WO2011101900A1 - 熱電変換素子の評価装置及び評価方法 - Google Patents

熱電変換素子の評価装置及び評価方法 Download PDF

Info

Publication number
WO2011101900A1
WO2011101900A1 PCT/JP2010/001013 JP2010001013W WO2011101900A1 WO 2011101900 A1 WO2011101900 A1 WO 2011101900A1 JP 2010001013 W JP2010001013 W JP 2010001013W WO 2011101900 A1 WO2011101900 A1 WO 2011101900A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion element
lower block
upper block
heat
Prior art date
Application number
PCT/JP2010/001013
Other languages
English (en)
French (fr)
Inventor
池内賢朗
島田賢次
石井芳一
Original Assignee
アルバック理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルバック理工株式会社 filed Critical アルバック理工株式会社
Priority to PCT/JP2010/001013 priority Critical patent/WO2011101900A1/ja
Priority to JP2012500383A priority patent/JP5511941B2/ja
Publication of WO2011101900A1 publication Critical patent/WO2011101900A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Definitions

  • the present invention relates to an apparatus for performing conversion efficiency and power evaluation of a thermoelectric conversion element in combination of power evaluation using a four-terminal method and penetration heat amount evaluation using a flow calorimeter.
  • thermoelectric material used for power generation loses about 2/3 of the consumed energy as waste heat, and is used to reuse this waste heat.
  • This thermoelectric material generates an electromotive force by applying temperature to the upper and lower surfaces of the thermoelectric material, and takes out the electric power.
  • thermoelectric material since it is possible to generate power by using only it, there is an advantage that it is maintenance-free and easy to miniaturize.
  • Thermoelectric materials are commercially available in the form of a multi-pair module composed of a plurality of thermoelectric conversion elements having different electrical characteristics. Evaluation of the conversion efficiency from thermal energy to electrical energy for this module is underway (for example, Patent Documents 1 and 2).
  • the measured value of the conversion efficiency of the module is almost always different from the conversion efficiency expected from the thermoelectric material alone constituting the module. This is because the temperature difference during evaluation of the thermoelectric material alone is smaller than the temperature difference during module evaluation.
  • the module is formed by bonding different types of materials such as p-type and n-type thermoelectric semiconductors and ceramics such as aluminum nitride and alumina, the influence of this bonding is evaluated on the thermoelectric material alone. It is known that the evaluation of thermoelectric conversion elements and modules is affected. Therefore, it is important to evaluate the conversion efficiency of the thermoelectric conversion elements before the multi-pairing.
  • the conversion efficiency evaluation using only the thermoelectric material or a pair of modules cannot use the conversion efficiency evaluation of the module. This is because the voltage generated from the thermoelectric material alone is on the order of millivolts, and the resistance of the module is on the order of milliohms.
  • the heat flow evaluation since the cross-sectional area of the heat flow path is small due to the configuration of a single element or only one pair and the amount of through heat is very small, it is difficult to measure a minute heat flow with the heat flow evaluation method disclosed in Patent Document 1.
  • the present invention focuses on the fact that the heat passage has a small cross-sectional area in the case of a single thermoelectric material or only a pair of modules, so that the amount of through heat is small, eliminating the problems of many-pair modules, It is an object of the present invention to provide an evaluation method and apparatus capable of optimizing cooling of a part and temperature evaluation of a solvent.
  • the first solving means of the thermal conversion element evaluation apparatus of the present application includes an upper block and a lower block made of a high thermal conductive material arranged so as to sandwich the thermoelectric conversion element to be evaluated,
  • the upper block includes a temperature raising means and a temperature raising control means, and the lower block is connected to a cooling means constituted by a liquid circulation path, and the liquid is located at the inlet side and the outlet side of the lower block of the liquid circulation path.
  • Temperature measuring means, and electrodes for measuring voltage and supplying current are provided on the side of the upper block and the lower block in contact with the thermoelectric conversion elements.
  • the second solving means is characterized in that, in the first solving means, the cross-sectional areas of the upper block and the lower block are reduced toward the thermoelectric conversion element side.
  • the third solving means is characterized in that, in the above-mentioned solving means, heat insulating plates are arranged adjacent to each other at a predetermined interval along the longitudinal direction of the upper block on both sides of the upper block.
  • the fourth solving means is characterized in that, in the above-mentioned solving means, the liquid circulation path includes flow rate control means for controlling the flow rate of the liquid.
  • thermoelectric conversion element evaluation method of the present invention measures the amount of heat penetrating from one end side to the other end side of the thermoelectric conversion element, measures the electromotive force and electrical characteristics of the thermoelectric conversion element by a four-terminal method, and The conversion efficiency of the thermoelectric conversion element is measured by obtaining an electromotive force and an electric resistance with respect to the heat consumption of the element.
  • thermoelectric conversion element since the conversion efficiency of the thermoelectric conversion element is determined by measuring the amount of heat passing through the thermoelectric conversion element via the liquid temperature of the liquid circulation path, the cross-sectional area of the thermoelectric conversion element is much smaller than that of a multi-pair module. It is possible to evaluate a single thermoelectric conversion element.
  • thermoelectric conversion element to be evaluated in the present invention for example, a BiTe-based or FeSi-based thermoelectric material having a rectangular parallelepiped shape with a side of 2 to 4 mm is used.
  • the upper and lower surfaces of the thermoelectric conversion element shall be provided with electrodes made of a material having high conductivity ( 1 MS ⁇ m ⁇ 1 or more) and low Seebeck coefficient ( ⁇ 20 ⁇ V ⁇ K ⁇ 1 or less) such as copper or gold. Is configured as a measurement sample.
  • the measurement sample 1 is attached to the evaluation device 2 shown in FIG. 1 for evaluation.
  • the evaluation apparatus 2 shown in the figure has a temperature riser for controlling the temperature of the temperature raising means in the chamber 4 to which the vacuum pump 3 is connected by controlling the temperature raising means such as a heater and the energization amount to the temperature raising means.
  • An upper block 5 provided with a temperature control means (not shown), and a lower block 8 provided with a cooling means 6 to which a liquid circulation path is connected and liquid temperature measuring means 7a and 7b are provided. Outside the chamber 3 of the liquid circulation path 6, a pump 9 for controlling the flow rate of the liquid per unit time is provided.
  • the liquid temperature measuring means 7a and 7b are constituted by a thermocouple or a resistance thermometer.
  • the upper block 5 is made of a material having good thermal conductivity such as aluminum nitride, copper, and aluminum, and the sample 1 is arranged to give a sufficient heat flow to the thermoelectric conversion element (sample) 1 which is a small sample piece.
  • the cross-sectional area is reduced toward the side.
  • a temperature measuring means (not shown) for the upper block 5 such as a thermocouple or a resistance thermometer and an electrode 10 are provided on the surface where the upper block 5 and the sample 1 are in contact.
  • heat shield plates 11 are arranged adjacent to each other at intervals in order to prevent heat propagation due to radiation from the lower block 8.
  • the lower block 8 is made of a material having good thermal conductivity, such as aluminum nitride, copper, and aluminum, in the same manner as the upper block 4 in order to measure the amount of through heat conducted through the upper block 5 and the sample 1. And like the upper block 5, it is comprised so that a cross-sectional area may become small toward the side by which the sample 1 is arrange
  • the apparatus 2 a part of the heat from the upper block 5 is converted into electric power by the measurement sample 1, and the remaining heat, that is, the heat passing through the measurement sample 1 is conducted to the lower block 8.
  • the penetration heat quantity is measured by the liquid temperature measuring means 7a and 7b provided in the liquid circulation path 6 which is a cooling means connected to the lower block 8.
  • the flow rate of the liquid in the liquid circulation path 6 can be adjusted by the pump 9 to obtain an optimum measurement condition, and the efficiency of the thermoelectric element itself, which is smaller than that of many pairs of thermoelectric elements, can be evaluated. it can.
  • the inside of the chamber 4 is set to a vacuum atmosphere of 10 Pa or less.
  • the temperature T a [K] on the upper surface of the measurement sample 1 and the temperature T b [K] on the lower surface are measured by temperature measuring means provided in each block.
  • the liquid (water) is allowed to flow through the circulation path 6 and the difference between the temperature T in [K] at the inlet 7a and the temperature T out [K] at the outlet 7b into the lower block 8 of the liquid (water) is determined as the liquid temperature measuring means 7a, 7b.
  • Measure by T u [K] is not particularly limited, but is preferably 100 ° C. or higher.
  • the flow rate is preferably 1/10 to 10 [ml ⁇ s ⁇ 1 ], and the upper block temperature is 150 ° C. or less in the temperature range of 1/6 to 1/2. [ml ⁇ s ⁇ 1 ] is preferred.
  • the conversion efficiency ⁇ of the measurement sample 1 into electric power is obtained by the following formula based on the result of the penetration heat quantity Q s [W] of the measurement sample 1 and the generated power Q e [W].
  • the penetration heat quantity Q s [W] is the quantity of heat conducted from the upper block 5 to the lower block 8, and the temperature Tu [K] of the upper block 5 and the temperature change amount of the liquid passing through the lower block 8 ( T out [K] ⁇ T in [K]), and a method for calculating the amount of heat specifically will be described later.
  • the maximum value ⁇ max of the conversion efficiency of the measurement sample 1 into power is calculated using the maximum power [W] when the through heat quantity Q s [W] takes the maximum value. Note that the penetration heat quantity Q s [W] is measured when the upper block 5 is heated and controlled at a constant temperature and no current for measurement is supplied.
  • the amount of heat Q w [W] of the lower block 8 is calculated based on the following formula 2.
  • C [J ⁇ m ⁇ 3 ⁇ K ⁇ 1 ] is the volume specific heat capacity of the liquid circulating in the liquid circulation path 6.
  • the electric resistance R is obtained from the current dependency of the voltage under a constant current closed circuit.
  • the voltage is corrected by the upper surface temperature of the sample 1, the lower surface temperature of the sample 1, and the Seebeck coefficient.
  • the Seebeck coefficient is evaluated by the upper surface temperature of sample 1 and the lower surface temperature and voltage of sample 1 when no current is supplied.
  • thermoelectric conversion element As described above, the heat consumption of the thermoelectric conversion element is obtained through the through heat quantity Q s [W] that is consumed by conduction from the upper block 5 to the thermoelectric conversion element, and the electromotive force and electric resistance for this are obtained. Thus, the conversion efficiency of the thermoelectric conversion element can be measured.
  • the auxiliary plate 13 made of a high thermal conductivity material such as aluminum nitride / sapphire on the bottom surface of the upper block 5 and the auxiliary plate 14 made of the same material on the upper surface of the lower block 8
  • the auxiliary plate 13 of the upper block 5 is provided with a common electrode 16 for the measurement sample 1 and the reference sample 15, and the upper surface of the lower block 8 is referred to the electrode 17 for the measurement sample 1 with a space therebetween.
  • An electrode 18 for the sample 15 is provided.
  • a reference material having a known physical property value for comparison with the measurement sample is formed in the same shape as the thermoelectric conversion element, and the electrode and the thermal conductivity are 10 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more.
  • An auxiliary plate having a thickness of 1 mm or less is provided to constitute a reference sample.
  • the auxiliary plate 13 is provided on the upper block 5 and the lower block 8 in order to make the conditions of the portion not covered with the electrode and the portion covered with the electrode the same. Then, by comparing the measurement result of the calorific value of the lower block 8 using the standard sample with the measurement result of the measurement sample 1, the penetration heat quantity Q s [W] of the measurement sample 1 is evaluated. Specifically, as shown in ASTM E 1530, heat flow is measured for a standard sample, and a calibration equation is derived from the thermal resistance (thickness / thermal conductivity) and heat flux (through heat / cross-sectional area) of the standard sample. Evaluate unknown samples.
  • Example 1 As a measurement sample, n-Bi 2 Te 3 (4 ⁇ 4 ⁇ 4 mm) was used.
  • Example 2 As a measurement sample, p-Bi 0.3 Sb 1.7 Te 3 (4 ⁇ 4 ⁇ 4 mm) was used.
  • the horizontal axis is the flow velocity of the liquid in the liquid circulation path 6, and the vertical axis is the temperature T in [K] of the inlet 7a of the liquid (water) to the lower block 8 measured by the liquid temperature measuring means 7a, 7b. And the difference between the temperature T out [K] at the outlet 7b is plotted ((a) Example 1 (b) Example 2).
  • FIG. 5 plots the horizontal axis as the direct current applied to the measurement sample 1 and the vertical axis as the voltage measured from the measurement sample 1 ((a) Example 1 (b) Example 2).
  • the horizontal axis is plotted as the current input to the measurement sample 1
  • the vertical axis is plotted as the conversion efficiency measured from the measurement sample 1 ((a) Example 1 (b) Example 2).
  • Tables 1 and 2 below show the maximum conversion efficiency ( ⁇ max ), Seebeck coefficient (S / ⁇ V ⁇ K ⁇ 1 ), and electrical resistivity ( ⁇ / ⁇ ⁇ m) and thermal conductivity ( ⁇ / Wm ⁇ 1 ⁇ K ⁇ 1 ).
  • thermoelectric material 4 mm square.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

 本発明は、熱電材料単体あるいは一対のモジュールのみの場合では、熱流路の断面積が小さいので、貫通熱量は少量であることに着目し、多対モジュールの問題点を解消して、低温部の冷却と溶媒の温度評価を最適化するものである。本発明は、評価対象となる熱電変換素子を挟むことができるように配置された高熱伝導材料から構成された上部ブロック及び下部ブロックを備え、前記上部ブロックは昇温手段及び昇温制御手段を備え、前記下部ブロックには液体循環路により構成された冷却手段が接続され、前記液体循環路の前記下部ブロック入口側及び出口側には前記液体の温度測定手段を備え、前記上部ブロック及び前記下部ブロックの前記熱電変換素子と接触する側において電圧計測及び電流投入するための電極を備えたことを特徴とする。

Description

熱電変換素子の評価装置及び評価方法
 本発明は、熱電変換素子の変換効率と電力評価とを4端子法を用いた電力評価とフローカロリーメータを用いた貫通熱量評価を組み合わせて行う装置に関するものである。
 発電用に用いられる熱電材料は、消費エネルギーの約2/3は廃熱として失われており、この廃熱を再利用するために使用されている。この熱電材料は、その上下面に温度を与えることにより、起電力を生じさせ電力を取り出すものである。そして、この熱電材料を利用した発電の場合には、それのみを利用することにより発電が可能であることから、メンテナンスフリーや小型化し易いというメリットがある。
 熱電材料は、電気特性の正負が異なる複数の熱電変換素子から構成された多対モジュールという形態で市販されている。このモジュールについての熱エネルギーから電気エネルギーへの変換効率の評価が進められている(例えば、特許文献1や2)。
 前記モジュールの変換効率の実測値は、モジュールを構成する熱電材料単体から予想される変換効率とは異なる場合が殆どである。これは、モジュール評価時の温度差に対して、熱電材料単体の評価時の温度差が小さいためである。また、モジュールは、例えば、p型やn型の熱電半導体と、窒化アルミニウムやアルミナ等のセラミックス等との異種の材料を接合して構成されているため、この接合の影響が熱電材料単体の評価から、熱電変換素子およびモジュールの評価に影響を与えることが分かっている。従って、多対化以前の熱電変換素子の変換効率評価が重要となる。
 通常、多対の素子により構成される、多対モジュールの変換効率評価の場合は、電力負荷計測と熱流評価は容易である。何故なら、計測時における熱流を与えた環境下での計測は、モジュールにより生じる起電力がボルトオーダーに近くモジュールの抵抗がオームオーダーに近くなるからである。一方、熱流評価の場合も、熱流路の断面積が大きく貫通熱量が十分に得られる。特許文献1で示されている熱流評価法を用いて精度良く貫通熱量を計測することができる。
 しかしながら、熱電材料単体あるいは一対のモジュールのみでの変換効率評価は、モジュールの変換効率評価を利用することができない。何故なら、熱電材料単体から発生する電圧はミリボルトオーダーであり、モジュールの抵抗はミリオームオーダーとなるからである。また、熱流評価は、素子単体あるいは一対のみの構成上熱流路の断面積が小さく貫通熱量も非常に小さいので、特許文献1で示されている熱流評価法では微小熱流を計測することが難しい。
 また、特許文献1に開示される装置を使用して評価する場合には、低温部の冷却と溶媒の温度評価を同時に行うために最適化が必要となる。しかしながら、多対モジュールの場合では、熱流路の断面積が大きいので、大量の貫通熱量が流れ、低温部の冷却能力を高くすると溶媒の循環速度が速くなるので溶媒の温度評価が難しくなるという問題がある。また、溶媒の温度評価を容易に行うために、溶媒の循環速度を遅くすると、冷却能力が低くなるという問題がある。従って、多対モジュールでは低温部の冷却と溶媒の温度評価を最適化することが難しく、熱流評価部分と冷却部分が分離した構造で評価されている。
特開2004-296959 特開2005-302783
 そこで、本願発明は、熱電材料単体あるいは一対のモジュールのみの場合では、熱流路の断面積が小さいので、貫通熱量は少量であることに着目し、多対モジュールの問題点を解消して、低温部の冷却と溶媒の温度評価を最適化することが可能な評価方法及び装置を提供することを目的とする。
 上記課題を解決するために、本発明者等は鋭意検討の結果、下記の解決手段を見出した。
 即ち、本願の熱変換素子の評価装置の第1の解決手段は、評価対象となる熱電変換素子を挟むことができるように配置された高熱伝導材料から構成された上部ブロック及び下部ブロックを備え、前記上部ブロックは昇温手段及び昇温制御手段を備え、前記下部ブロックには液体循環路により構成された冷却手段が接続され、前記液体循環路の前記下部ブロック入口側及び出口側には前記液体の温度測定手段を備え、前記上部ブロック及び前記下部ブロックの前記熱電変換素子と接触する側において電圧計測及び電流投入するための電極を備えたことを特徴とする。
 また、第2の解決手段は、第1の解決手段において、前記上部ブロック及び前記下部ブロックの断面積は、前記熱電変換素子側に向かって小さくなるように構成したことを特徴とする。
 また、第3の解決手段は、上記解決手段において、前記上部ブロックの両側に、前記上部ブロックの長手方向に沿って所定の間隔をおいて断熱板を隣接して配置したことを特徴とする。
 また、第4の解決手段は、上記解決手段において、前記液体循環路は、液体の流速を制御するための流速制御手段を備えることを特徴とする。
 本発明の熱電変換素子の評価方法は、熱電変換素子の一端側から他端側に貫通する熱量を測定し、前記熱電変換素子の起電力と電気特性を四端子法により測定し、前記熱電変換素子の熱消費量に対する起電力と電気抵抗を求めることにより、前記熱電変換素子の変換効率を測定することを特徴とする。
 本発明によれば、熱電変換素子の変換効率を、液体循環路の液温を介して熱電変換素子の貫通熱量を測定することにより行うようにしたため、多対のモジュールと比べて断面積の非常に小さい熱電変換素子単体の評価が可能となる。
本発明の一実施の形態の装置の説明図 本発明の一実施の形態の評価方法における測定パラメータの説明図 本発明の他実施の形態の評価方法における測定パラメータの説明図 実施例の評価結果を示すグラフ 実施例の評価結果を示すグラフ 実施例の評価結果を示すグラフ
 本発明における評価対象となる熱電変換素子は、例えば、BiTe系やFeSi系等の熱電材料を、一辺が2~4mmの範囲の直方体形状のものを使用する。
 熱電変換素子の上面と下面には、銅や金等の導電性の高く(1MS・m-1以上)ゼーベック係数が低い(±20 μV・K-1以下)材料から構成される電極を設けることにより測定試料として構成される。
 上記測定試料1は、図1に示す評価装置2に取り付けられて評価が行われる。
 図示した評価装置2は、真空ポンプ3が接続されたチャンバ4内に、ヒータ等の昇温手段及び昇温手段への通電量等を制御することにより昇温手段の温度を制御するための昇温制御手段(図示せず)を備えた上部ブロック5、並びに、液体循環路が接続される冷却手段6及び液体温度測定手段7a,7bが設けられた下部ブロック8を備えている。液体循環路6のチャンバ3外には、液体の単位時間当たりの流量を制御するためのポンプ9が設けられている。尚、液体温度測定手段7a,7bは、熱電対又は抵抗温度計等により構成される。
 上部ブロック5は、窒化アルミニウム、銅、アルミ等の熱伝導性の良い材料から構成され、小試料片である熱電変換素子(試料)1に対して十分な熱流を与えるため、試料1が配置される側に向かって断面積が小さくなるように構成されている。上部ブロック5と試料1とが接触する面において熱電対又は抵抗温度計等の上部ブロック5用の温度計測手段(図示せず)と電極10を備えている。また、上部ブロック5の長手方向の両側方には、下部ブロック8からの輻射による熱の伝播を防止するため、間隔をおいて、遮熱板11が隣接して配置されている。
 下部ブロック8は、上部ブロック5及び試料1を介して伝導される貫通熱量を測定するために、上部ブロック4と同様に窒化アルミニウム、銅、アルミ等の熱伝導性の良い材料から構成される。そして、上部ブロック5と同様に試料1が配置される側に向かって断面積が小さくなるように構成されている。また、試料1と接触する側に熱電対又は抵抗温度計等の下部ブロック5用の温度計測手段(図示せず)及び電極10を備えている。また、下部ブロック8は、発泡スチロール等の断熱構造体の上に設けられ液体循環路6以外からの熱を遮断できるように構成されている。
 試料1は、上部ブロック5と下部ブロック8とに設けられた電極10の間に配置され、これらの電極10に対して、4端子法による抵抗の測定のための交流又は直流の電流投入及び電圧計測が行われる。
 上記装置2において、上部ブロック5からの熱の一部は、測定試料1により電力に変換され、残りの熱、即ち、測定試料1を貫通した熱が下部ブロック8に伝導される。この貫通熱量を、下部ブロック8に接続された冷却手段である液体循環路6に設けられた液体温度測定手段7a,7bにより計測を行う。この構成によれば、液体循環路6の液体の流速をポンプ9により調整して最適な測定条件とすることができ、多対の熱電素子と比べて小さい熱電素子自体の効率を評価することができる。
 次に、上記構成の装置2を使用して評価する方法について図2を参照して説明する。
 まず、チャンバ4内を10Pa以下の真空雰囲気とする。
 測定試料1の上面の温度Ta[K]及び下面の温度Tb[K]を、それぞれのブロックに設けられた温度計測手段により計測する。次に、上部ブロック5の温度を昇温制御手段によりTu[K]に制御して昇温し、下部ブロック8にポンプ9により流速を調整して速度v[ml・s-1]で液体循環路6に液体(水)を流し液体(水)の下部ブロック8への入口7aの温度Tin[K]と出口7bの温度Tout[K]の差を、液体温度測定手段7a,7bにより計測する。尚、Tu[K]は特に制限するものではないが、100℃以上とすることが好ましい。また、上記述べた形状の測定試料1の場合に、流速は、好ましくは1/10~10[ml・s-1]、上部ブロック温度150℃以下の温度範囲では、1/6~1/2[ml・s-1]が好ましい。
 測定試料1の電力への変換効率ηは、測定試料1の貫通熱量Qs[W]と、生じた電力Qe[W]の結果に基づいて下記式により求める。尚、貫通熱量Qs[W]は、上部ブロック5から下部ブロック8に伝導される熱量であり、上部ブロック5の温度Tu[K]と、下部ブロック8を通過する液体の温度変化量(Tout[K]-Tin[K])に基づいて得られるものであり、具体的に熱量として算出する方法は後述する。
 η=Qe/(Qs+Qe)・・・(式1)
 また、測定試料1の電力への変換効率の最大値ηmaxは、貫通熱量Qs[W]が最大値をとる時の最大電力[W]を用いて算出する。
 尚、貫通熱量Qs[W]の計測は、上部ブロック5を昇温した後に一定温度で制御した状態で、測定のための電流を投入していないときに行うものとする。
 下部ブロック8の熱量Qw[W]は、下記式2に基づいて算出する。
 Tout-Tin∝Qw/C・1/ν・・・(式2)
 上記式2中において、C[J・m-3・K-1]は、液体循環路6を循環する液体の体積比熱容量である。
 電力評価(Qe=V・I-I2・R)は、電力を最大値とするために投入電流I[A]を変化させて行い、各電極10に設けられた電圧V[V]と、投入電流I[A]とを式(Qe=V・I-I2・R)に代入して求めるものとする。
 尚、上記電気抵抗Rは、直流計測の場合は、定電流閉回路下における電圧の電流依存性によって求める。ただし、電圧は試料1の上面温度と試料1の下面温度及びゼーベック係数で補正する。尚、交流計測の場合は、周期的に電流を変化させた閉回路下における電圧によって求める。周波数依存性がある場合は補正も行う。また、ゼーベック係数は電流を投入していない時の試料1の上面温度と試料1の下面温度と電圧で評価する。
 上記のようにして、熱電変換素子の熱消費量を上部ブロック5から熱電変換素子に伝導されて消費された貫通熱量Qs[W]を介して求め、これに対する起電力や電気抵抗を求めることにより、前記熱電変換素子の変換効率を測定することができる。
 また、物性が未知の試料1の貫通熱量Qs[W]を測定する場合は、液体温度測定手段7a,7bにより測定された温度差に基づいて評価するか、或いは、以下の方法により評価する。
 図3に示す装置構成では、上部ブロック5の底面に窒化アルミニウム・サファイアのような高熱伝導率材料から構成される補助板13と、下部ブロック8の上面に同じ材料から構成される補助板14とを設け、上部ブロック5の補助板13には、測定試料1と参照試料15との共通の電極16を設け、下部ブロック8の上面には、間隔をおいて測定試料1用の電極17と参照試料15用の電極18とを設けて構成する。尚、測定試料に対して比較対照となる物性値が既知の参照材料を、上記熱電変換素子と同形状に形成して、同様に電極及び熱伝導率10W・m-1・K-1以上で厚さ1mm以下の補助板を設けて参照試料として構成する。尚、補助板13は、上部ブロック5及び下部ブロック8上で、電極で覆われていない部分と、電極で覆われている部分との条件を同じくするために設けている。
 そして、標準試料を用いた下部ブロック8の熱量の計測結果と測定試料1の計測結果を比較して、測定試料1の貫通熱量Qs[W]を評価する。具体的には、ASTM E 1530で示されるように、標準試料について熱流を計測し、標準試料の熱抵抗(厚さ/熱伝導率)と熱流束(貫通熱量/断面積)から校正式を導き出し、未知試料の評価を行う。これを利用して、未知試料の熱伝導率を求めるだけでなく、1次元伝熱モデル(Qs / A = λ (Tb-Ta) / d A:断面積、λ:熱伝導率、d:厚さ)に基づいて真の貫通熱量を評価することもできる。
 次に、上記説明した装置を使用した測定例について説明する。
(実施例1)
 測定試料は、n-Bi2Te3(4×4×4mm)を使用した。
(実施例2)
 測定試料は、p-Bi0.3Sb1.7Te3(4×4×4mm)を使用した。
 図4は、横軸を液体循環路6の液体の流速とし、縦軸を液体温度測定手段7a,7bにより測定された液体(水)の下部ブロック8への入口7aの温度Tin[K]と出口7bの温度Tout[K]の差をプロットしたものである((a)実施例1(b)実施例2)。
 図5は、横軸を測定試料1に投入された直流電流とし、縦軸を測定試料1から測定された電圧としてプロットしたものである((a)実施例1(b)実施例2)。
 図6は、横軸を測定試料1に投入された電流とし、縦軸を測定試料1から測定された変換効率としてプロットしたものである((a)実施例1(b)実施例2)。
 また、以下の表1及び表2に、それぞれ実施例1及び実施例2の変換効率の最大値(ηmax)、ゼーベック係数(S/μV・K-1)、電気抵抗率(ρ/μΩ・m)及び熱伝導率(λ/Wm-1・K-1)を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記の通り、本実施例では、4mm角の熱電材料についても電力変換効率の精度の高い測定が可能であることがわかった。
  1 測定試料
  2 評価装置
  3 真空ポンプ
  4 チャンバ
  5 上部ブロック
  6 冷却手段(液体循環路)
  7a,7b 液体温度測定手段
  8 下部ブロック
  9 ポンプ
 10 電極
 11 遮熱板
 13,14 補助板
 15 参照試料
 16,17,18 電極

Claims (5)

  1.  評価対象となる熱電変換素子を挟むことができるように配置された高熱伝導材料から構成された上部ブロック及び下部ブロックを備え、前記上部ブロックは昇温手段及び昇温制御手段を備え、前記下部ブロックには液体循環路により構成された冷却手段が接続され、前記液体循環路の前記下部ブロック入口側及び出口側には前記液体の温度測定手段を備え、前記上部ブロック及び前記下部ブロックの前記熱電変換素子と接触する側において電圧計測及び電流投入するための電極を備えたことを特徴とする熱電変換素子の評価装置。
  2.  前記上部ブロック及び前記下部ブロックの断面積は、前記熱電変換素子側に向かって小さくなるように構成したことを特徴とする請求項1に記載の熱電変換素子の評価装置。
  3.  前記上部ブロックの両側に、前記上部ブロックの長手方向に沿って所定の間隔をおいて断熱板を隣接して配置したことを特徴とする請求項1又は2に記載の熱電変換素子の評価装置。
  4.  前記液体循環路は、液体の流速を制御するための流速制御手段を備えることを特徴とする請求項1に記載の熱電変換素子の評価装置。
  5.  熱電変換素子の一端側から他端側に貫通する熱量を測定し、前記熱電変換素子の起電力と電気特性を四端子法により測定し、前記熱電変換素子の熱消費量に対する起電力と電気抵抗を求めることにより、前記熱電変換素子の変換効率を測定することを特徴とする熱電変換素子の評価方法。
PCT/JP2010/001013 2010-02-17 2010-02-17 熱電変換素子の評価装置及び評価方法 WO2011101900A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/001013 WO2011101900A1 (ja) 2010-02-17 2010-02-17 熱電変換素子の評価装置及び評価方法
JP2012500383A JP5511941B2 (ja) 2010-02-17 2010-02-17 熱電変換素子の評価装置及び評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001013 WO2011101900A1 (ja) 2010-02-17 2010-02-17 熱電変換素子の評価装置及び評価方法

Publications (1)

Publication Number Publication Date
WO2011101900A1 true WO2011101900A1 (ja) 2011-08-25

Family

ID=44482526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001013 WO2011101900A1 (ja) 2010-02-17 2010-02-17 熱電変換素子の評価装置及び評価方法

Country Status (2)

Country Link
JP (1) JP5511941B2 (ja)
WO (1) WO2011101900A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214642A (ja) * 2012-04-03 2013-10-17 Ulvac-Riko Inc 熱電材料測定装置
JP2014139558A (ja) * 2012-12-21 2014-07-31 Kotohira Kogyo Kk 加熱試験装置
CN104007139A (zh) * 2014-06-10 2014-08-27 中国华能集团清洁能源技术研究院有限公司 热电模块的测试系统及热电模块的测试方法
KR20160049514A (ko) * 2016-04-15 2016-05-09 한국기계연구원 열전소자 복합 특성 평가장치
JP2016183959A (ja) * 2015-03-26 2016-10-20 コトヒラ工業株式会社 加熱試験装置
WO2017164104A1 (ja) * 2016-03-23 2017-09-28 国立研究開発法人産業技術総合研究所 熱電モジュール発電評価装置
KR101798854B1 (ko) * 2016-01-14 2017-11-20 한국에너지기술연구원 열전 소자의 접촉 저항 측정 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300719A (ja) * 1993-04-16 1994-10-28 Tokuyama Soda Co Ltd 熱電変換特性の測定方法及び装置
JPH08316533A (ja) * 1995-05-23 1996-11-29 Natl Aerospace Lab 熱電変換性能評価方法および装置
JP2004296959A (ja) * 2003-03-28 2004-10-21 Citizen Watch Co Ltd 熱電素子性能評価装置および熱電素子の性能評価方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300719A (ja) * 1993-04-16 1994-10-28 Tokuyama Soda Co Ltd 熱電変換特性の測定方法及び装置
JPH08316533A (ja) * 1995-05-23 1996-11-29 Natl Aerospace Lab 熱電変換性能評価方法および装置
JP2004296959A (ja) * 2003-03-28 2004-10-21 Citizen Watch Co Ltd 熱電素子性能評価装置および熱電素子の性能評価方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214642A (ja) * 2012-04-03 2013-10-17 Ulvac-Riko Inc 熱電材料測定装置
JP2014139558A (ja) * 2012-12-21 2014-07-31 Kotohira Kogyo Kk 加熱試験装置
CN104007139A (zh) * 2014-06-10 2014-08-27 中国华能集团清洁能源技术研究院有限公司 热电模块的测试系统及热电模块的测试方法
JP2016183959A (ja) * 2015-03-26 2016-10-20 コトヒラ工業株式会社 加熱試験装置
KR101798854B1 (ko) * 2016-01-14 2017-11-20 한국에너지기술연구원 열전 소자의 접촉 저항 측정 장치 및 방법
WO2017164104A1 (ja) * 2016-03-23 2017-09-28 国立研究開発法人産業技術総合研究所 熱電モジュール発電評価装置
JPWO2017164104A1 (ja) * 2016-03-23 2019-05-30 国立研究開発法人産業技術総合研究所 熱電モジュール発電評価装置
KR20160049514A (ko) * 2016-04-15 2016-05-09 한국기계연구원 열전소자 복합 특성 평가장치
KR101684327B1 (ko) 2016-04-15 2016-12-09 한국기계연구원 열전소자 복합 특성 평가장치

Also Published As

Publication number Publication date
JPWO2011101900A1 (ja) 2013-06-17
JP5511941B2 (ja) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5511941B2 (ja) 熱電変換素子の評価装置及び評価方法
CN102053100B (zh) 热电材料参数自动测定仪
KR101302750B1 (ko) 열전소자 평가 장치
JP2011185697A (ja) 熱電材料評価装置及び熱電特性評価方法
CN110907490B (zh) 一种高导热材料的热导率测试装置及方法
JPWO2007145183A1 (ja) 熱電変換モジュールおよび熱電変換素子用コネクタ
KR101898037B1 (ko) 곡면형 열전 소자의 특성 측정용 고온 구조체, 이를 이용한 특성 측정 시스템 및 방법
KR20150007686A (ko) 열전성능 측정 장치
US9448121B2 (en) Measurement method, measurement apparatus, and computer program product
JP2012216422A (ja) 各電池の温度ばらつきの低減
Reitmaier et al. Power generation by the transverse Seebeck effect in Pb–Bi 2 Te 3 multilayers
US10612854B2 (en) Sample holder annealing apparatus using the same
Min ZT measurements under large temperature differences
Lowhorn et al. Development of a seebeck coefficient standard reference material
KR20110064349A (ko) 열전도도 측정 장치
Wojciechowski et al. Performance characterization of high-efficiency segmented Bi2Te3/CoSb3 unicouples for thermoelectric generators
Sakamoto et al. Examination of a Thermally Viable Structure for an Unconventional Uni-Leg Mg 2 Si Thermoelectric Power Generator
CN108886086B (zh) 热电模块发电评价装置
KR101082353B1 (ko) 열전소자 평가 장치 및 이를 이용한 열전 소자 평가 시스템
Zybała et al. Method and apparatus for determining operational parameters of thermoelectric modules
Takazawa et al. Efficiency measurement of thermoelectric modules operating in the temperature difference of up to 550K
CN114459603B (zh) 一种高功率激光传感器及激光功率计
TW201510519A (zh) 熱電模組性質測量系統及其測量方法
JP2007178218A (ja) 熱抵抗計測装置
JP2006040989A (ja) 半導体素子の熱電特性測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500383

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846043

Country of ref document: EP

Kind code of ref document: A1