JP3284879B2 - Method for producing chlorine - Google Patents
Method for producing chlorineInfo
- Publication number
- JP3284879B2 JP3284879B2 JP11629096A JP11629096A JP3284879B2 JP 3284879 B2 JP3284879 B2 JP 3284879B2 JP 11629096 A JP11629096 A JP 11629096A JP 11629096 A JP11629096 A JP 11629096A JP 3284879 B2 JP3284879 B2 JP 3284879B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- ruthenium
- oxide
- reaction
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Catalysts (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、塩素の製造方法に
関するものである。更に詳しくは、本発明は、塩化水素
を酸化して塩素を製造する方法であって、活性の高い触
媒を使用し、より少量の触媒でより低い反応温度で塩素
を製造できるという特徴を有する塩素の製造方法を提供
する点に存するものである。[0001] The present invention relates to a method for producing chlorine. More specifically, the present invention relates to a method for producing chlorine by oxidizing hydrogen chloride, which is characterized by using a highly active catalyst and producing chlorine at a lower reaction temperature with a smaller amount of catalyst. The present invention is to provide a manufacturing method of the above.
【0002】[0002]
【従来の技術】塩素は塩化ビニル、ホスゲンなどの原料
として有用であり、塩化水素の酸化によって得られるこ
ともよく知られている。たとえば、特開昭62−270
405号公報には、酸化クロム触媒を用いて塩化水素を
酸化する方法が記載されている。しかしながら、従来知
られている方法では触媒の活性が不十分であるという問
題があった。2. Description of the Related Art It is well known that chlorine is useful as a raw material for vinyl chloride, phosgene and the like, and is obtained by oxidation of hydrogen chloride. For example, Japanese Patent Laid-Open No. 62-270
No. 405 describes a method for oxidizing hydrogen chloride using a chromium oxide catalyst. However, the conventionally known method has a problem that the activity of the catalyst is insufficient.
【0003】触媒の活性が低い場合にはより高温の反応
温度が要求されるが、塩化水素を酸素によって酸化して
塩素を製造する反応はより高温の場合、平衡的に不利と
なる。よって、触媒が高活性であれば、反応温度を下げ
ることができるので、反応は平衡的に有利になる。[0003] Higher reaction temperatures are required when the activity of the catalyst is low, but the reaction of oxidizing hydrogen chloride with oxygen to produce chlorine is disadvantageously equilibrium at higher temperatures. Therefore, if the catalyst has high activity, the reaction temperature can be lowered, and the reaction becomes equilibrium advantageous.
【0004】また、従来、一般の酸素酸化反応に担持ル
テニウム触媒を用いると、高温において高酸化状態のル
テニウムが揮散するという問題があった。Conventionally, when a supported ruthenium catalyst is used in a general oxygen oxidation reaction, there is a problem that ruthenium in a highly oxidized state volatilizes at a high temperature.
【0005】[0005]
【発明が解決しようとする課題】かかる状況の下、本発
明が解決しようとする課題は、塩化水素を酸化して塩素
を製造する方法であって、活性の高い触媒を使用し、よ
り少量の触媒でより低い反応温度で塩素を製造できると
いう特徴を有する塩素の製造方法を提供する点に存する
ものである。Under such circumstances, an object of the present invention is to provide a method for producing chlorine by oxidizing hydrogen chloride, using a highly active catalyst and reducing the amount of chlorine. An object of the present invention is to provide a method for producing chlorine, which is characterized in that chlorine can be produced at a lower reaction temperature with a catalyst.
【0006】より低温で反応を行うことによって平衡的
により有利な反応条件を選ぶことができる。By conducting the reaction at a lower temperature, more favorable reaction conditions can be selected in equilibrium.
【0007】また、本発明による触媒を用いることによ
って、より低い温度で反応を行うことができるので、従
来問題になっていたルテニウムの揮散もより抑制するこ
とができる。さらに本発明による触媒においては、ルテ
ニウムが揮散しにくい性質を持っているので、従来問題
になっていた反応中の活性成分の消失が起こらないとい
う利点もある。Further, by using the catalyst according to the present invention, the reaction can be carried out at a lower temperature, so that the volatilization of ruthenium, which has conventionally been a problem, can be further suppressed. Further, in the catalyst according to the present invention, since ruthenium is hardly volatilized, there is also an advantage that the active component, which has conventionally been a problem, does not disappear during the reaction.
【0008】[0008]
【課題を解決するための手段】すなわち本発明は、塩化
水素を酸素によって酸化して塩素を製造するにあたり、
担持金属ルテニウム触媒、酸化ルテニウム触媒又はルテ
ニウム複合酸化物触媒を使用することを特徴とする塩素
の製造方法に係るものである。Means for Solving the Problems] The present invention is, per the producing chlorine by oxidizing hydrogen chloride with oxygen,
The present invention relates to a method for producing chlorine, wherein a supported metal ruthenium catalyst, a ruthenium oxide catalyst, or a ruthenium composite oxide catalyst is used.
【0009】[0009]
【発明の実施の形態】本発明において用いられる触媒
は、担持金属ルテニウム触媒、酸化ルテニウム触媒又は
ルテニウム複合酸化物触媒である。DETAILED DESCRIPTION OF THE INVENTION The catalyst used in the present invention may be a supported metal ruthenium catalyst, a ruthenium oxide catalyst or
It is a ruthenium composite oxide catalyst .
【0010】担持金属ルテニウム触媒としては、アルミ
ナ、シリカ、シリカアルミナ、ゼオライト、ケイソウ
土、あるいは酸化チタン、酸化ジルコニウム、酸化バナ
ジウムなどの元素の酸化物及び複合酸化物、あるいは金
属硫酸塩などの担体に公知の方法(例えば、触媒講座
触媒実験ハンドブック,1986年,第20頁,講談
社)で担持して調製した担持金属ルテニウム触媒があげ
られるが、市販の触媒でもよい。担持触媒に使用される
担体としては、酸化チタン、アルミナ、酸化ジルコニウ
ム、ゼオライト、シリカ、チタン複合酸化物、ジルコニ
ウム複合酸化物、アルミニウム複合酸化物が好ましく、
酸化チタン、酸化ジルコニウム、アルミナがより好まし
く用いられる。Examples of the supported metal ruthenium catalyst include alumina, silica, silica alumina, zeolite, diatomaceous earth, oxides and composite oxides of elements such as titanium oxide, zirconium oxide and vanadium oxide, and carriers such as metal sulfate. Known methods (for example, catalyst course
Supported metal ruthenium catalysts prepared and supported by Catalyst Experiment Handbook, 1986, page 20, Kodansha), but commercially available catalysts may be used. As the carrier used for the supported catalyst, titanium oxide, alumina, zirconium oxide, zeolite, silica, titanium composite oxide, zirconium composite oxide, aluminum composite oxide is preferable,
Titanium oxide, zirconium oxide, and alumina are more preferably used.
【0011】ルテニウムの担体に対する比率は、通常
0.1〜20重量%である。なお、ルテニウム以外の第
三成分を添加することもでき、第三成分としては、パラ
ジウム、銅化合物、クロム化合物、バナジウム化合物、
アルカリ金属化合物、稀土類化合物、マンガン化合物、
アルカリ土類化合物などがあげられる。第三成分の添加
量は、担体に対する比率として通常0.1〜10重量%
である。担持金属ルテニウム触媒は還元処理して用いる
こともできるし、酸化処理して用いることもできる。酸
化ルテニウム触媒としては、二酸化ルテニウム、水酸化
ルテニウムなどの酸化ルテニウム、あるいは、公知の方
法(例えば、元素別触媒便覧 1978年、第544
頁、地人書館)で調製した二酸化ルテニウム触媒、水酸
化ルテニウム触媒などがあげられるが、市販の二酸化ル
テニウムでもよい。また、ハロゲン化酸化物など酸化ル
テニウムに他の元素が結合した化合物もあげられる。The ratio of ruthenium to the carrier is usually from 0.1 to 20% by weight. Note that a third component other than ruthenium can be added, and as the third component, palladium, a copper compound, a chromium compound, a vanadium compound,
Alkali metal compounds, rare earth compounds, manganese compounds,
Alkaline earth compounds and the like. The addition amount of the third component is usually 0.1 to 10% by weight as a ratio to the carrier.
