WO2011099543A1 - Method for oxidizing organic compound - Google Patents

Method for oxidizing organic compound Download PDF

Info

Publication number
WO2011099543A1
WO2011099543A1 PCT/JP2011/052827 JP2011052827W WO2011099543A1 WO 2011099543 A1 WO2011099543 A1 WO 2011099543A1 JP 2011052827 W JP2011052827 W JP 2011052827W WO 2011099543 A1 WO2011099543 A1 WO 2011099543A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
titanium oxide
catalyst
hydrogen chloride
gas
Prior art date
Application number
PCT/JP2011/052827
Other languages
French (fr)
Japanese (ja)
Inventor
ビエレン カルロス グスタボ クナップ
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to DE112011100519T priority Critical patent/DE112011100519T5/en
Priority to CN201180008867.6A priority patent/CN102762298B/en
Publication of WO2011099543A1 publication Critical patent/WO2011099543A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/01Acyclic saturated compounds containing halogen atoms containing chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/06Decomposition, e.g. elimination of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/01Acyclic saturated compounds containing halogen atoms containing chlorine
    • C07C19/03Chloromethanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/01Acyclic saturated compounds containing halogen atoms containing chlorine
    • C07C19/03Chloromethanes
    • C07C19/041Carbon tetrachloride

Definitions

  • the present invention relates to a method for oxidizing an organic compound in a mixed gas containing an organic compound, hydrogen chloride and oxygen with oxygen in the presence of a catalyst.
  • a method is known in which a hydrogen chloride-containing gas and an oxygen-containing gas are supplied in the presence of a catalyst to oxidize hydrogen chloride to obtain chlorine.
  • a catalyst include a Ru-based catalyst (for example, Patent Document 1). Etc.) are used.
  • the hydrogen chloride-containing gas, oxygen-containing gas, or an inert gas that can be supplied together with the hydrogen chloride-containing gas may contain an organic compound as an impurity due to its preparation method or generation source. If an organic compound is contained as an impurity in these gases, the organic compound itself or the presence of a chlorinated derivative of the organic compound may cause problems such as a decrease in the conversion rate of hydrogen chloride, and the organic compound or the derivative may react. There is a problem of blockage of piping due to being brought in after the process. In order to prevent these organic compounds from being included in the above-described problem and to prevent the formation of the derivatives, a method of decomposing the organic compound or a method of reducing the content of the organic compound in the raw material gas Is desired.
  • JP-A-9-67103 JP 2005-289800 A Japanese Examined Patent Publication No. 6-17203
  • an object of the present invention is to provide a method for oxidizing an organic compound in a mixed gas containing an organic compound, hydrogen chloride and oxygen at a good conversion rate.
  • the present inventors conducted a mixing reaction including an organic compound, hydrogen chloride, and oxygen by performing the oxidation reaction in the presence of a catalyst including titanium oxide having a ruthenium content of 0.1% by mass or less.
  • the inventors have found a new finding that an organic compound in a gas can be oxidized with oxygen at a good conversion rate, and have completed the present invention.
  • the present invention includes the following preferred embodiments.
  • [1] A method of oxidizing an organic compound in a mixed gas containing an organic compound, hydrogen chloride and oxygen with oxygen in the presence of a catalyst containing titanium oxide having a ruthenium content of 0.1% by mass or less.
  • [2] The method according to [1] above, wherein the titanium oxide contains anatase crystalline titanium oxide.
  • the ratio of the anatase crystalline titanium oxide in the titanium oxide measured by X-ray diffraction method is 20% or more based on the total of the anatase crystalline titanium oxide and the rutile crystalline titanium oxide. The method described.
  • an organic compound in a mixed gas containing an organic compound, hydrogen chloride, and oxygen can be oxidized with oxygen at a good conversion rate.
  • an organic compound can be selectively oxidized while suppressing oxidation of hydrogen chloride, and as a result, a hydrogen chloride mixed gas suitable as a raw material gas for producing chlorine can be obtained.
  • the organic compound can be selectively oxidized while suppressing the oxidation of hydrogen chloride, the content of the organic compound can be reduced and the production of chlorinated derivatives of the organic compound can also be suppressed, and the blockage of the piping concerned is prevented. Can do.
  • heat generation due to the generation of chlorine can be suppressed, the temperature of the reactor can be easily adjusted, and the oxidation reaction of the organic compound can be favorably continued.
  • the present invention relates to a method of oxidizing an organic compound in a mixed gas containing an organic compound, hydrogen chloride and oxygen with oxygen in the presence of a catalyst containing titanium oxide having a ruthenium content of 0.1% by mass or less.
  • a catalyst containing titanium oxide in addition to titanium oxide itself, composite oxides of titanium oxide and other metal oxides, other metal oxides such as titanium oxide and alumina, zirconium oxide, silica, niobium oxide, etc. Mixtures with products are also included. Among these, titanium oxide itself is preferable.
  • the titanium oxide includes amorphous, anatase crystal form (anatase type titanium oxide), and rutile crystal form (rutile type titanium oxide). Especially, what consists of anatase type titanium oxide and / or a rutile type titanium oxide is preferable.
  • titanium oxide containing anatase-type titanium oxide is preferable, and the ratio of anatase-type titanium oxide to the total of anatase-type titanium oxide and rutile-type titanium oxide (hereinafter sometimes referred to as “anatase-type titanium oxide ratio”) is 20. % Or more of titanium oxide is preferable, 50% or more of titanium oxide is more preferable, and 90% or more of titanium oxide is even more preferable. The higher the anatase titanium oxide ratio, the better the activity of the resulting catalyst.
  • the anatase-type titanium oxide ratio is a value measured by an X-ray diffraction method (hereinafter referred to as “XRD method”) and calculated from the following formula (I).
  • titanium oxide As the catalyst, commercially available titanium oxide, a product obtained by molding a commercially available titanium oxide, or a product obtained by kneading and molding a powdery or sol-like titanium oxide can be used, and calcined as necessary.
  • the firing may be performed before molding or after molding, but the strength of the titanium oxide can be improved by performing the molding and firing in this order.
  • the firing temperature is usually 200 to 1200 ° C., preferably 300 to 800 ° C., more preferably 500 to 700 ° C. Firing is performed in a gas atmosphere such as an inert gas, an oxidizing gas, or a reducing gas.
  • a gas atmosphere such as an inert gas, an oxidizing gas, or a reducing gas.
  • the inert gas include nitrogen and helium.
  • the oxidizing gas include air, oxygen, and a mixed gas of nitrogen and oxygen.
  • the reducing gas include hydrogen, Examples thereof include a mixed gas of hydrogen and nitrogen, and these may be used alone or in combination.
  • the firing time is usually about 1 to 5 hours, and the heating rate up to the firing temperature is about 60 to 1000 ° C./hour.
  • the catalyst may be used in the form of a spherical granule, a cylindrical pellet, an extruded shape, a ring shape, a honeycomb shape, or an appropriately sized granule that has been pulverized and classified after molding.
  • the diameter of the catalyst is preferably 5 mm or less. If the diameter of the catalyst is too large, the conversion rate of the oxidation reaction of the organic compound may be low.
  • the lower limit of the diameter of the catalyst is not particularly limited, but if it becomes excessively small, pressure loss in the catalyst layer increases, and therefore, a catalyst having a diameter of 0.5 mm or more is usually used.
  • the diameter of the catalyst here means the diameter of a sphere in the case of spherical particles, the diameter of a circular cross section in the case of a cylindrical pellet, and the maximum diameter of the cross section in other shapes.
  • a catalyst containing titanium oxide having a ruthenium content of 0.1% by mass or less can be obtained.
  • the content of ruthenium in the titanium oxide is usually 0.1% by mass or less, preferably 0.05% by mass or less, and more preferably 0.01% by mass or less.
  • elements such as rhodium, palladium, copper, chromium, silver, osmium, iridium, platinum, and gold may be contained, but the total content of these elements in the titanium oxide is usually 0.1 mass. % Or less.
  • the titanium oxide may contain sodium, potassium, magnesium, calcium, zirconium, niobium, iron, zinc, aluminum, silicon, cobalt, nickel, phosphorus, sulfur, chlorine and the like.
  • the content of each of these elements is usually 1% by mass or less, preferably 0.5% by mass or less, and more preferably 0.2% by mass or less in the titanium oxide.
  • the content of each element in the catalyst can be quantified by, for example, inductively coupled plasma emission spectroscopy (hereinafter referred to as “ICP analysis”).
  • ICP analysis inductively coupled plasma emission spectroscopy
  • the said catalyst when using the said catalyst for oxidation reaction, it can also be used by diluting with a substance inactive to reaction, such as an alumina, a zirconium oxide, a silica.
  • a substance inactive to reaction such as an alumina, a zirconium oxide, a silica.
  • an organic compound, hydrogen chloride, and oxygen are supplied in the presence of the catalyst to form a mixed gas.
  • the organic compound can be oxidized with almost no oxidation of hydrogen chloride.
  • the mixed gas containing an organic compound, hydrogen chloride and oxygen contains, for example, a method of mixing a gas containing an organic compound and hydrogen chloride and a gas containing oxygen, a gas containing a hydrogen chloride, an organic compound and oxygen. It can be obtained by a method of mixing with a gas, a gas containing an organic compound, a gas containing hydrogen chloride and a gas containing oxygen, or the like.
  • the mixed gas may be brought into contact with the catalyst after being brought into contact with activated carbon.
  • the gas containing the organic compound and hydrogen chloride is not particularly limited as long as the gas contains the organic compound and hydrogen chloride. Further, the gas containing hydrogen chloride is not particularly limited as long as it contains hydrogen chloride.
  • the gas containing the organic compound and hydrogen chloride or the gas containing hydrogen chloride include, for example, a reaction between hydrogen and chlorine, a pyrolysis reaction or combustion reaction of a chlorine compound, a phosgenation reaction or chlorination reaction of an organic compound, Production of chlorofluoroalkane, hydrolysis reaction of chlorinated hydrocarbons, heating of hydrochloric acid, incinerator combustion gas, etc., oxidation reaction of hydrogen chloride to chlorine, 1,2-dichloroethane from hydrogen chloride and ethylene Examples include gas recovered in the reaction to be produced. Further, oxygen and inert gas that can be recovered in each of these reactions may be contained in the mixed gas.
  • thermal decomposition reaction of the chlorine compound examples include production of vinyl chloride from 1,2-dichloroethane, production of tetrafluoroethylene from chlorodifluoromethane, and the like.
  • Examples of the phosgenation reaction of the organic compound include production of isocyanate by reaction of amine and phosgene, production of carbonate ester by reaction of alcohol and / or aromatic alcohol and phosgene, and the like.
  • chlorination reaction of the organic compound production of allyl chloride by reaction of propylene and chlorine, production of chloroethane by reaction of ethane and chlorine, production of trichloroethylene and tetrachloroethylene by reaction of 1,2-dichloroethane and chlorine, Examples include production of chlorobenzene by reaction of benzene with chlorine.
  • Production of the chlorofluoroalkane includes production of dichlorodifluoromethane and trichloromonofluoromethane by the reaction of carbon tetrachloride and hydrogen fluoride, and dichlorodifluoromethane and trichloromonofluoromethane by the reaction of methane, chlorine and hydrogen fluoride. And the like.
  • Examples of the hydrolysis reaction of the chlorinated hydrocarbon include production of phenol by a reaction between chlorobenzene and water.
  • the gas containing oxygen may be pure oxygen, pure oxygen diluted with an inert gas such as nitrogen gas or argon gas, or air.
  • the gas containing an organic compound and oxygen may be a gas composed only of an organic compound and oxygen, or may be a gas obtained by diluting an organic compound and oxygen with a gas inert to an oxidation reaction such as nitrogen gas or argon gas. It may be a gas composed of a compound and air. Pure oxygen can be obtained by ordinary industrial methods such as air pressure swing method or cryogenic separation.
  • limiting in particular in the usage-amount of oxygen It is preferable to set it as 1 mol times or more with respect to an organic compound, and it is more preferable to set it as 10 mol times or more. When the amount of oxygen used is less than 1 mole times the organic compound, the conversion rate of the organic compound may be low.
  • the organic compound in the mixed gas containing the organic compound, hydrogen chloride, and oxygen can be selected as appropriate, but is preferably an aliphatic hydrocarbon, a chlorinated aliphatic hydrocarbon, phosgene, an alicyclic hydrocarbon, an aromatic hydrocarbon. And at least one selected from the group consisting of chlorinated aromatic hydrocarbons, alcohols and phenols, and among them, at least one selected from the group consisting of aliphatic hydrocarbons, chlorinated aliphatic hydrocarbons and phosgene. Is preferred.
  • aliphatic hydrocarbon examples include aliphatic saturated hydrocarbons such as methane, ethane, propane, butane and hexane, and aliphatic unsaturated hydrocarbons such as ethylene, propylene, butene, butadiene, hexene and acetylene.
  • methane, ethane, ethylene, propylene, and acetylene are preferable, and ethylene is particularly preferable.
  • chlorinated aliphatic hydrocarbons examples include dichloroethane such as chloromethane, dichloromethane, trichloromethane, carbon tetrachloride, chloroethane, and 1,2-dichloroethane, trichloroethane, tetrachloroethane, pentachloroethane, hexachloroethane, and 2-chloropropane.
  • dichloroethane such as chloromethane, dichloromethane, trichloromethane, carbon tetrachloride, chloroethane, and 1,2-dichloroethane, trichloroethane, tetrachloroethane, pentachloroethane, hexachloroethane, and 2-chloropropane.
  • Examples include chloropropane, dichloropropane such as 1,2-dichloropropane, vinyl chloride, dichloroethylene, trichloroethylene, chloroethylene such as tetrachloroethylene, allyl chloride, dichloropropene such as 1,3-dichloro-1-propene, and the like.
  • chloromethane, dichloromethane, trichloromethane, carbon tetrachloride, chloroethane, vinyl chloride, dichloroethane, chloropropane, dichloropropane, allyl chloride, and dichloropropene are preferable, and chloromethane, carbon tetrachloride, and 2-chloropropane are particularly preferable.
  • the content of the organic compound contained in the mixed gas is usually 20% by volume or less, preferably 1% by volume or less, more preferably 0.1% by volume or less with respect to hydrogen chloride. When the content of the organic compound exceeds 20% by volume, the conversion rate of the organic compound may be lowered.
  • the content of the organic compound contained in the mixed gas depends on the origin of the gas, it is usually contained by 0.1 volume ppm or more with respect to hydrogen chloride, and in this case, the present invention is advantageously employed. Is done.
  • the chlorine and / or moisture may be contained in the mixed gas.
  • chlorine When chlorine is contained, the conversion rate of the oxidation reaction of the organic compound may be improved.
  • moisture When moisture is contained, the catalyst layer may be effectively utilized and the stable activity of the catalyst may be maintained by smoothing the temperature distribution in the catalyst layer.
  • the contents of chlorine and moisture in the mixed gas are each usually 50% by volume or less, preferably 30% by volume or less, more preferably 10% by volume or less.
  • a reducing agent such as hydrogen or carbon monoxide may be included in the mixed gas.
  • the reducing agent can be oxidized by the oxidation method of the present invention.
  • the mixed gas may contain a gas inert to the oxidation reaction such as nitrogen gas or argon gas.
  • the concentration of hydrogen chloride in the mixed gas is usually 5% by volume or more, preferably 30% by volume or more, and more preferably 50% by volume or more.
  • the amount of the catalyst used is usually 10 to 50000 h ⁇ 1 in terms of the ratio (GHSV) to the supply rate of the mixed gas containing the organic compound, hydrogen chloride and oxygen in the standard state with respect to the catalyst volume.
  • the reaction temperature in the oxidation reaction of the present invention is usually 200 to 500 ° C., preferably 250 to 450 ° C., more preferably 300 to 400 ° C. If the reaction temperature is too low, the conversion of the organic compound may be low. On the other hand, if the reaction temperature is too high, the conversion rate of the organic compound may be lowered due to thermal degradation of the catalyst.
  • the pressure of the oxidation reaction is usually 0.1 to 5 MPa, but preferably 0.1 to 1 MPa.
  • the gas linear velocity based on the empty tower is usually 0.1 to 20 m / s.
  • the gas linear velocity based on the empty column in the present invention refers to the total amount of supply rates in the standard state (absolute pressure 0.1 MPa, converted to 0 ° C.) of all the gases supplied to the reactor and the cross-sectional area of the reactor. It means the ratio of (area of the cross section perpendicular to the gas supply direction).
  • a reaction method such as a fluidized bed, a fixed bed, or a moving bed can be adopted, and a fixed bed reactor of an adiabatic method or a heat exchange method is preferable.
  • a reaction method such as a fluidized bed, a fixed bed, or a moving bed
  • a fixed bed reactor of an adiabatic method or a heat exchange method is preferable.
  • an adiabatic fixed bed reactor either a single tube fixed bed reactor or a multitubular fixed bed reactor can be used, but a single tube fixed bed reactor is preferably used.
  • a heat exchange type fixed bed reactor either a single-tube fixed bed reactor or a multi-tube fixed bed reactor can be used, but a multi-tube fixed bed reactor is preferably used. be able to.
  • the oxidation reaction in the present invention selectively oxidizes an organic compound while suppressing oxidation of hydrogen chloride.
  • the ratio of the conversion ratio of hydrogen chloride to the conversion ratio of the organic compound is usually 0.5 or less, preferably 0.8.
  • the reaction can be carried out to 2 or less, more preferably 0.1 or less.
  • the hydrogen chloride obtained in the present invention can be used for production of chlorine by reaction with oxygen, production of chlorine by electrolysis of hydrogen chloride, and production of 1,2-dichloroethane by reaction with ethylene.
  • the present invention is not limited only to the following examples.
  • the ruthenium content of the catalyst obtained in each of the following examples was analyzed using an ICP emission analyzer (ICPS-8100, manufactured by Shimadzu Corporation).
  • Example 1 (Preparation of catalyst A) Titanium oxide powder [SSP-M manufactured by Sakai Chemical Co., Ltd., titanium oxide> 95% by mass, X-ray particle diameter 15 nm] is tableted and then pulverized to form a granular catalyst of 1 to 2 mm. (Anatase type titania ratio 100%) was obtained. The ruthenium content of catalyst A was less than 50 mass ppm.
  • Example 3 (Preparation of catalyst C) Titanium oxide spheres (CS-300S-12 manufactured by Sakai Chemical Co., Ltd., 1 to 2 mm particle size) were heated from room temperature to 200 ° C. over 15 minutes under air flow, and from 200 ° C. to 600 ° C. for 1.3 hours. And heated for 2 hours at the same temperature and calcined to obtain a titanium oxide catalyst C (anatase-type titania ratio 100%). The ruthenium content of catalyst C was less than 50 mass ppm.
  • Example 4 (Preparation of catalyst D) Titanium oxide spheres (CS-300S-12 manufactured by Sakai Chemical Co., Ltd., 1 to 2 mm particle size) were heated from room temperature to 200 ° C. over 15 minutes under air flow, and from 200 ° C. to 700 ° C. for 1.7 hours. And heated at the same temperature for 2 hours and calcined to obtain titanium oxide catalyst D (anatase-type titania ratio 100%).
  • the ruthenium content of catalyst D was less than 50 mass ppm.
  • reaction The oxidation reaction was carried out in the same manner as in Example 1 except that 1.4 g (1.1 cm 3 ) of catalyst D was used instead of catalyst A (GHSV: 8727h ⁇ 1 ). Table 1 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to ethylene.
  • Example 5 Instead of ethylene gas diluted to 2.0% by volume with nitrogen gas, 2-chloropropane gas diluted to 1.0% by volume with nitrogen gas is 5.0 ml / min (absolute pressure 0.1 MPa, converted to 0 ° C.) The same operation as in Example 4 was performed except that the flow rate was supplied. The amount of 2-chloropropane relative to hydrogen chloride in the feed is calculated to be 0.05% by volume. Table 2 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to 2-chloropropane.
  • Example 6 Instead of ethylene gas diluted to 2.0% by volume with nitrogen gas, the flow rate of 3.9 ml / min (converted to absolute pressure 0.1 MPa, 0 ° C.) of chloromethane gas diluted to 2.6% by volume with nitrogen gas The same operation as in Example 4 was performed except that the above was supplied. The amount of chloromethane relative to hydrogen chloride in the feed is calculated to be 0.1% by volume. Table 2 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to chloromethane.
  • Example 7 Instead of ethylene gas diluted to 2.0% by volume with nitrogen gas, carbon tetrachloride diluted to 15.0% by volume with nitrogen gas was 3.8 ml / min (absolute pressure 0.1 MPa, converted to 0 ° C.). The same operation as in Example 4 was performed except that it was supplied at a flow rate. The amount of carbon tetrachloride relative to hydrogen chloride in the raw material is calculated to be 0.6% by volume. Table 2 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to carbon tetrachloride.
  • Comparative Example 1 (Preparation of catalyst E) An aqueous solution prepared by dissolving 4.2 g of cerium nitrate hydrate [manufactured by High Purity Chemical Co., Ltd.] in 91.7 g of pure water, 0.64 g of zirconyl nitrate hydrate [manufactured by Taiyo Mining Co., Ltd.] An aqueous solution prepared by dissolving in 91.7 g of water and an aqueous solution prepared by dissolving 5.1 g of citric acid (manufactured by Wako Pure Chemical Industries, Ltd.) in 21.4 g of pure water were mixed, and then mixed at 80 ° C. Stir for hours and then at room temperature for 1 hour.
  • reaction The same operation as in Example 1 was performed except that 1.1 g (0.9 cm 3 ) of catalyst E was used instead of catalyst A.
  • Table 1 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to ethylene.
  • Comparative Example 2 (Preparation of catalyst F) Silica-alumina [JRC-SAH-1 manufactured by JGC Catalysts & Chemicals Co., Ltd.] is pulverized in a mortar, and the powder is tableted and then pulverized to obtain a 1 to 2 mm granular catalyst to obtain silica-alumina catalyst F. It was.
  • reaction The same operation as in Example 1 was performed except that 1.3 g (0.9 cm 3 ) of catalyst F was used instead of catalyst A.
  • Table 1 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to ethylene.
  • Comparative Example 3 Preparation of catalyst G 75 commercially available ruthenium oxide-containing titanium oxide catalyst (manufactured by NE Chemcat Co., Ltd., ruthenium oxide content 6.6 mass% (ruthenium content 5.0 mass%), anatase-type titania ratio 100%, 1 to 2 mm sphere) After pulverization and classification to ⁇ 150 ⁇ m, this powder was used as catalyst G.
  • reaction The same operation as in Example 1 was performed except that 0.9 g (0.9 cm 3 ) of catalyst G was used instead of catalyst A.
  • Table 1 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to ethylene.
  • Comparative Example 4 (Preparation of catalyst H) Titanium oxide powder [F-1R, Showa Titanium Co., Ltd., rutile-type titanium oxide ratio 93%] 100 parts, Serander [YB-152A, Yuken Kogyo Co., Ltd.] 0.5 parts and sugar ester [Mitsubishi Chemical Foods S-1570] 2 parts were mixed, and then 25.5 parts of pure water and 12.5 parts of titanium oxide sol [CSB manufactured by Sakai Chemical Co., Ltd., titanium oxide content 40%] were added and kneaded. This mixture was extruded into a noodle shape having a diameter of 3.0 mm ⁇ , dried at 110 ° C. for 2 hours, and then crushed to a length of about 3 to 5 mm.
  • the obtained molded body was heated in air from room temperature to 600 ° C. over 1.7 hours and then calcined by holding at the same temperature for 3 hours. Further, 900 g of the obtained fired product was impregnated with a solution prepared by dissolving 31.9 g of tetraethyl orthosilicate [Si (OC 2 H 5 ) 4 ] manufactured by Wako Pure Chemical Industries, Ltd. in 137.7 g of ethanol. And allowed to stand at 22 ° C. for 3.3 hours in an air atmosphere. 900 g of the obtained solid was heated from room temperature to 300 ° C.
  • reaction The same operation as in Example 1 was performed except that 1.1 g (0.9 cm 3 ) of catalyst H was used instead of catalyst A.
  • Table 1 shows the conversion rate of hydrogen chloride in the raw material and the yields of carbon monoxide and carbon dioxide with respect to ethylene.

