WO2011101019A1 - Pompe mécanique pour réfrigérant - Google Patents

Pompe mécanique pour réfrigérant Download PDF

Info

Publication number
WO2011101019A1
WO2011101019A1 PCT/EP2010/051918 EP2010051918W WO2011101019A1 WO 2011101019 A1 WO2011101019 A1 WO 2011101019A1 EP 2010051918 W EP2010051918 W EP 2010051918W WO 2011101019 A1 WO2011101019 A1 WO 2011101019A1
Authority
WO
WIPO (PCT)
Prior art keywords
volute
flap
pump
coolant
coolant pump
Prior art date
Application number
PCT/EP2010/051918
Other languages
English (en)
Inventor
Arnaud Fournier
Gilles Simon
Original Assignee
Pierburg Pump Technology Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg Pump Technology Gmbh filed Critical Pierburg Pump Technology Gmbh
Priority to PCT/EP2010/051918 priority Critical patent/WO2011101019A1/fr
Priority to MX2012009360A priority patent/MX2012009360A/es
Priority to US13/579,037 priority patent/US20130011250A1/en
Priority to CN2010800662384A priority patent/CN102844539A/zh
Priority to JP2012553192A priority patent/JP2013519828A/ja
Priority to EP10705990.9A priority patent/EP2536928B1/fr
Publication of WO2011101019A1 publication Critical patent/WO2011101019A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0022Control, e.g. regulation, of pumps, pumping installations or systems by using valves throttling valves or valves varying the pump inlet opening or the outlet opening