It is. The supported metal ruthenium catalyst may be used after being subjected to a reduction treatment, or may be used after being subjected to an oxidation treatment. As the ruthenium oxide catalyst, ruthenium oxide such as ruthenium dioxide or ruthenium hydroxide, or a known method (for example, Catalyst Handbook by Element, 1978, No. 544)
Page, Jinjinshokan), ruthenium hydroxide catalyst and the like, and commercially available ruthenium dioxide may be used. Further, a compound in which another element is bonded to ruthenium oxide such as a halogenated oxide may also be used.
【0012】調製方法としては、たとえば、RuCl3
の水溶液にアルカリを加えて、水酸化ルテニウムを沈殿
させ、洗浄後、焼成して二酸化ルテニウムを得る方法な
どがあげられる。また、酸化ルテニウムを担体に担持し
た触媒も好ましい例としてあげられる。担体としては、
酸化チタン、アルミナ、酸化ジルコニウム、シリカ、チ
タン複合酸化物、ジルコニウム複合酸化物、アルミニウ
ム複合酸化物、珪素複合酸化物などの元素の酸化物、お
よび複合酸化物があげられる。酸化ルテニウムと担体の
比率は、通常、0.1/99.9から70/30の間で
ある。担持する化合物としては酸化ルテニウム、水酸化
ルテニウム、ハロゲン化酸化ルテニウムなどが例として
あげられる。担持方法としては、RuCl3 の水溶液を
担体に含浸させた後に、アルカリを加え、担体上に水酸
化ルテニウムを析出させ、空気中で焼成して、酸化ルテ
ニウムを担持する方法や、担体にRuCl3 の水溶液を
含浸させて、乾燥させた後に、空気中で焼成して酸化分
解して、酸化ルテニウムを担持する方法などが例として
あげられる。担持したものの焼成は100〜500℃
下、30分〜5時間程度が通常である。As a preparation method, for example, RuCl 3
A method of precipitating ruthenium hydroxide by adding an alkali to an aqueous solution of the above, washing and firing, to obtain ruthenium dioxide. Further, a catalyst in which ruthenium oxide is supported on a carrier is also a preferred example. As a carrier,
Examples thereof include oxides of elements such as titanium oxide, alumina, zirconium oxide, silica, titanium composite oxide, zirconium composite oxide, aluminum composite oxide, and silicon composite oxide, and composite oxides. The ratio of ruthenium oxide to the support is usually between 0.1 / 99.9 and 70/30. Examples of the compound to be supported include ruthenium oxide, ruthenium hydroxide, and ruthenium halide oxide. As carrier method, an aqueous solution of RuCl 3 after impregnating the support, the alkali is added to precipitate ruthenium hydroxide on the carrier, and then calcined in air, a method of carrying ruthenium oxide, RuCl 3 to the carrier After impregnating with an aqueous solution and drying, baking in air and oxidatively decomposing to carry ruthenium oxide. 100-500 ° C for firing
Below, about 30 minutes to 5 hours are normal.
【0013】ルテニウム複合酸化物触媒としては、酸化
チタン、酸化ジルコニウム、アルミナ、シリカ、酸化バ
ナジウム、酸化ホウ素、酸化クロム、酸化ニオブ、酸化
ハフニウム、酸化タンタル、酸化タングステンなどの酸
化物の一種以上の酸化物と酸化ルテニウムを複合化させ
た触媒があげられるが、酸化ルテニウムを複合化させる
化合物としては、上記の化合物に限定されるわけではな
く、銅クロマイトなどの種々の複合酸化物も例としてあ
げられる。The ruthenium composite oxide catalyst includes one or more oxides such as titanium oxide, zirconium oxide, alumina, silica, vanadium oxide, boron oxide, chromium oxide, niobium oxide, hafnium oxide, tantalum oxide, and tungsten oxide. Catalysts in which an oxide and ruthenium oxide are complexed.Examples of the compound in which ruthenium oxide is complexed are not limited to the above compounds, and various complex oxides such as copper chromite can also be mentioned as examples. .
【0014】ルテニウムを複合化する方法としては、チ
タンなどの塩化物、オキシ塩化物、硝酸塩、オキシ硝酸
塩、オキシ酸のアルカリ塩、硫酸塩、アルコキシドなど
を加水分解したものに、塩化ルテニウムなどのルテニウ
ム化合物を加水分解したものを加え、濾過、洗浄し、空
気中で焼成するなどの方法があげられる。As a method of compounding ruthenium, ruthenium such as ruthenium chloride or the like is obtained by hydrolyzing chlorides such as titanium, oxychlorides, nitrates, oxynitrates, alkali salts of oxyacids, sulfates, alkoxides and the like. A method in which a compound obtained by hydrolyzing a compound is added, followed by filtration, washing, and calcination in air may be used.
【0015】ルテニウム化合物としては、ルテニム塩化
物などルテニウム化合物を担体に担持した触媒の例であ
げた化合物が例示されるが、好ましくはRuCl3 、R
uCl3 水和物があげられる。酸化ルテニウムを複合化
する酸化物の好ましい例としては酸化チタン、酸化ジル
コニウム、アルミナ、シリカ、チタン複合酸化物、ジル
コニウム複合酸化物、アルミニウム複合酸化物、シリコ
ン複合酸化物があげられる。また、ルテニウム複合酸化
物を担体に担持する方法としては、チタンなどの塩化
物、硝酸塩などと塩化ルテニウムなどのルテニウム化合
物を担体に含浸した後に、空気中で焼成するなどの方法
があげられる。担体としては酸化チタン、アルミナ、シ
リカ、酸化ジルコニウムあるいはこれらの複合酸化物が
あげられる。Examples of the ruthenium compound include the compounds described above as examples of the catalyst in which a ruthenium compound such as ruthenium chloride is supported on a carrier, and preferably, RuCl 3 , R 2
uCl 3 hydrate. Preferable examples of the oxide that forms ruthenium oxide include titanium oxide, zirconium oxide, alumina, silica, titanium composite oxide, zirconium composite oxide, aluminum composite oxide, and silicon composite oxide. Examples of the method of supporting the ruthenium composite oxide on a carrier include a method of impregnating the carrier with a chloride such as titanium, a nitrate or the like and a ruthenium compound such as ruthenium chloride, followed by firing in air. Examples of the carrier include titanium oxide, alumina, silica, zirconium oxide and composite oxides thereof.
【0016】ルテニウム複合酸化物に含まれる酸化ルテ
ニウムの含量は、通常0.1〜80重量%である。な
お、第三成分を添加することもでき、第三成分として
は、パラジウム化合物、銅化合物、クロム化合物、バナ
ジウム化合物、アルカリ金属化合物、希土類化合物、マ
ンガン化合物、アルカリ土類化合物などがあげられる。
第三成分の添加量は、ルテニウム複合酸化物重量に対す
る比率として通常0.1〜10重量%である。The content of ruthenium oxide contained in the ruthenium composite oxide is usually from 0.1 to 80% by weight. In addition, a third component can be added, and examples of the third component include a palladium compound, a copper compound, a chromium compound, a vanadium compound, an alkali metal compound, a rare earth compound, a manganese compound, and an alkaline earth compound.
