JP2000021381A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000021381A
JP2000021381A JP10185145A JP18514598A JP2000021381A JP 2000021381 A JP2000021381 A JP 2000021381A JP 10185145 A JP10185145 A JP 10185145A JP 18514598 A JP18514598 A JP 18514598A JP 2000021381 A JP2000021381 A JP 2000021381A
Authority
JP
Japan
Prior art keywords
mixed
positive electrode
composite oxide
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10185145A
Other languages
Japanese (ja)
Inventor
Nobukazu Tanaka
伸和 田中
Koji Higashimoto
晃二 東本
Toshikazu Maejima
敏和 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10185145A priority Critical patent/JP2000021381A/en
Publication of JP2000021381A publication Critical patent/JP2000021381A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery hardly degrading capacity by a charge/ discharge cycle at a high temperature by using lithium manganese composite oxide as a positive electrode active material, by using a material by adding a cation exchange resin to a material mainly composed of a polyolefine resin as a separator. SOLUTION: Lithmum manganese composite oxide having the average particle size 10 μm as a positive electrode active material, carbon powder as a conductive assistant and polyvinylidene fluoride as a binding agent are mixed in wt.% of (82:12:6). N-methyl-2-pyrolidone is inputted/mixed there to manufacture a slurry-like solution to be applied to Al foil, and after being dried, it is rolled and cut. A carbon material capable of storing/releasing a lithium ion is used as a negative electrode active material. 90 wt.% the carbon material and 10 wt.% of the polyvinylidene fluoride as a binding agent are mixed, and the N-methyl-2-pyrolidone is inputted/mixed to manufacture a slurry-like solution to be applied to both surface of copper foil, and after being dried, it is rolled and cut.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極にリチウムマ
ンガン複合酸化物を用いた非水電解液二次電池に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a lithium manganese composite oxide for a positive electrode.

【0002】[0002]

【従来の技術】携帯用電話機、コードレス電話器、ビデ
オカメラなどの映像機器、パソコンなどの事務用機器、
家電機器、電気自動車などの主電源あるいはバックアッ
プ用電源として、長時間使用できるリチウムイオン二次
電池が強く要求されている。なお、これらのリチウムイ
オン二次電池に使用されている正極用活物質としては、
リチウムコバルト複合酸化物、リチウムニッケル複合酸
化物、リチウムマンガン複合酸化物などが用いられてお
り、その中でも資源的に豊富で安価なマンガンを主原料
としたリチウムマンガン複合酸化物が注目をされてい
る。
2. Description of the Related Art Mobile phones, cordless phones, video equipment such as video cameras, office equipment such as personal computers,
There is a strong demand for a lithium ion secondary battery that can be used for a long time as a main power supply or a backup power supply for home appliances and electric vehicles. In addition, as a positive electrode active material used in these lithium ion secondary batteries,
Lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide, etc. are used. Among them, lithium manganese composite oxide using manganese as a raw material, which is abundant and inexpensive as a raw material, is attracting attention. .

【0003】このリチウムマンガン複合酸化物は、リチ
ウムを吸蔵、放出しやすいスピネル構造をとっている。
しかしながら、リチウムマンガン複合酸化物を正極活物
質に用いた場合には、初期の充放電特性はある程度満足
できるものの、充放電サイクルの進行や放置期間の長期
化に伴い放電容量が劣化する。この理由として、正極活
物質中のマンガンがイオンとなって電解液中に溶出し、
溶出したマンガンイオンが負極の活物質表面で析出し、
負極活物質のリチウムイオンの吸蔵、放出を阻害するた
めであることが明らかになっている。そして、50℃以
上の高温においては、この傾向が著しく、急激に充放電
サイクル寿命が短くなるという課題を有している。
[0003] The lithium manganese composite oxide has a spinel structure that easily absorbs and releases lithium.
However, when the lithium manganese composite oxide is used for the positive electrode active material, although the initial charge / discharge characteristics can be satisfied to some extent, the discharge capacity deteriorates as the charge / discharge cycle progresses and the leaving period becomes longer. The reason for this is that manganese in the positive electrode active material becomes ions and elutes into the electrolyte,
The eluted manganese ions precipitate on the active material surface of the negative electrode,
It has been clarified that this is because the absorption and release of lithium ions of the negative electrode active material are inhibited. At a high temperature of 50 ° C. or higher, this tendency is remarkable, and there is a problem that the charge / discharge cycle life is rapidly shortened.

【0004】[0004]

【発明が解決しようとする課題】本発明は、正極活物質
にリチウムマンガン複合酸化物を用い、高温において充
放電サイクルによる容量の劣化が少ない非水電解液二次
電池を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-aqueous electrolyte secondary battery using a lithium manganese composite oxide as a positive electrode active material and having a small capacity deterioration due to charge and discharge cycles at high temperatures. Is what you do.

【0005】[0005]

【発明が解決しようとする手段】上記した課題を解決す
るために、本発明では正極にスピネル構造を有したリチ
ウムマンガン複合酸化物、負極に充電・放電によりリチ
ウムイオンのドープ及び脱ドープが可能な炭素材を用い
た非水電解液二次電池において、前記セパレータとして
ポリオレフィン系樹脂を主体とした材料に、陽イオン交
換樹脂を添加したものを用いることを特徴としている。
According to the present invention, a lithium manganese composite oxide having a spinel structure in a positive electrode and doping and undoping of lithium ions in a negative electrode by charging and discharging can be achieved. A nonaqueous electrolyte secondary battery using a carbon material is characterized in that the separator is made of a material mainly composed of a polyolefin-based resin and to which a cation exchange resin is added.

【0006】[0006]

【発明の実施の形態】以下に本発明の実施の形態につい
て述べる。但し本発明は、これらに限定されるものでは
ない。 1.正極 正極活物質としては、平均粒径10μmのリチウムマン
ガン複合酸化物、導電助剤としては炭素粉末、結着剤と
してポリフッ化ビニリデン(商品名:KF1120、呉
羽化学工業(株)製、以下、PVdFと略す)を82:
12:6の重量%で混合する。そこに、N−メチル−2
−ピロリドンを投入混合して、スラリー状の溶液を作製
する。このスラリーを厚み20μmのアルミニウム箔の
両面にこの混合溶液を塗布し、溶剤を乾燥した後、ロー
ラプレス機にて圧延して、正極合剤電極を作製し、50
mm幅で長さが450mmに切断して短細状の正極を作
製した。
Embodiments of the present invention will be described below. However, the present invention is not limited to these. 1. Positive electrode As a positive electrode active material, a lithium manganese composite oxide having an average particle size of 10 μm, a carbon powder as a conductive aid, polyvinylidene fluoride as a binder (trade name: KF1120, manufactured by Kureha Chemical Industry Co., Ltd .; hereinafter, PVdF) 82):
Mix at 12: 6% by weight. There, N-methyl-2
-Add and mix pyrrolidone to make a slurry solution. This mixed solution was applied to both sides of a 20 μm-thick aluminum foil with this slurry, the solvent was dried, and then rolled with a roller press to produce a positive electrode mixture electrode.
A short and narrow positive electrode was prepared by cutting into a width of 450 mm and a length of 450 mm.

【0007】2.負極 一般に使用されているリチウムイオンを吸蔵、放出でき
る炭素材料を負極活物質として使用した。炭素材料90
wt.%、結着剤としてポリフッ化ビニリデン(商品
名:KF1120、呉羽化学工業(株)製)10wt.
%とを混合し、N−メチル−2−ピロリドンを投入混合
して、スラリー状の溶液を作製する。このスラリー状の
溶液を厚み10μmの銅箔の両面に塗布し、溶剤を乾燥
した後、ローラプレス機にて圧延し、56mm幅で、長
さが500mmに切断して短冊状の負極を作製した。
[0007] 2. Negative electrode A commonly used carbon material capable of occluding and releasing lithium ions was used as a negative electrode active material. Carbon material 90
wt. %, Polyvinylidene fluoride (brand name: KF1120, manufactured by Kureha Chemical Industry Co., Ltd.) 10 wt.
%, And N-methyl-2-pyrrolidone is added and mixed to prepare a slurry-like solution. This slurry-like solution was applied to both sides of a copper foil having a thickness of 10 μm, and after drying the solvent, the resultant was rolled with a roller press, and cut into a width of 56 mm and a length of 500 mm to prepare a strip-shaped negative electrode. .

【0008】3.電池 上記した方法で作製した正極と負極とを、後述する厚さ
40μm、幅58mmのポリエチレン微多孔膜からなる
セパレータを介して捲回し、スパイラル状の捲回群を作
製する。この捲回群を電池缶に挿入し、予め負極集電体
の銅箔に溶接しておいたニッケルタブ端子を電池缶底に
溶接する。次にエチレンカーボネートとジメチルカーボ
ネートを体積比で1:1に混合した溶液に、LiPF6
を1mol/lの濃度で溶解した電解液を電池容器に5
ml注入した。次に、予め正極集電体のアルミニウム箔
に溶接したアルミニウムタブ端子を蓋に溶接して、蓋を
絶縁性のガスケットを介して電池缶の上部に配置させ、
この部分をかしめて密閉し、直径18mm、高さ65m
mの円筒型電池を作製した。
[0008] 3. Battery The positive electrode and the negative electrode produced by the above-described method are wound via a separator made of a microporous polyethylene film having a thickness of 40 µm and a width of 58 mm, which will be described later, to produce a spiral wound group. The wound group is inserted into a battery can, and a nickel tab terminal previously welded to the copper foil of the negative electrode current collector is welded to the bottom of the battery can. Next, LiPF 6 was added to a solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1.
Was dissolved at a concentration of 1 mol / l in a battery container.
ml was injected. Next, an aluminum tab terminal previously welded to the aluminum foil of the positive electrode current collector was welded to the lid, and the lid was placed on the top of the battery can via an insulating gasket,
This part is caulked and sealed, diameter 18mm, height 65m
m was manufactured.

【0009】4.初期充放電試験及びサイクル試験 作製した電池を25℃にて24時間放置し、定電圧4.
2V(ただし、制限電流900mA)で3時間充電した
後、放電電流450mAで放電終止電圧2.7Vまで放
電することを10サイクル行った。初期の充放電試験を
した電池は、50℃にて充電電流450mA(充電終止
電圧4.2V、最長で4時間充電)、放電電流900m
A(放電終止電圧2.7V)の条件下で充放電サイクル
試験を行った。そして、初期の放電容量の80%以下の
容量となった時点のサイクル数を電池の寿命と判断し
た。
4. Initial charge / discharge test and cycle test The prepared battery was allowed to stand at 25 ° C. for 24 hours, and a constant voltage of 4.
After charging for 3 hours at 2 V (however, 900 mA of limiting current), discharging to 450 V of discharge current to 2.7 V for 10 cycles was performed. The battery subjected to the initial charge / discharge test has a charging current of 450 mA at 50 ° C. (charging end voltage 4.2 V, charging for a maximum of 4 hours), and a discharging current of 900 m.
A charge / discharge cycle test was performed under the condition of A (discharge end voltage 2.7 V). Then, the number of cycles when the capacity reached 80% or less of the initial discharge capacity was determined as the life of the battery.

【0010】[0010]

【実施例】(実施例1〜8)本発明は各種の陽イオン交
換樹脂を添加したポリエチレンを主成分とするセパレー
タを用いた。すなわち、フェノールスルフォン酸樹脂、
ポリスチロールスルフォン酸、スルフォン化スチロール
樹脂、レゾルシン樹脂を表1に示すように、前記したセ
パレータにそれぞれ0.5重量%又は10重量%添加し
た。その他の電極及び電池の作製条件及び寿命試験方法
は、上記したものである。
EXAMPLES (Examples 1 to 8) The present invention uses a separator containing polyethylene as a main component to which various cation exchange resins are added. That is, phenolsulfonic acid resin,
As shown in Table 1, polystyrene sulfonic acid, sulfonated styrene resin, and resorcin resin were added to the above-described separator in an amount of 0.5% by weight or 10% by weight, respectively. Other electrode and battery fabrication conditions and life test methods are as described above.

【0011】(比較例1)セパレータに陽イオン交換樹
脂を添加しないポリエチレンを主成分とするものを比較
例1とし、前記した条件で寿命試験をしてその影響を測
定した。その他の電極及び電池の作製条件は、上記した
ものである。
(Comparative Example 1) A separator mainly containing polyethylene to which no cation exchange resin was added as Comparative Example 1 was subjected to a life test under the above-mentioned conditions, and the influence thereof was measured. Other conditions for manufacturing the electrode and the battery are as described above.

【0012】これらの電池を前記した方法で寿命試験を
した結果を表1に示す。表1より明らかなように、陽イ
オン交換樹脂を添加したセパレータを用いた実施例1〜
8は、比較例1に比べて3〜4倍の長寿命化が可能であ
り、優れた特性を示している。
Table 1 shows the results of a life test of these batteries by the method described above. As is clear from Table 1, Examples 1 to 4 using the separator to which the cation exchange resin was added.
Sample No. 8 has a service life that is 3 to 4 times longer than that of Comparative Example 1, and shows excellent characteristics.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【発明の効果】上述したように、本発明に係る非水電解
液二次電池は、正極にスピネル構造を有したリチウムマ
ンガン複合酸化物を用いるものであり、セパレータに陽
イオン交換樹脂を添加したことにより、寿命特性を大幅
に改善することができる。なお、実施例1〜8ではフェ
ノールスルフォン酸樹脂、ポリスチロールスルフォン
酸、スルフォン化スチロール樹脂、レゾルシン樹脂を添
加したセパレータを用いた電池について示したが、その
他の陽イオン交換樹脂についても同様の効果を得ること
ができた。
As described above, the nonaqueous electrolyte secondary battery according to the present invention uses a lithium manganese composite oxide having a spinel structure for the positive electrode, and a cation exchange resin is added to the separator. As a result, the life characteristics can be significantly improved. In Examples 1 to 8, a battery using a separator to which phenolsulfonic acid resin, polystyrene sulfonic acid, sulfonated styrene resin, and resorcinol resin were added was shown. However, the same effect can be obtained for other cation exchange resins. I got it.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA04 BB04 BB05 BC06 5H014 EE08 EE10 5H021 EE04 EE09 EE18 EE23 EE25 5H029 AJ05 AK03 AL06 AM03 AM05 AM06 BJ02 BJ14 DJ04 DJ13 DJ17 EJ12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA04 BB04 BB05 BC06 5H014 EE08 EE10 5H021 EE04 EE09 EE18 EE23 EE25 5H029 AJ05 AK03 AL06 AM03 AM05 AM06 BJ02 BJ14 DJ04 DJ13 DJ17 EJ12

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極にスピネル構造を有したリチウムマン
ガン複合酸化物、負極に充電・放電によりリチウムイオ
ンのドープ及び脱ドープが可能な炭素材を用いた非水電
解液二次電池において、前記セパレータとしてポリオレ
フィン系樹脂を主体とした材料に、陽イオン交換樹脂を
添加したものを使用することを特徴とする非水電解液二
次電池。
1. A non-aqueous electrolyte secondary battery using a lithium manganese composite oxide having a spinel structure in a positive electrode and a carbon material capable of doping and undoping lithium ions by charging and discharging in a negative electrode. A non-aqueous electrolyte secondary battery characterized by using a material comprising a polyolefin resin as a main component and a cation exchange resin added thereto.
JP10185145A 1998-06-30 1998-06-30 Nonaqueous electrolyte secondary battery Pending JP2000021381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10185145A JP2000021381A (en) 1998-06-30 1998-06-30 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10185145A JP2000021381A (en) 1998-06-30 1998-06-30 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000021381A true JP2000021381A (en) 2000-01-21

Family

ID=16165664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10185145A Pending JP2000021381A (en) 1998-06-30 1998-06-30 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000021381A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035132A1 (en) 2007-09-13 2009-03-19 Nitto Denko Corporation Battery separator and nonaqueous lithium ion secondary battery having the same
WO2011101987A1 (en) * 2010-02-22 2011-08-25 トヨタ自動車株式会社 Lithium ion secondary battery and production method for same
WO2012095805A1 (en) * 2011-01-11 2012-07-19 Etv Energy Ltd. Membranes suitable for use as separators and electrochemical cells including such separators
US9111684B2 (en) 2012-04-27 2015-08-18 Ricoh Company, Ltd. Non-aqueous electrolyte storage element
JP2020047456A (en) * 2018-09-19 2020-03-26 積水化学工業株式会社 Secondary battery and electrolyte

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035132A1 (en) 2007-09-13 2009-03-19 Nitto Denko Corporation Battery separator and nonaqueous lithium ion secondary battery having the same
US8349031B2 (en) 2007-09-13 2013-01-08 Nitto Denko Corporation Battery separator and nonaqueous lithium ion secondary battery having the same
WO2011101987A1 (en) * 2010-02-22 2011-08-25 トヨタ自動車株式会社 Lithium ion secondary battery and production method for same
JPWO2011101987A1 (en) * 2010-02-22 2013-06-17 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
JP5534369B2 (en) * 2010-02-22 2014-06-25 トヨタ自動車株式会社 Lithium ion secondary battery, its manufacturing method and vehicle
WO2012095805A1 (en) * 2011-01-11 2012-07-19 Etv Energy Ltd. Membranes suitable for use as separators and electrochemical cells including such separators
US9172076B2 (en) 2011-01-11 2015-10-27 Etv Energy Ltd. Membranes suitable for use as separators and electrochemical cells including such separators
US9111684B2 (en) 2012-04-27 2015-08-18 Ricoh Company, Ltd. Non-aqueous electrolyte storage element
JP2020047456A (en) * 2018-09-19 2020-03-26 積水化学工業株式会社 Secondary battery and electrolyte

Similar Documents

Publication Publication Date Title
KR100805005B1 (en) Lithium secondary batteries with enhanced safety and performance
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
JP2000011996A (en) Nonaqueous electrolyte secondary battery
JP4843848B2 (en) Non-aqueous electrolyte secondary battery
JP2971403B2 (en) Non-aqueous solvent secondary battery
JP2003331825A (en) Nonaqueous secondary battery
JP2000090917A (en) Manufacture of positive electrode plate for lithium ion secondary battery
CN113130988A (en) Electrolyte and electrochemical device using same
KR101675610B1 (en) Lithium secondary battery
JP3972577B2 (en) Lithium secondary battery
JPH07153495A (en) Secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP2001307735A (en) Lithium secondary battery
JP2000012079A (en) Nonaqueous electrolyte secondary battery
JPH07153496A (en) Secondary battery
JP2000021381A (en) Nonaqueous electrolyte secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
JPH0696801A (en) Thin non-aqueous electrolyte battery
JP2013214460A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JPH113698A (en) Lithium ion secondary battery
JPH1154122A (en) Lithium ion secondary battery
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
CN113130993A (en) Electrolyte and electrochemical device thereof