Abstract

Disclosed is a method for oxidizing an organic compound in a mixed gas that contains the organic compound, hydrogen chloride and oxygen with high conversion rate. Specifically disclosed is a method for oxidizing an organic compound with oxygen, said organic compound being contained in a mixed gas that contains the organic compound, hydrogen chloride and oxygen. The method for oxidizing an organic compound is characterized in that the reaction is carried out in the presence of a catalyst that contains titanium oxide and has a ruthenium content of 0.1% by mass or less. The titanium oxide preferably contains anatase titanium oxide. The method is advantageously applied to cases where the organic compound is at least one compound selected from the group consisting of aliphatic hydrocarbons, chlorinated aliphatic hydrocarbons and phosgene.

Description

有機化合物の酸化方法Method for oxidizing organic compounds
 本特許出願は、日本国特許出願第2010-028641号(2010年2月12日出願)に基づくパリ条約上の優先権を主張するものであり、ここに引用することによって、上記出願に記載された内容の全体が、本明細書中に組み込まれるものとする。
 本発明は、触媒の存在下、有機化合物、塩化水素及び酸素を含む混合ガス中の有機化合物を酸素により酸化する方法に関する。
This patent application claims priority under the Paris Convention based on Japanese Patent Application No. 2010-028641 (filed on February 12, 2010), and is incorporated herein by reference. The entire contents of which are incorporated herein.
The present invention relates to a method for oxidizing an organic compound in a mixed gas containing an organic compound, hydrogen chloride and oxygen with oxygen in the presence of a catalyst.
 触媒存在下に、塩化水素含有ガスと酸素含有ガスとを供給して、塩化水素を酸化して塩素を得る方法が知られており、前記触媒としては、例えばRu系触媒(例えば、特許文献1参照)等が使用されている。 A method is known in which a hydrogen chloride-containing gas and an oxygen-containing gas are supplied in the presence of a catalyst to oxidize hydrogen chloride to obtain chlorine. Examples of the catalyst include a Ru-based catalyst (for example, Patent Document 1). Etc.) are used.
 前記塩化水素含有ガスや酸素含有ガス、またはこれらと併せて供給し得る不活性ガス中に、その調製法や発生源等に起因して、不純物として有機化合物が含まれることがある。それらのガスに不純物として有機化合物が含まれると、該有機化合物自体あるいは該有機化合物が塩素化された誘導体の存在が招く塩化水素の転化率の低下といった問題や、前記有機化合物あるいは前記誘導体が反応工程以降に持ち込まれることによる配管の閉塞といった問題がある。これらの問題に対して、前記有機化合物が含まれないように、また前記誘導体とならないようにするために、前記有機化合物を分解する方法や、原料ガス中の有機化合物の含有量を減少させる方法が要望されている。その方法として、酸化チタンにルテニウム及び/またはルテニウム化合物が担持されてなる触媒の存在下、有機化合物、塩化水素及び酸素を含む混合ガス中の塩化水素を塩素に酸化しつつ、有機化合物を酸素により酸化して二酸化炭素に酸化分解する方法(特許文献2)や、前記酸化反応に供する塩化水素及び有機化合物を含有するガスを活性炭で処理して有機化合物の含有量を減少させる方法(特許文献3)が提案されている。 The hydrogen chloride-containing gas, oxygen-containing gas, or an inert gas that can be supplied together with the hydrogen chloride-containing gas may contain an organic compound as an impurity due to its preparation method or generation source. If an organic compound is contained as an impurity in these gases, the organic compound itself or the presence of a chlorinated derivative of the organic compound may cause problems such as a decrease in the conversion rate of hydrogen chloride, and the organic compound or the derivative may react. There is a problem of blockage of piping due to being brought in after the process. In order to prevent these organic compounds from being included in the above-described problem and to prevent the formation of the derivatives, a method of decomposing the organic compound or a method of reducing the content of the organic compound in the raw material gas Is desired. As the method, in the presence of a catalyst in which ruthenium and / or a ruthenium compound is supported on titanium oxide, hydrogen chloride in a mixed gas containing an organic compound, hydrogen chloride and oxygen is oxidized to chlorine, and the organic compound is oxidized with oxygen. A method of oxidizing and decomposing into carbon dioxide (Patent Document 2), or a method of reducing the content of an organic compound by treating a gas containing hydrogen chloride and an organic compound used for the oxidation reaction with activated carbon (Patent Document 3). ) Has been proposed.
特開平9-67103号公報JP-A-9-67103 特開2005-289800号公報JP 2005-289800 A 特公平6-17203号公報Japanese Examined Patent Publication No. 6-17203
 しかしながら、上記従来の方法では、有機化合物、塩化水素及び酸素を含む混合ガス中の有機化合物を良好な転化率で酸化させる目的にとっては、必ずしも充分なものではなかった。そこで、本発明の目的は、有機化合物、塩化水素及び酸素を含む混合ガス中の有機化合物を良好な転化率で酸化する方法を提供することにある。 However, the conventional method described above is not always sufficient for the purpose of oxidizing the organic compound in the mixed gas containing the organic compound, hydrogen chloride and oxygen at a good conversion rate. Therefore, an object of the present invention is to provide a method for oxidizing an organic compound in a mixed gas containing an organic compound, hydrogen chloride and oxygen at a good conversion rate.
 本発明者らは鋭意検討したところ、ルテニウムの含有量が0.1質量%以下である酸化チタンを含む触媒の存在下で前記酸化反応を行うことにより、有機化合物、塩化水素及び酸素を含む混合ガス中の有機化合物を良好な転化率で酸素により酸化することができるという新たな知見を見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors conducted a mixing reaction including an organic compound, hydrogen chloride, and oxygen by performing the oxidation reaction in the presence of a catalyst including titanium oxide having a ruthenium content of 0.1% by mass or less. The inventors have found a new finding that an organic compound in a gas can be oxidized with oxygen at a good conversion rate, and have completed the present invention.
 すなわち、本発明は、以下の好適な態様を包含する。
〔1〕ルテニウムの含有量が0.1質量%以下である酸化チタンを含む触媒の存在下、有機化合物、塩化水素及び酸素を含む混合ガス中の有機化合物を酸素により酸化する方法。
〔2〕前記酸化チタンが、アナターゼ結晶形酸化チタンを含有する上記〔1〕に記載の方法。
〔3〕X線回折法により測定される前記酸化チタン中のアナターゼ結晶形酸化チタンの比率が、アナターゼ結晶形酸化チタン及びルチル結晶形酸化チタンの合計に対し20%以上である上記〔2〕に記載の方法。
〔4〕前記有機化合物が脂肪族炭化水素、塩素化脂肪族炭化水素及びホスゲンからなる群より選ばれる少なくとも1種である上記〔1〕~〔3〕のいずれかに記載の方法。
〔5〕前記脂肪族炭化水素がエチレンである上記〔4〕に記載の方法。
〔6〕前記塩素化脂肪族炭化水素が2-クロロプロパン、クロロメタン及び四塩化炭素からなる群より選ばれる少なくとも1種である上記〔4〕に記載の方法。
〔7〕酸化温度が、250~450℃である上記〔1〕~〔6〕のいずれかに記載の方法。
That is, the present invention includes the following preferred embodiments.
[1] A method of oxidizing an organic compound in a mixed gas containing an organic compound, hydrogen chloride and oxygen with oxygen in the presence of a catalyst containing titanium oxide having a ruthenium content of 0.1% by mass or less.
[2] The method according to [1] above, wherein the titanium oxide contains anatase crystalline titanium oxide.
[3] In the above [2], the ratio of the anatase crystalline titanium oxide in the titanium oxide measured by X-ray diffraction method is 20% or more based on the total of the anatase crystalline titanium oxide and the rutile crystalline titanium oxide. The method described.
[4] The method according to any one of [1] to [3] above, wherein the organic compound is at least one selected from the group consisting of aliphatic hydrocarbons, chlorinated aliphatic hydrocarbons and phosgene.
[5] The method according to [4] above, wherein the aliphatic hydrocarbon is ethylene.
[6] The method according to [4] above, wherein the chlorinated aliphatic hydrocarbon is at least one selected from the group consisting of 2-chloropropane, chloromethane, and carbon tetrachloride.
[7] The method according to any one of [1] to [6] above, wherein the oxidation temperature is 250 to 450 ° C.
 本発明によれば、有機化合物、塩化水素及び酸素を含む混合ガス中の有機化合物を酸素により良好な転化率で酸化することができる。加えて、本発明の酸化方法によれば、塩化水素の酸化を抑えつつ、有機化合物を選択的に酸化でき、その結果、塩素製造用の原料ガスとして好適な塩化水素混合ガスを得ることができる。また、塩化水素の酸化を抑えつつ、有機化合物を選択的に酸化できるので、有機化合物の含有量を減少させかつ有機化合物の塩素化誘導体の生成も抑制でき、懸念される配管の閉塞を防ぐことができる。さらに、塩化水素の酸化が抑えられることにより、塩素の生成による発熱が抑えられ、反応器の温度調整を容易にし、良好に有機化合物の酸化反応を継続できる。 According to the present invention, an organic compound in a mixed gas containing an organic compound, hydrogen chloride, and oxygen can be oxidized with oxygen at a good conversion rate. In addition, according to the oxidation method of the present invention, an organic compound can be selectively oxidized while suppressing oxidation of hydrogen chloride, and as a result, a hydrogen chloride mixed gas suitable as a raw material gas for producing chlorine can be obtained. . In addition, since the organic compound can be selectively oxidized while suppressing the oxidation of hydrogen chloride, the content of the organic compound can be reduced and the production of chlorinated derivatives of the organic compound can also be suppressed, and the blockage of the piping concerned is prevented. Can do. Furthermore, by suppressing the oxidation of hydrogen chloride, heat generation due to the generation of chlorine can be suppressed, the temperature of the reactor can be easily adjusted, and the oxidation reaction of the organic compound can be favorably continued.
 本発明は、ルテニウムの含有量が0.1質量%以下である酸化チタンを含む触媒の存在下、有機化合物、塩化水素及び酸素を含む混合ガス中の有機化合物を酸素により酸化する方法に関する。ここでいう酸化チタンを含む触媒としては、酸化チタンそのものに加え、酸化チタンと他の金属酸化物との複合酸化物や、酸化チタンとアルミナ、酸化ジルコニウム、シリカ、酸化ニオブ等の他の金属酸化物との混合物も含まれる。中でも、酸化チタンそのものが好ましい。 The present invention relates to a method of oxidizing an organic compound in a mixed gas containing an organic compound, hydrogen chloride and oxygen with oxygen in the presence of a catalyst containing titanium oxide having a ruthenium content of 0.1% by mass or less. As the catalyst containing titanium oxide here, in addition to titanium oxide itself, composite oxides of titanium oxide and other metal oxides, other metal oxides such as titanium oxide and alumina, zirconium oxide, silica, niobium oxide, etc. Mixtures with products are also included. Among these, titanium oxide itself is preferable.
 また、前記酸化チタンとしては、非晶質のものや、アナターゼ結晶形(アナターゼ型酸化チタン)、ルチル結晶形(ルチル型酸化チタン)のものが含まれる。中でも、アナターゼ型酸化チタン及び/又はルチル型酸化チタンからなるものが好ましい。特に、アナターゼ型酸化チタンを含む酸化チタンが好ましく、アナターゼ型酸化チタン及びルチル型酸化チタンの合計に対するアナターゼ型酸化チタンの比率(以下、「アナターゼ型酸化チタン比率」と言うことがある。)が20%以上の酸化チタンが好ましく、50%以上の酸化チタンがより好ましく、90%以上の酸化チタンがさらにより好ましい。アナターゼ型酸化チタン比率が高くなるほど、得られる触媒の活性もより良好となる。 The titanium oxide includes amorphous, anatase crystal form (anatase type titanium oxide), and rutile crystal form (rutile type titanium oxide). Especially, what consists of anatase type titanium oxide and / or a rutile type titanium oxide is preferable. In particular, titanium oxide containing anatase-type titanium oxide is preferable, and the ratio of anatase-type titanium oxide to the total of anatase-type titanium oxide and rutile-type titanium oxide (hereinafter sometimes referred to as “anatase-type titanium oxide ratio”) is 20. % Or more of titanium oxide is preferable, 50% or more of titanium oxide is more preferable, and 90% or more of titanium oxide is even more preferable. The higher the anatase titanium oxide ratio, the better the activity of the resulting catalyst.
 前記アナターゼ型酸化チタン比率は、X線回折法(以下、「XRD法」と言う。)により測定され、下記式(I)より算出される値である。 The anatase-type titanium oxide ratio is a value measured by an X-ray diffraction method (hereinafter referred to as “XRD method”) and calculated from the following formula (I).
 アナターゼ型酸化チタン比率[%]=〔I/(I+I)〕×100 (I)
 I:アナターゼ型酸化チタン(101)面を示す回折線の強度
 I:ルチル型酸化チタン(110)面を示す回折線の強度
Anatase-type titanium oxide ratio [%] = [I A / (I A + I R )] × 100 (I)
I A : Intensity of diffraction line showing anatase type titanium oxide (101) plane I R : Intensity of diffraction line showing rutile type titanium oxide (110) plane
 前記触媒としては、市販の酸化チタンあるいは市販の酸化チタンを成形したものや、粉末状やゾル状の酸化チタンを混練、成形したものを用いることができ、必要に応じて焼成が施される。該焼成は、成形する前に行ってもよいし、成形後に行ってもよいが、成形、焼成の順に行うと、該酸化チタンの強度を向上させることができる。 As the catalyst, commercially available titanium oxide, a product obtained by molding a commercially available titanium oxide, or a product obtained by kneading and molding a powdery or sol-like titanium oxide can be used, and calcined as necessary. The firing may be performed before molding or after molding, but the strength of the titanium oxide can be improved by performing the molding and firing in this order.
 前記焼成の温度としては、通常200~1200℃、好ましくは300~800℃、さらに好ましくは500~700℃である。焼成は、例えば不活性ガス、酸化性ガス、還元性ガス等のガス雰囲気下で行う。前記不活性ガスとしては、例えば窒素、ヘリウム等が挙げられ、前記酸化性ガスとしては、例えば空気、酸素、窒素と酸素との混合ガス等が挙げられ、前記還元性ガスとしては、例えば水素、水素と窒素との混合ガス等が挙げられ、これらは1種または2種以上を混合して用いてもよい。また、焼成時間としては、通常、1~5時間程度、焼成温度までの昇温速度としては、60~1000℃/時間程度が適当である。 The firing temperature is usually 200 to 1200 ° C., preferably 300 to 800 ° C., more preferably 500 to 700 ° C. Firing is performed in a gas atmosphere such as an inert gas, an oxidizing gas, or a reducing gas. Examples of the inert gas include nitrogen and helium. Examples of the oxidizing gas include air, oxygen, and a mixed gas of nitrogen and oxygen. Examples of the reducing gas include hydrogen, Examples thereof include a mixed gas of hydrogen and nitrogen, and these may be used alone or in combination. The firing time is usually about 1 to 5 hours, and the heating rate up to the firing temperature is about 60 to 1000 ° C./hour.
 前記触媒の形状は、球形粒状、円柱形ペレット状、押出形状、リング形状、ハニカム状あるいは成型後に粉砕分級した適度の大きさの顆粒状等で用いられる。この際、触媒の直径としては5mm以下が好ましい。触媒の直径が大きすぎると、有機化合物の酸化反応の転化率が低くなることがある。触媒の直径の下限は特に制限はないが、過度に小さくなると、触媒層での圧力損失が大きくなるため、通常は0.5mm以上のものが用いられる。なお、ここでいう触媒の直径とは、球形粒状では球の直径、円柱形ペレット状では円形断面の直径、その他の形状では断面の最大直径を意味する。 The catalyst may be used in the form of a spherical granule, a cylindrical pellet, an extruded shape, a ring shape, a honeycomb shape, or an appropriately sized granule that has been pulverized and classified after molding. At this time, the diameter of the catalyst is preferably 5 mm or less. If the diameter of the catalyst is too large, the conversion rate of the oxidation reaction of the organic compound may be low. The lower limit of the diameter of the catalyst is not particularly limited, but if it becomes excessively small, pressure loss in the catalyst layer increases, and therefore, a catalyst having a diameter of 0.5 mm or more is usually used. The diameter of the catalyst here means the diameter of a sphere in the case of spherical particles, the diameter of a circular cross section in the case of a cylindrical pellet, and the maximum diameter of the cross section in other shapes.
 かくして、ルテニウムの含有量が0.1質量%以下である酸化チタンを含む触媒を得ることができる。該酸化チタン中のルテニウムの含有量は、通常0.1質量%以下であり、好ましくは0.05質量%以下、さらに好ましくは0.01質量%以下である。他にも、ロジウム、パラジウム、銅、クロム、銀、オスミウム、イリジウム、白金、金といった元素を含有してもよいが、該酸化チタンにおけるこれらの元素の含有量の合計は、通常0.1質量%以下である。 Thus, a catalyst containing titanium oxide having a ruthenium content of 0.1% by mass or less can be obtained. The content of ruthenium in the titanium oxide is usually 0.1% by mass or less, preferably 0.05% by mass or less, and more preferably 0.01% by mass or less. In addition, elements such as rhodium, palladium, copper, chromium, silver, osmium, iridium, platinum, and gold may be contained, but the total content of these elements in the titanium oxide is usually 0.1 mass. % Or less.
 前記酸化チタンには、ナトリウム、カリウム、マグネシウム、カルシウム、ジルコニウム、ニオブ、鉄、亜鉛、アルミニウム、ケイ素、コバルト、ニッケル、リン、硫黄、塩素等が含まれてもよい。これらの元素の各含有量は、前記酸化チタン中、通常、1質量%以下であり、好ましくは0.5質量%以下であり、さらに好ましくは0.2質量%以下である。 The titanium oxide may contain sodium, potassium, magnesium, calcium, zirconium, niobium, iron, zinc, aluminum, silicon, cobalt, nickel, phosphorus, sulfur, chlorine and the like. The content of each of these elements is usually 1% by mass or less, preferably 0.5% by mass or less, and more preferably 0.2% by mass or less in the titanium oxide.
 前記触媒中の各元素の含有量は、例えば、誘導結合プラズマ発光分光分析法(以下、「ICP分析法」と言う。)により定量できる。 The content of each element in the catalyst can be quantified by, for example, inductively coupled plasma emission spectroscopy (hereinafter referred to as “ICP analysis”).
 なお、酸化反応に前記触媒を使用する際、アルミナ、酸化ジルコニウム、シリカ等の反応に不活性な物質で希釈して使用することもできる。 In addition, when using the said catalyst for oxidation reaction, it can also be used by diluting with a substance inactive to reaction, such as an alumina, a zirconium oxide, a silica.
 本発明では、前記触媒の存在下に、有機化合物、塩化水素及び酸素を供給して混合ガスとする。そして、このような有機化合物と塩化水素が共存する反応系において、塩化水素を殆ど酸化することなく、有機化合物を酸化することができる。 In the present invention, an organic compound, hydrogen chloride, and oxygen are supplied in the presence of the catalyst to form a mixed gas. In a reaction system in which such an organic compound and hydrogen chloride coexist, the organic compound can be oxidized with almost no oxidation of hydrogen chloride.
 有機化合物、塩化水素及び酸素を含む混合ガスは、例えば、有機化合物及び塩化水素を含有するガスと酸素を含有するガスとを混合する方法、塩化水素を含有するガスと有機化合物及び酸素を含有するガスとを混合する方法、有機化合物を含有するガス、塩化水素を含有するガス及び酸素を含有するガスを混合する方法等により得ることができる。該混合ガスは、活性炭に接触させてから前記触媒に接触させてもよい。 The mixed gas containing an organic compound, hydrogen chloride and oxygen contains, for example, a method of mixing a gas containing an organic compound and hydrogen chloride and a gas containing oxygen, a gas containing a hydrogen chloride, an organic compound and oxygen. It can be obtained by a method of mixing with a gas, a gas containing an organic compound, a gas containing hydrogen chloride and a gas containing oxygen, or the like. The mixed gas may be brought into contact with the catalyst after being brought into contact with activated carbon.
 前記有機化合物及び塩化水素を含有するガスとしては、有機化合物及び塩化水素が含まれているガスであれば、特に制限はない。また、前記塩化水素を含有するガスとしては、塩化水素が含まれているガスであれば、特に制限はない。前記有機化合物及び塩化水素を含有するガスあるいは前記塩化水素を含有するガスとしては、例えば、水素と塩素の反応、塩素化合物の熱分解反応や燃焼反応、有機化合物のホスゲン化反応又は塩素化反応、クロロフルオロアルカンの製造、塩素化炭化水素の加水分解反応、塩酸の加熱、焼却炉の燃焼等において発生したガスや、塩化水素の塩素への酸化反応、塩化水素とエチレンから1,2-ジクロロエタンを製造する反応等において回収したガス等が挙げられる。また、これらの各反応で回収されうる酸素や不活性ガスは、前記混合ガス中に含まれてもよい。 The gas containing the organic compound and hydrogen chloride is not particularly limited as long as the gas contains the organic compound and hydrogen chloride. Further, the gas containing hydrogen chloride is not particularly limited as long as it contains hydrogen chloride. Examples of the gas containing the organic compound and hydrogen chloride or the gas containing hydrogen chloride include, for example, a reaction between hydrogen and chlorine, a pyrolysis reaction or combustion reaction of a chlorine compound, a phosgenation reaction or chlorination reaction of an organic compound, Production of chlorofluoroalkane, hydrolysis reaction of chlorinated hydrocarbons, heating of hydrochloric acid, incinerator combustion gas, etc., oxidation reaction of hydrogen chloride to chlorine, 1,2-dichloroethane from hydrogen chloride and ethylene Examples include gas recovered in the reaction to be produced. Further, oxygen and inert gas that can be recovered in each of these reactions may be contained in the mixed gas.
 前記塩素化合物の熱分解反応としては、1,2-ジクロロエタンからの塩化ビニルの製造、クロロジフルオロメタンからのテトラフルオロエチレンの製造等が挙げられる。 Examples of the thermal decomposition reaction of the chlorine compound include production of vinyl chloride from 1,2-dichloroethane, production of tetrafluoroethylene from chlorodifluoromethane, and the like.
 前記有機化合物のホスゲン化反応としては、アミンとホスゲンとの反応によるイソシアネートの製造、アルコールおよび/または芳香族アルコールとホスゲンとの反応による炭酸エステルの製造等が挙げられる。 Examples of the phosgenation reaction of the organic compound include production of isocyanate by reaction of amine and phosgene, production of carbonate ester by reaction of alcohol and / or aromatic alcohol and phosgene, and the like.
 前記有機化合物の塩素化反応としては、プロピレンと塩素との反応による塩化アリルの製造、エタンと塩素との反応によるクロロエタンの製造、1,2-ジクロロエタンと塩素との反応によるトリクロロエチレンとテトラクロロエチレンの製造、ベンゼンと塩素との反応によるクロロベンゼンの製造等が挙げられる。 As the chlorination reaction of the organic compound, production of allyl chloride by reaction of propylene and chlorine, production of chloroethane by reaction of ethane and chlorine, production of trichloroethylene and tetrachloroethylene by reaction of 1,2-dichloroethane and chlorine, Examples include production of chlorobenzene by reaction of benzene with chlorine.
 前記クロロフルオロアルカンの製造としては、四塩化炭素とフッ化水素との反応によるジクロロジフルオロメタンとトリクロロモノフルオロメタンの製造、メタンと塩素とフッ化水素との反応によるジクロロジフルオロメタンとトリクロロモノフルオロメタンの製造等が挙げられる。 Production of the chlorofluoroalkane includes production of dichlorodifluoromethane and trichloromonofluoromethane by the reaction of carbon tetrachloride and hydrogen fluoride, and dichlorodifluoromethane and trichloromonofluoromethane by the reaction of methane, chlorine and hydrogen fluoride. And the like.
 前記塩素化炭化水素の加水分解反応としては、クロロベンゼンと水との反応によるフェノールの製造等が挙げられる。 Examples of the hydrolysis reaction of the chlorinated hydrocarbon include production of phenol by a reaction between chlorobenzene and water.
 前記酸素を含有するガスとしては、純酸素でもよく、純酸素を窒素ガスやアルゴンガス等の酸化反応に不活性なガスで希釈したものでもよく、空気でもよい。前記有機化合物及び酸素を含有するガスとしては、有機化合物と酸素のみからなるガスでもよく、有機化合物と酸素を窒素ガスやアルゴンガス等の酸化反応に不活性なガスで希釈したものでもよく、有機化合物と空気からなるガスでもよい。純酸素は空気の圧力スイング法や深冷分離などの通常の工業的な方法によって得ることができる。酸素の使用量は、特に制限はないが、有機化合物に対して1モル倍以上とすることが好ましく、10モル倍以上とすることがさらに好ましい。酸素の使用量が有機化合物に対して1モル倍未満であると、有機化合物の転化率が低いことがある。 The gas containing oxygen may be pure oxygen, pure oxygen diluted with an inert gas such as nitrogen gas or argon gas, or air. The gas containing an organic compound and oxygen may be a gas composed only of an organic compound and oxygen, or may be a gas obtained by diluting an organic compound and oxygen with a gas inert to an oxidation reaction such as nitrogen gas or argon gas. It may be a gas composed of a compound and air. Pure oxygen can be obtained by ordinary industrial methods such as air pressure swing method or cryogenic separation. Although there is no restriction | limiting in particular in the usage-amount of oxygen, It is preferable to set it as 1 mol times or more with respect to an organic compound, and it is more preferable to set it as 10 mol times or more. When the amount of oxygen used is less than 1 mole times the organic compound, the conversion rate of the organic compound may be low.
 前記有機化合物、塩化水素及び酸素を含む混合ガス中の有機化合物は、適宜選択されうるが、好ましくは脂肪族炭化水素、塩素化脂肪族炭化水素、ホスゲン、脂環式炭化水素、芳香族炭化水素、塩素化芳香族炭化水素、アルコール類及びフェノール類からなる群より選ばれる少なくとも1種が挙げられ、中でも、脂肪族炭化水素、塩素化脂肪族炭化水素及びホスゲンからなる群より選ばれる少なくとも1種が好ましい。 The organic compound in the mixed gas containing the organic compound, hydrogen chloride, and oxygen can be selected as appropriate, but is preferably an aliphatic hydrocarbon, a chlorinated aliphatic hydrocarbon, phosgene, an alicyclic hydrocarbon, an aromatic hydrocarbon. And at least one selected from the group consisting of chlorinated aromatic hydrocarbons, alcohols and phenols, and among them, at least one selected from the group consisting of aliphatic hydrocarbons, chlorinated aliphatic hydrocarbons and phosgene. Is preferred.
 脂肪族炭化水素としては、例えば、メタン、エタン、プロパン、ブタン、ヘキサン等の脂肪族飽和炭化水素、エチレン、プロピレン、ブテン、ブタジエン、ヘキセン、アセチレン等の脂肪族不飽和炭化水素が挙げられる。中でも、メタン、エタン、エチレン、プロピレン、アセチレンが好ましく、エチレンが特に好ましい。 Examples of the aliphatic hydrocarbon include aliphatic saturated hydrocarbons such as methane, ethane, propane, butane and hexane, and aliphatic unsaturated hydrocarbons such as ethylene, propylene, butene, butadiene, hexene and acetylene. Of these, methane, ethane, ethylene, propylene, and acetylene are preferable, and ethylene is particularly preferable.
 塩素化脂肪族炭化水素としては、例えば、クロロメタン、ジクロロメタン、トリクロロメタン、四塩化炭素、クロロエタン、1,2-ジクロロエタンの如きジクロロエタン、トリクロロエタン、テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、2-クロロプロパンの如きクロロプロパン、1,2-ジクロロプロパンの如きジクロロプロパン、塩化ビニル、ジクロロエチレン、トリクロロエチレン、テトラクロロエチレンの如きクロロエチレン、塩化アリル、1,3-ジクロロ-1-プロペンの如きジクロロプロペン等が挙げられる。中でも、クロロメタン、ジクロロメタン、トリクロロメタン、四塩化炭素、クロロエタン、塩化ビニル、ジクロロエタン、クロロプロパン、ジクロロプロパン、塩化アリル、ジクロロプロペンが好ましく、クロロメタン、四塩化炭素、2-クロロプロパンが特に好ましい。 Examples of chlorinated aliphatic hydrocarbons include dichloroethane such as chloromethane, dichloromethane, trichloromethane, carbon tetrachloride, chloroethane, and 1,2-dichloroethane, trichloroethane, tetrachloroethane, pentachloroethane, hexachloroethane, and 2-chloropropane. Examples include chloropropane, dichloropropane such as 1,2-dichloropropane, vinyl chloride, dichloroethylene, trichloroethylene, chloroethylene such as tetrachloroethylene, allyl chloride, dichloropropene such as 1,3-dichloro-1-propene, and the like. Of these, chloromethane, dichloromethane, trichloromethane, carbon tetrachloride, chloroethane, vinyl chloride, dichloroethane, chloropropane, dichloropropane, allyl chloride, and dichloropropene are preferable, and chloromethane, carbon tetrachloride, and 2-chloropropane are particularly preferable.
 前記混合ガス中に含まれる有機化合物の含有量は、塩化水素に対して、通常20体積%以下、好ましくは1体積%以下、さらに好ましくは0.1体積%以下である。有機化合物の含有量が20体積%を超える場合には有機化合物の転化率が低くなることがある。なお、前記混合ガス中に含まれる有機化合物の含有量は、該ガスの由来によるが、通常、塩化水素に対し0.1体積ppm以上含まれるものであり、その場合において本発明は有利に採用される。 The content of the organic compound contained in the mixed gas is usually 20% by volume or less, preferably 1% by volume or less, more preferably 0.1% by volume or less with respect to hydrogen chloride. When the content of the organic compound exceeds 20% by volume, the conversion rate of the organic compound may be lowered. In addition, although the content of the organic compound contained in the mixed gas depends on the origin of the gas, it is usually contained by 0.1 volume ppm or more with respect to hydrogen chloride, and in this case, the present invention is advantageously employed. Is done.
 前記混合ガス中に、塩素及び/又は水分が含まれてもよい。塩素が含まれると、有機化合物の酸化反応の転化率が向上することがある。水分が含まれると、触媒層内の温度分布を平滑化させることにより、触媒層を有効に活用し、触媒の安定した活性を維持することがある。前記混合ガス中の塩素及び水分の含有量は、それぞれ通常50体積%以下、好ましくは30体積%以下、さらに好ましくは10体積%以下である。 The chlorine and / or moisture may be contained in the mixed gas. When chlorine is contained, the conversion rate of the oxidation reaction of the organic compound may be improved. When moisture is contained, the catalyst layer may be effectively utilized and the stable activity of the catalyst may be maintained by smoothing the temperature distribution in the catalyst layer. The contents of chlorine and moisture in the mixed gas are each usually 50% by volume or less, preferably 30% by volume or less, more preferably 10% by volume or less.
 また、前記混合ガス中に、水素や一酸化炭素のような還元剤が含まれてもよい。該還元剤は、本発明の酸化方法により酸化することができる。 In addition, a reducing agent such as hydrogen or carbon monoxide may be included in the mixed gas. The reducing agent can be oxidized by the oxidation method of the present invention.
 前記混合ガス中には、窒素ガスやアルゴンガスといった酸化反応に不活性なガスを含んでもよい。 The mixed gas may contain a gas inert to the oxidation reaction such as nitrogen gas or argon gas.
 前記混合ガスにおける塩化水素の濃度は、通常5体積%以上、好ましくは30体積%以上、さらに好ましくは50体積%以上である。 The concentration of hydrogen chloride in the mixed gas is usually 5% by volume or more, preferably 30% by volume or more, and more preferably 50% by volume or more.
 触媒の使用量は、触媒体積に対する標準状態における有機化合物、塩化水素及び酸素を含む混合ガスの供給速度との比(GHSV)で表すと、通常10~50000h-1である。 The amount of the catalyst used is usually 10 to 50000 h −1 in terms of the ratio (GHSV) to the supply rate of the mixed gas containing the organic compound, hydrogen chloride and oxygen in the standard state with respect to the catalyst volume.
 本発明の酸化反応における反応温度は、通常200~500℃であるが、250~450℃とすることが好ましく、300~400℃がさらに好ましい。反応温度が低すぎると、有機化合物の転化率が低くなることがある。一方、反応温度が高すぎると、触媒の熱劣化により有機化合物の転化率が低くなることがある。 The reaction temperature in the oxidation reaction of the present invention is usually 200 to 500 ° C., preferably 250 to 450 ° C., more preferably 300 to 400 ° C. If the reaction temperature is too low, the conversion of the organic compound may be low. On the other hand, if the reaction temperature is too high, the conversion rate of the organic compound may be lowered due to thermal degradation of the catalyst.
 酸化反応の圧力は、通常、0.1~5MPaであるが、0.1~1MPaとすることが好ましい。 The pressure of the oxidation reaction is usually 0.1 to 5 MPa, but preferably 0.1 to 1 MPa.
 空塔基準のガス線速度は、通常0.1~20m/sである。なお、本発明における空塔基準のガス線速度とは、反応器に供給される全てのガスの標準状態(絶対圧力0.1MPa、0℃換算)における供給速度の合計量と反応器の断面積(ガス供給方向に垂直な断面の面積)の比を意味する。 The gas linear velocity based on the empty tower is usually 0.1 to 20 m / s. In addition, the gas linear velocity based on the empty column in the present invention refers to the total amount of supply rates in the standard state (absolute pressure 0.1 MPa, converted to 0 ° C.) of all the gases supplied to the reactor and the cross-sectional area of the reactor. It means the ratio of (area of the cross section perpendicular to the gas supply direction).
 反応方式としては、流動床、固定床、移動床等の反応方式が採用可能であり、断熱方式又は熱交換方式の固定床反応器が好ましい。断熱方式の固定床反応器を用いる場合には、単管式固定床反応器、多管式固定床反応器のいずれも使用することができるが、単管式固定床反応器を好ましく使用することができる。熱交換方式の固定床反応器を用いる場合には、単管式固定床反応器、多管式固定床反応器のいずれも使用することができるが、多管式固定床反応器を好ましく使用することができる。 As the reaction method, a reaction method such as a fluidized bed, a fixed bed, or a moving bed can be adopted, and a fixed bed reactor of an adiabatic method or a heat exchange method is preferable. When an adiabatic fixed bed reactor is used, either a single tube fixed bed reactor or a multitubular fixed bed reactor can be used, but a single tube fixed bed reactor is preferably used. Can do. When a heat exchange type fixed bed reactor is used, either a single-tube fixed bed reactor or a multi-tube fixed bed reactor can be used, but a multi-tube fixed bed reactor is preferably used. be able to.
 本発明における酸化反応は、塩化水素の酸化を抑えつつ、有機化合物を選択的に酸化するものである。本発明によれば、有機化合物の転化率に対する塩化水素の転化率の比(塩化水素の転化率(%)/有機化合物の転化率(%))が、通常0.5以下、好ましくは0.2以下、さらに好ましくは0.1以下となるように反応を行うことができる。有機化合物の転化率に対する塩化水素の転化率の比が高くなると、塩酸酸化反応による発熱が大きくなり、反応器の温度制御が困難になる場合がある。 The oxidation reaction in the present invention selectively oxidizes an organic compound while suppressing oxidation of hydrogen chloride. According to the present invention, the ratio of the conversion ratio of hydrogen chloride to the conversion ratio of the organic compound (hydrogen chloride conversion ratio (%) / organic compound conversion ratio (%)) is usually 0.5 or less, preferably 0.8. The reaction can be carried out to 2 or less, more preferably 0.1 or less. When the ratio of the conversion rate of hydrogen chloride to the conversion rate of the organic compound is increased, heat generation due to the hydrochloric acid oxidation reaction increases, and it may be difficult to control the temperature of the reactor.
 本発明で得られる塩化水素は、酸素との反応による塩素製造、塩化水素の電解による塩素製造、エチレンとの反応による1,2-ジクロロエタンの製造に使用することができる。 The hydrogen chloride obtained in the present invention can be used for production of chlorine by reaction with oxygen, production of chlorine by electrolysis of hydrogen chloride, and production of 1,2-dichloroethane by reaction with ethylene.
 以下、本発明を実施例により説明するが、本発明は以下の実施例のみに限定されるものではない。なお、以下の各例において得られた触媒のルテニウム含有量は、ICP発光分析装置((株)島津製作所製、ICPS―8100)を用いて分析した。 Hereinafter, although an example explains the present invention, the present invention is not limited only to the following examples. In addition, the ruthenium content of the catalyst obtained in each of the following examples was analyzed using an ICP emission analyzer (ICPS-8100, manufactured by Shimadzu Corporation).
 実施例1
(触媒Aの調製)
 酸化チタン粉末〔堺化学(株)製のSSP-M、酸化チタン>95質量%、X線粒子径15nm〕を打錠成形したのち粉砕し、1~2mmの顆粒状触媒とし、酸化チタン触媒Aを得た(アナターゼ型チタニア比率100%)。触媒Aのルテニウム含有量は、50質量ppm未満であった。
Example 1
(Preparation of catalyst A)
Titanium oxide powder [SSP-M manufactured by Sakai Chemical Co., Ltd., titanium oxide> 95% by mass, X-ray particle diameter 15 nm] is tableted and then pulverized to form a granular catalyst of 1 to 2 mm. (Anatase type titania ratio 100%) was obtained. The ruthenium content of catalyst A was less than 50 mass ppm.
(酸化反応)
 直立させた石英反応管(内径14mm)に、1.1g(0.9cm)の触媒Aを充填し、この反応管上部から、塩化水素ガスを100ml/min、酸素ガスを50ml/min、窒素ガスにより2.0体積%に希釈されたエチレンガスを10.0ml/min(いずれも絶対圧力0.1MPa、0℃換算)の流量で連続的に供給し、反応温度380℃、反応圧力0.1MPaにて反応を開始した(塩化水素に対するエチレン量:0.2体積%)。触媒体積に対する原料ガス(塩化水素ガス、酸素ガス、窒素ガスにより2.0体積%に希釈されたエチレンガス)の供給速度の比(GHSV)は、10667h-1であった。
(Oxidation reaction)
An upright quartz reaction tube (inner diameter: 14 mm) was filled with 1.1 g (0.9 cm 3 ) of catalyst A. From the top of the reaction tube, hydrogen chloride gas was 100 ml / min, oxygen gas was 50 ml / min, nitrogen Ethylene gas diluted to 2.0% by volume with gas was continuously supplied at a flow rate of 10.0 ml / min (both absolute pressure 0.1 MPa, converted to 0 ° C.), reaction temperature 380 ° C., reaction pressure 0. The reaction was started at 1 MPa (ethylene content relative to hydrogen chloride: 0.2% by volume). The ratio (GHSV) of the feed rate of the raw material gas (ethylene gas diluted to 2.0% by volume with hydrogen chloride gas, oxygen gas, nitrogen gas) with respect to the catalyst volume was 10667 h −1 .
 反応開始から2時間経過した時点において、塩化水素の転化率と、エチレンに対する一酸化炭素及び二酸化炭素のそれぞれの収率とを求めた。転化率及び収率の測定方法を以下に示すとともに、その結果を表1に示す。 At the time when 2 hours passed from the start of the reaction, the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to ethylene were determined. The conversion rate and yield measurement methods are shown below, and the results are shown in Table 1.
 (塩化水素の転化率)
 反応管出口のガスを30質量%ヨウ化カリウム水溶液に流通させることによりサンプリ
ングを20分間行い、ヨウ素滴定法により塩素の生成量を測定し、塩素の生成速度(モル/時間)を求めた。この塩素の生成速度と、前記塩化水素ガスの供給速度とを下記式(I)に当てはめて、塩化水素の転化率を算出した。
(Hydrogen chloride conversion)
Sampling was performed for 20 minutes by flowing the gas at the outlet of the reaction tube through a 30% by mass potassium iodide aqueous solution, the amount of chlorine produced was measured by the iodometric titration method, and the chlorine production rate (mol / hour) was determined. The conversion rate of hydrogen chloride was calculated by applying the chlorine generation rate and the hydrogen chloride gas supply rate to the following formula (I).
   塩化水素の転化率(%)=[(a×2)/b]×100   (I)
     a:塩素の生成速度(モル/時間)
     b:塩化水素ガスの供給速度(モル/時間)
Conversion rate of hydrogen chloride (%) = [(a × 2) / b] × 100 (I)
a: Chlorine production rate (mole / hour)
b: Supply rate of hydrogen chloride gas (mol / hour)
 (一酸化炭素及び二酸化炭素の収率)
 上記サンプリングでヨウ化カリウム水溶液に吸収されなかった残ガスについて、TCD検出器を使用して、ガスクロマトグラフィーにより一酸化炭素及び二酸化炭素の分析を行った。これにより求めた一酸化炭素量及び二酸化炭素の生成速度(モル/時間)を、下記式(II)に当てはめて、一酸化炭素及び二酸化炭素の収率を算出した。
(Yield of carbon monoxide and carbon dioxide)
With respect to the residual gas that was not absorbed by the potassium iodide aqueous solution in the above sampling, carbon monoxide and carbon dioxide were analyzed by gas chromatography using a TCD detector. The yield of carbon monoxide and carbon dioxide was calculated by applying the carbon monoxide amount and carbon dioxide production rate (mole / hour) thus determined to the following formula (II).
   一酸化炭素又は二酸化炭素の収率(%)=c/(d×e)×100   (II)
     c:一酸化炭素又は二酸化炭素の生成速度(モル/時間)
     d:有機化合物ガスの供給速度(モル/時間)
     e:有機化合物分子の炭素数
Yield of carbon monoxide or carbon dioxide (%) = c / (d × e) × 100 (II)
c: Carbon monoxide or carbon dioxide production rate (mole / hour)
d: Supply rate of organic compound gas (mol / hour)
e: Carbon number of organic compound molecule
 実施例2
(触媒Bの調製)
 酸化チタン粉末〔石原産業(株)製のMC-50、酸化チタン=97%、粒子径24nm〕を打錠成形したのち粉砕し、1~2mmの顆粒状触媒とし、酸化チタン触媒Bを得た(アナターゼ型チタニア比率100%)。触媒Bのルテニウム含有量は、50質量ppm未満であった。
Example 2
(Preparation of catalyst B)
Titanium oxide powder (MC-50 manufactured by Ishihara Sangyo Co., Ltd., titanium oxide = 97%, particle size 24 nm) was tableted and then pulverized to obtain a granular catalyst of 1 to 2 mm, and titanium oxide catalyst B was obtained. (Anatase titania ratio 100%). The ruthenium content of catalyst B was less than 50 mass ppm.
(酸化反応)
 触媒Aに代えて触媒Bを1.2g(1.1cm)用いたこと以外は(GHSV:8727h-1)、実施例1と同様の操作で酸化反応を行った。塩化水素の転化率と、エチレンに対する一酸化炭素及び二酸化炭素のそれぞれの収率を表1に示す。
(Oxidation reaction)
The oxidation reaction was carried out in the same manner as in Example 1 except that 1.2 g (1.1 cm 3 ) of catalyst B was used in place of catalyst A (GHSV: 8727h −1 ). Table 1 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to ethylene.
 実施例3
(触媒Cの調製)
 酸化チタン球〔堺化学(株)製のCS-300S-12、1~2mm粒径〕を空気流通下、室温から200℃に15分で昇温し、200℃から600℃まで1.3時間かけて昇温した後、同温度で2時間保持して焼成し、酸化チタン触媒Cを得た(アナターゼ型チタニア比率100%)。触媒Cのルテニウム含有量は、50質量ppm未満であった。
Example 3
(Preparation of catalyst C)
Titanium oxide spheres (CS-300S-12 manufactured by Sakai Chemical Co., Ltd., 1 to 2 mm particle size) were heated from room temperature to 200 ° C. over 15 minutes under air flow, and from 200 ° C. to 600 ° C. for 1.3 hours. And heated for 2 hours at the same temperature and calcined to obtain a titanium oxide catalyst C (anatase-type titania ratio 100%). The ruthenium content of catalyst C was less than 50 mass ppm.
(酸化反応)
 触媒Aに代えて触媒Cを1.4g(1.1cm)用いたこと以外は(GHSV:8727h-1)、実施例1と同様の操作で酸化反応を行った。塩化水素の転化率と、エチレンに対する一酸化炭素及び二酸化炭素のそれぞれの収率を表1に示す。
(Oxidation reaction)
The oxidation reaction was carried out in the same manner as in Example 1 except that 1.4 g (1.1 cm 3 ) of catalyst C was used instead of catalyst A (GHSV: 8727h −1 ). Table 1 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to ethylene.
 実施例4
(触媒Dの調製)
 酸化チタン球〔堺化学(株)製のCS-300S-12、1~2mm粒径〕を空気流通下、室温から200℃に15分で昇温し、200℃から700℃まで1.7時間かけて昇温した後、同温度で2時間保持して焼成し、酸化チタン触媒Dを得た(アナターゼ型チタニア比率100%)。触媒Dのルテニウム含有量は、50質量ppm未満であった。
Example 4
(Preparation of catalyst D)
Titanium oxide spheres (CS-300S-12 manufactured by Sakai Chemical Co., Ltd., 1 to 2 mm particle size) were heated from room temperature to 200 ° C. over 15 minutes under air flow, and from 200 ° C. to 700 ° C. for 1.7 hours. And heated at the same temperature for 2 hours and calcined to obtain titanium oxide catalyst D (anatase-type titania ratio 100%). The ruthenium content of catalyst D was less than 50 mass ppm.
(反応)
 触媒Aに代えて触媒Dを1.4g(1.1cm)用いたこと以外は(GHSV:8727h-1)、実施例1と同様の操作で酸化反応を行った。塩化水素の転化率と、エチレンに対する一酸化炭素及び二酸化炭素のそれぞれの収率を表1に示す。
(reaction)
The oxidation reaction was carried out in the same manner as in Example 1 except that 1.4 g (1.1 cm 3 ) of catalyst D was used instead of catalyst A (GHSV: 8727h −1 ). Table 1 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to ethylene.
 実施例5
 窒素ガスにより2.0体積%に希釈されたエチレンガスに代え、窒素ガスにより1.0体積%に希釈された2-クロロプロパンガスを5.0ml/min(絶対圧力0.1MPa、0℃換算)の流量で供給した以外は、実施例4と同様の操作を行った。原料中の塩化水素に対する2-クロロプロパンの量は0.05体積%と計算される。塩化水素の転化率と、2-クロロプロパンに対する一酸化炭素及び二酸化炭素のそれぞれの収率を表2に示す。
Example 5
Instead of ethylene gas diluted to 2.0% by volume with nitrogen gas, 2-chloropropane gas diluted to 1.0% by volume with nitrogen gas is 5.0 ml / min (absolute pressure 0.1 MPa, converted to 0 ° C.) The same operation as in Example 4 was performed except that the flow rate was supplied. The amount of 2-chloropropane relative to hydrogen chloride in the feed is calculated to be 0.05% by volume. Table 2 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to 2-chloropropane.
 実施例6
 窒素ガスにより2.0体積%に希釈されたエチレンガスに代え、窒素ガスにより2.6体積%に希釈されたクロロメタンガスを3.9ml/min(絶対圧力0.1MPa、0℃換算)の流量で供給した以外は、実施例4と同様の操作を行った。原料中の塩化水素に対するクロロメタンの量は0.1体積%と計算される。塩化水素の転化率と、クロロメタンに対する一酸化炭素及び二酸化炭素のそれぞれの収率を表2に示す。
Example 6
Instead of ethylene gas diluted to 2.0% by volume with nitrogen gas, the flow rate of 3.9 ml / min (converted to absolute pressure 0.1 MPa, 0 ° C.) of chloromethane gas diluted to 2.6% by volume with nitrogen gas The same operation as in Example 4 was performed except that the above was supplied. The amount of chloromethane relative to hydrogen chloride in the feed is calculated to be 0.1% by volume. Table 2 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to chloromethane.
 実施例7
 窒素ガスにより2.0体積%に希釈されたエチレンガスに代え、窒素ガスにより15.0体積%に希釈された四塩化炭素を3.8ml/min(絶対圧力0.1MPa、0℃換算)の流量で供給した以外は、実施例4と同様の操作を行った。原料中の塩化水素に対する四塩化炭素の量は0.6体積%と計算される。塩化水素の転化率と、四塩化炭素に対する一酸化炭素及び二酸化炭素のそれぞれの収率を表2に示す。
Example 7
Instead of ethylene gas diluted to 2.0% by volume with nitrogen gas, carbon tetrachloride diluted to 15.0% by volume with nitrogen gas was 3.8 ml / min (absolute pressure 0.1 MPa, converted to 0 ° C.). The same operation as in Example 4 was performed except that it was supplied at a flow rate. The amount of carbon tetrachloride relative to hydrogen chloride in the raw material is calculated to be 0.6% by volume. Table 2 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to carbon tetrachloride.
 比較例1
(触媒Eの調製)
 硝酸セリウム水和物〔高純度化学(株)製〕4.2gを純水91.7gに溶解して調製した水溶液、硝酸ジルコニル水和物〔太陽鉱工(株)製〕0.64gを純水91.7gに溶解して調製した水溶液、及びクエン酸〔和光純薬工業(株)製〕5.1gを純水21.4gに溶解して調製した水溶液を混合した後、80℃で2時間攪拌し、次いで室温で1時間攪拌した。攪拌後、80℃、減圧下で水を留去し、得られた固体を80℃で乾燥した。乾燥後、乳鉢で粉砕し、次いで、空気中、500℃で2時間焼成した。該焼成物を乳鉢で粉砕し、粉末を打錠成形したのち粉砕し、1~2mmの顆粒状触媒とし、セリア・ジルコニア複合酸化物触媒Eを得た。
Comparative Example 1
(Preparation of catalyst E)
An aqueous solution prepared by dissolving 4.2 g of cerium nitrate hydrate [manufactured by High Purity Chemical Co., Ltd.] in 91.7 g of pure water, 0.64 g of zirconyl nitrate hydrate [manufactured by Taiyo Mining Co., Ltd.] An aqueous solution prepared by dissolving in 91.7 g of water and an aqueous solution prepared by dissolving 5.1 g of citric acid (manufactured by Wako Pure Chemical Industries, Ltd.) in 21.4 g of pure water were mixed, and then mixed at 80 ° C. Stir for hours and then at room temperature for 1 hour. After stirring, water was distilled off at 80 ° C. under reduced pressure, and the resulting solid was dried at 80 ° C. After drying, it was pulverized in a mortar and then baked in air at 500 ° C. for 2 hours. The fired product was pulverized in a mortar, and the powder was tableted and then pulverized to obtain a granular catalyst having a size of 1 to 2 mm. Thus, a ceria / zirconia composite oxide catalyst E was obtained.
(反応)
 触媒Aに代えて触媒Eを1.1g(0.9cm)用いた以外は、実施例1と同様の操作を行った。塩化水素の転化率と、エチレンに対する一酸化炭素及び二酸化炭素のそれぞれの収率を表1に示す。
(reaction)
The same operation as in Example 1 was performed except that 1.1 g (0.9 cm 3 ) of catalyst E was used instead of catalyst A. Table 1 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to ethylene.
 比較例2
(触媒Fの調製)
 シリカ・アルミナ〔日揮触媒化成(株)製のJRC-SAH-1〕を乳鉢で粉砕し、粉末を打錠成形したのち粉砕し、1~2mmの顆粒状触媒とし、シリカ・アルミナ触媒Fを得た。
Comparative Example 2
(Preparation of catalyst F)
Silica-alumina [JRC-SAH-1 manufactured by JGC Catalysts & Chemicals Co., Ltd.] is pulverized in a mortar, and the powder is tableted and then pulverized to obtain a 1 to 2 mm granular catalyst to obtain silica-alumina catalyst F. It was.
(反応)
 触媒Aに代えて触媒Fを1.3g(0.9cm)用いた以外は、実施例1と同様の操作を行った。塩化水素の転化率と、エチレンに対する一酸化炭素及び二酸化炭素のそれぞれの収率を表1に示す。
(reaction)
The same operation as in Example 1 was performed except that 1.3 g (0.9 cm 3 ) of catalyst F was used instead of catalyst A. Table 1 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to ethylene.
 比較例3
(触媒Gの調製)
 市販の酸化ルテニウム含有酸化チタン触媒〔NEケムキャット(株)製、酸化ルテニウム含有量6.6質量%(ルテニウム含有量5.0質量%)、アナターゼ型チタニア比率100%、1~2mm球〕を75~150μmに粉砕分級し、この粉末を触媒Gとした。
Comparative Example 3
(Preparation of catalyst G)
75 commercially available ruthenium oxide-containing titanium oxide catalyst (manufactured by NE Chemcat Co., Ltd., ruthenium oxide content 6.6 mass% (ruthenium content 5.0 mass%), anatase-type titania ratio 100%, 1 to 2 mm sphere) After pulverization and classification to ˜150 μm, this powder was used as catalyst G.
(反応)
 触媒Aに代えて触媒Gを0.9g(0.9cm)用いた以外は、実施例1と同様の操作を行った。塩化水素の転化率と、エチレンに対する一酸化炭素及び二酸化炭素のそれぞれの収率を表1に示す。
(reaction)
The same operation as in Example 1 was performed except that 0.9 g (0.9 cm 3 ) of catalyst G was used instead of catalyst A. Table 1 shows the conversion rate of hydrogen chloride and the yields of carbon monoxide and carbon dioxide with respect to ethylene.
 比較例4
(触媒Hの調製)
 酸化チタン粉末〔昭和タイタニウム(株)製のF-1R、ルチル型酸化チタン比率93%〕100部、セランダー〔ユケン工業(株)製のYB-152A〕0.5部及びシュガーエステル〔三菱化学フーズ(株) S-1570〕2部を混合し、次いで純水25.5部、酸化チタンゾル〔堺化学(株)製のCSB、酸化チタン含有量40%〕12.5部を加えて混練した。この混合物を直径3.0mmφのヌードル状に押出し、110℃で2時間乾燥した後、長さ3~5mm程度に破砕した。得られた成形体を、空気中で室温から600℃まで1.7時間かけて昇温した後、同温度で3時間保持して焼成した。さらに得られた焼成物の内900gに、オルトケイ酸テトラエチル〔和光純薬工業(株)製のSi(OC〕31.9gをエタノール137.7gに溶解して調製した溶液を含浸させ、空気雰囲気下、22℃で3.3時間放置した。得られた固体900gを、空気流通下、室温から300℃まで2時間かけて昇温した後、同温度で2時間保持して焼成し、シリカの含有量が1.0%である白色の酸化チタン担体898g〔ルチル型チタニア比率90%以上、ナトリウム含有量12質量ppm、カルシウム含有量8質量ppm〕を得た。この酸化チタン担体90.0gに、塩化ルテニウム水和物〔NEケムキャット(株)製のRuCl・nHO、Ru含有量40.0質量%〕2.16gを純水20.5gに溶解して調製した水溶液を含浸させ、空気雰囲気下、35℃で6.2時間放置した。得られた固体の18.2gを、空気流下、室温から250℃まで1.3時間かけて昇温した後、同温度で2時間保持して焼成し、酸化ルテニウムの含有量が1.25質量%(ルテニウム含有量0.95質量%)である酸化チタン触媒Hを得た。
Comparative Example 4
(Preparation of catalyst H)
Titanium oxide powder [F-1R, Showa Titanium Co., Ltd., rutile-type titanium oxide ratio 93%] 100 parts, Serander [YB-152A, Yuken Kogyo Co., Ltd.] 0.5 parts and sugar ester [Mitsubishi Chemical Foods S-1570] 2 parts were mixed, and then 25.5 parts of pure water and 12.5 parts of titanium oxide sol [CSB manufactured by Sakai Chemical Co., Ltd., titanium oxide content 40%] were added and kneaded. This mixture was extruded into a noodle shape having a diameter of 3.0 mmφ, dried at 110 ° C. for 2 hours, and then crushed to a length of about 3 to 5 mm. The obtained molded body was heated in air from room temperature to 600 ° C. over 1.7 hours and then calcined by holding at the same temperature for 3 hours. Further, 900 g of the obtained fired product was impregnated with a solution prepared by dissolving 31.9 g of tetraethyl orthosilicate [Si (OC 2 H 5 ) 4 ] manufactured by Wako Pure Chemical Industries, Ltd. in 137.7 g of ethanol. And allowed to stand at 22 ° C. for 3.3 hours in an air atmosphere. 900 g of the obtained solid was heated from room temperature to 300 ° C. over 2 hours under air flow, then held at the same temperature for 2 hours and calcined, and white oxidation with a silica content of 1.0% As a result, 898 g of a titanium carrier (rutile-type titania ratio of 90% or more, sodium content of 12 mass ppm, calcium content of 8 mass ppm) was obtained. In 90.0 g of this titanium oxide carrier, 2.16 g of ruthenium chloride hydrate (Ne Chemcat Co., Ltd. RuCl 3 · nH 2 O, Ru content 40.0 mass%) was dissolved in 20.5 g of pure water. The resulting aqueous solution was impregnated and allowed to stand at 35 ° C. for 6.2 hours in an air atmosphere. 18.2 g of the obtained solid was heated from room temperature to 250 ° C. over 1.3 hours under air flow, and then calcined by holding at the same temperature for 2 hours, so that the ruthenium oxide content was 1.25 mass. % (Ruthenium content 0.95 mass%) of titanium oxide catalyst H was obtained.
(反応)
 触媒Aに代えて触媒Hを1.1g(0.9cm)用いた以外は、実施例1と同様の操作を行った。原料中の塩化水素の転化率と、エチレンに対する一酸化炭素及び二酸化炭素のそれぞれの収率を表1に示す。
(reaction)
The same operation as in Example 1 was performed except that 1.1 g (0.9 cm 3 ) of catalyst H was used instead of catalyst A. Table 1 shows the conversion rate of hydrogen chloride in the raw material and the yields of carbon monoxide and carbon dioxide with respect to ethylene.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (7)

  1.  ルテニウムの含有量が0.1質量%以下である酸化チタンを含む触媒の存在下、有機化合物、塩化水素及び酸素を含む混合ガス中の有機化合物を酸素により酸化する方法。 A method of oxidizing an organic compound in a mixed gas containing an organic compound, hydrogen chloride and oxygen with oxygen in the presence of a catalyst containing titanium oxide having a ruthenium content of 0.1% by mass or less.
  2.  前記酸化チタンが、アナターゼ結晶形酸化チタンを含有する請求項1に記載の方法。 The method according to claim 1, wherein the titanium oxide contains anatase crystalline titanium oxide.
  3.  X線回折法により測定される前記酸化チタン中のアナターゼ結晶形酸化チタンの比率が、アナターゼ結晶形酸化チタン及びルチル結晶形酸化チタンの合計に対し20%以上である請求項2に記載の方法。 The method according to claim 2, wherein the ratio of the anatase crystalline titanium oxide in the titanium oxide measured by X-ray diffraction method is 20% or more based on the total of the anatase crystalline titanium oxide and the rutile crystalline titanium oxide.
  4.  前記有機化合物が脂肪族炭化水素、塩素化脂肪族炭化水素及びホスゲンからなる群より選ばれる少なくとも1種である請求項1に記載の方法。 The method according to claim 1, wherein the organic compound is at least one selected from the group consisting of aliphatic hydrocarbons, chlorinated aliphatic hydrocarbons and phosgene.
  5.  前記脂肪族炭化水素がエチレンである請求項4に記載の方法。 The method according to claim 4, wherein the aliphatic hydrocarbon is ethylene.
  6.  前記塩素化脂肪族炭化水素が2-クロロプロパン、クロロメタン及び四塩化炭素からなる群より選ばれる少なくとも1種である請求項4に記載の方法。 The method according to claim 4, wherein the chlorinated aliphatic hydrocarbon is at least one selected from the group consisting of 2-chloropropane, chloromethane, and carbon tetrachloride.
  7.  酸化温度が、250~450℃である請求項1~6のいずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein the oxidation temperature is 250 to 450 ° C.
PCT/JP2011/052827 2010-02-12 2011-02-10 Method for oxidizing organic compound WO2011099543A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011100519T DE112011100519T5 (en) 2010-02-12 2011-02-10 Process for oxidizing an organic compound
CN201180008867.6A CN102762298B (en) 2010-02-12 2011-02-10 Method for oxidizing organic compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010028641A JP5365540B2 (en) 2010-02-12 2010-02-12 Method for oxidizing organic compounds
JP2010-028641 2010-02-12

Publications (1)

Publication Number Publication Date
WO2011099543A1 true WO2011099543A1 (en) 2011-08-18

Family

ID=44367813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052827 WO2011099543A1 (en) 2010-02-12 2011-02-10 Method for oxidizing organic compound

Country Status (4)

Country Link
JP (1) JP5365540B2 (en)
CN (1) CN102762298B (en)
DE (1) DE112011100519T5 (en)
WO (1) WO2011099543A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001065A (en) * 2000-06-21 2002-01-08 Nkk Corp Decomposition catalyst and decomposition method for organic chlorine compound
JP2005289800A (en) * 2004-03-22 2005-10-20 Sumitomo Chemical Co Ltd Method of producing chlorine
JP2007021484A (en) * 2005-06-13 2007-02-01 Sumitomo Chemical Co Ltd Method for manufacturing oxidizing catalyst, method for manufacturing chlorine, and method for oxidizing carbon monoxide and/or unsaturated hydrocarbon
JP2007144392A (en) * 2005-10-28 2007-06-14 Sumitomo Chemical Co Ltd Manufacturing method of oxidizing catalyst, manufacturing method of chlorine, and oxidizing method of carbon monoxide and/or unsaturated hydrocarbon
JP2008006323A (en) * 2006-06-27 2008-01-17 Tokuyama Corp Catalyst for decomposing halogenated aliphatic hydrocarbon
JP2009001459A (en) * 2007-06-21 2009-01-08 Sumitomo Chemical Co Ltd Method of producing hydrogen chloride and method of producing chlorine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617203B2 (en) 1986-04-08 1994-03-09 三井東圧化学株式会社 Chlorine production method
NO961970L (en) * 1995-05-18 1996-11-19 Sumitomo Chemical Co Process for the production of chlorine
JP3284879B2 (en) 1995-05-18 2002-05-20 住友化学工業株式会社 Method for producing chlorine
JP3799852B2 (en) * 1998-04-07 2006-07-19 住友化学株式会社 Supported ruthenium oxide catalyst and method for producing chlorine
CN1636642A (en) * 2003-12-12 2005-07-13 长田技研株式会社 Oxidizing or decomposing method for organism and apparatus for treating burned waste gas
JP5281839B2 (en) 2008-07-23 2013-09-04 パナソニック株式会社 Image composition coding method, image composition coding apparatus, and imaging system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001065A (en) * 2000-06-21 2002-01-08 Nkk Corp Decomposition catalyst and decomposition method for organic chlorine compound
JP2005289800A (en) * 2004-03-22 2005-10-20 Sumitomo Chemical Co Ltd Method of producing chlorine
JP2007021484A (en) * 2005-06-13 2007-02-01 Sumitomo Chemical Co Ltd Method for manufacturing oxidizing catalyst, method for manufacturing chlorine, and method for oxidizing carbon monoxide and/or unsaturated hydrocarbon
JP2007144392A (en) * 2005-10-28 2007-06-14 Sumitomo Chemical Co Ltd Manufacturing method of oxidizing catalyst, manufacturing method of chlorine, and oxidizing method of carbon monoxide and/or unsaturated hydrocarbon
JP2008006323A (en) * 2006-06-27 2008-01-17 Tokuyama Corp Catalyst for decomposing halogenated aliphatic hydrocarbon
JP2009001459A (en) * 2007-06-21 2009-01-08 Sumitomo Chemical Co Ltd Method of producing hydrogen chloride and method of producing chlorine

Also Published As

Publication number Publication date
JP2011162498A (en) 2011-08-25
JP5365540B2 (en) 2013-12-11
CN102762298B (en) 2014-09-03
CN102762298A (en) 2012-10-31
DE112011100519T5 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
US8889578B2 (en) Processes for regenerating sulfur-poisoned, ruthenium and/or ruthenium compound-containing catalysts
US20100266481A1 (en) Processes for the oxidation of a gas containing hydrogen chloride
JP2014534062A (en) Catalyst and method for producing chlorine by gas phase oxidation
JP5189954B2 (en) Chlorine production method
US9186652B2 (en) Process for producing supported ruthenium on silica modified titania and process for producing chlorine
JP4438771B2 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP4839661B2 (en) Chlorine production method
JP2006500216A (en) Catalysts for the catalytic oxidation of hydrogen chloride
JP2010094672A (en) Catalyst and method for producing chlorine by gas phase oxidation
EP3900827A1 (en) Hydrogen chloride oxidation reaction catalyst for preparing chlorine, and preparation method therefor
JP5365540B2 (en) Method for oxidizing organic compounds
JP5249716B2 (en) Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP2002226205A (en) Oxidation method for carbon monoxide
JP4487975B2 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP5041848B2 (en) Method for treating halogenated aliphatic hydrocarbon-containing gas
WO2012133054A1 (en) Process for producing bromine
WO2010021407A1 (en) Method for producing chlorine and catalyst
JP5267305B2 (en) Chlorine production method
JP2012193130A (en) Method of producing halogenated propane
JP2011162382A (en) Method for producing chlorine
JP2012091977A (en) Method for producing chlorine
JP5249717B2 (en) Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
WO2010137505A1 (en) Method for activating catalyst for chlorine production and method for producing chlorine
JP2004182557A (en) Manufacturing method for chlorine
WO2012090869A1 (en) Process for producing supported ruthenium oxide and process for producing chlorine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008867.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742286

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011100519

Country of ref document: DE

Ref document number: 1120111005199

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742286

Country of ref document: EP

Kind code of ref document: A1