The amount of the third component is usually 0.1 to 10% by weight based on the weight of the ruthenium composite oxide.
【0017】ルテニウム複合酸化物の調製方法として
は、共沈法、沈殿の混合による方法、含浸法などがあげ
られる。また、ルテニウム複合酸化物を焼成して調製す
る条件としては、200℃〜1000℃下、1時間〜5
時間程度が通常である。Examples of the method for preparing the ruthenium composite oxide include a coprecipitation method, a method by mixing precipitation, and an impregnation method. Conditions for preparing the ruthenium composite oxide by firing are as follows: 200 ° C. to 1000 ° C., 1 hour to 5 hours.
Time is normal.
【0018】ルテニウム複合酸化物を担体に担持する方
法としては、含浸法、沈殿担持法などがあげられる。ま
た、担持したものの焼成は、同様に200℃〜1000
℃下、1時間〜5時間程度が通常である。好ましくは3
00〜500℃で焼成したものがあげられる。焼成雰囲
気としては窒素、空気などがあげられる。The method of supporting the ruthenium composite oxide on a carrier includes an impregnation method and a precipitation supporting method. In addition, the sintering of the supported material is similarly performed at 200 ° C. to 1000 ° C.
The temperature is usually about 1 hour to 5 hours under a temperature of ° C. Preferably 3
What baked at 00-500 degreeC is mentioned. Examples of the firing atmosphere include nitrogen and air.
【0019】上記以外の触媒としては、公知の方法(例
えば、「触媒調製化学」1980,第233頁,講談
社)で調製されたルテニウムブラックや担持率20重量
%を超えるルテニウムを含有する担持触媒などがあげら
れる。Examples of the catalyst other than the above include ruthenium black prepared by a known method (for example, “Catalyst Preparation Chemistry” 1980, p. 233, Kodansha) and a supported catalyst containing ruthenium having a loading of more than 20% by weight. Is raised.
【0020】本発明は、ルテニウム触媒を用いて、塩化
水素を酸素により酸化することにより塩素を得るもので
ある。塩素を得るにあたり、反応方式としては流通方式
があげられ、通常固定床気相流通方式が好ましく採用さ
れる。反応温度は、高温の場合、高酸化状態のルテニウ
ム酸化物の揮散が生じるのでより低い温度で反応するこ
とが望まれるが、通常100〜500℃、好ましくは2
00〜380℃があげられる。反応圧は通常大気圧〜5
0気圧程度である。酸素原料としては、空気をそのまま
使用してもよいし、純酸素を使用してもよいが、好まし
くは不活性な窒素ガスを装置外に放出する際に他の成分
も同時に放出されるので不活性ガスを含まない純酸素が
あげられる。塩化水素に対する酸素の理論モル量は1/
4モルであるが、理論量の0.1〜10倍供給するのが
通常である。また、触媒の使用量は、固定床気相流通方
式の場合で、大気圧下原料塩化水素の供給速度との比G
HSVで表わすと、通常10〜20000h-1程度であ
る。According to the present invention, chlorine is obtained by oxidizing hydrogen chloride with oxygen using a ruthenium catalyst. In obtaining chlorine, a flow system is mentioned as a reaction system, and a fixed bed gas phase flow system is usually preferably employed. When the reaction temperature is high, it is desired that the reaction be performed at a lower temperature because volatilization of the ruthenium oxide in a high oxidation state occurs.
00 to 380 ° C. Reaction pressure is usually from atmospheric pressure to 5
It is about 0 atm. As the oxygen source, air may be used as it is, or pure oxygen may be used. However, it is not preferable because other components are simultaneously released when the inert nitrogen gas is released outside the apparatus. Pure oxygen containing no active gas can be used. The theoretical molar amount of oxygen to hydrogen chloride is 1 /
Although it is 4 mol, it is usual to supply 0.1 to 10 times the theoretical amount. The amount of the catalyst used is the ratio G to the feed rate of the raw material hydrogen chloride under atmospheric pressure in the case of the fixed bed gas phase flow system.
When expressed in HSV, it is usually about 10 to 20000 h -1 .
【0021】[0021]
【実施例】以下に実施例に基づいて本発明をより詳細に
説明するが、本発明はこれら実施例より限定されるもの
ではない。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
【0022】実施例1 次の方法により触媒を調製した。すなわち、氷冷したフ
ラスコに水8.6gを入れ、撹拌下に、市販の四塩化チ
タン7.6gを滴下し、四塩化チタン水溶液を調製し
た。次に、市販のオキシ塩化ジルコニウム8水和物1
3.1gを水43.3gに溶解したものを、既に調製し
た四塩化チタン水溶液に撹拌下、滴下し、均一溶液を調
製した。その溶液に、硫酸アンモニウム13.4gと水
26.8gからなる溶液に36%塩酸1.1gを加えた
ものを注入し、撹拌し、均一溶液を調製した。次に、そ
の均一溶液を70℃に加熱し、撹拌しながら25重量%
アンモニア水溶液30.3gを徐々に滴下した。滴下す
るに従って、白色沈殿が生成した。滴下終了後、同温度
で1時間撹拌した。撹拌終了後、沈殿を濾過し、蒸留水
300mlで洗浄し、再度濾過した。この操作を3回繰
り返した後、150mlの水に懸濁させた。次に、市販
の塩化ルテニウム水和物(RuCl3 ・nH2 O)9.
74gを水60gに溶解したものと水酸化ナトリウム
(含量96%)5.2gを水20gに溶解したものを混
合し、撹拌した後、直ちに既に調製した懸濁液に、撹拌
下、滴下した。水40mlを追加した。滴下終了後、6
1重量%の硝酸2.2gを水30gで希釈した溶液を滴
下し、室温で1時間撹拌した。撹拌終了後、黒色沈殿を
濾過し、蒸留水300mlで洗浄し、再度濾過した。こ
の操作を3回繰り返した後、60℃で4時間乾燥し、1
6.3gの黒色固体を得た。この固体を粉砕し、空気中
で室温から350℃まで3.5時間で昇温し、同温度
で、3時間焼成することにより、13.5gの黒色触媒
を得た。以上の方法と同様の方法で同じ触媒をさらに5
5.4g得た。なお、酸化ルテニウム含量の計算値は3
6重量%であった。この粉体を成形し、12〜18.5
メッシュとすることにより、酸化ルテニウム酸化チタン
酸化ジルコニウム触媒を得た。この様にして得られた酸
化ルテニウム酸化チタン酸化ジルコニウム触媒を石英製
反応管(内径22mm)に46.8g充填した。塩化水
素ガスを19.0ml/min、酸素ガスを9.3ml
/min(いずれも0℃、1気圧換算)常圧下に供給し
た。石英反応管を電気炉で加熱し、内温(ホットスポッ
ト)を265℃とした。反応開始6時間後の時点で、反
応管出口のガスを30%ヨウ化カリウム水溶液に流通さ
せることによりサンプリングを行い、ヨウ素滴定法およ
び中和滴定法によりそれぞれ塩素の生成量および未反応
塩化水素量を測定した。その結果、塩化水素の転化率は
95.9%であった。Example 1 A catalyst was prepared by the following method. That is, 8.6 g of water was placed in an ice-cooled flask, and 7.6 g of commercially available titanium tetrachloride was added dropwise with stirring to prepare an aqueous solution of titanium tetrachloride. Next, commercially available zirconium oxychloride octahydrate 1
A solution prepared by dissolving 3.1 g in 43.3 g of water was added dropwise to an already prepared aqueous solution of titanium tetrachloride with stirring to prepare a homogeneous solution. A solution consisting of 13.4 g of ammonium sulfate and 26.8 g of water and 1.1 g of 36% hydrochloric acid was added to the solution, and the mixture was stirred to prepare a uniform solution. Next, the homogeneous solution was heated to 70 ° C., and 25% by weight while stirring.
30.3 g of an aqueous ammonia solution was gradually added dropwise. As the solution was added, a white precipitate was formed. After the addition, the mixture was stirred at the same temperature for 1 hour. After completion of the stirring, the precipitate was filtered, washed with 300 ml of distilled water, and filtered again. After repeating this operation three times, the resultant was suspended in 150 ml of water. Next, commercially available ruthenium chloride hydrate (RuCl 3 .nH 2 O) 9.
A solution prepared by dissolving 74 g in 60 g of water and a solution prepared by dissolving 5.2 g of sodium hydroxide (content 96%) in 20 g of water were mixed, stirred, and immediately added dropwise to the already prepared suspension with stirring. 40 ml of water were added. After dropping, 6
A solution prepared by diluting 2.2 g of 1% by weight nitric acid with 30 g of water was added dropwise and stirred at room temperature for 1 hour. After completion of the stirring, the black precipitate was filtered, washed with 300 ml of distilled water, and filtered again. After repeating this operation three times, drying at 60 ° C. for 4 hours
6.3 g of a black solid were obtained. The solid was pulverized, heated in the air from room temperature to 350 ° C. for 3.5 hours, and calcined at the same temperature for 3 hours to obtain 13.5 g of a black catalyst. The same catalyst is used for another 5 times in the same manner as above.
5.4 g were obtained. The calculated value of the ruthenium oxide content was 3
It was 6% by weight. This powder is molded and 12 to 18.5
By forming a mesh, a ruthenium oxide titanium oxide zirconium oxide catalyst was obtained. 46.8 g of the thus obtained ruthenium oxide titanium oxide zirconium oxide catalyst was charged into a quartz reaction tube (22 mm inner diameter). 19.0 ml / min of hydrogen chloride gas and 9.3 ml of oxygen gas
/ Min (all at 0 ° C., 1 atm) and supplied under normal pressure. The quartz reaction tube was heated in an electric furnace, and the internal temperature (hot spot) was set to 265 ° C. Six hours after the start of the reaction, the gas at the outlet of the reaction tube was passed through a 30% aqueous solution of potassium iodide to perform sampling. Was measured. As a result, the conversion of hydrogen chloride was 95.9%.
【0023】実施例2 実施例1で用いた触媒と同じ酸化ルテニウム酸化チタン
酸化ジルコニウム触媒2.5gを、12〜18.5メッ
シュにそろえた酸化チタン担体5gとよく混合すること
により触媒を希釈して石英製反応管(内径12mm)に
充填した。塩化水素ガスを200ml/min、酸素ガ
スを200ml/min(いずれも0℃、1気圧換算)
常圧下に供給した。石英反応管を電気炉で加熱し、内温
(ホットスポット)を301℃とした。反応開始2.9
時間後の時点で、反応管出口のガスを30%ヨウ化カリ
ウム水溶液に流通させることによりサンプリングを行
い、ヨウ素滴定法および中和滴定法によりそれぞれ塩素
の生成量および未反応塩化水素量を測定した。下式によ
り求めた単位触媒重量当りの塩素の生成活性は7.35
×10-4mol/min・g−触媒であった。単位触媒
重量当りの塩素生成活性(mol/min・g−触媒)
=単位時間当りの出口塩素生成量(mol/min)/
触媒重量(g)Example 2 The same catalyst as used in Example 1 was mixed with 2.5 g of the same ruthenium oxide / titanium oxide / zirconium oxide catalyst and 5 g of a titanium oxide carrier having a size of 12 to 18.5 mesh to dilute the catalyst. Into a quartz reaction tube (inner diameter: 12 mm). Hydrogen chloride gas at 200 ml / min, oxygen gas at 200 ml / min (both at 0 ° C. and 1 atm)
It was supplied under normal pressure. The quartz reaction tube was heated in an electric furnace, and the internal temperature (hot spot) was set at 301 ° C. Reaction start 2.9
At the time after the elapse of time, sampling was performed by flowing the gas at the outlet of the reaction tube through a 30% aqueous solution of potassium iodide, and the amount of generated chlorine and the amount of unreacted hydrogen chloride were measured by an iodine titration method and a neutralization titration method, respectively. . The chlorine generation activity per unit catalyst weight determined by the following equation was 7.35.
× 10 −4 mol / min · g-catalyst. Chlorine formation activity per unit catalyst weight (mol / min.g-catalyst)
= Amount of outlet chlorine generated per unit time (mol / min) /
Catalyst weight (g)
【0024】実施例3 次の方法により触媒を調製した。すなわち、氷冷したフ
ラスコに水27.0gを入れ、撹拌下に、市販の四塩化
チタン14.3gを滴下し、四塩化チタン水溶液を調製
した。その溶液に、室温で、水1222gを加え、さら
に尿素27.6gと水100gからなる溶液を注入し、
撹拌し、均一溶液を調製した。次に、その均一溶液を1
00℃に加熱しながら2時間撹拌した。徐々に白色沈殿
が生成した。次に、同温度で、尿素3.2gと水26g
からなる溶液を加え、十分撹拌した後、沈殿を濾過し
た。次に、蒸留水300mlで洗浄し、再度濾過した。
この操作を3回繰り返した後、150mlの水に懸濁さ
せた。次に、市販の塩化ルテニウム水和物(RuCl3
・nH2 O)7.12gを水54gに溶解したものと水
酸化ナトリウム(含量96%)3.8gを水20gに溶
解したものを混合し、撹拌した後、直ちに既に調製した
懸濁液に、撹拌下、滴下した。滴下終了後、61重量%
の硝酸1.57gを水24gで希釈した溶液を滴下し、
室温で1時間撹拌した。撹拌終了後、黒色沈殿を濾過し
た。次いで、蒸留水300mlで洗浄し、再度濾過し
た。この操作を3回繰り返した後、60℃で4時間乾燥
し、9.3gの黒色固体を得た。この固体を粉砕し、空
気中で室温から350℃まで3.5時間で昇温し、同温
度で、3時間焼成することにより、8.1gの黒色触媒
を得た。なお、酸化ルテニウム含量の計算値は36重量
%であった。この粉体を成形し、12〜18.5メッシ
ュとすることにより、酸化ルテニウム酸化チタン触媒を
得た。この酸化ルテニウム酸化チタン触媒1.9gを実
施例2と同様に反応管に充填し、内温を300℃とした
以外は実施例2の反応方法に準拠して行った。反応開始
1.9時間後の時点での単位触媒重量当りの塩素の生成
活性は9.05×10-4mol/min・g−触媒であ
った。Example 3 A catalyst was prepared by the following method. That is, 27.0 g of water was placed in an ice-cooled flask, and 14.3 g of commercially available titanium tetrachloride was added dropwise with stirring to prepare an aqueous titanium tetrachloride solution. At room temperature, 1222 g of water was added to the solution, and a solution composed of 27.6 g of urea and 100 g of water was further injected.
After stirring, a homogeneous solution was prepared. Next, add the homogeneous solution to 1
The mixture was stirred for 2 hours while heating to 00 ° C. A white precipitate gradually formed. Next, at the same temperature, 3.2 g of urea and 26 g of water
Was added, and after sufficiently stirring, the precipitate was filtered. Next, it was washed with 300 ml of distilled water and filtered again.
After repeating this operation three times, the resultant was suspended in 150 ml of water. Next, a commercially available ruthenium chloride hydrate (RuCl 3
NH 2 O) A solution prepared by dissolving 7.12 g in 54 g of water and a solution in which 3.8 g of sodium hydroxide (content 96%) was dissolved in 20 g of water were mixed, stirred, and immediately mixed with the suspension already prepared. The mixture was added dropwise with stirring. 61% by weight after dropping
A solution prepared by diluting 1.57 g of nitric acid with 24 g of water was added dropwise.
Stirred at room temperature for 1 hour. After completion of the stirring, the black precipitate was filtered. Then, it was washed with 300 ml of distilled water and filtered again. After repeating this operation three times, it was dried at 60 ° C. for 4 hours to obtain 9.3 g of a black solid. The solid was pulverized, heated in the air from room temperature to 350 ° C. for 3.5 hours, and calcined at the same temperature for 3 hours to obtain 8.1 g of a black catalyst. The calculated value of the content of ruthenium oxide was 36% by weight. This powder was molded to have a mesh of 12 to 18.5 to obtain a ruthenium oxide titanium oxide catalyst. 1.9 g of the ruthenium titanium oxide catalyst was charged into a reaction tube in the same manner as in Example 2, and the reaction was carried out in accordance with the reaction method of Example 2 except that the internal temperature was set to 300 ° C. 1.9 hours after the start of the reaction, the activity of forming chlorine per unit weight of the catalyst was 9.05 × 10 −4 mol / min · g-catalyst.
【0025】実施例4 次の方法により触媒を調製した。すなわち、20重量%
硫酸チタン水溶液(和光純薬工業(株))54.7gを
水110.3gで希釈し混合した。その水溶液を氷冷し
たフラスコに入れ、撹拌下に、25重量%アンモニア水
溶液48.2gを滴下したところ、徐々に白色沈殿が生
成した。室温で、30分撹拌した後、沈殿を濾過した。
次に、蒸留水300mlで洗浄し、再度濾過した。この
操作を3回繰り返した後、150mlの水に懸濁させ
た。次に、市販の塩化ルテニウム水和物(RuCl3 ・
nH2 O)9.86gを水61gに溶解したものと水酸
化ナトリウム(含量96%)5.2gを水20gに溶解
したものを混合し、撹拌した後、直ちに既に調製した懸
濁液に、撹拌下、滴下した。滴下終了後、61重量%の
硝酸2.15gを水30gで希釈した溶液を滴下し、室
温で1時間撹拌した。撹拌終了後、黒色沈殿を濾過し
た。次いで、蒸留水300mlで洗浄し、再度濾過し
た。この操作を3回繰り返した後、60℃で4時間乾燥
し、12.0gの黒色固体を得た。この固体を粉砕し、
空気中で室温から350℃まで3.5時間で昇温し、同
温度で、3時間焼成することにより、9.9gの黒色触
媒を得た。なお、酸化ルテニウム含量の計算値は46重
量%であった。この粉体を成形し、12〜18.5メッ
シュとすることにより、酸化ルテニウム酸化チタン触媒
を得た。この酸化ルテニウム酸化チタン触媒2.5gを
実施例2と同様に反応管に充填し、内温を299℃とし
た以外は実施例2の反応方法に準拠して行った。反応開
始2.6時間後の時点での単位触媒重量当りの塩素の生
成活性は7.35×10-4mol/min・g−触媒で
あった。Example 4 A catalyst was prepared by the following method. That is, 20% by weight
54.7 g of an aqueous solution of titanium sulfate (Wako Pure Chemical Industries, Ltd.) was diluted with 110.3 g of water and mixed. The aqueous solution was placed in an ice-cooled flask, and 48.2 g of a 25% by weight aqueous ammonia solution was added dropwise with stirring. As a result, a white precipitate was gradually formed. After stirring at room temperature for 30 minutes, the precipitate was filtered.
Next, it was washed with 300 ml of distilled water and filtered again. After repeating this operation three times, the resultant was suspended in 150 ml of water. Next, a commercially available ruthenium chloride hydrate (RuCl 3.
nH 2 O) A solution prepared by dissolving 9.86 g of water in 61 g of water and a solution of 5.2 g of sodium hydroxide (content: 96%) in 20 g of water were mixed, stirred, and immediately added to the already prepared suspension. The solution was added dropwise with stirring. After the dropwise addition, a solution prepared by diluting 2.15 g of 61% by weight nitric acid with 30 g of water was added dropwise, and the mixture was stirred at room temperature for 1 hour. After completion of the stirring, the black precipitate was filtered. Then, it was washed with 300 ml of distilled water and filtered again. After repeating this operation three times, the resultant was dried at 60 ° C. for 4 hours to obtain 12.0 g of a black solid. Crush this solid,
The temperature was raised from room temperature to 350 ° C. in the air for 3.5 hours, and calcined at the same temperature for 3 hours to obtain 9.9 g of a black catalyst. The calculated value of the ruthenium oxide content was 46% by weight. This powder was molded to have a mesh of 12 to 18.5 to obtain a ruthenium oxide titanium oxide catalyst. The reaction was carried out in the same manner as in Example 2, except that 2.5 g of the ruthenium titanium oxide catalyst was filled in a reaction tube and the internal temperature was changed to 299 ° C. 2.6 hours after the start of the reaction, the activity of forming chlorine per unit weight of the catalyst was 7.35 × 10 −4 mol / min · g-catalyst.
【0026】実施例5 次の方法により触媒を調製した。すなわち、市販のチタ
ンテトラブトキシド15.4gをエタノール52mlに
溶解した。次に、市販の塩化ルテニウム水和物(RuC
l3 ・nH2 O)10.1gを水122mlに溶解した
ものと、水酸化ナトリウム(含量96%)14.8gを
水60mlに溶解したものを混合し、撹拌した後、直ち
にチタンテトラブトキシドのエタノール溶液に撹拌下、
滴下を開始した。滴下するに従って、沈殿が生成した。
滴下終了後、黒色沈殿を室温で十分撹拌した。さらに、
61重量%の硝酸25.7gを水62gで希釈したもの
を滴下し、室温で1時間撹拌した。撹拌終了後、沈殿物
を濾過した。次いで、蒸留水300mlで洗浄後、再び
濾過した。これを3回繰り返した後、60℃で4時間乾
燥し、10.5gの黒色固体を得た。この固体を粉砕
し、空気中で、室温から350℃まで3.5時間で昇温
し、350℃で3時間焼成することにより8.4gの黒
色触媒を得た。なお、酸化ルテニウム含量の計算値は5
7重量%であった。この粉体を成形し、12〜18.5
メッシュとすることにより、酸化ルテニウム酸化チタン
触媒を得た。この酸化ルテニウム酸化チタン触媒2.5
gを実施例2と同様に反応管に充填し、内温を300℃
とした以外は実施例2の反応方法に準拠して行った。反
応開始1.9時間後の時点での単位触媒重量当りの塩素
の生成活性は7.7×10-4mol/min・g−触媒
であった。Example 5 A catalyst was prepared by the following method. That is, 15.4 g of commercially available titanium tetrabutoxide was dissolved in 52 ml of ethanol. Next, commercially available ruthenium chloride hydrate (RuC
to that of l 3 · nH 2 O) 10.1g was dissolved in water 122 ml, sodium hydroxide (96% content) 14.8 g were mixed and dissolved in water 60 ml, after stirring, immediately titanium tetrabutoxide Under stirring in the ethanol solution,
Dropping was started. As the solution was added, a precipitate formed.
After the addition, the black precipitate was sufficiently stirred at room temperature. further,
A solution obtained by diluting 25.7 g of 61% by weight nitric acid with 62 g of water was added dropwise and stirred at room temperature for 1 hour. After completion of the stirring, the precipitate was filtered. Then, after washing with 300 ml of distilled water, filtration was performed again. After repeating this three times, it was dried at 60 ° C. for 4 hours to obtain 10.5 g of a black solid. The solid was pulverized, heated in the air from room temperature to 350 ° C. for 3.5 hours, and calcined at 350 ° C. for 3 hours to obtain 8.4 g of a black catalyst. The calculated value of the ruthenium oxide content was 5
7% by weight. This powder is molded and 12 to 18.5
By forming a mesh, a ruthenium oxide titanium oxide catalyst was obtained. This ruthenium oxide titanium oxide catalyst 2.5
g into a reaction tube in the same manner as in Example 2, and the internal temperature was set to 300 ° C.
The reaction was performed in accordance with the reaction method of Example 2 except that 1.9 hours after the start of the reaction, the activity of forming chlorine per unit weight of the catalyst was 7.7 × 10 −4 mol / min · g-catalyst.
【0027】実施例6 市販の酸化ルテニウム水和物(RuO2 、アルドリッチ
化学)を12〜18.5メッシュに成形した。この酸化
ルテニウム2.5gを実施例2と同様に反応管に充填
し、内温を300℃とした以外は実施例2の反応方法に
準拠して行った。反応開始1.5時間後の時点での単位
触媒重量当りの塩素の生成活性は5.35×10-4mo
l/min・g−触媒であった。Example 6 A commercially available ruthenium oxide hydrate (RuO 2 , Aldrich Chemical) was formed into a mesh of 12 to 18.5. A reaction tube was filled with 2.5 g of the ruthenium oxide in the same manner as in Example 2, and the reaction was performed in accordance with the reaction method of Example 2 except that the internal temperature was set to 300 ° C. At 1.5 hours after the start of the reaction, the activity of forming chlorine per unit weight of the catalyst was 5.35 × 10 −4 mo.
1 / min · g-catalyst.
【0028】実施例7 3mmφの球形の2重量%ルテニウム酸化チタン触媒
(N.E.ケムキャット社製)を破砕し、12〜18.
5メッシュにそろえた。このルテニウム酸化チタン触媒
2.5gを酸化チタン担体で希釈せず、実施例2と同様
に反応管に充填し、塩化水素ガスを190ml/min
で流通させ、内温を300℃とした以外は実施例2の反
応方法に準拠して行った。反応開始1.5時間後の時点
での単位触媒重量当りの塩素の生成活性は1.38×1
0-4mol/min・g−触媒であった。Example 7 A 3 mmφ spherical 2% by weight ruthenium titanium oxide catalyst (manufactured by NE Chemcat) was crushed, and 12 to 18.
Aligned to 5 mesh. Without diluting 2.5 g of this ruthenium titanium oxide catalyst with a titanium oxide carrier, the reaction tube was filled in the same manner as in Example 2, and hydrogen chloride gas was supplied at 190 ml / min.
And carried out in accordance with the reaction method of Example 2 except that the internal temperature was set to 300 ° C. 1.5 hours after the start of the reaction, the activity of forming chlorine per unit catalyst weight was 1.38 × 1.
It was 0 -4 mol / min.g-catalyst.
【0029】実施例8 実施例7で用いた触媒と同じ2重量%ルテニウム酸化チ
タン触媒を12〜18.5メッシュにそろえて、2.5
gを酸化チタン担体で希釈せず、実施例2と同様に反応
管に充填し、塩化水素ガスを196ml/min、酸素
ガスを170ml/minで流通させ、内温を380℃
とした以外は実施例2の反応方法に準拠して行った。反
応開始2時間後の時点での単位触媒重量当りの塩素の生
成活性は11.4×10-4mol/min・g−触媒で
あった。Example 8 The same 2% by weight ruthenium titanium oxide catalyst as used in Example 7 was adjusted to 12 to 18.5 mesh, and
g was not diluted with a titanium oxide carrier, and charged into a reaction tube in the same manner as in Example 2. Hydrogen chloride gas was passed at 196 ml / min, oxygen gas was passed at 170 ml / min, and the internal temperature was 380 ° C.
The reaction was performed in accordance with the reaction method of Example 2 except that Two hours after the start of the reaction, the activity of forming chlorine per unit weight of the catalyst was 11.4 × 10 −4 mol / min · g-catalyst.
【0030】実施例9 1/8インチペレットの2重量%ルテニウム酸化ジルコ
ニウム触媒(N.E.ケムキャット社製)を破砕し、1
2〜18.5メッシュにそろえた。このルテニウム酸化
ジルコニウム触媒2.5gを酸化チタン担体で希釈せ
ず、実施例2と同様に反応管に充填し、塩化水素ガスを
196ml/min、酸素ガスを170ml/minで
流通させ、内温を380℃とした以外は実施例2に準拠
して行なった。反応開始3時間後の時点での単位触媒重
量当りの塩素の生成活性は、7.9×10-4mol/m
in・g−触媒であった。残存塩化水素流量は、4.7
×10-3mol/minであった。Example 9 A 2% by weight ruthenium zirconium oxide catalyst (manufactured by NE Chemcat) of 1/8 inch pellets was crushed and
The size was adjusted to 2-18.5 mesh. Without diluting 2.5 g of the ruthenium zirconium oxide catalyst with a titanium oxide carrier, the reaction tube was filled in the same manner as in Example 2, hydrogen chloride gas was passed at 196 ml / min, oxygen gas was passed at 170 ml / min, and the internal temperature was lowered. The procedure was performed according to Example 2 except that the temperature was changed to 380 ° C. Three hours after the start of the reaction, the activity of forming chlorine per unit catalyst weight was 7.9 × 10 -4 mol / m.
ing-catalyst. The residual hydrogen chloride flow rate is 4.7
× 10 -3 mol / min.
【0031】実施例10 5重量%ルテニウムアルミナ粉体触媒(N.E.ケムキ
ャット社製)を12〜18.5メッシュに成形した。こ
のルテニウムアルミナ触媒5gを酸化チタン担体で希釈
せず、実施例2と同様に反応管に充填し、塩化水素をガ
スを193ml/minで流通させ、内温を380℃と
した以外は実施例2に準拠して行った。反応開始10時
間後の時点での単位触媒重量当りの塩素の生成活性は
6.7×10-4mol/min・g−触媒であった。Example 10 A 5% by weight ruthenium alumina powder catalyst (manufactured by NE Chemcat) was formed into a mesh of 12 to 18.5 mesh. Example 2 was repeated except that 5 g of this ruthenium alumina catalyst was not diluted with a titanium oxide carrier, but was charged into a reaction tube in the same manner as in Example 2, hydrogen chloride was passed at 193 ml / min, and the internal temperature was set to 380 ° C. Performed according to. Ten hours after the start of the reaction, the activity of forming chlorine per unit weight of the catalyst was 6.7 × 10 −4 mol / min · g-catalyst.
【0032】以上の通り、実施例1〜5ではルテニウム
複合酸化物触媒の例を、実施例6では酸化ルテニウム触
媒の例を、実施例7〜10では担持ルテニウム触媒の例
を示した。 As described above, in Examples 1 to 5, ruthenium
Examples of the composite oxide catalyst, the example of Embodiment 6 in the ruthenium oxide catalyst, examples of Examples 7 to 10 in supported ruthenium catalyst
showed that.
【0033】比較例1 次の方法により触媒を調製した。すなわち、硝酸クロム
9水和物60.3gを水600mlに溶解し、次いで4
5℃まで昇温して、撹拌下25重量%のアンモニア水6
4.9gを1.5時間かけて滴下し、同温度で30分間
撹拌を続けた。生成した沈殿に水3.3lを加えて一夜
放置し、沈降させた後、上澄をデカンテーションにより
除去した。次に、水を2.7 l加えて30分間よく撹拌
した。この操作を5回くり返して沈殿を洗浄した後、デ
カンテーションにより上澄を除去し20重量%のシリカ
ゾルを49g添加し、撹拌した後、ロータリーエバポレ
ーターで60℃で蒸発乾固せしめた。次に、60℃で8
時間乾燥し、更に120℃で6時間乾燥して緑色の固体
を得た。この固体を窒素気流中120℃で6時間乾燥
後、室温まで冷却して緑色固体を得た。次いで、これを
空気中600℃で3時間焼成し、12〜18.5メッシ
ュに成形してCr2 O3 −SiO2 触媒を得た。かくし
て得られたCr2 O3 −SiO2 触媒2.5gを酸化チ
タン担体で希釈せず、実施例2と同様に反応管に充填
し、塩化水素ガス192ml/min.で流通させ、内
温を301℃としたこと以外は実施例2に準拠して行な
った。反応開始3.7時間後の時点での単位触媒重量当
りの塩素の生成活性は、0.19×10-4mol/mi
n・g触媒であった。Comparative Example 1 A catalyst was prepared by the following method. That is, 60.3 g of chromium nitrate nonahydrate was dissolved in 600 ml of water,
The temperature was raised to 5 ° C. and 25% by weight of aqueous ammonia 6 was stirred.
4.9 g was added dropwise over 1.5 hours, and stirring was continued at the same temperature for 30 minutes. To the generated precipitate, 3.3 l of water was added, and the mixture was allowed to stand overnight. After settling, the supernatant was removed by decantation. Next, 2.7 l of water was added, and the mixture was stirred well for 30 minutes. This operation was repeated 5 times to wash the precipitate, the supernatant was removed by decantation, 49 g of 20% by weight silica sol was added, and the mixture was stirred and evaporated to dryness at 60 ° C. by a rotary evaporator. Next, at 60 ° C., 8
After drying for an hour, and further drying at 120 ° C. for 6 hours, a green solid was obtained. The solid was dried in a nitrogen stream at 120 ° C. for 6 hours, and then cooled to room temperature to obtain a green solid. Next, this was baked at 600 ° C. for 3 hours in the air and formed into a mesh of 12 to 18.5 to obtain a Cr 2 O 3 —SiO 2 catalyst. 2.5 g of the Cr 2 O 3 —SiO 2 catalyst thus obtained was not diluted with a titanium oxide carrier, but charged into a reaction tube in the same manner as in Example 2, and 192 ml / min of hydrogen chloride gas. And carried out in accordance with Example 2 except that the internal temperature was 301 ° C. 3.7 hours after the start of the reaction, the activity of forming chlorine per unit weight of the catalyst was 0.19 × 10 −4 mol / mi.
ng catalyst.
【0034】比較例2 比較例1で使用したCr2 O3 −SiO2 触媒2.5g
を酸化チタン担体で希釈せず、実施例2と同様に反応管
に充填して、塩化水素ガス192ml/min.で流通
させ、内温を380℃としたこと以外は実施例2に準拠
して行った。反応開始5.8時間後の時点での単位触媒
重量当りの塩素の生成活性は、2.1×10-4mol/
min・g触媒であった。Comparative Example 2 2.5 g of the Cr 2 O 3 —SiO 2 catalyst used in Comparative Example 1
Was not diluted with a titanium oxide carrier, and charged into a reaction tube in the same manner as in Example 2, and 192 ml / min. And carried out according to Example 2 except that the internal temperature was 380 ° C. At 5.8 hours after the start of the reaction, the activity of forming chlorine per unit weight of the catalyst was 2.1 × 10 −4 mol / mol.
min.g catalyst.
【0035】比較例3 比較例1で使用したCr2 O3 −SiO2 触媒5gを酸
化チタン担体で希釈せず、実施例2と同様に反応管に充
填して、塩化水素ガス96.5ml/min.で流通さ
せ、内温を380℃としたこと以外は実施例2に準拠し
て行った。反応開始5時間後の時点での単位触媒重量当
りの塩素の生成活性は、2.7×10-4mol/min
・g触媒であった。Comparative Example 3 5 g of the Cr 2 O 3 —SiO 2 catalyst used in Comparative Example 1 was filled in a reaction tube in the same manner as in Example 2 without diluting with a titanium oxide carrier. min. And carried out according to Example 2 except that the internal temperature was 380 ° C. Five hours after the start of the reaction, the activity of forming chlorine per unit weight of the catalyst was 2.7 × 10 −4 mol / min.
G catalyst.
【0036】比較例4 次の方法により触媒を調製した。すなわち、市販の塩化
ルテニウム水和物(RuCl3 ・nH2 O)1.02g
と水80gからなる水溶液に、日本アエロジル社製シリ
カ(AEROSIL−300)18.70gを懸濁さ
せ、ロータリーエバポレーターで55〜60℃で蒸発乾
固せしめた後、窒素気流中150℃で1時間加熱するこ
とにより緑黒色の塩化ルテニウム触媒18.1gを得
た。なお、RuCl3 の坦持率は5重量%であった。こ
の触媒を12〜18.5メッシュに成形した。かくして
得られた塩化ルテニウム触媒5gを酸化チタン担体で希
釈せず、実施例2と同様に反応管に充填して、塩化水素
ガス194ml/min.で流通させ、内温を380℃
としたこと以外は実施例2に準拠して行った。反応開始
5時間後の時点での単位触媒重量当りの塩素の生成活性
は、5.9×10-4mol/min・g−触媒であっ
た。 Comparative Example 4 A catalyst was prepared by the following method. That is, 1.02 g of commercially available ruthenium chloride hydrate (RuCl 3 .nH 2 O)
18.70 g of silica (AEROSIL-300) manufactured by Nippon Aerosil Co., Ltd. is suspended in an aqueous solution consisting of water and 80 g of water, and evaporated to dryness at 55 to 60 ° C. by a rotary evaporator, and then heated at 150 ° C. for 1 hour in a nitrogen stream. As a result, 18.1 g of a green-black ruthenium chloride catalyst was obtained. The loading ratio of RuCl 3 was 5% by weight. The catalyst was formed into 12-18.5 mesh. 5 g of the thus obtained ruthenium chloride catalyst was not diluted with a titanium oxide carrier, but was charged into a reaction tube in the same manner as in Example 2, and 194 ml / min of hydrogen chloride gas. At 380 ℃
The procedure was performed in accordance with Example 2, except that Five hours after the start of the reaction, the activity of forming chlorine per unit weight of the catalyst was 5.9 × 10 −4 mol / min · g-catalyst.
【0037】[0037]
【発明の効果】以上説明したとおり、本発明により、塩
化水素を酸化して塩素を製造する方法であって、活性の
高い触媒を使用し、より少量の触媒で、より低い反応温
度で塩素を製造できるという特徴を有する塩素の製造方
法を提供することができた。As described above, according to the present invention, there is provided a method for producing chlorine by oxidizing hydrogen chloride, which comprises using a highly active catalyst, using a smaller amount of a catalyst and reducing the chlorine at a lower reaction temperature. A method for producing chlorine having the characteristic that it can be produced can be provided.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 欧州特許761594(EP,B1) Hepel T.et al.,Ef fect of the crysta llographic surface structure of the RuO2 single crysta ls on the chlorine evoluti,J.of the Electroanalytical Chemistry and Inte rfacial Electroche mistry,Vol.188,No.1 /2,281−285 (58)調査した分野(Int.Cl.7,DB名) C01B 7/04 B01J 23/46 301 ────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference European Patent 761594 (EP, B1) Hepel T. et al. , Effect of the crystallographic surface structure of the RuO2 single crystals on the chloronevoluti, J. et al. of the Electroanalytical Chemistry and Intellectual Electrochemistry, Vol. 188, no. 1/2, 281-285 (58) Fields investigated (Int. Cl. 7 , DB name) C01B 7/04 B01J 23/46 301
Claims (1)
製造するにあたり、担持金属ルテニウム触媒、酸化ルテ
ニウム触媒又はルテニウム複合酸化物触媒を使用するこ
とを特徴とする塩素の製造方法。1. A method for producing chlorine by oxidizing hydrogen chloride with oxygen, comprising a supported metal ruthenium catalyst and a ruthenium oxide catalyst.
A method for producing chlorine, wherein a chlorine catalyst or a ruthenium composite oxide catalyst is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11629096A JP3284879B2 (en) | 1995-05-18 | 1996-05-10 | Method for producing chlorine |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11986695 | 1995-05-18 | ||
JP15795995 | 1995-06-23 | ||
JP7-119866 | 1995-06-23 | ||
JP7-157959 | 1995-06-23 | ||
JP11629096A JP3284879B2 (en) | 1995-05-18 | 1996-05-10 | Method for producing chlorine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0967103A JPH0967103A (en) | 1997-03-11 |
JP3284879B2 true JP3284879B2 (en) | 2002-05-20 |
Family
ID=27313125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11629096A Expired - Fee Related JP3284879B2 (en) | 1995-05-18 | 1996-05-10 | Method for producing chlorine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3284879B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007064027A1 (en) * | 2005-11-30 | 2007-06-07 | Sumitomo Chemical Company, Limited | Method for production of supported ruthenium and method for production of chlorine |
WO2010110392A1 (en) | 2009-03-26 | 2010-09-30 | 三井化学株式会社 | Catalyst for production of chlorine and process for production of chlorine using the catalyst |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101516812B1 (en) * | 1998-02-16 | 2015-04-30 | 스미또모 가가꾸 가부시끼가이샤 | Process for producing chlorine |
JP4341591B2 (en) | 2005-06-22 | 2009-10-07 | 住友化学株式会社 | Chlorine production reactor and chlorine production method |
DE102005061954A1 (en) * | 2005-12-23 | 2007-07-05 | Basf Ag | Recycling of ruthenium from an used ruthenium catalyst comprises treating the catalyst containing ruthenium oxide in a hydrogen stream and treating the carrier material containing ruthenium metal with hydrochloric acid |
JP5041769B2 (en) | 2006-09-06 | 2012-10-03 | 住友化学株式会社 | Startup method |
JP5169047B2 (en) | 2007-07-23 | 2013-03-27 | 住友化学株式会社 | Chlorine production method |
KR101161958B1 (en) | 2007-09-27 | 2012-07-04 | 미쓰이 가가쿠 가부시키가이샤 | Catalyst, method for producing the same, and method for producing chlorine using the catalyst |
JP2009196825A (en) * | 2008-02-19 | 2009-09-03 | Sumitomo Chemical Co Ltd | Method for manufacturing chlorine |
JP5143667B2 (en) | 2008-08-22 | 2013-02-13 | 住友化学株式会社 | Chlorine production method and catalyst |
JP5189954B2 (en) | 2008-10-30 | 2013-04-24 | 住友化学株式会社 | Chlorine production method |
JP5642706B2 (en) * | 2008-12-30 | 2014-12-17 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Ruthenium and nickel containing catalysts for hydrogen chloride oxidation. |
KR20110119736A (en) * | 2009-02-26 | 2011-11-02 | 바스프 에스이 | Catalyst comprising ruthenium and silver and/or calcium for the oxidation of hydrogen chloride |
JP5368883B2 (en) | 2009-05-29 | 2013-12-18 | 住友化学株式会社 | Method for activating catalyst for chlorine production and method for producing chlorine |
JP5365540B2 (en) | 2010-02-12 | 2013-12-11 | 住友化学株式会社 | Method for oxidizing organic compounds |
EP3549907A4 (en) | 2016-12-02 | 2020-08-19 | Mitsui Chemicals, Inc. | Method of producing chlorine via hydrogen chloride oxidation |
KR20220151163A (en) | 2020-04-01 | 2022-11-14 | 스미또모 가가꾸 가부시끼가이샤 | Shaped catalyst and halogen manufacturing method |
-
1996
- 1996-05-10 JP JP11629096A patent/JP3284879B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
Hepel T.et al.,Effect of the crystallographic surface structure of the RuO2 single crystals on the chlorine evoluti,J.of the Electroanalytical Chemistry and Interfacial Electrochemistry,Vol.188,No.1/2,281−285 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007064027A1 (en) * | 2005-11-30 | 2007-06-07 | Sumitomo Chemical Company, Limited | Method for production of supported ruthenium and method for production of chlorine |
US7858065B2 (en) | 2005-11-30 | 2010-12-28 | Sumitomo Chemical Company, Ltd. | Process for producing supported ruthenium and process for producing chlorine |
WO2010110392A1 (en) | 2009-03-26 | 2010-09-30 | 三井化学株式会社 | Catalyst for production of chlorine and process for production of chlorine using the catalyst |
US9108845B2 (en) | 2009-03-26 | 2015-08-18 | Mitsui Chemicals, Inc. | Chlorine production catalyst and chlorine production process using the catalyst |
Also Published As
Publication number | Publication date |
---|---|
JPH0967103A (en) | 1997-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100424502B1 (en) | Process for producing chlorine | |
JP3284879B2 (en) | Method for producing chlorine | |
JP3394043B2 (en) | Method for producing hydrogen peroxide | |
EP0936184B1 (en) | Process for producing chlorine | |
JP5642706B2 (en) | Ruthenium and nickel containing catalysts for hydrogen chloride oxidation. | |
JP2513756B2 (en) | Chlorine production method | |
JPH05270806A (en) | Production of hydrogen peroxide | |
JPH10194705A (en) | Production of chlorine | |
JPH05105428A (en) | Cerium oxide having oxygen absorbing and releasing ability and its production | |
JP3103645B2 (en) | Cerium- and zirconium-containing composite oxides having oxygen absorbing and releasing ability and method for producing the same | |
JP2003073123A (en) | Compound oxide and method for producing the same, and auxiliary catalyst for cleaning flue gas | |
US5663112A (en) | Cerous chloride-chromic oxide catalyst for producing chlorine, methods for producing the same and a method for producing chlorine | |
JPH06246155A (en) | Cerium-containing multiple oxide capable of absorbing and discharging oxygen and its production | |
JPH11180701A (en) | Production of chlorine | |
SU795441A3 (en) | Method of producing catalyst for purification of gases containing organic and inorganic compounds | |
JPH10182104A (en) | Production of chlorine | |
JPH0568401B2 (en) | ||
JP2002226205A (en) | Oxidation method for carbon monoxide | |
JPH09175822A (en) | Heat-resistant oxide | |
JPH08257399A (en) | Production of titania catalyst | |
JPH0769640A (en) | Production of manganese dioxide | |
JPS6339287B2 (en) | ||
JP3031688B2 (en) | Catalyst activity stabilization method | |
JPS58151327A (en) | Manufacture of solid acid composition | |
JP2000290018A (en) | Iron oxide based powder and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090308 Year of fee payment: 7 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D05 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090308 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100308 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110308 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120308 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130308 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130308 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140308 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |