JPH08257399A - Production of titania catalyst - Google Patents

Production of titania catalyst

Info

Publication number
JPH08257399A
JPH08257399A JP7067893A JP6789395A JPH08257399A JP H08257399 A JPH08257399 A JP H08257399A JP 7067893 A JP7067893 A JP 7067893A JP 6789395 A JP6789395 A JP 6789395A JP H08257399 A JPH08257399 A JP H08257399A
Authority
JP
Japan
Prior art keywords
catalyst
titania
acid
silica
based catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7067893A
Other languages
Japanese (ja)
Other versions
JP3738371B2 (en
Inventor
Tomoko Kasuga
智子 春日
Masayoshi Hiramatsu
正義 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP06789395A priority Critical patent/JP3738371B2/en
Publication of JPH08257399A publication Critical patent/JPH08257399A/en
Application granted granted Critical
Publication of JP3738371B2 publication Critical patent/JP3738371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To produce a titania catalyst capable of increasing photocatalytic activity even if a noble metal cocatalyst is not supported. CONSTITUTION: A hydrolyxed sol prepared by mixing titanium alkoxide and silicon alkoxide so as to become a mol. ratio of (1-x)TiO2 .xSiO2 (x=0-0.5) is gelled and baked at heat treatment temp. of 350-1200 deg.C to produce a titanium type catalyst which is, in turn, treated with alkali to obtain a titania catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チタニア系触媒に関
し、さらに、詳しくは、光触媒活性に優れたチタニア系
触媒を容易に製造できる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titania catalyst, and more particularly to a method for easily producing a titania catalyst having excellent photocatalytic activity.

【0002】[0002]

【従来の技術】チタニアは、触媒活性に優れた材料とし
て広く知られ、さまざまな光触媒反応が検討されてい
る。
2. Description of the Related Art Titania is widely known as a material having excellent catalytic activity, and various photocatalytic reactions have been studied.

【0003】光触媒反応は、(1) 触媒表面に反応分子が
近接する、(2) 触媒の内部で光照射によって励起された
電子・ホールが触媒表面にある反応分子を還元あるいは
酸化させることによって、化学反応を促進させると考え
られる。
The photocatalytic reaction is carried out by (1) the reaction molecules are brought close to the catalyst surface, and (2) electrons and holes excited by light irradiation inside the catalyst reduce or oxidize the reaction molecules on the catalyst surface. It is thought to accelerate the chemical reaction.

【0004】触媒活性を向上させるための手段として
は、触媒の比表面積の増大(触媒活性点の増大)につな
がる、触媒粉末の微細化、ないしは、多結晶であっても
結晶粒径(単一結晶の)の小径化が、即ち、結晶微細化
が有効な一手段として期待できる。そして、結晶微細化
の方法として、ゾルゲル法、気相法等が公知である。
As means for improving the catalytic activity, the catalyst powder is made finer, which leads to an increase in the specific surface area of the catalyst (increase in the catalytic activity points), or even if it is polycrystalline, the crystal grain size (single It can be expected that reducing the diameter of the crystal), that is, refining the crystal, is an effective means. Then, as a method of refining crystals, a sol-gel method, a vapor phase method, etc. are known.

【0005】さらに、1992年1月発行の「科学と工
業 第66巻」に投稿された研究論文「白金およびルテ
ニウムを担持したTiO2 −SiO2 触媒の調製と光触
媒活性」に、ゾルゲル法でチタニア系触媒粉末を調製す
る際に、シリカ(SiO2 )をドープ(添加)すると結
晶粒径が小さくなることが報告されている。
Further, in the research paper “Preparation and Photocatalytic Activity of TiO 2 —SiO 2 Catalyst Supporting Platinum and Ruthenium” published in “Science and Industry Vol. 66”, issued in January 1992, titania was prepared by the sol-gel method. It has been reported that the crystal grain size becomes smaller when silica (SiO 2 ) is doped (added) when preparing the system catalyst powder.

【0006】[0006]

【発明が解決しようとする課題】しかし、当該チタニア
系触媒においては、助触媒として白金とルテニウムを担
持させて光触媒活性を増大させることを前提とし、Ti
2 /SiO2 は、触媒活性をほとんど期待しない担体
としての役割を担っていると推定される。
However, in the case of the titania-based catalyst, it is premised that platinum and ruthenium are supported as the co-catalyst to increase the photocatalytic activity.
It is presumed that O 2 / SiO 2 plays a role as a carrier that hardly expects catalytic activity.

【0007】そして、これらの担持操作は、貴金属を塩
化物水溶液の形にして行うため、面倒であり、かつ、コ
スト高となり易い。
Since these supporting operations are carried out in the form of an aqueous chloride solution of the noble metal, it is troublesome and the cost tends to be high.

【0008】また、TiO2 /SiO2 だけでは、高い
触媒活性が得難いことが、本発明者らが試験検討した結
果、分かった。
Further, as a result of examination and examination by the present inventors, it was found that it is difficult to obtain a high catalytic activity only with TiO 2 / SiO 2 .

【0009】本発明は、上記にかんがみて、特別に貴金
属助触媒等を担持させなくても、tiO2 又は、TiO
2 /SiO2 だけで、触媒活性を増大させることができ
るチタニア系触媒の製造方法を提供することを目的とす
る。
In view of the above, the present invention is directed to TiO 2 or TiO 2 without supporting a precious metal co-catalyst or the like.
An object of the present invention is to provide a method for producing a titania-based catalyst that can increase the catalytic activity only with 2 / SiO 2 .

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するためになされたものであり、下記構成により、上
記課題を解決するものである。
The present invention has been made in order to achieve the above object, and has the following constitution to solve the above problems.

【0011】(1−x)TiO2 ・xSiO2 (x=0
〜0.5)のモル比となるように、チタンアルコキシド
及びシリコンアルコキシドを混合した加水分解ゾルをゲ
ル化後、該ゲル化物を350〜1200℃で焼成してチ
タニア系触媒を製造する方法であって、前記焼成後のチ
タニア系触媒を、酸またはアルカリで表面処理すること
を特徴とする。
(1-x) TiO 2 · xSiO 2 (x = 0
Is a method of producing a titania-based catalyst by gelling a hydrolyzed sol in which titanium alkoxide and silicon alkoxide are mixed so as to have a molar ratio of 0.5 to 0.5) and then firing the gelled product at 350 to 1200 ° C. Then, the calcined titania-based catalyst is surface-treated with an acid or an alkali.

【0012】[0012]

【手段の詳細な説明】以下、本発明のチタニア系触媒の
製造方法を、図1〜3に基づいて説明をする。
Detailed Description of Means The method for producing a titania-based catalyst of the present invention will be described below with reference to FIGS.

【0013】(1) 本発明のチタニア系触媒を製造する方
法は、所定比でチタンアルコキシド及びシリコンアルコ
キシドを混合した加水分解ゾル(コロイド溶液)をゲル
化後、該ゲル化物を焼成(結晶化)して製造すること
を、前提的構成とする。
(1) In the method for producing the titania-based catalyst of the present invention, a hydrolyzed sol (colloidal solution) in which titanium alkoxide and silicon alkoxide are mixed in a predetermined ratio is gelled, and the gelled product is then baked (crystallized). It is assumed that the manufacturing is performed by

【0014】ここで、チタニアとシリカのモル比は、示
性式(1−x)TiO2 ・xSiO 2 でx=0〜0.
5、望ましくは、x=0.02〜0.25の範囲とす
る。
Here, the molar ratio of titania and silica is shown as follows.
Property (1-x) TiO2 ・ XSiO 2 X = 0 to 0.
5, preferably x = 0.02-0.25
It