Definitions

  • the present invention refers to a mechanical coolant pump for an Internal combustion engine.
  • a mechanical coolant pump is a coolant pump which is driven by the combustion engine, for example by using a driving belt driving a driving wheel of the pump. As long as the combustion engine is cold, only a minimum coolant flow is needed. Therefore, mechanical coolant pumps are used which are provided with an outlet valve for controlling the coolant circulation flow, As long as the combustion engine is cold, the outlet valve is closed so that the circulation of the lubricant is minimized, with the result that the combustion engine warming-up phase is decreased.
  • outlet valves are used in the form of a pivoting flap, whereby the pivoting flap is positioned in the pump outlet channel.
  • the pivoting flap is controlled to rotate into an open or closed position, whereby the positions determine the coolant circulation flow rate,
  • the arrangement of such a pivoting flap inside the coolant outlet channel restrains the coolant flow even in the open position of the flap and induces a useless flow resistance.
  • turbulences are generated in the coolant, in the volute and in the outlet channel so that the pump wheel is permanently exposed to a significant resistance caused by the turbulence in the coolant, This resistance causes a useless energy consumption of the coolant pump in the idle state of the coolant pump. It is an object of the present invention to provide a mechanical coolant pump with a decreased fluidic resistance.
  • the mechanical coolant pump for an internal combustion engine comprises a main pump body which comprises a volute housing. Inside the volute housing, a pump wheel is arranged, whereby the pump wheel is pumping the coolant outwardly into the volute and from the volute tangential!y into the outlet channel.
  • the coolant outlet flow of the pump is controlled by an outlet valve.
  • the outlet channel is separated by a volute tongue wall from the volute, so that the volute tongue wall separates the outlet channel from the volute.
  • the outlet valve of the mechanical coolant pump is defined by an axiaiiy pivotable flap being at least a part of the voiute tongue wall in the open position of the flap.
  • the flap is forming the end of the voiute tongue wall in the circumferential direction.
  • the pivot axis of the pivotable flap is orientated axially and parallel to the rotating axis of the pump wheel.
  • the pivot axis is arranged adjacent to the volute housing over the entire length of the flap pivot axis.
  • the arrangement of the axiaiiy pivotabie flap adjacent to the volute housing and at the end of the volute tongue wall avoids the flow of any coolant into the outlet channel when the flap is in the closed position because the closed flap closes directly the inlet of the outlet channel and is not arranged in the course of the outlet channel anymore.
  • the fluidic resistance for the pump wheel caused by turbulences in the cooiant is significantly reduced in the closed flap position.
  • a flow of the cooiant into the outlet channel and back is stopped effectively so that a coolant ring rotates in the voiute.
  • the coolant ring flowing in the volute is circulating in a constant and mainly undisturbed manner.
  • the energy consumption of the pump decreases significantly when the outlet valve is closed. Especially, the energy consumption during the cold start phase of the engine while the outlet valve is closed can be minimized effectively.
  • the pump is also provided with a reduced flow resistance in the open position because the flap is not providing a useless flow resistance for the coolant in contrast to a flap, which is positioned in the middle of the outlet channel and which restrains the coolant flow in the outlet channel.
  • the main pump body is provided with at least one stopping element and the stopping element is stopping the flap in the defined open position and/or defined closed position.
  • a stopping element holds the flap in the defined open and/or defined closed position so that the actuator which opens and closes the flap has not to apply holding forces to the flap in the open or closed position. This is an additional means to decrease the energy consumption of the actuator moving the flap.
  • the stopping element is a stopping nose arranged in the outlet channel wall and the flap is stopped by the stopping nose in the closed position.
  • a stopping nose is a simple and cost-efficient means to realize a stopping element which supports the flap in its closed position.
  • the flap is arched and the arched flap is extending the volute in the open position of the flap.
  • the proximal side of the flap is arched circular with an inner radius close to the outer radius of the pump wheel.
  • the arched flap extends the volute in the open position so that the coolant flow in the volute and into the outlet channel is undisturbed.
  • the undisturbed coolant flow is mainly free of turbulences so that the energy consumption of the pump decreases in the open position of the flap.
  • the stopping element Is a step in the volute housing and the arched flap is stopped by the stopping element when the flap opens and arrives at the open position.
  • the step which can be realized in the outer wall of the volute housing or in the side wall of the outlet channel, is a simple and cost-efficient means to realize a stopping element which stops and supports the flap in an open position.
  • the fiap is driven by an actuator.
  • the flap is driven by a pneumatic actuator.
  • the flap can also be driven by other actuators like an electrical, a vacuum or a thermostatic actuator.
  • the pneumatic energy can be tapped at different positions at the combustion engine so that the use of a pneumatic actuator is simple and cost-efficient,
  • the actuator is able to position the flap in at least one intermediate position between the open position and the closed position. This makes it possible to adapt the coolant outlet flow more accurate to the coolant need of the engine. Especially, during a cold start phase of the engine, a more precise control of the coolant flow rate is helpful to shorten the warming-up phase of the engine.
  • the volute housing is an integrated part of the main pump body.
  • This construction allows faster and more cost-efficient production.
  • one part of the volute tongue wall is a part of the pivotable flap and the other part of the volute tongue wall is a part of the volute housing.
  • the pivotable flap should be constructed as small as possible. The bigger the flap is, the higher is the total force of the flowing coolant which causes a torque to the flap. However, the pivotable flap should be large enough to close the outlet channel in the closing position.
  • Figure 1 shows a perspective view of a mechanical coolant pump with a valve flap in the open position
  • Figure 2 shows a perspective view of the mechanical coolant pump with the valve flap in the closed position.
  • a mechanical coolant pump 10 for an internal combustion engine is shown.
  • the mechanical coolant pump 10 comprises a main pump body 12, whereby the main pump body 12 is mounted directly to the engine block by a flange 40 or can have a separate cover body which is not shown.
  • the main pump body 12 is provided with a volute housing 14 which is an integrated part of the main pump body 12, whereby the volute housing 14 is substantially forming the volute 34,
  • the volute housing 14 supports a rotatable pump wheel 16 which sucks the coolant axial!y and pumps the coolant radially outwardly into a volute channel 35 of the volute 34.
  • the volute channel 35 is a ringlike channel which surrounds the pump wheel 16 circumferentially.
  • the pump wheel 16 is directly driven by the combustion engine by using a driving belt (not shown) which drives a driving wheel (not shown) of the coolant pump 10.
  • the coolant flows, as a result of centrifugal forces, into the volute 34, from the volute channel 35 through an outlet valve 20 into a subsequent outlet channel 18 and finally to an outlet opening 38 of the pump 10.
  • the outlet valve 20 is positioned at the end of the volute channel 35 and separates the volute channel 35 from the outlet channel 18.
  • the outlet valve 20 comprises an axialiy pivotable arched flap 24.
  • the pivot axis 26 is arranged adjacent to the volute housing 14.
  • the fiap 24 is at least a part of a volute tongue wall 22 in the open position of the flap 24 and is forming the circumferential end of the volute tongue wall 22.
  • the vo!ute tongue wail 22 comprises a wedge-shaped part 23 which is a part of the volute housing 14.
  • the flap 24 extends the volute 34 in the open flap position (fig. 1).
  • the flap 24 is stopped in the open position by a stopping element 28 which is a step 36 in an outer wall 39 of the volute housing 14. More precisely, the step 36 is formed by a side wall 37 of the volute channel 35 and the outer wall 39 so that the step fold is orientated tangentially.
  • the flap 24 In the closed valve position (fig. 2), the flap 24 is stopped by a stopping nose 30.
  • the stopping nose 30 is a groove in an outlet channel wall 32.
  • the stopping groove is positioned opposite and parallel to the pivot axis 26 of the flap 24 so that the flap 24 is closable into the dosing position shown in fig. 2.
  • the coolant rotates in the voiute 34 as a coolant ring, and is circulating in a constant and mainly undisturbed manner.
  • the flap 24 is driven by an actuator (not shown), which is, for instance, a pneumatical, an electrical, a vacuum or a thermostatic actuator.
  • the flap 24 can be positioned in at least one intermediate position by the actuator, The intermediate position is a defined position between the open and the closed flap position, and allows the control of the coolant outlet flow more accurate and more adapt to the coolant need of the engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne une pompe mécanique 10 pour réfrigérant pour un moteur à combustion interne. La pompe mécanique 10 pour réfrigérant comprend un corps de pompe principal 12 qui comprend un carter 14 en volute. A l'intérieur du carter 14 en volute est disposée une roue 16 de pompe qui refoule le réfrigérant vers l'extérieur dans la volute 34 et depuis la volute 34 tangentiellement dans le canal de sortie 18. Le flux de sortie de réfrigérant de la pompe 10 est régulé par une soupape de sortie 20. Le canal de sortie 18 est séparé de la volute 34 par une paroi 22 de bec de volute, de sorte que la paroi 22 de bec de volute sépare le canal de sortie 18 de la volute 34. La soupape de sortie 20 de la pompe mécanique 10 pour réfrigérant est définie par un volet 24 pivotant axialement constituant au moins une partie de la paroi 22 de bec de volute dans la position ouverte du volet. Le volet 24 constitue l'extrémité de la paroi 22 de bec de volute dans la direction circonférentielle. L'axe de pivotement 26 du volet pivotant 24 est orienté axialement et parallèlement à l'axe de rotation de la roue 16 de pompe. L'axe de pivotement 26 est adjacent au carter 14 en volute sur toute la longueur de l'axe de rotation.
PCT/EP2010/051918 2010-02-16 2010-02-16 Pompe mécanique pour réfrigérant WO2011101019A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/EP2010/051918 WO2011101019A1 (fr) 2010-02-16 2010-02-16 Pompe mécanique pour réfrigérant
MX2012009360A MX2012009360A (es) 2010-02-16 2010-02-16 Bomba mecanica del liquido refrigerador.
US13/579,037 US20130011250A1 (en) 2010-02-16 2010-02-16 Mechanical coolant pump
CN2010800662384A CN102844539A (zh) 2010-02-16 2010-02-16 机械式冷却液泵
JP2012553192A JP2013519828A (ja) 2010-02-16 2010-02-16 機械式のクーラントポンプ
EP10705990.9A EP2536928B1 (fr) 2010-02-16 2010-02-16 Pompe mécanique pour réfrigérant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/051918 WO2011101019A1 (fr) 2010-02-16 2010-02-16 Pompe mécanique pour réfrigérant

Publications (1)

Publication Number Publication Date
WO2011101019A1 true WO2011101019A1 (fr) 2011-08-25

Family

ID=42938620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/051918 WO2011101019A1 (fr) 2010-02-16 2010-02-16 Pompe mécanique pour réfrigérant

Country Status (6)

Country Link
US (1) US20130011250A1 (fr)
EP (1) EP2536928B1 (fr)
JP (1) JP2013519828A (fr)
CN (1) CN102844539A (fr)
MX (1) MX2012009360A (fr)
WO (1) WO2011101019A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013120543A1 (fr) 2012-02-14 2013-08-22 Pierburg Pump Technology Gmbh Pompe mécanique de liquide de refroidissement
WO2014060041A1 (fr) 2012-10-19 2014-04-24 Pierburg Pump Technology Gmbh Pompe mécanique de réfrigérant
US10316847B2 (en) 2015-04-29 2019-06-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Pump

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5985458B2 (ja) * 2013-11-07 2016-09-06 本田技研工業株式会社 冷却水路構造
EP3245406B1 (fr) * 2015-01-16 2020-12-09 Industrie Saleri Italo S.P.A. Groupe pompe de refroidissement doté d'un moyen de réglage
US11105339B2 (en) 2016-01-22 2021-08-31 Litens Automotive Partnership Pump with variable flow diverter that forms volute
CN106368789A (zh) * 2016-11-24 2017-02-01 奇瑞汽车股份有限公司 一种柴油发动机水泵
EP3438556A1 (fr) * 2017-08-03 2019-02-06 Grundfos Holding A/S Dispositif de mélange, système de chauffage avec dispositif de mélange et procédé
JP7146540B2 (ja) * 2018-09-13 2022-10-04 株式会社山田製作所 制御バルブ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48104103A (fr) * 1972-02-17 1973-12-27
JPS58202400A (ja) * 1982-05-21 1983-11-25 Hitachi Ltd 渦巻ポンプ
JPS62142820A (ja) * 1985-12-18 1987-06-26 Yamada Seisakusho:Kk 多列内燃機関の冷却装置
JPH04237898A (ja) * 1991-01-18 1992-08-26 Nissan Motor Co Ltd 内燃機関のウォータポンプ
WO2008153509A2 (fr) * 2007-06-12 2008-12-18 Kirpart Otomotiv Parçalari Sanayi Ve Ticaret Anonim Şirketi Pompe à eau à circulation commandée sur la base de la température de moteurs à combustion interne

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1274678A (en) * 1917-01-29 1918-08-06 Joseph C Butler Water circulating and cooling pump.
JPS328383B1 (fr) * 1956-01-11 1957-09-28
JPS58122394A (ja) * 1982-01-14 1983-07-21 Kubota Ltd うず巻ポンプ
DE3346472C2 (de) * 1982-12-28 1991-09-12 Nissan Motor Co., Ltd., Yokohama, Kanagawa Radialturbine mit veränderlicher Leistung
US5408708A (en) * 1993-10-29 1995-04-25 Vico Products Manufacturing Co., Inc. Flow-control for a pump
JP3405610B2 (ja) * 1994-10-03 2003-05-12 住友ゴム工業株式会社 空気入りラジアルタイヤ
JP3438211B2 (ja) * 1996-08-30 2003-08-18 アイシン精機株式会社 内燃機関のウォータポンプ
GB0116433D0 (en) * 2001-07-05 2001-08-29 Ford Global Tech Inc Cooling system for a motor vehicle engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48104103A (fr) * 1972-02-17 1973-12-27
JPS58202400A (ja) * 1982-05-21 1983-11-25 Hitachi Ltd 渦巻ポンプ
JPS62142820A (ja) * 1985-12-18 1987-06-26 Yamada Seisakusho:Kk 多列内燃機関の冷却装置
JPH04237898A (ja) * 1991-01-18 1992-08-26 Nissan Motor Co Ltd 内燃機関のウォータポンプ
WO2008153509A2 (fr) * 2007-06-12 2008-12-18 Kirpart Otomotiv Parçalari Sanayi Ve Ticaret Anonim Şirketi Pompe à eau à circulation commandée sur la base de la température de moteurs à combustion interne

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013120543A1 (fr) 2012-02-14 2013-08-22 Pierburg Pump Technology Gmbh Pompe mécanique de liquide de refroidissement
WO2013120542A1 (fr) 2012-02-14 2013-08-22 Pierburg Pump Technology Gmbh Pompe mécanique de liquide de refroidissement
WO2013120514A1 (fr) 2012-02-14 2013-08-22 Pierburg Pump Technology Gmbh Pompe mécanique à liquide de refroidissement
CN104169538A (zh) * 2012-02-14 2014-11-26 皮尔伯格泵技术有限责任公司 机械式冷却剂泵
JP2015507138A (ja) * 2012-02-14 2015-03-05 ピールブルグ パンプ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングPierburg Pump Technology GmbH 機械式のクーラントポンプ
JP2015507137A (ja) * 2012-02-14 2015-03-05 ピールブルグ パンプ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングPierburg Pump Technology GmbH 機械式のクーラントポンプ
US9689393B2 (en) 2012-02-14 2017-06-27 Pierburg Pump Technology Gmbh Mechanical coolant pump
US9689392B2 (en) 2012-02-14 2017-06-27 Pierburg Pump Technology Gmbh Mechanical coolant pump
US9726178B2 (en) 2012-02-14 2017-08-08 Pierburg Pump Technology Gmbh Mechanical coolant pump
WO2014060041A1 (fr) 2012-10-19 2014-04-24 Pierburg Pump Technology Gmbh Pompe mécanique de réfrigérant
US9574485B2 (en) 2012-10-19 2017-02-21 Pierburg Pump Technology Gmbh Mechanical coolant pump
US10316847B2 (en) 2015-04-29 2019-06-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Pump

Also Published As

Publication number Publication date
JP2013519828A (ja) 2013-05-30
CN102844539A (zh) 2012-12-26
US20130011250A1 (en) 2013-01-10
EP2536928A1 (fr) 2012-12-26
EP2536928B1 (fr) 2018-11-14
MX2012009360A (es) 2013-03-21

Similar Documents

Publication Publication Date Title
EP2536928B1 (fr) Pompe mécanique pour réfrigérant
EP2960526B1 (fr) Compresseur centrifuge avec élément résistif en entrée
US8955471B2 (en) Mechanical coolant pump
US9726074B2 (en) Turbocharger integrated valve unit
JP6099677B2 (ja) 機械式のクーラントポンプ
US7695355B2 (en) Integrated housing for fan and alternate flow check valve
WO2016126623A1 (fr) Turbocompresseur à gaz d'échappement
EP2909456B1 (fr) Pompe mécanique de réfrigérant
US8678778B2 (en) Flow-ducting unit with pump and fitting
CN210122937U (zh) 用于使燃烧发动机增压的压缩机
EP2534380A1 (fr) Pompe de refroidissement mécanique
EP2815094B1 (fr) Pompe mécanique de liquide de refroidissement
JP6137963B2 (ja) ポンプ
EP2815093B1 (fr) Pompe mécanique de liquide de refroidissement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066238.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10705990

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010705990

Country of ref document: EP

Ref document number: MX/A/2012/009360

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012553192

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13579037

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012020233

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012020233

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112012020233

Country of ref document: BR