by suppressing the irreversible reaction of the battery. It is described that it can be improved.
日本国特許出願公開平8-195197号公報Japanese Patent Application Publication No. 8-195197
 近年、安価な正極材料として、マンガン(Mn)を構成元素に含む正極活物質に対する期待が高まっている。スピネル型の結晶構造を有するリチウムマンガン酸化物(Mnの一部が他の金属元素で置き換えられた組成のものを包含する。)は、Mnを含む正極活物質の一代表例である。しかし、Mnを含む正極活物質は、Mnを含まない正極活物質に比べて、該活物質を用いて構築されたリチウムイオン二次電池の充放電サイクル特性(例えば、充放電サイクルによる劣化が少ないこと)が低くなりがちであった。 In recent years, expectations for a positive electrode active material containing manganese (Mn) as a constituent element have increased as an inexpensive positive electrode material. A lithium manganese oxide having a spinel crystal structure (including a composition in which part of Mn is replaced with another metal element) is a typical example of a positive electrode active material containing Mn. However, the positive electrode active material containing Mn has less deterioration due to charge / discharge cycle characteristics of the lithium ion secondary battery constructed using the active material than the positive electrode active material not containing Mn. ) Tended to be low.
 そこで本発明は、Mnを含む正極活物質を備えたリチウムイオン二次電池において、その充放電サイクル特性を改善することを目的とする。 Accordingly, an object of the present invention is to improve the charge / discharge cycle characteristics of a lithium ion secondary battery including a positive electrode active material containing Mn.
 Mnを含む正極活物質を備えたリチウムイオン二次電池の劣化を引き起こす一要因として、正極活物質に由来する2価のMn(例えば、3価のMnが2価と4価とに不均化することにより生成し得る。)が電解液中に溶出し、これが負極上で析出することで高抵抗の被膜を形成する可能性が指摘されている。かかる高抵抗被膜の形成は、電池の内部抵抗(直流抵抗)を上昇させ、電池容量を低下させる原因となり得る。本発明者は、正極活物質から溶出したMnイオンが負極活物質に至る経路において該Mnイオンをトラップ(捕捉)することを考えた。そして、上記Mnイオンを捕捉するために、酸性官能基を含有するポリマーを両活物質の間に配置することにより、実際に電池容量の低下が抑制されることを見出して本発明を完成した。 As one factor causing deterioration of a lithium ion secondary battery including a positive electrode active material containing Mn, divalent Mn derived from the positive electrode active material (for example, trivalent Mn is disproportionated into divalent and tetravalent). It has been pointed out that a high-resistance film may be formed by elution into the electrolytic solution and depositing on the negative electrode. The formation of such a high-resistance film can increase the internal resistance (DC resistance) of the battery and cause a decrease in battery capacity. The present inventor considered that Mn ions eluted from the positive electrode active material are trapped (captured) in a route leading to the negative electrode active material. And in order to capture | acquire the said Mn ion, it discovered that the fall of battery capacity was actually suppressed by arrange | positioning the polymer containing an acidic functional group between both active materials, and completed this invention.
 ここに開示される一つの発明は、リチウムイオン二次電池に関する。そのリチウムイオン二次電池は、マンガンを含む正極活物質(例えば、スピネル型リチウムマンガン酸化物)を有する正極と、負極活物質を有する負極とを備える。その電池は、前記正極と前記負極との間に介在される電解質(典型的には非水電解液)を備える。前記電池は、さらに、前記正極活物質と前記負極活物質との間に配置された酸性基含有ポリマーを備える。 One invention disclosed herein relates to a lithium ion secondary battery. The lithium ion secondary battery includes a positive electrode having a positive electrode active material containing manganese (eg, spinel type lithium manganese oxide) and a negative electrode having a negative electrode active material. The battery includes an electrolyte (typically a non-aqueous electrolyte) interposed between the positive electrode and the negative electrode. The battery further includes an acidic group-containing polymer disposed between the positive electrode active material and the negative electrode active material.
 かかる構成のリチウムイオン二次電池によると、上記酸性基含有ポリマーの有する酸性基(例えば、-COOH基、-SOH基等)を利用して、正極活物質から溶出し得るMnイオンを捕捉することができる。したがって、上記溶出したMnが負極上に高抵抗被膜を形成する事象を防止または抑制することができる。 According to the lithium ion secondary battery having such a configuration, Mn ions that can be eluted from the positive electrode active material are captured using the acidic groups (for example, —COOH group, —SO 3 H group, etc.) of the acidic group-containing polymer. can do. Therefore, the event that the eluted Mn forms a high-resistance film on the negative electrode can be prevented or suppressed.
 なお、本明細書において「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電する二次電池をいう。ここに開示される技術は、典型的には、金属リチウム(単体)を電極構成材料に使用しない形態のリチウムイオン二次電池に適用される。 In this specification, “lithium ion secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by the movement of lithium ions between the positive and negative electrodes. The technology disclosed herein is typically applied to a lithium ion secondary battery in a form that does not use metallic lithium (single element) as an electrode constituent material.
 前記酸性基含有ポリマーの好適例として、モノマー組成としてアクリル酸およびメタクリル酸の少なくとも一方を含む重合体(例えばポリアクリル酸)が挙げられる。アクリル酸またはメタクリル酸の単独重合体であってもよく、他のモノマーとの共重合体であってもよい。好ましい酸性基含有ポリマーの一例としてポリアクリル酸が挙げられる。 Favorable examples of the acidic group-containing polymer include a polymer (for example, polyacrylic acid) containing at least one of acrylic acid and methacrylic acid as a monomer composition. It may be a homopolymer of acrylic acid or methacrylic acid, or a copolymer with other monomers. An example of a preferable acidic group-containing polymer is polyacrylic acid.
 上記酸性基含有ポリマーは、例えば、該ポリマーを適当な溶媒に溶かした溶液から該溶媒を除去する(例えば、上記溶液を乾燥させる)ことにより配置することができる。上記溶媒としては、有機溶媒(例えば、エチルアルコール等の低級アルコール)を好ましく採用することができる。このような有機溶媒溶液から溶媒を除去して酸性基含有ポリマーを配置することにより、より高い充放電サイクル特性を示すリチウムイオン二次電池が実現され得る。 The acidic group-containing polymer can be arranged, for example, by removing the solvent from a solution obtained by dissolving the polymer in a suitable solvent (for example, drying the solution). As the solvent, an organic solvent (for example, a lower alcohol such as ethyl alcohol) can be preferably used. By removing the solvent from the organic solvent solution and disposing the acidic group-containing polymer, a lithium ion secondary battery exhibiting higher charge / discharge cycle characteristics can be realized.
 前記酸性基含有ポリマーを配置する位置としては、前記正極に直接接触しない箇所を好ましく選択し得る。かかる箇所に配置することは、正極の高電位によって酸性基含有ポリマーが変質する事象を未然に防止する上で有利である。したがって、より充放電サイクルに対する耐久性に優れたリチウムイオン二次電池が実現され得る。 As the position where the acidic group-containing polymer is disposed, a portion that does not directly contact the positive electrode can be preferably selected. Arranging at such a position is advantageous in preventing an event that the acidic group-containing polymer is altered by the high potential of the positive electrode. Therefore, a lithium ion secondary battery having better durability against charge / discharge cycles can be realized.
 ここに開示されるリチウムイオン二次電池の負極は、典型的には、前記負極活物質を含む負極合材層を備える。好ましい一態様では、この負極合材層上に前記酸性基含有ポリマーが配置されている。かかる構成の電池は、例えば、前記負極合材層の表面に前記酸性基含有ポリマーの溶液を付与して乾燥させることにより好ましく製造され得る。前記負極合材層の面積1cm当たりに配置する前記酸性基含有ポリマーの量は、例えば0.01mg~0.20mg程度とすることができる。 The negative electrode of the lithium ion secondary battery disclosed herein typically includes a negative electrode mixture layer containing the negative electrode active material. In a preferred embodiment, the acidic group-containing polymer is disposed on the negative electrode mixture layer. A battery having such a configuration can be preferably manufactured by, for example, applying the acidic group-containing polymer solution to the surface of the negative electrode mixture layer and drying it. The amount of the acidic group-containing polymer disposed per 1 cm 2 of the area of the negative electrode mixture layer can be, for example, about 0.01 mg to 0.20 mg.
 ここに開示される他の一つの発明は、マンガンを含む正極活物質を有する正極と、負極活物質を含む負極合材層を有する負極と、前記正極と前記負極との間に介在される電解質(典型的には非水電解液)と、前記負極合材層上に配置された酸性基含有ポリマーと、を備えるリチウムイオン二次電池を製造する方法に関する。その方法は、前記酸性基含有ポリマーの有機溶媒溶液を前記負極合材層に付与した後、該有機溶媒を除去して前記ポリマーを前記負極合材層上に配置する工程を含む。また、前記ポリマーが配置された負極と前記正極とを前記電解質とともに容器に収容して電池を構築する工程を含み得る。かかる方法によると、Mnを含む正極活物質を備えた構成でありながら、より優れた充放電サイクル特性を示すリチウムイオン二次電池を適切に製造することができる。 Another invention disclosed herein is a positive electrode having a positive electrode active material containing manganese, a negative electrode having a negative electrode mixture layer containing a negative electrode active material, and an electrolyte interposed between the positive electrode and the negative electrode. The present invention relates to a method of manufacturing a lithium ion secondary battery comprising (typically a non-aqueous electrolyte) and an acidic group-containing polymer disposed on the negative electrode mixture layer. The method includes a step of applying an organic solvent solution of the acidic group-containing polymer to the negative electrode mixture layer and then removing the organic solvent and placing the polymer on the negative electrode mixture layer. Further, the method may include a step of building a battery by housing the negative electrode on which the polymer is disposed and the positive electrode together with the electrolyte in a container. According to this method, it is possible to appropriately manufacture a lithium ion secondary battery that exhibits better charge / discharge cycle characteristics while having a configuration including a positive electrode active material containing Mn.
 ここに開示されるリチウムイオン二次電池は、上述のように充放電サイクル特性に優れることから、車両に搭載される二次電池として好適である。例えば、自動車等の車両のモータ(電動機)用の電源として好適に利用され得る。したがって、本発明によると、ここに開示されるいずれかのリチウムイオン二次電池(ここに開示されるいずれかの方法により製造された電池であり得る。)を備えた車両が提供される。 The lithium ion secondary battery disclosed herein is suitable as a secondary battery mounted on a vehicle because it is excellent in charge / discharge cycle characteristics as described above. For example, it can be suitably used as a power source for a motor (electric motor) of a vehicle such as an automobile. Therefore, according to the present invention, there is provided a vehicle including any lithium ion secondary battery disclosed herein (which may be a battery manufactured by any method disclosed herein).
図1は、一実施形態に係るリチウムイオン二次電池の構成を模式的に示す部分断面斜視図である。FIG. 1 is a partial cross-sectional perspective view schematically showing a configuration of a lithium ion secondary battery according to an embodiment. 図2は、一実施形態に係る二次電池を構成する正負極シートおよびセパレータを示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a positive and negative electrode sheet and a separator constituting a secondary battery according to an embodiment. 図3は、他の一実施形態に係る二次電池を構成する正負極シートおよびセパレータを示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing positive and negative electrode sheets and a separator constituting a secondary battery according to another embodiment. 図4は、一実施形態に係る二次電池を備えた車両(自動車)を模式的に示す側面図である。FIG. 4 is a side view schematically showing a vehicle (automobile) including the secondary battery according to the embodiment.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
 ここに開示される技術は、Mnを含む正極活物質(Mn含有正極活物質)を備えた正極を用いて構築された各種形態のリチウムイオン二次電池に適用され得る。上記Mn含有正極活物質は、例えば、スピネル型、層状岩塩型、オリビン型、等の結晶構造を有するマンガン化合物であり得る。 The technology disclosed herein can be applied to various forms of lithium ion secondary batteries constructed using a positive electrode including a positive electrode active material containing Mn (a Mn-containing positive electrode active material). The Mn-containing positive electrode active material can be, for example, a manganese compound having a crystal structure such as a spinel type, a layered rock salt type, or an olivine type.
 Mn含有正極活物質の代表例として、スピネル型の結晶構造を有するリチウムマンガン酸化物が挙げられる。この種のリチウムマンガン酸化物としては、LiMnのほか、そのMnの一部が他の金属元素で置き換えられた組成の化合物(部分置換型スピネル構造のリチウムマンガン酸化物)が例示される。例えば、一般式:LiMMn2-y;で表わされるスピネル型化合物を、ここに開示される技術における正極活物質として好ましく採用することができる。上記一般式中のyは、典型的には0≦y≦0.7を満たす数であり、好ましくは0.4≦y≦0.6である。0<yの場合、上記一般式中のMは、Li,Mg,Al,Ni,Fe,Co,Cr,Cu,Be,B,Na,K,Ca,Si,Ge,Tiから選択される一種または二種以上であり得る。原子数換算で、リチウム以外の金属元素のうち50%以上がMnである組成の酸化物が好ましい。一具体例としてLiNi0.5Mn1.5が挙げられる。 A typical example of the Mn-containing positive electrode active material is lithium manganese oxide having a spinel crystal structure. Examples of this type of lithium manganese oxide include LiMn 2 O 4 and compounds having a composition in which part of the Mn is replaced with another metal element (lithium manganese oxide having a partially substituted spinel structure). . For example, a spinel compound represented by the general formula: LiM y Mn 2-y O 4 ; can be preferably used as the positive electrode active material in the technology disclosed herein. Y in the general formula is typically a number satisfying 0 ≦ y ≦ 0.7, and preferably 0.4 ≦ y ≦ 0.6. In the case of 0 <y, M in the above general formula is a kind selected from Li, Mg, Al, Ni, Fe, Co, Cr, Cu, Be, B, Na, K, Ca, Si, Ge, and Ti. Or it can be two or more. An oxide having a composition in which 50% or more of a metal element other than lithium is Mn in terms of the number of atoms is preferable. One specific example is LiNi 0.5 Mn 1.5 O 4 .
 Mn含有正極活物質の他の例として、層状岩塩型の結晶構造を有するリチウムマンガン酸化物が挙げられる。この種のリチウムマンガン酸化物としては、LiMnOのほか、そのMnの一部が他の金属元素(例えば、Li,Mg,Al,Ni,Fe,Co,Ti,Zr,Nbから選択される一種または二種以上)で置き換えられた組成の化合物が例示される。原子数換算で、リチウム以外の金属元素のうち50%以上がMnである組成の酸化物が好ましい。具体例としては、LiNi0.5Mn0.5、LiNi1/3Co1/3Mn1/3、Li4/3Mn2/3等が挙げられる。 Another example of the Mn-containing positive electrode active material is lithium manganese oxide having a layered rock salt type crystal structure. As this type of lithium manganese oxide, in addition to LiMnO 2 , a part of the Mn is selected from other metal elements (for example, Li, Mg, Al, Ni, Fe, Co, Ti, Zr, Nb). Or the compound of the composition replaced by 2 or more types is illustrated. An oxide having a composition in which 50% or more of a metal element other than lithium is Mn in terms of the number of atoms is preferable. Specific examples include LiNi 0.5 Mn 0.5 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 4/3 Mn 2/3 O 2 and the like.
 Mn含有正極活物質の他の例として、オリビン型の結晶構造を有するリチウムマンガン酸化物が挙げられる。例えば、一般式:LiMMn1-xZO;で表されるオリビン型化合物の使用が好ましい。上記一般式中のZは、Pおよび/またはSiであり得る。xは、典型的には0≦x≦0.6を満たす数であり、好ましくは0≦x≦0.5である。0<xの場合、上記一般式中のMは、Fe,Mg,Ni,Coから選択される一種または二種以上であり得る。具体例としては、LiMnPO,LiFe0.1Mn0.9PO等が挙げられる。 Another example of the Mn-containing positive electrode active material is lithium manganese oxide having an olivine type crystal structure. For example, use of an olivine type compound represented by the general formula: LiM x Mn 1-x ZO 4 ; is preferable. Z in the above general formula may be P and / or Si. x is typically a number that satisfies 0 ≦ x ≦ 0.6, and preferably 0 ≦ x ≦ 0.5. When 0 <x, M in the above general formula may be one or more selected from Fe, Mg, Ni, and Co. Specific examples include LiMnPO 4 , LiFe 0.1 Mn 0.9 PO 4 and the like.
 このようなMn含有正極活物質(典型的には粒子状)としては、例えば、従来公知の方法で調製・提供されるリチウムマンガン酸化物粉末をそのまま使用することができる。例えば、平均粒径が凡そ1μm~25μm(典型的には凡そ2μm~15μm)の範囲にある二次粒子によって実質的に構成されたリチウムマンガン酸化物粉末を、ここに開示される技術における正極活物質として好ましく採用することができる。 As such a Mn-containing positive electrode active material (typically in particulate form), for example, lithium manganese oxide powder prepared and provided by a conventionally known method can be used as it is. For example, a lithium manganese oxide powder substantially composed of secondary particles having an average particle size in the range of about 1 μm to 25 μm (typically about 2 μm to 15 μm) is used as the positive electrode active in the technology disclosed herein. It can preferably be employed as a substance.
 かかる活物質を有する正極の典型的な一形態として、該活物質を含む(典型的には、該活物質を主成分、すなわち50質量%以上を占める成分として含む)正極合材が集電体に保持された形態が挙げられる。上記集電体(正極集電体)の構成材料としては、従来の一般的なリチウムイオン二次電池と同様、アルミニウム等の導電性金属材料を好ましく採用することができる。集電体の形状は特に制限されず、例えば棒状、板状、シート状、箔状、メッシュ状等であり得る。ここに開示される技術における正極の好適例として、シート状もしくは箔状の集電体の片面または両面に正極合材の層が設けられた形態の正極が挙げられる。 As a typical form of a positive electrode having such an active material, a positive electrode mixture containing the active material (typically including the active material as a main component, that is, a component occupying 50% by mass or more) is a current collector. The form held in is mentioned. As a constituent material of the current collector (positive electrode current collector), a conductive metal material such as aluminum can be preferably employed as in the conventional general lithium ion secondary battery. The shape of the current collector is not particularly limited, and may be, for example, a rod shape, a plate shape, a sheet shape, a foil shape, a mesh shape, or the like. Preferable examples of the positive electrode in the technology disclosed herein include a positive electrode in a form in which a positive electrode mixture layer is provided on one or both sides of a sheet-like or foil-like current collector.
 上記正極合材は、正極活物質のほか、必要に応じて導電材、結着剤(バインダ)等を含有し得る。上記導電材としては、一般的なリチウムイオン二次電池の電極における導電材と同様、カーボンブラック(例えばアセチレンブラック)、グラファイト粉末等のカーボン材料を好ましく用いることができる。上記バインダとしては、ポリフッ化ビニリデン(PVDF)、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)等を用いることができる。特に限定するものではないが、正極活物質100質量部に対する導電材の使用量は、例えば1~20質量部(好ましくは5~15質量部)とすることができる。また、正極活物質100質量部に対するバインダの使用量は、例えば0.5~10質量部とすることができる。 The positive electrode mixture may contain a conductive material, a binder (binder), and the like as necessary in addition to the positive electrode active material. As the conductive material, a carbon material such as carbon black (for example, acetylene black) or graphite powder can be preferably used as in the case of a conductive material in an electrode of a general lithium ion secondary battery. As the binder, polyvinylidene fluoride (PVDF), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), or the like can be used. Although not particularly limited, the amount of the conductive material used relative to 100 parts by mass of the positive electrode active material can be, for example, 1 to 20 parts by mass (preferably 5 to 15 parts by mass). Further, the amount of the binder used relative to 100 parts by mass of the positive electrode active material can be, for example, 0.5 to 10 parts by mass.
 上記正極合材層は、例えば、適当な溶媒とバインダとを含む液状媒体に正極活物質と必要に応じて使用される導電材とが分散した態様の組成物(典型的にはペーストまたはスラリー状の組成物)を集電体に付与して乾燥させ、所望によりプレスすることにより好ましく作製され得る。上記溶媒としては、水、有機溶媒およびこれらの混合溶媒のいずれも使用可能である。 The positive electrode mixture layer is, for example, a composition (typically a paste or slurry) in which a positive electrode active material and a conductive material used as necessary are dispersed in a liquid medium containing an appropriate solvent and a binder. The composition is preferably applied to a current collector, dried and optionally pressed. As the solvent, any of water, an organic solvent and a mixed solvent thereof can be used.
 ここに開示される技術における負極活物質としては、一般にリチウムイオン二次電池の負極活物質として機能し得ることが知られている種々の材料から適当なものを採用することができる。好適な活物質として、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が挙げられる。負極活物質の性状(外形)としては粒子状が好ましい。例えば、平均粒径が凡そ5μm~50μmのカーボン粒子を好ましく使用することができる。 As the negative electrode active material in the technology disclosed herein, an appropriate material can be adopted from various materials that are generally known to function as a negative electrode active material of a lithium ion secondary battery. As a suitable active material, a particulate carbon material (carbon particles) including a graphite structure (layered structure) at least partially may be mentioned. The property (outer shape) of the negative electrode active material is preferably particulate. For example, carbon particles having an average particle diameter of about 5 μm to 50 μm can be preferably used.
 かかる活物質を有する負極の典型的な一形態として、該活物質を含む(典型的には、該活物質を主成分、すなわち50質量%以上を占める成分として含む)負極合材が集電体に保持された形態が挙げられる。上記集電体(負極集電体)の構成材料としては、従来の一般的なリチウムイオン二次電池と同様、銅等の導電性金属材料を好ましく採用することができる。集電体の形状は、正極側と同様、棒状、板状、シート状、箔状、メッシュ状等の種々の形状であり得る。好適例として、シート状もしくは箔状の集電体の片面または両面に負極合材の層が設けられた形態の負極が挙げられる。 As a typical form of the negative electrode having such an active material, a negative electrode mixture containing the active material (typically including the active material as a main component, that is, a component occupying 50% by mass or more) is a current collector. The form held in is mentioned. As a constituent material of the current collector (negative electrode current collector), a conductive metal material such as copper can be preferably employed as in the case of a conventional general lithium ion secondary battery. The shape of the current collector may be various shapes such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape, similar to the positive electrode side. Preferable examples include a negative electrode in a form in which a negative electrode mixture layer is provided on one side or both sides of a sheet-like or foil-like current collector.
 上記負極合材は、負極活物質のほか、正極側と同様の導電材、バインダ等を必要に応じて含有し得る。特に限定するものではないが、負極活物質100質量部に対するバインダの使用量は、例えば0.5~10質量部とすることができる。上記負極合材層は、正極側と同様、適当な溶媒とバインダとを含む液状媒体に負極活物質が分散した態様の組成物を集電体に付与して乾燥させ、所望によりプレスすることにより好ましく作製され得る。 The negative electrode mixture may contain a negative electrode active material, a conductive material similar to the positive electrode side, a binder, and the like as necessary. Although not particularly limited, the amount of the binder used relative to 100 parts by mass of the negative electrode active material can be, for example, 0.5 to 10 parts by mass. Similarly to the positive electrode side, the negative electrode mixture layer is prepared by applying a composition in which the negative electrode active material is dispersed in a liquid medium containing an appropriate solvent and a binder to a current collector, drying it, and pressing it as desired. Preferably it can be made.
 正極と負極との間に介在される電解質としては、非水溶媒と、該溶媒に溶解可能なリチウム塩(支持電解質)とを含む液状電解質(非水電解液)を好ましく用いることができる。かかる電解液にポリマーが添加された固体状(ゲル状)の電解質であってもよい。上記非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の、一般にリチウムイオン二次電池の電解質に使用し得るものとして知られている非水溶媒から選択される一種または二種以上を用いることができる。 As the electrolyte interposed between the positive electrode and the negative electrode, a liquid electrolyte (nonaqueous electrolyte) containing a nonaqueous solvent and a lithium salt (supporting electrolyte) soluble in the solvent can be preferably used. The electrolyte may be a solid (gel) electrolyte in which a polymer is added to the electrolyte. The non-aqueous solvent is selected from non-aqueous solvents that are generally known to be usable for electrolytes of lithium ion secondary batteries, such as carbonates, esters, ethers, nitriles, sulfones, and lactones. 1 type, or 2 or more types can be used.
 上記支持電解質としては、LiPF,LiBF,LiN(SOCF,LiN(SO,LiCFSO,LiCSO,LiC(SOCF,LiClO等の、リチウムイオン二次電池の支持電解質として機能し得ることが知られている各種のリチウム塩から選択される一種または二種以上を用いることができる。支持電解質(支持塩)の濃度は特に制限されず、例えば従来のリチウムイオン二次電池と同程度とすることができる。通常は、支持電解質を凡そ0.1mol/L~5mol/L(例えば凡そ0.8mol/L~1.5mol/L)程度の濃度で含有する非水電解液を好ましく使用することができる。 Examples of the supporting electrolyte include LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (SO 2 CF 3 3 ), LiClO 4 or the like, one or more selected from various lithium salts known to be capable of functioning as a supporting electrolyte for lithium ion secondary batteries can be used. The concentration of the supporting electrolyte (supporting salt) is not particularly limited, and can be, for example, the same level as that of a conventional lithium ion secondary battery. Usually, a nonaqueous electrolytic solution containing a supporting electrolyte at a concentration of about 0.1 mol / L to 5 mol / L (for example, about 0.8 mol / L to 1.5 mol / L) can be preferably used.
 ここに開示されるリチウムイオン二次電池の好ましい一態様では、シート状の正極と負極とを重ね合わせて捲回してなる電極体(捲回電極体)が、非水電解液とともに容器に収容されている。リチウムイオン二次電池の形状(容器の外形)は特に限定されず、例えば、円筒型、角型、コイン型等の形状であり得る。 In a preferred embodiment of the lithium ion secondary battery disclosed herein, an electrode body (rolled electrode body) formed by stacking and winding a sheet-like positive electrode and a negative electrode is housed in a container together with a non-aqueous electrolyte. ing. The shape (outer shape of the container) of the lithium ion secondary battery is not particularly limited, and may be, for example, a cylindrical shape, a square shape, a coin shape, or the like.
 好ましい一態様では、正極と負極との間にセパレータが介在される。セパレータとしては、一般的なリチウムイオン二次電池に用いられるセパレータと同様のものを用いることができ、特に限定されない。例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる多孔質シート、不織布等を用いることができる。なお、固体状の電解質を用いたリチウムイオン二次電池では、該電解質がセパレータを兼ねる構成としてもよい。 In a preferred embodiment, a separator is interposed between the positive electrode and the negative electrode. As a separator, the thing similar to the separator used for a general lithium ion secondary battery can be used, and it does not specifically limit. For example, a porous sheet made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, or polyamide, a nonwoven fabric, or the like can be used. Note that in a lithium ion secondary battery using a solid electrolyte, the electrolyte may also serve as a separator.
 ここに開示されるリチウムイオン二次電池は、前記正極活物質と前記負極活物質との間に配置された酸性基含有ポリマーを有する。該ポリマーの有する酸性基(酸性官能基)は、例えば、カルボキシル基(-COOH)およびスルホン酸基(-SOH)の一方または両方であり得る。例えば、上記酸性基が実質的にカルボキシル基のみであるポリマーが好ましい。このような酸性基含有ポリマーは、典型的には、酸性基を有するモノマー(酸性基含有モノマー)を含むモノマー組成の重合体である。 The lithium ion secondary battery disclosed herein has an acidic group-containing polymer disposed between the positive electrode active material and the negative electrode active material. The acidic group (acidic functional group) of the polymer can be, for example, one or both of a carboxyl group (—COOH) and a sulfonic acid group (—SO 3 H). For example, a polymer in which the acidic group is substantially only a carboxyl group is preferable. Such an acidic group-containing polymer is typically a polymer having a monomer composition including a monomer having an acidic group (acidic group-containing monomer).
 上記酸性基含有モノマーの典型例として、一分子中にカルボキシル基とエチレン性不飽和基とを有する化合物が挙げられる。上記エチレン性不飽和基は、アクリロイル基、メタクリロイル基、ビニル基、アリル基等であり得る。かかる化合物の具体例としては、アクリル酸、メタクリル酸、クロトン酸等のモノカルボン酸;マレイン酸、イタコン酸、シトラコン酸等のジカルボン酸;等が挙げられる。好ましい酸性基含有モノマーとして、アクリル酸およびメタクリル酸が例示される。なかでもアクリル酸を含むモノマー組成の酸性基含有ポリマーが好ましい。 A typical example of the acidic group-containing monomer includes a compound having a carboxyl group and an ethylenically unsaturated group in one molecule. The ethylenically unsaturated group may be an acryloyl group, a methacryloyl group, a vinyl group, an allyl group, or the like. Specific examples of such compounds include monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; dicarboxylic acids such as maleic acid, itaconic acid, and citraconic acid; and the like. Examples of preferred acidic group-containing monomers include acrylic acid and methacrylic acid. Among these, an acidic group-containing polymer having a monomer composition containing acrylic acid is preferable.
 上記酸性基含有ポリマーは、一種または二種以上の酸性基含有モノマーのみからなるモノマー組成の重合体であってもよく、酸性基含有モノマーと他の(すなわち、酸性基を有しない)モノマーとの共重合体であってもよい。かかる他のモノマーとしては、酸性基含有モノマーと共重合可能な各種の化合物を用いることができる。エチレン性不飽和基を有する化合物が好ましく、なかでもアクリロイル基またはメタクリロイル基(特にアクリロイル基)を有する化合物が好ましい。あるいは、酸性基を有しないモノマーを実質的に含有しないモノマー組成の酸性基含有ポリマーであってもよい。 The acidic group-containing polymer may be a polymer having a monomer composition consisting of only one or two or more acidic group-containing monomers, and may be an acidic group-containing monomer and another monomer (that is, having no acidic group). A copolymer may also be used. As such other monomers, various compounds copolymerizable with acidic group-containing monomers can be used. A compound having an ethylenically unsaturated group is preferable, and a compound having an acryloyl group or a methacryloyl group (particularly an acryloyl group) is particularly preferable. Or the acidic group containing polymer of the monomer composition which does not contain the monomer which does not have an acidic group substantially may be sufficient.
 ここに開示される技術における酸性基含有ポリマーの好ましい一態様では、モノマー組成のうち50~100質量%(より好ましくは75~100質量%、例えば90~100質量%)が酸性基含有モノマーである。酸性基含有モノマーの重合割合が少なすぎると、酸性基含有ポリマーのMnイオン捕捉性能が低くなり、該ポリマーによる充放電サイクル特性向上効果が十分に発揮され難くなる場合があり得る。 In a preferred embodiment of the acidic group-containing polymer in the technology disclosed herein, 50 to 100% by mass (more preferably 75 to 100% by mass, for example 90 to 100% by mass) of the monomer composition is the acidic group-containing monomer. . If the polymerization ratio of the acidic group-containing monomer is too small, the Mn ion trapping performance of the acidic group-containing polymer may be lowered, and the effect of improving charge / discharge cycle characteristics by the polymer may not be sufficiently exhibited.
 このような酸性基含有ポリマーは、従来公知の方法により容易に製造し、あるいは市販品を容易に入手することができる。通常は、重量平均分子量(Mw)が100×10以下の酸性基含有ポリマーを用いることが適当であり、例えばMwが50×10以下のものを好ましく使用し得る。Mwが高すぎると、酸性基含有ポリマーの溶媒溶液から該溶媒を除去して上記ポリマーを配置する場合、該ポリマーが溶媒に溶けにくくなったり、ポリマー溶液の粘度が高くなりすぎたりする不都合が生じる場合があり得る。また、酸性基含有ポリマーのMwは、1×10以上であることが好ましく、通常は2×10以上(例えば5×10以上)であることがより好ましい。Mwが低すぎると、電池の製造時または使用時に加わり得る応力等により、酸性基含有ポリマーの一部または全部が当初の配置箇所から移動し(失われ)やすくなる場合があり得る。 Such an acidic group-containing polymer can be easily produced by a conventionally known method, or a commercially available product can be easily obtained. Usually, it is appropriate to use an acidic group-containing polymer having a weight average molecular weight (Mw) of 100 × 10 4 or less. For example, a polymer having an Mw of 50 × 10 4 or less can be preferably used. If the Mw is too high, when the polymer is placed by removing the solvent from the solvent solution of the acidic group-containing polymer, there is a disadvantage that the polymer becomes difficult to dissolve in the solvent or the viscosity of the polymer solution becomes too high. There may be cases. The Mw of the acidic group-containing polymer is preferably 1 × 10 4 or more, and more preferably 2 × 10 4 or more (for example, 5 × 10 4 or more). If Mw is too low, part or all of the acidic group-containing polymer may be easily moved (lost) from the initial arrangement position due to stress or the like that may be applied during the production or use of the battery.
 酸性基含有ポリマーは、正極活物質から溶出したMnイオンが負極活物質に至る経路において該Mnイオンを捕捉し得る箇所に配置されていればよい。内部抵抗の上昇を抑えつつMnイオンを効率よく捕捉するためには、上記酸性基含有ポリマーが薄く広がった形態(例えば、被膜状、シート状等の形態)で配置されていることが好ましい。例えば、正極合材層および/または負極合材層のうち対極の合材層と対向する表面、セパレータを有する構成において該セパレータの正極合材層に対向する側の表面および/または負極合材層に対向する側の表面等に、上記酸性基含有ポリマーの溶液を付与して乾燥させることにより、当該箇所に酸性基含有ポリマーを配置することができる。あるいは、酸性基含有ポリマーを成膜したシート(非多孔質であってもよく多孔質であってもよい。)を正極と負極との間(セパレータを有する構成では、正極とセパレータとの間および/または負極とセパレータの間であり得る。)に挟み込んでもよい。 The acidic group-containing polymer may be disposed at a location where Mn ions eluted from the positive electrode active material can capture the Mn ions in the route to the negative electrode active material. In order to efficiently capture Mn ions while suppressing an increase in internal resistance, the acidic group-containing polymer is preferably arranged in a thinly spread form (for example, a film form, a sheet form, or the like). For example, the surface of the positive electrode mixture layer and / or the negative electrode mixture layer that faces the counter electrode mixture layer, the surface of the separator that faces the positive electrode mixture layer and / or the negative electrode mixture layer in the configuration having the separator The acidic group-containing polymer can be disposed at the location by applying a solution of the acidic group-containing polymer to the surface or the like on the side facing the substrate and drying it. Alternatively, a sheet (which may be non-porous or porous) formed with an acidic group-containing polymer is interposed between the positive electrode and the negative electrode (in the configuration having a separator, between the positive electrode and the separator and And / or between the negative electrode and the separator).
 好ましい一態様では、正極に直接接触しない箇所に酸性基含有ポリマーを配置する。このことは、正極の高電位によって酸性基含有ポリマーが変質(架橋、分解、官能基の変換等であり得る。)する事象を未然に防止する上で有利である。例えば、酸性基含有ポリマーが負極合材層の表面に配置された態様、セパレータを有する構成において、該セパレータのうち負極合材層に対向する表面に配置された態様、負極とセパレータとの間に酸性基含有ポリマーのシートが配置された構成、等を好ましく採用し得る。 In a preferred embodiment, an acidic group-containing polymer is disposed at a location that does not directly contact the positive electrode. This is advantageous in preventing an event in which the acidic group-containing polymer is denatured (can be cross-linked, decomposed, functional group converted, etc.) due to the high potential of the positive electrode. For example, in an aspect in which the acidic group-containing polymer is disposed on the surface of the negative electrode mixture layer, a configuration having a separator, an aspect in which the acidic group-containing polymer is disposed on the surface facing the negative electrode mixture layer, between the negative electrode and the separator A configuration in which a sheet of an acidic group-containing polymer is disposed can be preferably employed.
 負極合材層の表面に酸性基含有ポリマーを配置する方法としては、該ポリマーを適当な溶媒に溶解または均一に分散させた溶液(ポリマー溶液)から該溶媒を除去する(例えば、上記溶液を乾燥させる)方法を好ましく採用し得る。上記溶媒としては、水、有機溶媒、これらの混合溶媒のいずれも使用可能である。好ましい一態様では、有機溶媒を含む溶媒中に酸性基含有ポリマーを含む溶液を使用して該ポリマーを配置する。このことによって、より充放電サイクル特性に優れたリチウムイオン二次電池が実現され得る。上記有機溶媒を含む溶媒は、一種または二種以上の有機溶媒のみからなる溶媒、または、有機溶媒と水との混合溶媒(典型的には、有機溶媒を主成分、すなわち50体積%以上を占める成分とする溶媒)であり得る。上記有機溶媒としては、炭素数1~4程度の低級アルコール、アセトン、テトラヒドロフラン、N-メチルピロリドン、酢酸エステル(典型的には炭素数1~4程度の低級アルコールと酢酸とのエステル、例えば酢酸エチル)、炭酸エステル等を適宜選択して使用し得る。好ましい有機溶媒として、メチルアルコール、エチルアルコール、イソプロピルアルコール等が例示される。 As a method of disposing an acidic group-containing polymer on the surface of the negative electrode mixture layer, the solvent is removed from a solution (polymer solution) in which the polymer is dissolved or uniformly dispersed in an appropriate solvent (for example, the solution is dried). Method) can be preferably employed. As the solvent, any of water, an organic solvent, and a mixed solvent thereof can be used. In a preferred embodiment, the polymer is arranged using a solution containing an acidic group-containing polymer in a solvent containing an organic solvent. Thereby, a lithium ion secondary battery having more excellent charge / discharge cycle characteristics can be realized. The solvent containing the organic solvent is a solvent composed of only one or two or more organic solvents, or a mixed solvent of an organic solvent and water (typically, the organic solvent is a main component, that is, occupies 50% by volume or more. Solvent as a component). Examples of the organic solvent include lower alcohols having about 1 to 4 carbon atoms, acetone, tetrahydrofuran, N-methylpyrrolidone, and acetic acid esters (typically esters of lower alcohols having about 1 to 4 carbon atoms and acetic acid such as ethyl acetate. ), Carbonate ester and the like can be appropriately selected and used. Examples of preferable organic solvents include methyl alcohol, ethyl alcohol, isopropyl alcohol and the like.
 このようなポリマー溶液を、例えば負極合材層の表面に塗布して乾燥させることにより、該負極合材層上に酸性基含有ポリマーを配置する(換言すれば、負極合材層の表面に酸性基含有ポリマーを被覆する)ことができる。ポリマー溶液の塗布方法としては、スリットコーター等の塗工機を用いる方法、負極合材層をポリマー溶液に浸漬する方法(ディップコート)、負極合材層表面にポリマー溶液を噴霧する方法(スプレーコート)、等の慣用の方法を適宜採用し得る。このように、あらかじめ形成された負極合材層の表面にポリマー溶液を付与することにより、負極のうちMnイオンが最初に到達する箇所に酸性基含有ポリマーを集中して(偏在させて)配置することができる。かかる構成によると、例えば酸性基含有ポリマーが負極合材層の内部まで均一に配置された構成に比べて、より少量のポリマーによってMnイオンを効率よく捕捉することができる。したがって、酸性基含有ポリマーの配置により生じうる弊害(例えば、内部抵抗の上昇)を抑えつつ、充放電サイクル特性を効果的に向上させることができる。なお、負極合材層上に更に別の層(例えば、多孔質のセラミック層)が形成された構成の負極を備える電池では、当該層の表面に酸性基含有ポリマーを配置してもよい。 For example, by applying such a polymer solution to the surface of the negative electrode mixture layer and drying, the acidic group-containing polymer is disposed on the negative electrode mixture layer (in other words, the surface of the negative electrode mixture layer is acidic. Group-containing polymer). As a method for applying the polymer solution, a method using a coating machine such as a slit coater, a method of immersing the negative electrode mixture layer in the polymer solution (dip coating), and a method of spraying the polymer solution on the surface of the negative electrode mixture layer (spray coating) ), Etc., can be employed as appropriate. In this way, by applying the polymer solution to the surface of the negative electrode mixture layer formed in advance, the acidic group-containing polymer is concentrated (is unevenly distributed) in the negative electrode where the Mn ions first reach. be able to. According to such a configuration, for example, Mn ions can be efficiently captured by a smaller amount of polymer as compared with a configuration in which the acidic group-containing polymer is uniformly arranged up to the inside of the negative electrode mixture layer. Therefore, it is possible to effectively improve the charge / discharge cycle characteristics while suppressing adverse effects (for example, increase in internal resistance) that may occur due to the arrangement of the acidic group-containing polymer. In addition, in a battery including a negative electrode having a configuration in which another layer (for example, a porous ceramic layer) is formed on the negative electrode mixture layer, an acidic group-containing polymer may be disposed on the surface of the layer.
 負極合材層上に酸性基含有ポリマーが配置された態様のリチウムイオン二次電池において、該ポリマーの配置量は、通常、負極合材層の面積(形成面積)1cm当たり1.00mg以下(すなわち1.00mg/cm以下)とすることが適当であり、0.50mg/cm以下(より好ましくは0.20mg/cm以下、典型的には0.20mg/cm未満、例えば0.18mg/cm以下)とすることが好ましい。この配置量が多すぎると、該ポリマーが負極合材層と外部との物質交換(例えば、リチウムイオンや電解液の移動)の妨げとなって、電池性能が低下傾向となることがあり得る。酸性基含有ポリマーの配置量の下限は特に限定されない。該ポリマーを配置することによる効果をよく発揮させるためには、通常、ポリマーの配置量を0.01mg/cm以上とすることが適当であり、0.03mg/cm以上とすることが好ましい。なお、セパレータの負極合材層側表面に酸性基含有ポリマーが配置された態様では、セパレータの面積1cm当たりのポリマー配置量を上記範囲とするとよい。 In the lithium ion secondary battery in which the acidic group-containing polymer is arranged on the negative electrode mixture layer, the amount of the polymer arranged is usually 1.00 mg or less per 1 cm 2 of the negative electrode mixture layer area (formation area) ( that 1.00 mg / cm 2 or less) and it is appropriate to, 0.50 mg / cm 2 or less (more preferably 0.20 mg / cm 2 or less, typically 0.20 mg / cm less than 2, for example 0 .18 mg / cm 2 or less). If the amount is too large, the polymer may hinder material exchange between the negative electrode mixture layer and the outside (for example, movement of lithium ions or electrolyte), and battery performance may tend to be reduced. The lower limit of the arrangement amount of the acidic group-containing polymer is not particularly limited. In order to exhibit the effect of arranging the polymer well, it is usually appropriate that the amount of the polymer is 0.01 mg / cm 2 or more, and preferably 0.03 mg / cm 2 or more. . In addition, in the aspect by which the acidic group containing polymer was arrange | positioned at the negative electrode compound-material layer side surface of a separator, it is good to make the polymer arrangement amount per 1 cm < 2 > of a separator into the said range.
 以下、図面を参照しつつ、ここに開示されるリチウムイオン二次電池の一実施形態を説明する。図1に示されるように、リチウムイオン二次電池10は、正極12および負極14を具備する電極体11が、非水電解液20とともに、該電極体を収容し得る形状の電池ケース(容器)15に収容された構成を有する。非水電解液20は、少なくともその一部が電極体11に含浸されている。 Hereinafter, an embodiment of the lithium ion secondary battery disclosed herein will be described with reference to the drawings. As shown in FIG. 1, a lithium ion secondary battery 10 includes a battery case (container) having a shape in which an electrode body 11 including a positive electrode 12 and a negative electrode 14 can accommodate the electrode body together with a non-aqueous electrolyte solution 20. 15. At least a part of the nonaqueous electrolytic solution 20 is impregnated in the electrode body 11.
 電極体11は、正極活物質を含む正極合材層124が長尺シート状の正極集電体122上に設けられた構成の正極(正極シート)12と、負極活物質を含む負極合材層144が長尺シート状の負極集電体142上に設けられた構成の負極(負極シート)14とを、二枚の長尺シート状のセパレータ13と重ね合わせ、これらを円筒状に捲回することにより形成される。 The electrode body 11 includes a positive electrode (positive electrode sheet) 12 having a structure in which a positive electrode mixture layer 124 including a positive electrode active material is provided on a long sheet-like positive electrode current collector 122 and a negative electrode mixture layer including a negative electrode active material. A negative electrode (negative electrode sheet) 14 having a configuration in which 144 is provided on a long sheet-like negative electrode current collector 142 is superposed on two long sheet-like separators 13, and these are wound into a cylindrical shape. Is formed.
 電池ケース15は、有底円筒状のケース本体152と、上記開口部を塞ぐ蓋体154とを備える。蓋体154およびケース本体152はいずれも金属製であって相互に絶縁されており、それぞれ正負極の集電体122,142と電気的に接続されている。すなわち、このリチウムイオン二次電池10では、蓋体154が正極端子、ケース本体152が負極端子を兼ねている。 The battery case 15 includes a bottomed cylindrical case main body 152 and a lid 154 that closes the opening. The lid 154 and the case main body 152 are both made of metal and insulated from each other, and are electrically connected to the positive and negative current collectors 122 and 142, respectively. That is, in the lithium ion secondary battery 10, the lid body 154 also serves as a positive electrode terminal, and the case body 152 serves as a negative electrode terminal.
 正極集電体122の長手方向に沿う一方の縁には、正極合材層が設けられずに集電体122が露出した部分(正極合材層非形成部)が設けられている。同様に、負極集電体142の長手方向に沿う一方の縁には、負極合材層が設けられずに集電体142が露出した部分(負極合材層非形成部)が設けられている。この露出した部分に蓋体154およびケース本体152がそれぞれ接続されている。 On one edge along the longitudinal direction of the positive electrode current collector 122, a portion where the current collector 122 is exposed without providing the positive electrode mixture layer (positive electrode mixture layer non-forming portion) is provided. Similarly, on one edge along the longitudinal direction of the negative electrode current collector 142, a portion where the current collector 142 is exposed without the negative electrode mixture layer (a negative electrode mixture layer non-forming portion) is provided. . The lid 154 and the case main body 152 are connected to the exposed portions.
 図2に示すように、負極シート14を構成する負極合材層144上には、酸性基含有ポリマー(例えばポリアクリル酸)18が配置されている。このように酸性基含有ポリマー18を被覆した負極シート14を他の部材と重ね合わせて捲回することにより電極体11が形成されている。なお、図2には、負極集電体142の両面に設けられた負極合材層144の表面全体にポリマー18を配置した構成を例示しているが、一方の面に設けられた負極合材層144上のみにポリマー18を配置してもよく、表面の一部範囲のみにポリマー18を配置してもよい。あるいは、図3に示す変形例のように、セパレータ13の負極合材層144側表面に酸性基含有ポリマー18を配置し、このように酸性基含有ポリマー18を被覆したセパレータ13を他の部材と重ね合わせて捲回することにより電極体11を形成してもよい。 As shown in FIG. 2, an acidic group-containing polymer (for example, polyacrylic acid) 18 is disposed on the negative electrode mixture layer 144 constituting the negative electrode sheet 14. Thus, the electrode body 11 is formed by overlapping and winding the negative electrode sheet 14 coated with the acidic group-containing polymer 18 with another member. 2 illustrates a configuration in which the polymer 18 is disposed on the entire surface of the negative electrode mixture layer 144 provided on both surfaces of the negative electrode current collector 142, but the negative electrode mixture provided on one surface is illustrated. The polymer 18 may be disposed only on the layer 144, or the polymer 18 may be disposed only on a partial area of the surface. Alternatively, as in the modification shown in FIG. 3, the acidic group-containing polymer 18 is disposed on the surface of the separator 13 on the negative electrode mixture layer 144 side, and the separator 13 thus coated with the acidic group-containing polymer 18 is used as another member. The electrode body 11 may be formed by overlapping and winding.
 ここに開示される技術は、端子間の上限電圧が4.5V以上(例えば4.7V以上、特に4.8V以上。典型的には7V以下、例えば5.5V以下。)となり得る充放電条件で使用するためのリチウムイオン二次電池に好ましく適用され得る。かかる電池の好適例として、スピネル型リチウムマンガン酸化物を正極活物質として備えた、いわゆる5V級のリチウムイオン二次電池が挙げられる。この明細書により開示される事項には、ここに開示されるいずれかのリチウムイオン二次電池(好ましくは、スピネル型リチウムマンガン酸化物を正極活物質として備えた二次電池)を、上限電圧が4.5V以上(例えば4.7V以上、特に4.8V以上。典型的には7V以下、例えば5.5V以下。)となり得る充放電条件で使用する方法、かかるリチウムイオン二次電池(組電池の形態であり得る。)と該電池を上記上限電圧となり得るように設定された充放電条件で制御する機構とを備えた電源システム、および、上記電源システムを搭載した車両が包含される。 The technology disclosed herein is a charge / discharge condition in which the upper limit voltage between terminals can be 4.5 V or higher (for example, 4.7 V or higher, particularly 4.8 V or higher, typically 7 V or lower, for example, 5.5 V or lower). It can be preferably applied to a lithium ion secondary battery for use in the above. As a suitable example of such a battery, a so-called 5V class lithium ion secondary battery provided with a spinel type lithium manganese oxide as a positive electrode active material can be mentioned. The matter disclosed by this specification includes any lithium ion secondary battery disclosed herein (preferably, a secondary battery including spinel type lithium manganese oxide as a positive electrode active material) having an upper limit voltage. A method of using the battery under charge / discharge conditions that can be 4.5 V or higher (for example, 4.7 V or higher, particularly 4.8 V or higher, typically 7 V or lower, for example, 5.5 V or lower); And a mechanism for controlling the battery under charge / discharge conditions set so as to be the upper limit voltage, and a vehicle equipped with the power supply system.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。 Hereinafter, some examples relating to the present invention will be described. However, the present invention is not intended to be limited to the specific examples.
  <例1>
 正極活物質として、LiNi0.5Mn1.5で表わされる組成のリチウムマンガン酸化物を使用した。結着剤としてのポリフッ化ビニリデン(PVDF)25gをN-メチルピロリドン(NMP)625mLに溶解した溶液に、上記組成のリチウムマンガン酸化物粉末425gおよびアセチレンブラック50gとを投入し、均一に混合して、ペーストまたはスラリー状の組成物(正極合材層形成用組成物)を調製した。この組成物を、厚さ15μmの長尺状アルミニウム箔(正極集電体)の両面に塗布して乾燥させた。上記組成物の塗布量(固形分基準)は、両面合わせて約15mg/cmとなるように調整した。乾燥後、正極集電体とその両面の正極合材層とを合わせた全体の厚みが約70μmとなるようにプレスして、シート状正極(正極シート)を作製した。
<Example 1>
As the positive electrode active material, lithium manganese oxide having a composition represented by LiNi 0.5 Mn 1.5 O 4 was used. To a solution obtained by dissolving 25 g of polyvinylidene fluoride (PVDF) as a binder in 625 mL of N-methylpyrrolidone (NMP), 425 g of lithium manganese oxide powder having the above composition and 50 g of acetylene black were added and mixed uniformly. A paste or slurry composition (a composition for forming a positive electrode mixture layer) was prepared. This composition was applied to both sides of a 15 μm thick long aluminum foil (positive electrode current collector) and dried. The coating amount (solid content basis) of the above composition was adjusted to be about 15 mg / cm 2 on both sides. After drying, pressing was performed so that the total thickness of the positive electrode current collector and the positive electrode mixture layers on both sides thereof was about 70 μm, thereby preparing a sheet-like positive electrode (positive electrode sheet).
 37.8gのPVDFを625mLのNMPに溶解した溶液に、グラファイト粉末462.5gを投入し、均一に混合して、ペーストまたはスラリー状の組成物(負極合材層形成用組成物)を調製した。この組成物を、厚さ10μmの長尺状銅箔(負極集電体)の両面に塗布して乾燥させた。上記組成物の塗布量(固形分基準)は、両面合わせて約9mg/cmとなるように調整した。乾燥後、全体の厚みが約70μmとなるようにプレスして、シート状負極(負極シート)を作製した。 462.5 g of graphite powder was put into a solution obtained by dissolving 37.8 g of PVDF in 625 mL of NMP, and mixed uniformly to prepare a paste or slurry-like composition (a composition for forming a negative electrode mixture layer). . This composition was applied to both sides of a long copper foil (negative electrode current collector) having a thickness of 10 μm and dried. The coating amount (solid content basis) of the composition was adjusted to be about 9 mg / cm 2 on both sides. After drying, the whole thickness was pressed to about 70 μm to produce a sheet-like negative electrode (negative electrode sheet).
 上記負極シート(ポリマー被覆なし)を、上記正極シートおよび二枚の長尺状のセパレータシートと積層し、その積層物を長尺方向に捲回して捲回電極体を作製した。セパレータシートとしては、厚さ25μmの多孔質ポリエチレンシートを使用した。この電極体を、電解液(ECとDECとを体積比3:7で混合した溶媒に1mol/Lの濃度でLiPFを溶解させた組成の電解液を使用した。)とともに円筒型の外装ケースに収容して、18650型リチウムイオン二次電池(電池サンプル1)を構築した。 The negative electrode sheet (without polymer coating) was laminated with the positive electrode sheet and two long separator sheets, and the laminate was wound in the long direction to produce a wound electrode body. As the separator sheet, a porous polyethylene sheet having a thickness of 25 μm was used. The electrode body was used together with an electrolytic solution (an electrolytic solution having a composition in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which EC and DEC were mixed at a volume ratio of 3: 7). The 18650 type lithium ion secondary battery (battery sample 1) was constructed.
  <例2>
 例1で作製した負極シートを、ポリアクリル酸(重量平均分子量25×10)の2.5質量%エチルアルコール溶液に約5秒間浸漬した後、該溶液から引き上げて120℃で減圧乾燥させることにより、負極合材層の表面にポリアクリル酸を被覆した。上記被覆の前後における質量差および負極合材層の面積から算出したポリアクリル酸の被覆量は、負極合材層の面積1cm当たり0.15mg(すなわち0.15mg/cm)であった。このようにしてポリアクリル酸を被覆した負極シートを用いた点以外は例1と同様にして、電池サンプル2を構築した。
<Example 2>
The negative electrode sheet produced in Example 1 is immersed in a 2.5 mass% ethyl alcohol solution of polyacrylic acid (weight average molecular weight 25 × 10 4 ) for about 5 seconds, and then pulled up from the solution and dried under reduced pressure at 120 ° C. Thus, the surface of the negative electrode mixture layer was coated with polyacrylic acid. The coating amount of polyacrylic acid calculated from the mass difference before and after the coating and the area of the negative electrode mixture layer was 0.15 mg (that is, 0.15 mg / cm 2 ) per 1 cm 2 of the area of the negative electrode mixture layer. A battery sample 2 was constructed in the same manner as in Example 1 except that a negative electrode sheet coated with polyacrylic acid was used.
  <例3>
 例2において、ポリアクリル酸エチルアルコール溶液におけるポリアクリル酸濃度を1.0質量%に変更した。その他の点は例2と同様にして、負極合材層にポリアクリル酸を被覆した。被覆量は0.10mg/cmであった。このようにしてポリアクリル酸を被覆した負極シートを用いた点以外は例1と同様にして、電池サンプル3を構築した。
<Example 3>
In Example 2, the polyacrylic acid concentration in the polyacrylic acid ethyl alcohol solution was changed to 1.0 mass%. The other points were the same as in Example 2, and the negative electrode mixture layer was coated with polyacrylic acid. The coating amount was 0.10 mg / cm 2 . A battery sample 3 was constructed in the same manner as in Example 1 except that the negative electrode sheet coated with polyacrylic acid was used.
  <例4>
 例2において、ポリアクリル酸の2.5質量%エチルアルコール溶液に代えて、ポリアクリル酸の2.5質量%水溶液を使用した。その他の点は例2と同様にして、負極合材層にポリアクリル酸を被覆した。被覆量は0.10mg/cmであった。このようにしてポリアクリル酸を被覆した負極シートを用いた点以外は例1と同様にして、電池サンプル4を構築した。
<Example 4>
In Example 2, instead of a 2.5% by mass ethyl alcohol solution of polyacrylic acid, a 2.5% by mass aqueous solution of polyacrylic acid was used. The other points were the same as in Example 2, and the negative electrode mixture layer was coated with polyacrylic acid. The coating amount was 0.10 mg / cm 2 . A battery sample 4 was constructed in the same manner as in Example 1 except that the negative electrode sheet coated with polyacrylic acid was used.
  <例5>
 例2において、ポリアクリル酸の2.5質量%エチルアルコール溶液に代えて、ポリアクリル酸エチル(重量平均分子量25×10)の2.5質量%トルエン溶液を使用した。その他の点は例2と同様にして、負極合材層にポリアクリル酸エチルを被覆した。被覆量は0.10mg/cmであった。このようにしてポリアクリル酸エチルを被覆した負極シートを用いた点以外は例1と同様にして、電池サンプル5を構築した。
<Example 5>
In Example 2, instead of the 2.5 mass% ethyl alcohol solution of polyacrylic acid, a 2.5 mass% toluene solution of polyacrylic acid (weight average molecular weight 25 × 10 4 ) was used. The other points were the same as in Example 2, and the negative electrode mixture layer was coated with polyethyl acrylate. The coating amount was 0.10 mg / cm 2 . A battery sample 5 was constructed in the same manner as in Example 1 except that a negative electrode sheet coated with polyethyl acrylate was used.
  <例6>
 例2において、ポリアクリル酸の2.5質量%エチルアルコール溶液に代えて、ポリアクリル酸ナトリウム(重合度22×10~70×10)の2.5質量%水溶液を使用した。その他の点は例2と同様にして、負極合材層にポリアクリル酸ナトリウムを被覆した。被覆量は0.10mg/cmであった。このようにしてポリアクリル酸ナトリウムを被覆した負極シートを用いた点以外は例1と同様にして、電池サンプル6を構築した。
<Example 6>
In Example 2, instead of a 2.5% by mass ethyl alcohol solution of polyacrylic acid, a 2.5% by mass aqueous solution of sodium polyacrylate (degree of polymerization 22 × 10 3 to 70 × 10 3 ) was used. The other points were the same as in Example 2, and the negative electrode mixture layer was coated with sodium polyacrylate. The coating amount was 0.10 mg / cm 2 . A battery sample 6 was constructed in the same manner as in Example 1 except that a negative electrode sheet coated with sodium polyacrylate was used.
  <例7>
 本例では、正極活物質として、LiNi0.8Co0.15Al0.05で表わされる組成のリチウムニッケル酸化物を使用した。このリチウムニッケル酸化物の粉末を用いて例1と同様に正極合材層形成用組成物を調製し、厚さ15μmの長尺状アルミニウム箔(正極集電体)の両面に塗布して乾燥させた。上記組成物の塗布量(固形分基準)は、両面合わせて約13mg/cmとなるように調整した。乾燥後、正極集電体とその両面の正極合材層とを合わせた全体の厚みが約65μmとなるようにプレスして、シート状正極(正極シート)を作製した。この正極シートを負極シート(ポリマー被覆なし)および二枚の長尺状のセパレータシートと積層し、例1と同様にして電池サンプル7を構築した。
<Example 7>
In this example, lithium nickel oxide having a composition represented by LiNi 0.8 Co 0.15 Al 0.05 O 4 was used as the positive electrode active material. Using this lithium nickel oxide powder, a composition for forming a positive electrode mixture layer was prepared in the same manner as in Example 1, and applied to both sides of a 15 μm-thick long aluminum foil (positive electrode current collector) and dried. It was. The coating amount (based on solid content) of the composition was adjusted to be about 13 mg / cm 2 on both sides. After drying, the positive electrode current collector and the positive electrode mixture layers on both sides thereof were pressed to a total thickness of about 65 μm to produce a sheet-like positive electrode (positive electrode sheet). This positive electrode sheet was laminated with a negative electrode sheet (without polymer coating) and two long separator sheets, and a battery sample 7 was constructed in the same manner as in Example 1.
  <例8>
 本例では、例7の正極シートと例2のポリアクリル酸被覆負極シートとを組み合わせて使用した。その他の点については例1と同様にして、電池サンプル8を構築した。
<Example 8>
In this example, the positive electrode sheet of Example 7 and the polyacrylic acid-coated negative electrode sheet of Example 2 were used in combination. The battery sample 8 was constructed in the same manner as Example 1 for the other points.
 上記で得られた電池サンプル1~8の特性を以下のようにして評価した。得られた結果を、各電池サンプルの概略構成とともに表1に示す。 The characteristics of the battery samples 1 to 8 obtained above were evaluated as follows. The obtained results are shown in Table 1 together with the schematic configuration of each battery sample.
  [初期放電容量測定]
 各電池サンプルに対し、理論容量の0.1C(1Cは、1時間で満充放電可能な電流値)のレートで両端子間の電圧が4.9V(ただし、電池サンプル7,8については4.1V)となるまで定電流充電する操作と、両端子間の電圧が3.0Vとなるまで0.1Cで定電流放電させる操作とを3サイクル行った。次いで、1Cのレートで4.9V(電池サンプル7,8については4.1V)まで定電流充電し、続いて合計充電時間が2時間となるまで定電圧充電した後、1Cのレートで3.0Vまで定電流放電させ、このときの容量を初期放電容量(mAh)として測定した。なお、以上の操作は25℃にて行った。
[Initial discharge capacity measurement]
For each battery sample, the voltage between both terminals was 4.9 V at a rate of 0.1 C of theoretical capacity (1 C is a current value that can be fully charged and discharged in 1 hour) (however, 4 for battery samples 7 and 8). .1V), and the operation of constant current discharge at 0.1 C until the voltage between both terminals reached 3.0 V was performed for 3 cycles. Next, constant current charging to 4.9 V (4.1 V for battery samples 7 and 8) at a rate of 1 C, followed by constant voltage charging until the total charging time is 2 hours, then 3. A constant current was discharged to 0 V, and the capacity at this time was measured as the initial discharge capacity (mAh). In addition, the above operation was performed at 25 degreeC.
  [サイクル特性評価]
 上記初期放電容量測定後の電池サンプルに対し、1Cのレートで4.9V(電池サンプル7,8については4.1V)まで定電流充電した後に合計充電時間が2時間となるまで定電圧充電する操作と、1Cのレートで3.0Vまで定電流放電させる操作とを100サイクル行った。以上の操作は25℃にて行った。そして、1サイクル目の放電容量に対する100サイクル目の放電容量の割合を容量維持率として算出した。
[Cycle characteristics evaluation]
The battery sample after measurement of the initial discharge capacity is charged at a constant current up to 4.9 V (4.1 V for battery samples 7 and 8) at a rate of 1 C, and then charged at a constant voltage until the total charging time is 2 hours. The operation and the operation of discharging a constant current to 3.0 V at a rate of 1 C were performed 100 cycles. The above operation was performed at 25 ° C. And the ratio of the discharge capacity of the 100th cycle with respect to the discharge capacity of the 1st cycle was computed as a capacity | capacitance maintenance factor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表からわかるように、Mn含有正極活物質を備えた電池サンプル1~6のうち、負極合材層にポリアクリル酸を被覆したサンプル2~4では、ポリマーを被覆しないサンプル1に比べて容量維持率が向上した。なかでも、上記被覆にポリアクリル酸のエチルアルコール溶液を用いたサンプル2,3によると、水溶液を用いたサンプル4に比べて、明らかに高い容量維持率が実現された。特にサンプル2では、ポリマーを被覆しないサンプル1に比べて容量維持率が1割以上向上した。また、水溶液を用いたサンプル4では容量維持率は向上したものの初期容量が低下したのに対し、エチルアルコール溶液を用いたサンプル2,3ではサンプル1とほぼ同等の初期容量が維持された。 As can be seen from this table, out of the battery samples 1 to 6 provided with the Mn-containing positive electrode active material, the samples 2 to 4 in which the negative electrode mixture layer was coated with polyacrylic acid had a capacity compared to the sample 1 in which the polymer was not coated. Maintenance rate improved. Especially, according to the samples 2 and 3 using the ethyl alcohol solution of polyacrylic acid for the coating, a clearly higher capacity retention rate was realized as compared with the sample 4 using the aqueous solution. In particular, in Sample 2, the capacity retention rate was improved by 10% or more compared to Sample 1 in which the polymer was not coated. In Sample 4 using an aqueous solution, although the capacity retention rate was improved, the initial capacity was reduced, whereas in Samples 2 and 3 using an ethyl alcohol solution, an initial capacity almost equal to that of Sample 1 was maintained.
 これに対して、酸性官能基を有しないアクリル酸エチルの単独重合体を被覆したサンプル5では、容量維持率を向上させる効果はみられなかった。ポリアクリル酸に代えてポリアクリル酸塩を被覆したサンプル6では、サンプル1に比べて容量維持率が若干低くなったほか、初期容量も低下した。なお、例2においてポリアクリル酸の被覆量を0.20mg/cmとしたところ、容量維持率および初期容量がいずれもサンプル1よりも低くなった。また、例2と同じポリアクリル酸エチルアルコール溶液を、負極合材層表面の代わりに正極合材層表面に被覆して同様に電池サンプルを作製したところ、例2とは異なり、容量維持率の向上はみられなかった。 On the other hand, in the sample 5 coated with the homopolymer of ethyl acrylate having no acidic functional group, the effect of improving the capacity retention rate was not observed. In sample 6 coated with polyacrylate instead of polyacrylic acid, the capacity retention rate was slightly lower than that of sample 1, and the initial capacity was also reduced. In Example 2, when the coating amount of polyacrylic acid was 0.20 mg / cm 2 , both the capacity retention ratio and the initial capacity were lower than those of Sample 1. Also, when the same polyacrylic acid ethyl alcohol solution as in Example 2 was coated on the surface of the positive electrode mixture layer instead of the surface of the negative electrode mixture layer, a battery sample was produced in the same manner. There was no improvement.
 一方、電池サンプル7,8の比較からわかるように、Mnを含まない正極活物質を用いた電池では、酸性基含有ポリマーの被覆による充放電サイクル特性向上効果はみられなかった。これは、Mnを含まない正極活物質を用いた電池では、そもそもMnイオンの溶出に起因する充放電サイクル特性の低下という問題が生じないためと考えられる。なお、電池サンプル1を上記サイクル特性評価試験後に分解し、その負極表面を誘導結合プラズマ(IPC)発光分光分析法により分析したところ、Mnの存在が確認された。この結果は、電池サンプル1において、上記サイクル特性評価試験によりMnのイオンの溶出および負極上での析出が生じたことを示している。 On the other hand, as can be seen from the comparison of the battery samples 7 and 8, in the battery using the positive electrode active material not containing Mn, the effect of improving the charge / discharge cycle characteristics by covering with the acidic group-containing polymer was not observed. This is presumably because a battery using a positive electrode active material not containing Mn does not have a problem of deterioration in charge / discharge cycle characteristics due to elution of Mn ions. In addition, when the battery sample 1 was decomposed | disassembled after the said cycle characteristic evaluation test and the negative electrode surface was analyzed by the inductively coupled plasma (IPC) emission-spectral-analysis method, presence of Mn was confirmed. This result shows that in the battery sample 1, the elution of Mn ions and the deposition on the negative electrode occurred in the cycle characteristic evaluation test.
 以上、本発明を詳細に説明したが、上記実施形態は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。 Although the present invention has been described in detail above, the above embodiment is merely an example, and the invention disclosed herein includes various modifications and changes of the above specific examples.
 ここに開示される技術により提供されるリチウムイオン二次電池は、上記のように優れた性能(充放電サイクル特性等)を示すことから、各種用途向けのリチウムイオン二次電池として利用可能である。例えば、自動車等の車両に搭載されるモータ(電動機)用電源として好適に使用され得る。かかるリチウムイオン二次電池は、それらの複数個を直列および/または並列に接続してなる組電池の形態で使用されてもよい。したがって、ここに開示される技術によると、図4に模式的に示すように、かかるリチウムイオン二次電池(組電池の形態であり得る。)100を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1が提供され得る。 Since the lithium ion secondary battery provided by the technology disclosed herein exhibits excellent performance (such as charge / discharge cycle characteristics) as described above, it can be used as a lithium ion secondary battery for various applications. . For example, it can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Such lithium ion secondary batteries may be used in the form of an assembled battery formed by connecting a plurality of them in series and / or in parallel. Therefore, according to the technology disclosed herein, as schematically shown in FIG. 4, a vehicle (typically, an automobile) including such a lithium ion secondary battery (which may be in the form of an assembled battery) 100 as a power source. In particular, a vehicle (1) equipped with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle can be provided.

Claims (10)

  1.  マンガンを含む正極活物質を有する正極と、
     負極活物質を有する負極と、
     前記正極と前記負極との間に介在される非水電解液と、
     前記正極活物質と前記負極活物質との間に配置された酸性基含有ポリマーと、
     を備える、リチウムイオン二次電池。
    A positive electrode having a positive electrode active material containing manganese;
    A negative electrode having a negative electrode active material;
    A non-aqueous electrolyte interposed between the positive electrode and the negative electrode;
    An acidic group-containing polymer disposed between the positive electrode active material and the negative electrode active material;
    A lithium ion secondary battery comprising:
  2.  前記ポリマーは、モノマー組成としてアクリル酸およびメタクリル酸の少なくとも一方を含む重合体である、請求項1に記載の電池。 The battery according to claim 1, wherein the polymer is a polymer containing at least one of acrylic acid and methacrylic acid as a monomer composition.
  3.  前記ポリマーはポリアクリル酸である、請求項1または2に記載の電池。 The battery according to claim 1 or 2, wherein the polymer is polyacrylic acid.
  4.  前記ポリマーは、該ポリマーの有機溶媒溶液から該有機溶媒を除去して配置されたものである、請求項1から3のいずれか一項に記載の電池。 The battery according to any one of claims 1 to 3, wherein the polymer is disposed by removing the organic solvent from an organic solvent solution of the polymer.
  5.  前記ポリマーは、前記正極に直接接触しない箇所に配置されている、請求項1から4のいずれか一項に記載の電池。 The battery according to any one of claims 1 to 4, wherein the polymer is disposed at a location that does not directly contact the positive electrode.
  6.  前記負極は、前記負極活物質を含む負極合材層を備え、前記ポリマーは前記負極合材層上に配置されている、請求項1から5のいずれか一項に記載の電池。 The battery according to any one of claims 1 to 5, wherein the negative electrode includes a negative electrode mixture layer including the negative electrode active material, and the polymer is disposed on the negative electrode mixture layer.
  7.  前記負極合材層の面積1cm当たり前記ポリマー0.01mg~0.20mgが配置されている、請求項6に記載の電池。 The battery according to claim 6, wherein 0.01 mg to 0.20 mg of the polymer is disposed per 1 cm 2 of the area of the negative electrode mixture layer.
  8.  前記正極活物質はスピネル型リチウムマンガン酸化物である、請求項1から7のいずれか一項に記載の電池。 The battery according to any one of claims 1 to 7, wherein the positive electrode active material is a spinel type lithium manganese oxide.
  9.  マンガンを含む正極活物質を有する正極と、負極活物質を含む負極合材層を有する負極と、前記正極と前記負極との間に介在される非水電解液と、前記負極合材層上に配置された酸性基含有ポリマーと、を備えるリチウムイオン二次電池を製造する方法であって、
     前記ポリマーの有機溶媒溶液を前記負極合材層に付与した後、該有機溶媒を除去して前記ポリマーを前記負極合材層上に配置する工程と、
     前記ポリマーが配置された負極と前記正極とを前記電解液とともに容器に収容して電池を構築する工程と、
     を包含する、リチウムイオン二次電池製造方法。
    A positive electrode having a positive electrode active material containing manganese, a negative electrode having a negative electrode mixture layer containing a negative electrode active material, a non-aqueous electrolyte interposed between the positive electrode and the negative electrode, and the negative electrode mixture layer A method of producing a lithium ion secondary battery comprising: an acidic group-containing polymer disposed;
    After applying the organic solvent solution of the polymer to the negative electrode mixture layer, removing the organic solvent and placing the polymer on the negative electrode mixture layer;
    Storing a negative electrode in which the polymer is disposed and the positive electrode together with the electrolyte in a container to construct a battery;
    A method for producing a lithium ion secondary battery.
  10.  請求項1から8のいずれかに記載のリチウムイオン二次電池を備える、車両。 A vehicle comprising the lithium ion secondary battery according to any one of claims 1 to 8.
PCT/JP2010/052606 2010-02-22 2010-02-22 Lithium ion secondary battery and production method for same WO2011101987A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/511,389 US20120328949A1 (en) 2010-02-22 2010-02-22 Lithium ion secondary battery and production method of same
JP2012500438A JP5534369B2 (en) 2010-02-22 2010-02-22 Lithium ion secondary battery, its manufacturing method and vehicle
PCT/JP2010/052606 WO2011101987A1 (en) 2010-02-22 2010-02-22 Lithium ion secondary battery and production method for same
KR1020127014099A KR101368029B1 (en) 2010-02-22 2010-02-22 Lithium ion secondary battery and production method for same
CN2010800544034A CN102804475A (en) 2010-02-22 2010-02-22 Lithium ion secondary battery and production method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052606 WO2011101987A1 (en) 2010-02-22 2010-02-22 Lithium ion secondary battery and production method for same

Publications (1)

Publication Number Publication Date
WO2011101987A1 true WO2011101987A1 (en) 2011-08-25

Family

ID=44482604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052606 WO2011101987A1 (en) 2010-02-22 2010-02-22 Lithium ion secondary battery and production method for same

Country Status (5)

Country Link
US (1) US20120328949A1 (en)
JP (1) JP5534369B2 (en)
KR (1) KR101368029B1 (en)
CN (1) CN102804475A (en)
WO (1) WO2011101987A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079493A (en) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd Electrode for lithium-ion secondary battery and lithium-ion secondary battery
WO2015111166A1 (en) * 2014-01-23 2015-07-30 株式会社日立製作所 Polymer for positive electrode active material coating of lithium ion batteries
JP2016009670A (en) * 2014-06-26 2016-01-18 株式会社豊田自動織機 Method for manufacturing nonaqueous secondary battery electrode
JP2016532996A (en) * 2013-10-31 2016-10-20 エルジー・ケム・リミテッド Method for producing electrode-separation membrane composite, electrode-separation membrane composite produced by the production method, and lithium secondary battery including the same
JP2020047456A (en) * 2018-09-19 2020-03-26 積水化学工業株式会社 Secondary battery and electrolyte
WO2024033741A1 (en) * 2022-08-10 2024-02-15 株式会社半導体エネルギー研究所 Battery and method for producing secondary battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2272722B1 (en) * 2009-07-01 2015-04-08 Denso Corporation Power source apparatus for vehicle
JP5968527B2 (en) * 2012-07-09 2016-08-10 エルジー・ケム・リミテッド High voltage positive electrode active material and method for producing the same
JP6256466B2 (en) * 2013-06-12 2018-01-10 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6287186B2 (en) * 2013-12-26 2018-03-07 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN105993088B (en) * 2014-03-12 2020-08-14 三洋化成工业株式会社 Coated negative electrode active material for lithium ion battery, slurry for lithium ion battery, negative electrode for lithium ion battery, and method for producing coated negative electrode active material for lithium ion battery
KR101854010B1 (en) * 2015-03-23 2018-05-02 주식회사 엘지화학 Anode active material for secondary battery, and anode, electrode assembly and secondary battery comprising the same
US11916226B2 (en) * 2019-07-08 2024-02-27 StoreDot Ltd. Anode coating in lithium ion batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021381A (en) * 1998-06-30 2000-01-21 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2002025527A (en) * 2000-07-03 2002-01-25 Japan Storage Battery Co Ltd Nonaqueous electrolytic secondary battery
JP2004171907A (en) * 2002-11-20 2004-06-17 Hitachi Ltd Lithium secondary battery
JP2009087929A (en) * 2007-09-13 2009-04-23 Nitto Denko Corp Battery separator and nonaqueous lithium-ion secondary battery using the same
JP2009123687A (en) * 2007-10-26 2009-06-04 Nitto Denko Corp Separator for battery, and nonaqueous lithium-ion secondary battery
JP2009266557A (en) * 2008-04-24 2009-11-12 Nitto Denko Corp Battery separator and lithium-ion secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379846B1 (en) * 1999-03-16 2002-04-30 Sumitomo Chemical Company, Limited Non-aqueous electrolyte and lithium secondary battery using the same
JP2002151070A (en) * 2000-11-06 2002-05-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP4413460B2 (en) * 2001-12-03 2010-02-10 三星エスディアイ株式会社 Lithium secondary battery and method for producing lithium secondary battery
JP4078864B2 (en) * 2002-03-29 2008-04-23 日本電気株式会社 Negative electrode for secondary battery and secondary battery
JP2004185956A (en) * 2002-12-03 2004-07-02 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery
JP2004323827A (en) * 2003-04-09 2004-11-18 Nitto Denko Corp Adhesive-carrying porous film for battery separator and use of the same
CN101436677B (en) * 2007-11-12 2011-10-12 比亚迪股份有限公司 Method for preparing battery
KR101041126B1 (en) * 2007-11-28 2011-06-13 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
WO2009139157A1 (en) * 2008-05-15 2009-11-19 パナソニック株式会社 Positive electrode active material for rechargeable battery with nonaqueous electrolyte, positive electrode for rechargeable battery with nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte
JP5482029B2 (en) * 2009-08-31 2014-04-23 三洋電機株式会社 Negative electrode for alkaline storage battery and alkaline storage battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021381A (en) * 1998-06-30 2000-01-21 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2002025527A (en) * 2000-07-03 2002-01-25 Japan Storage Battery Co Ltd Nonaqueous electrolytic secondary battery
JP2004171907A (en) * 2002-11-20 2004-06-17 Hitachi Ltd Lithium secondary battery
JP2009087929A (en) * 2007-09-13 2009-04-23 Nitto Denko Corp Battery separator and nonaqueous lithium-ion secondary battery using the same
JP2009123687A (en) * 2007-10-26 2009-06-04 Nitto Denko Corp Separator for battery, and nonaqueous lithium-ion secondary battery
JP2009266557A (en) * 2008-04-24 2009-11-12 Nitto Denko Corp Battery separator and lithium-ion secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079493A (en) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd Electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP2016532996A (en) * 2013-10-31 2016-10-20 エルジー・ケム・リミテッド Method for producing electrode-separation membrane composite, electrode-separation membrane composite produced by the production method, and lithium secondary battery including the same
US11450925B2 (en) 2013-10-31 2022-09-20 Lg Energy Solution, Ltd. Method of manufacturing electrode-separator composite, electrode-separator composite manufactured by the manufacturing method and lithium secondary battery comprising the same
WO2015111166A1 (en) * 2014-01-23 2015-07-30 株式会社日立製作所 Polymer for positive electrode active material coating of lithium ion batteries
JP2016009670A (en) * 2014-06-26 2016-01-18 株式会社豊田自動織機 Method for manufacturing nonaqueous secondary battery electrode
JP2020047456A (en) * 2018-09-19 2020-03-26 積水化学工業株式会社 Secondary battery and electrolyte
WO2024033741A1 (en) * 2022-08-10 2024-02-15 株式会社半導体エネルギー研究所 Battery and method for producing secondary battery

Also Published As

Publication number Publication date
KR20120109492A (en) 2012-10-08
US20120328949A1 (en) 2012-12-27
JP5534369B2 (en) 2014-06-25
CN102804475A (en) 2012-11-28
KR101368029B1 (en) 2014-02-26
JPWO2011101987A1 (en) 2013-06-17

Similar Documents

Publication Publication Date Title
JP5534369B2 (en) Lithium ion secondary battery, its manufacturing method and vehicle
JP4487220B1 (en) Positive electrode for lithium secondary battery and method for producing the same
JP5229598B2 (en) Lithium secondary battery and manufacturing method thereof
JP5300502B2 (en) Battery active material, non-aqueous electrolyte battery and battery pack
JP4887671B2 (en) Lithium secondary battery, positive electrode provided in the battery, and manufacturing method thereof
JP5158452B2 (en) Positive electrode for lithium secondary battery and its utilization
US20130330615A1 (en) Lithium-ion secondary battery and method for manufacturing the same
JP6394253B2 (en) Non-aqueous secondary battery electrode, method for producing the same, and non-aqueous secondary battery
JP2020077611A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2018537833A (en) Negative electrode active material with improved output characteristics and electrode for electrochemical device including the same
KR20130106687A (en) Negative active material and lithium battery containing the material
US20220166007A1 (en) Non-aqueous electrolyte secondary battery
JP2011028898A (en) Positive electrode for lithium secondary battery and method of manufacturing the same
JP2001176557A (en) Non-aqueous electrolyte secondary battery
WO2011024251A1 (en) Nonaqueous electrolyte lithium ion secondary battery
JP5807779B2 (en) Non-aqueous secondary battery
CN112242509B (en) Nonaqueous electrolyte secondary battery
JP2012185911A (en) Composite positive electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
WO2012001814A1 (en) Lithium secondary battery
JP7303084B2 (en) lithium ion battery
WO2017094719A1 (en) Lithium ion secondary battery
US20220393148A1 (en) Negative electrode and nonaqueous electrolyte secondary battery including the same
WO2023162414A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US20230137413A1 (en) Lithium secondary battery and method for using same
WO2023145443A1 (en) Lithium ion battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054403.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846123

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13511389

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127014099

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012500438

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846123

Country of ref document: EP

Kind code of ref document: A1