【0015】チタニアのみでもよいが、少量のシリカを
ドープ(添加)することにより、前述の如く、結晶粒径
が小さくなり望ましい。そしてその範囲は、x=0.0
2〜0.25とする。xが0.02未満では、シリカの
添加効果(結晶微細化:比表面積の増大化)を得難く、
シリカ添加量が過多となると、結晶の微細化が余り促進
されない上に、相対的にチタニアの比率が低下して、却
って、触媒活性が低下する。(シリカ添加量と比表面積
の関係を示すグラフ図である図1参照。) また、焼成条件は、シリカの比率により異なるが、通
常、350〜1200℃×0.3〜2h、望ましくは、
450〜600℃×0.5〜1.5hであることが望ま
しい。温度が相対的に低い方が、結晶微細化(比表面積
の増大化)が図れて望ましい。しかし、低過ぎると、焼
成が困難となるとともに焼成時間が相対的に長くなり、
生産性が低下する。
Although only titania may be used, it is desirable to dope (add) a small amount of silica so that the crystal grain size becomes small as described above. And the range is x = 0.0
It is set to 2 to 0.25. When x is less than 0.02, it is difficult to obtain the effect of silica addition (crystal refinement: increase in specific surface area),
If the amount of silica added is too large, the refinement of crystals is not promoted so much, and the ratio of titania is relatively reduced, which rather reduces the catalytic activity. (Refer to FIG. 1, which is a graph showing the relationship between the amount of silica added and the specific surface area.) The firing conditions are usually 350 to 1200 ° C. × 0.3 to 2 h, preferably, though the firing conditions vary depending on the ratio of silica.
It is preferably 450 to 600 ° C. × 0.5 to 1.5 hours. It is desirable that the temperature is relatively low because the crystal can be made finer (the specific surface area can be increased). However, if it is too low, firing becomes difficult and the firing time becomes relatively long,
Productivity decreases.

【0016】本発明で使用するチタニア系触媒(チタニ
ア−シリカ複合微粒子結晶)は、例えば、特開平5−5
8649号公報に記載の方法によって調製する。
The titania-based catalyst (titania-silica composite fine particle crystal) used in the present invention is, for example, JP-A-5-5.
It is prepared by the method described in Japanese Patent No. 8649.

【0017】単にシリカ微粒子とチタニア微粒子を混合
したものではなく、所定比率となる様にシリコンアルコ
キシドとチタンアルコキシドの加水分解ゾル溶液をゲル
化後、焼成、さらには必要により粉砕を行って調製す
る。
It is not a mixture of silica fine particles and titania fine particles, but is prepared by gelling a hydrolyzed sol solution of silicon alkoxide and titanium alkoxide in a predetermined ratio, followed by firing and, if necessary, pulverization.

【0018】該加水分解ゾル溶液を調製する場合、チタ
ンアルコキシド及びシリコンアルコキシドを混合した
後、同時に加水分解する方法、あるいは一方を一部加水
分解した(以下、予備加水分解という)後、他方を添加
し、さらに加水分解する(以下、最終加水分解という)
方法などがある。後者の方法は、用いるシリコンアルコ
キシドとチタンアルコキシドの加水分解速度が大きく異
なり、加水分解時に沈殿を生じやすい場合に特に用いら
れる。
When the hydrolyzed sol solution is prepared, titanium alkoxide and silicon alkoxide are mixed and then hydrolyzed at the same time, or one of them is partially hydrolyzed (hereinafter referred to as preliminary hydrolysis) and the other is added. And further hydrolyze (hereinafter referred to as final hydrolysis)
There are ways. The latter method is used especially when the hydrolysis rates of the silicon alkoxide and the titanium alkoxide used are significantly different and precipitation is likely to occur during hydrolysis.

【0019】上記チタンアルコキシドとしては、一般式
Ti(OR)4 (但し、Rはアルキル基またはアルコキ
シアルキル基)で表示される化合物、または上記一般式
中の1つあるいは2つのアルコキシド基(OR)がカル
ボキシル基あるいはβ−ジカルボニル基で置換された化
合物あるいはそれらの混合物が好ましい。具体的に上記
チタンアルコキシドを例示すると、Ti(O-isoC3H7)4、Ti
(O-nC4H9)4、Ti(O-CH2CH(C2H5)C4H9)4、Ti(O-C17H35)4、Ti
(O-isoC3H7)2[CO(CH3)CHCOCH3]2、Ti(O-nC4H9)2[OC2H4N
(C2H4OH)2]2、Ti(OH)2[OCH(CH3)COOH]2、Ti(OCH2CH(C2H5)
CH(OH)C3H7)4、Ti(O-nC4H9)2(OCOC17H35)等の化合物であ
る。
The titanium alkoxide is a compound represented by the general formula Ti (OR) 4 (where R is an alkyl group or an alkoxyalkyl group), or one or two alkoxide groups (OR) in the above general formula. A compound in which is substituted with a carboxyl group or a β-dicarbonyl group, or a mixture thereof is preferable. Specific examples of the above titanium alkoxide, Ti (O-isoC 3 H 7) 4, Ti
(O-nC 4 H 9 ) 4 , Ti (O-CH 2 CH (C 2 H 5 ) C 4 H 9 ) 4 , Ti (OC 17 H 35 ) 4 , Ti
(O-isoC 3 H 7) 2 [CO (CH 3) CHCOCH 3] 2, Ti (O-nC 4 H 9) 2 [OC 2 H 4 N
(C 2 H 4 OH) 2 ] 2 , Ti (OH) 2 [OCH (CH 3 ) COOH] 2 , Ti (OCH 2 CH (C 2 H 5 )
Compounds such as CH (OH) C 3 H 7 ) 4 and Ti (O-nC 4 H 9 ) 2 (OCOC 17 H 35 ).

【0020】上記シリコンアルコキシドとしては種々あ
るが、工業的に入手しやすいものとして例えば、一般式
Si(OR14 (但し、R1 はアルキル基またはアル
コキシアルキル基)で表示される化合物、または上記一
般式中の1つあるいは2つのアルコキシド基(OR1
がカルボキシル基あるいはβ−ジカルボニル基で置換さ
れた化合物、または、それらを部分的に加水分解して得
られる低縮合物あるいはそれらの混合物が特に限定され
ずに使用される。上記アルキル基としては、メチル基、
エチル基、イソプロピル基、ブチル基等の低級アルキル
基を、及び、アルコキシアルキル基としては、メトキシ
メチル基、エトキシメチル基、メトキシエチル基、エト
キシエチル基、メトキシプロピル基等を好適に挙げるこ
とができる。これらのシリコンアルコキシドは市販品を
そのまま、または蒸留精製して用いればよい。
There are various kinds of the above-mentioned silicon alkoxides, and those which are industrially easily available include, for example, compounds represented by the general formula Si (OR 1 ) 4 (wherein R 1 is an alkyl group or an alkoxyalkyl group), or One or two alkoxide groups (OR 1 ) in the above general formula
A compound in which is substituted with a carboxyl group or a β-dicarbonyl group, a low condensate obtained by partially hydrolyzing them, or a mixture thereof is used without particular limitation. As the alkyl group, a methyl group,
Preferable examples include lower alkyl groups such as ethyl group, isopropyl group, butyl group, and examples of alkoxyalkyl groups include methoxymethyl group, ethoxymethyl group, methoxyethyl group, ethoxyethyl group, methoxypropyl group and the like. . These silicon alkoxides may be commercially available products as they are, or may be purified by distillation before use.

【0021】加水分解は、水の他に、必要ならばアルコ
ールなどの溶媒、酸あるいは塩基触媒の存在下で、攪拌
しながら行われる。このとき水浴中あるいは湯浴中で加
水分解を行うのが望ましい。触媒とアルコールなどの溶
媒は、必ずしも必要ではないが、触媒は加水分解、重縮
合の速度を速める効果、アルコールなどの溶媒は沈殿物
の発生を抑制し、より均一なゾル溶液を調製するという
効果がある。
The hydrolysis is carried out with stirring in the presence of a solvent such as alcohol, an acid or a base catalyst, if necessary, in addition to water. At this time, it is desirable to carry out the hydrolysis in a water bath or a hot water bath. A catalyst and a solvent such as alcohol are not always necessary, but a catalyst has an effect of accelerating the rate of hydrolysis and polycondensation, and a solvent such as alcohol has an effect of suppressing the generation of precipitates and preparing a more uniform sol solution. There is.

【0022】触媒は、酸あるいは塩基性化合物をそのま
まか、あるいは水またはアルコールなどの溶媒に溶解さ
せた状態のもの(以下、それぞれ酸性触媒、塩基性触媒
という)を用いる。そのときの濃度については特に限定
しないが、濃度が濃い場合は加水分解、重縮合速度が速
くなる傾向がある。但し、濃度の濃い塩基性触媒を用い
ると、ゾル溶液中で沈殿物が生成する場合があるため、
塩基性触媒の濃度は1N(水溶液での濃度換算)以下が
望ましい。
As the catalyst, an acid or basic compound as it is or in a state of being dissolved in a solvent such as water or alcohol (hereinafter referred to as an acidic catalyst or a basic catalyst) is used. The concentration at that time is not particularly limited, but when the concentration is high, the hydrolysis and polycondensation rates tend to be high. However, if a basic catalyst with a high concentration is used, a precipitate may be generated in the sol solution,
The concentration of the basic catalyst is preferably 1N (converted to a concentration in an aqueous solution) or less.

【0023】酸性触媒あるいは塩基性触媒の種類は特に
限定されないが、濃度の濃い触媒を用いる必要がある場
合には、焼結後に触媒結晶粒中にほとんど残留しないよ
うな元素から構成される触媒がよい。具体的には、酸性
触媒としては、塩酸などのハロゲン化水素、硝酸、硫
酸、亜硫酸、硫化水素、過塩素酸、過酸化水素、炭酸、
蟻酸や酢酸などのカルボン酸、構造式RCOOHのRを
他元素または置換基によって置換した置換カルボン酸、
ベンゼンスルホン酸などのスルホン酸など、塩基性触媒
としては、アンモニア水などのアンモニア性塩基、エチ
ルアミンやアニリンなどのアミン類などがあげられる。
The type of acidic catalyst or basic catalyst is not particularly limited, but when it is necessary to use a catalyst with a high concentration, a catalyst composed of elements that hardly remain in the catalyst crystal grains after sintering is used. Good. Specifically, as the acidic catalyst, hydrogen halide such as hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, hydrogen sulfide, perchloric acid, hydrogen peroxide, carbonic acid,
Carboxylic acids such as formic acid and acetic acid, substituted carboxylic acids in which R of the structural formula RCOOH is substituted with another element or a substituent,
Examples of the basic catalyst such as sulfonic acid such as benzenesulfonic acid include ammoniacal bases such as aqueous ammonia and amines such as ethylamine and aniline.

【0024】(2) 本発明は、上記方法で得たチタニア系
触媒をアルカリまたは酸で表面処理することを特徴的構
成要件とする。
(2) The present invention is characterized in that the titania catalyst obtained by the above method is surface-treated with an alkali or an acid.

【0025】ここでアルカリとしては水酸化ナトリウム
・カリウムの水溶液(通常、1〜17N)等を、酸とし
てはフッ酸(通常、0.1〜10N)等を好適に使用可
能である。この表面処理により、チタニア系触媒粉末の
表面に残存しているアモルファスシリカ(触媒活性に悪
影響を与えると考えられる)が除去されると推定され
る。このとき、各表面処理後は、水洗しておく。そし
て、アルカリで表面処理した場合、水洗後、希塩酸等の
無機酸で中和処理しておくことが望ましい。
Here, an aqueous solution of sodium / potassium hydroxide (usually 1 to 17 N) or the like can be suitably used as the alkali, and hydrofluoric acid (usually 0.1 to 10 N) or the like can be suitably used as the acid. It is presumed that this surface treatment removes the amorphous silica (which is considered to adversely affect the catalytic activity) remaining on the surface of the titania-based catalyst powder. At this time, it is washed with water after each surface treatment. When the surface treatment is performed with an alkali, it is desirable to neutralize the surface with an inorganic acid such as dilute hydrochloric acid after washing with water.

【0026】上記アルカリ・中和処理方法は、通常、浸
漬・噴霧等の方法で行う。
The alkali / neutralization method is usually carried out by a method such as dipping / spraying.

【0027】(3) 上記のようにして調製した焼成物は、
そのまま、触媒(光活性)として使用してもよいが、通
常、粉砕して使用する。粉砕方法としては、通常、ボー
ル・ロッドミル、マイクロナイザー等の微粉砕機・超微
粉砕機を使用して行う。
(3) The fired product prepared as described above is
Although it may be used as it is as a catalyst (photoactive), it is usually pulverized before use. As a pulverization method, a fine pulverizer or an ultrafine pulverizer such as a ball / rod mill or a micronizer is usually used.

【0028】[0028]

【発明の作用・効果】本発明のチタニア系触媒の製造方
法は、上記のような構成により、下記のような作用・効
果を奏する。
The operation and effect of the present invention has the following operation and effects due to the above-mentioned constitution.

【0029】(1) シリカをドープまたはドープレスのチ
タニア系焼成体をアルカリ又は酸で表面処理することに
より、後述の実施例で支持される如く、光触媒特性が増
大する。これは、チタニア系焼成体に残存しているチタ
ニア・シリカアモルファスが除去されるためであると推
定される。
(1) By surface-treating a silica-doped or dopeless titania-based calcined product with an alkali or an acid, the photocatalytic properties are increased, as will be supported in the examples described later. It is presumed that this is because the titania-silica amorphous remaining in the titania-based fired body is removed.

【0030】(2) シリカを所定量以上ドープした場合、
さらには、焼成温度を可及的に低くすることにより、や
はり、光触媒特性が増大する。単一結晶の粒径が小さく
なって(相対的に比表面積が増大する)、触媒活性面が
増大するためと推定される。
(2) When silica is doped in a predetermined amount or more,
Furthermore, by lowering the calcination temperature as much as possible, the photocatalytic properties are also increased. It is presumed that the particle size of the single crystal becomes smaller (relatively increases the specific surface area) and the catalytically active surface increases.

【0031】以上の如く、本発明のチタニア系触媒の製
造方法は、貴金属助触媒を担持させずに、光触媒活性を
容易に増大させることが可能となる。
As described above, according to the method for producing a titania-based catalyst of the present invention, the photocatalytic activity can be easily increased without supporting the noble metal promoter.

【0032】[0032]

【試験例】以下、本発明の効果を確認するために行った
試験例について説明をする。
[Test Example] A test example conducted to confirm the effects of the present invention will be described below.

【0033】(1) シリカ添加量と比表面積との関係 組成が、(1−x)TiO2 ・xSiO2 (x=0、
0.05、0.1)となるように、市販のイソブトキシ
シラン及びテトラエトキシシランを、エタノール及び水
で溶解させたゾル溶液に、希塩酸を加水分解触媒として
加えて、加水分解後、放置してゲル化させた。(図4工
程図参照)各ゲル化物を、500・600・700℃の
温度で、それぞれ、2時間づつ熱処理を行って焼成し、
該焼成体を、めのう乳鉢で粉砕して微粉末状(粒径<3
20メッシュ)のチタニア系触媒を調製した各チタニア
系触媒について、比表面積をBET法に基づいて測定し
た。その結果を、図1に示すが、シリカの添加量の増大
に従って、比表面積が増大することが分かる。また、焼
成温度(結晶化温度)が高くなるに従って、比表面積が
小さくなることが分かる。
(1) Relationship between the amount of silica added and the specific surface area The composition is (1-x) TiO 2 · xSiO 2 (x = 0,
0.05, 0.1) commercially available isobutoxysilane and tetraethoxysilane are dissolved in ethanol and water to a sol solution, diluted hydrochloric acid is added as a hydrolysis catalyst, and the mixture is left to stand after hydrolysis. Gelled. (Refer to the process chart of FIG. 4) Each gel is heat-treated at a temperature of 500/600/700 ° C. for 2 hours and baked,
The fired product was crushed in an agate mortar and finely powdered (particle size <3
The specific surface area of each titania catalyst prepared by preparing a 20 mesh titania catalyst was measured based on the BET method. The results are shown in FIG. 1, and it can be seen that the specific surface area increases as the amount of silica added increases. Further, it can be seen that the specific surface area decreases as the firing temperature (crystallization temperature) increases.

【0034】(2) 焼成温度と触媒活性との関係 上記でシリカ添加量が0.05モル%で、結晶化温度が
500・600・700℃で得た各触媒について、触媒
活性を光コルベ法により測定した。その結果を、図2に
示すが、結晶化温度が低い方が(比表面積が大きい方
が)高いことが分かる。
(2) Relationship between calcination temperature and catalytic activity The catalytic activity of each of the catalysts obtained above with a silica addition amount of 0.05 mol% and a crystallization temperature of 500/600/700 ° C. was measured by the optical Kolbe method. It was measured by. The results are shown in FIG. 2, and it can be seen that the lower the crystallization temperature is (the larger the specific surface area is), the higher the crystallization temperature is.

【0035】(3) アルカリ処理と触媒活性との関係 シリカ添加量0.1または0.2モル%とし、焼成温度
600℃て調製したもののアルカリ表面処理品・非処理
品について、それぞれ光コルベ法により触媒活性を測定
した。その結果を、図3に示すが、アルカリ表面処理し
たものは、非処理品に比して格段に触媒活性が高いこと
が分かる。
(3) Relationship between alkali treatment and catalytic activity: Alkali surface treated products and non-treated products prepared at a calcining temperature of 600 ° C. with a silica addition amount of 0.1 or 0.2 mol%, respectively, are subjected to the optical Kolbe method. The catalytic activity was measured by. The results are shown in FIG. 3, and it can be seen that the alkaline surface-treated product has significantly higher catalytic activity than the untreated product.

【0036】なお、表面処理は、NaOHaq(17
N)でアルカリ浸漬(室温5時間)後、水洗し、HCl
aq(0.1N)で酸洗浄して完了した。
The surface treatment is NaOHaq (17
N) soaked in alkali (room temperature 5 hours), washed with water,
Completed with acid wash with aq (0.1 N).

【図面の簡単な説明】[Brief description of drawings]

【図1】シリカ添加量と比表面積との関係を示すグラフ
FIG. 1 is a graph showing the relationship between the amount of silica added and the specific surface area.

【図2】焼成温度と触媒活性との関係を示すグラフ図FIG. 2 is a graph showing the relationship between calcination temperature and catalytic activity.

【図3】アルカリ処理の有無と触媒活性との関係を示す
グラフ図
FIG. 3 is a graph showing the relationship between the presence or absence of alkali treatment and the catalytic activity.

【図4】上記試験例におけるゾル・ゲル法の工程図FIG. 4 is a process diagram of the sol-gel method in the above test example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (1−x)TiO2 ・xSiO2 (x=
0〜0.5)のモル比となるように、チタンアルコキシ
ド及びシリコンアルコキシドを混合した加水分解ゾルを
ゲル化後、熱処理温度350〜1200℃で焼成してチ
タニア系触媒を製造する方法であって、 前記焼成後のチタニア系触媒を、アルカリまたは酸で表
面処理することを特徴とするチタニア系触媒の製造方
法。
1. A (1-x) TiO 2 .xSiO 2 (x =
A method for producing a titania-based catalyst by gelling a hydrolyzed sol in which titanium alkoxide and silicon alkoxide are mixed so as to have a molar ratio of 0 to 0.5) and then calcining at a heat treatment temperature of 350 to 1200 ° C. A method for producing a titania-based catalyst, characterized in that the calcined titania-based catalyst is surface-treated with an alkali or an acid.
【請求項2】 請求項1において、x=0.02〜0.
25であることを特徴とするチタニア系触媒の製造方
法。
2. The method according to claim 1, wherein x = 0.02-0.
25 is a method for producing a titania-based catalyst.
【請求項3】 請求項1または2において、前記熱処理
温度が450〜600℃であることを特徴とするチタニ
ア系触媒の製造方法。
3. The method for producing a titania-based catalyst according to claim 1, wherein the heat treatment temperature is 450 to 600 ° C.
JP06789395A 1995-03-27 1995-03-27 Method for producing titania-based catalyst Expired - Fee Related JP3738371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06789395A JP3738371B2 (en) 1995-03-27 1995-03-27 Method for producing titania-based catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06789395A JP3738371B2 (en) 1995-03-27 1995-03-27 Method for producing titania-based catalyst

Publications (2)

Publication Number Publication Date
JPH08257399A true JPH08257399A (en) 1996-10-08
JP3738371B2 JP3738371B2 (en) 2006-01-25

Family

ID=13358036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06789395A Expired - Fee Related JP3738371B2 (en) 1995-03-27 1995-03-27 Method for producing titania-based catalyst

Country Status (1)

Country Link
JP (1) JP3738371B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036677A1 (en) * 1996-03-29 1997-10-09 Tao Inc. Photocatalyst body and method of production thereof
US6027775A (en) * 1996-09-30 2000-02-22 Chubu Electric Power Co., Inc. Crystalline titania and process for producing the same
JP2003093890A (en) * 2001-09-25 2003-04-02 Mitsubishi Heavy Ind Ltd Method for preparing photocatalyst
JP2011072928A (en) * 2009-09-30 2011-04-14 Jx Nippon Oil & Energy Corp Hydrodesulfurization catalyst for hydrocarbon oil and method for manufacturing the same
JP2011074235A (en) * 2009-09-30 2011-04-14 Jx Nippon Oil & Energy Corp Method of hydrorefining hydrocarbon oil
JP2012005976A (en) * 2010-06-25 2012-01-12 Jx Nippon Oil & Energy Corp Hydrodesulfurization catalyst for hydrocarbon oil and method of producing the same
JP2019048754A (en) * 2017-09-12 2019-03-28 富士ゼロックス株式会社 Silica-titania composite aerogel particle, method for producing silica-titania composite aerogel particle, photocatalyst-forming composition, photocatalyst and structure
CN115318337A (en) * 2022-09-13 2022-11-11 西安工程大学 Preparation method and application of benzenesulfonic acid group modified carbon nitride photocatalytic material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036677A1 (en) * 1996-03-29 1997-10-09 Tao Inc. Photocatalyst body and method of production thereof
US6107241A (en) * 1996-03-29 2000-08-22 Tao Inc. Photocatalytic body and method for making same
US6429169B1 (en) 1996-03-29 2002-08-06 Saga-Ken Photocatalytic body and method for making same
US6027775A (en) * 1996-09-30 2000-02-22 Chubu Electric Power Co., Inc. Crystalline titania and process for producing the same
US6537517B1 (en) 1996-09-30 2003-03-25 Chuba Electric Power Co., Ltd. Crystalline titania having nanotube crystal shape and process for producing the same
JP2003093890A (en) * 2001-09-25 2003-04-02 Mitsubishi Heavy Ind Ltd Method for preparing photocatalyst
JP2011072928A (en) * 2009-09-30 2011-04-14 Jx Nippon Oil & Energy Corp Hydrodesulfurization catalyst for hydrocarbon oil and method for manufacturing the same
JP2011074235A (en) * 2009-09-30 2011-04-14 Jx Nippon Oil & Energy Corp Method of hydrorefining hydrocarbon oil
JP2012005976A (en) * 2010-06-25 2012-01-12 Jx Nippon Oil & Energy Corp Hydrodesulfurization catalyst for hydrocarbon oil and method of producing the same
JP2019048754A (en) * 2017-09-12 2019-03-28 富士ゼロックス株式会社 Silica-titania composite aerogel particle, method for producing silica-titania composite aerogel particle, photocatalyst-forming composition, photocatalyst and structure
CN115318337A (en) * 2022-09-13 2022-11-11 西安工程大学 Preparation method and application of benzenesulfonic acid group modified carbon nitride photocatalytic material
CN115318337B (en) * 2022-09-13 2024-01-09 西安工程大学 Preparation method and application of benzenesulfonic acid group modified carbon nitride photocatalytic material

Also Published As

Publication number Publication date
JP3738371B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
KR100374478B1 (en) Method for Preparing an Anatase Typed-Titanium Dioxide Photocatalyst and Photocatalyst Produced by the same
US6537517B1 (en) Crystalline titania having nanotube crystal shape and process for producing the same
CN1128106C (en) Method for prodn. of mono-dispersed and crystalline TiO2 ultrafine powders from aqueous TiOCl2 solution using homogeneous precipitation
CN107935039B (en) Preparation method of titanium dioxide water-based sol
CN101391811B (en) Method for preparing high specific surface area titanic oxide
JPH10152323A (en) Crystal titania and its production
JP2009521392A5 (en)
JP4891021B2 (en) Method for producing niobium oxide fine particles
JP3284879B2 (en) Method for producing chlorine
JP3738371B2 (en) Method for producing titania-based catalyst
CN104475082A (en) Preparation method of visible light responded WO3/{001}TiO2 composite photocatalyst
US4370263A (en) Catalyst for the photo-decomposition of water and process for the preparation of the catalyst
TWI272250B (en) Visible light-activated photocatalyst and method for producing the same
JP3674009B2 (en) Method for producing amorphous titanium oxide sol
JP4184451B2 (en) Method for producing titania-based catalyst
CN107892326B (en) Rutile Type TiO2The preparation method and product of nano-rod assembly
JP5625929B2 (en) Method for producing silica-containing hydrous titanium oxide and silica-containing anatase-type titanium oxide
JPH10128110A (en) Photocatalyst composition and its forming agent
JPH1015387A (en) Preparation of titania type catalyst
JPH10265223A (en) Production of anatase type fine particulate titanium oxide
JP3136339B2 (en) Titanium oxide photocatalyst and method for producing the same
KR100354857B1 (en) Process for Preparing Silica/Titania Photocatalyst by the Sol-Gel Method
JP4343335B2 (en) Titanium oxide coating film forming composition for photocatalyst and process for producing the same
JPH06227815A (en) Production of electrically conductive fine powder
JP3642490B1 (en) Method for producing titania solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees